2008 Solar Annual Review Meeting

Session: Process Development and Integration Lab (PDIL)

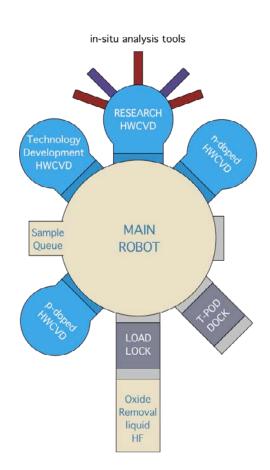
Organization: National Renewable Energy Laboratory

Funding Opportunity: PDIL Capital Equipment

Wafer Replacement Cluster Tool

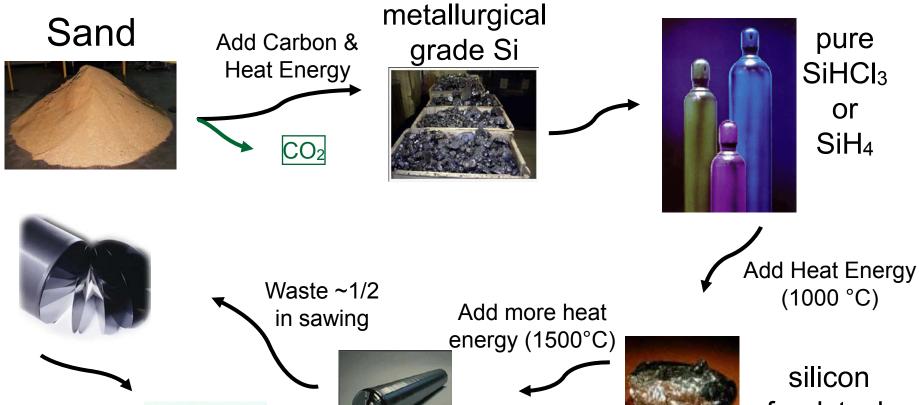
Howard M. Branz National Renewable Energy Laboratory Golden, CO 80401 howard_branz@nrel.gov

NREL/PR-520-43195


Presented at the Solar Energy Technologies Program (SETP) Annual Program Review Meeting held April 22-24, 2008 in Austin, Texas

Wafer Replacement Cluster Tool

- Platform for advanced R&D toward SAI 2015 Cost Goal
 - Crystal silicon PV at area costs closer to amorphous Si PV
 - 15% efficiency
 - Inexpensive substrate
 - Moderate temperature processing (<800°C)
- Why silicon?
 - Industrial and knowledge base
 - Abundant and environmentally benign
 - Market acceptance
 - Good efficiency
- Why replace wafers?
 - Expensive
 - High embedded energy content
 - Use 50-100 times more silicon than needed

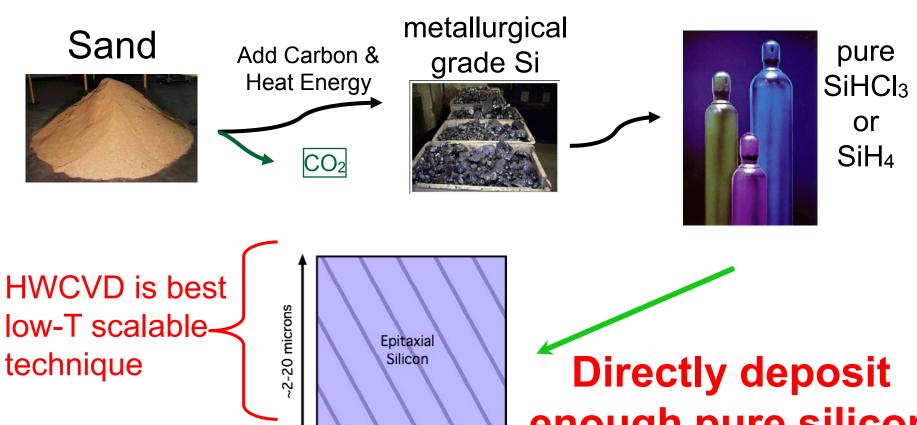


Energy and Si-intensive wafers

Current process:

- 2 yr energy payback
- \$0.60/W \$1.00/W for feedstock alone

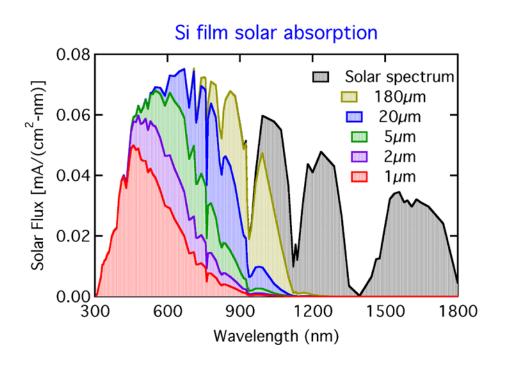
Use 10X more than needed



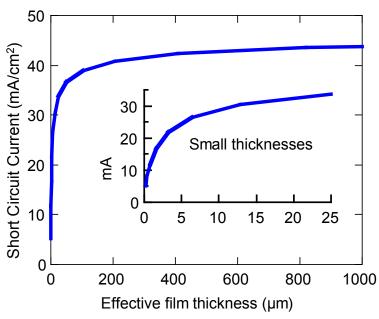
feedstock

Vision for wafer replacement Si

Film Si growth:

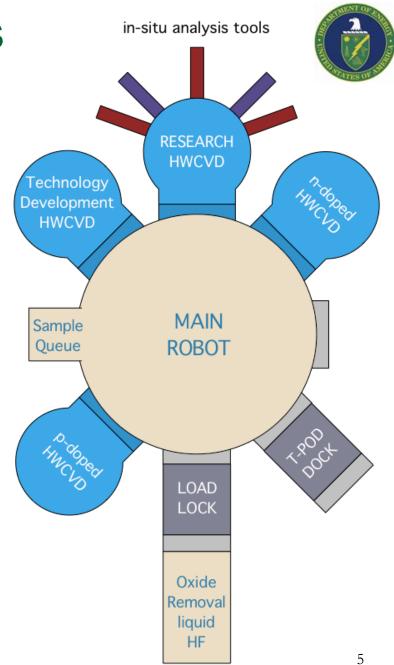

Seed Layer

Glass Substrate


Directly deposit enough pure silicon for light absorption

Thick wafers not needed for c-Si PV

Potential Current vs effective thickness



- Most current available at 20 μm effective thickness
- Over 30 mA attainable for 5-μm silicon with 5X light trapping
 - absorbs like 25 μm silicon layer

Tool and its capabilities

- Substrate to 800°C
- 156-mm samples queue in vacuum
- Automated liquid-based oxide removal
 - key last-minute step
- Doping control in separate chambers
 - n-type
 - p-type
- Research HWCVD
 - 10⁻¹ Torr vacuum, low impurity
 - RTSE, RHEED, pyrometer, RGA
- Technology development HWCVD
 - Develop new filament and heater designs

- Load Lock
- Vacuum Transfer Pod to other PDIL Tools
- Spare port for alternatives and collaborations

Tool Alignment with Film c-Si Technology Roadmap

Roadmap

Wafer Replacement Tool

Need	Significance	
Develop inexpensive large-grain or single-crystal, high-quality c-Si film growth processes and materials for use with low-cost substrates	Higher efficiency than amorphous, but lower cost than wafer-based silicon	Scalable hot-wire (HWCVD) epitaxy – 300 nm/min, 10 µm, with low dislocations – Epitaxy on all orientations
Develop seeding techniques for high-quality epitaxial c-Si film formation on low-cost substrates	Increased efficiency	Will enable us to evaluate seed layers
Develop light-management strategies for weakly absorbing c-Si films	Increased efficiency	Will enable us to develop light-trapping at 6-inch scale
Develop inexpensive, high- temperature (>600°C) substrates for c-Si films	Reduced cost	Will enable us to evaluate new substrates
Develop inexpensive, reduced- temperature processing for c-Si films	Reduced cost	Glass-compatible temperatures 600 - 700°C
Develop low-temperature passivation techniques for film- Si surfaces, interfaces, and grain boundaries	Increased efficiency	Hot-wire hydrogenation possible, if needed
Develop, automate, and scale up deposition equipment for c-Si film fabrication	Reduced cost and increased yield	Technology development chamber and in-situ diagnostics

Status and schedule

- Conceptual design (chambers) complete
 - based on new test epitaxy chamber (1")
- Detailed design work continuing
- Statement of work for RFQ in preparation
- Bids and vendor selection in FY08
- Delivery of robot and key chambers in FY09

Partnerships anticipated

- Seed layer candidates
 - semiconductor equipment companies
 - display companies
 - glass companies
 - start-ups
 - NREL R&D
 - university and national labs
- PV ventures testing low-T epitaxy step
- Equipment vendors
 - chamber to test HWCVD innovations

NREL Contacts

Chaz Teplin

charles_teplin@nrel.gov 303-384-6440

Paul Stradins

pauls_stradins@nrel.gov 303-384-6774

Howard Branz

howard_branz@nrel.gov 303-384-6694

CIGS Platform

Miguel Contreras

	PV Technology Road Maps							
	Wafer Si	Film Si	CPV	CdTe	CIGS	OPV	DSPV	
Platform	Š	団	5	Ö	$\overline{\circ}$	Ö	Dê	
Thin Si					i			
Wafer Rep.								
CIGS								
CdTe								
Atm. Proc.								
M&C Ind.								
M&C Cluster								