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ABSTRACT 
 
We study the performance of CdS/CdTe thin film PV devices 
processed with a ZnTe:Cu/Ti contact to investigate how 
carrier lifetime (τ) in the CdTe layer is affected by Cu 
diffusion from the contact.  Time-resolved 
photoluminescence (TRPL) measurements show that τ 
decreases slightly as the contacting temperature increases 
in the temperature regime that produces “insufficient” Cu 
concentration in CdTe (~room temperature to ~250º C).  
However, τ increases significantly once the contact 
temperature is in the range that yields “optimum” Cu 
concentration and high-performance devices (~280 to 
~320ºC).  At higher substrate temperatures (>~300º C), τ 
drops precipitously, consistent with a region previously 
identified as producing “excessive” Cu concentration - and 
poor device performance.  The observed τ increase within 
the “optimum temperature” range not only suggests why 
high-performance devices may form at these contact 
temperatures using many different contact processes 
(including paste contacts), but may provide a significant clue 
as to why Cu-contact formation processes impart a broad 
latitude in other process parameters. 

 
INTRODUCTION 

 
It is well known that controlled Cu diffusion from the 

back contact of a CdS/CdTe thin film solar cell can 
significantly enhance device performance.  It is also well 
known that this same Cu diffusion is often linked to device 
instability.  Although some Cu-free contact designs have 
produced devices that demonstrate high stability, these 
contacts have not yet achieved performance consistent 
with devices that incorporate Cu-containing contacts.  This 
suggests that the CdTe photovoltaic (PV) community 
presently lacks clear understanding of the role(s) of Cu in 
junction formation, and a prudent research strategy should 
continue to advance this understanding.  Research at 
NREL using the ZnTe:Cu/Ti contact has enabled critical 
aspects of Cu diffusion to be studied using conditions that 
afford a high degree of process control.  Some of the 
insight gained from these studies is described below. 

 
We have established that Cu diffusion from the 

ZnTe:Cu layer can increase the net acceptor 
concentration in the CdTe layer (Na-Nd), thereby reducing 
the space-charge width (Wd) of the junction.  Optimum 
light current-voltage (LIV) performance is attained when 
Wd is narrow enough to produce a drift field in the CdTe 
absorber of sufficient strength to overcome the relatively 
poor carrier lifetime, τ, but still wide enough to limit effects 

of voltage-dependent collection (i.e., photocarriers should 
be generated primarily within of the depletion region when 
the device is biased near the maximum power point 
[MPP]) [1].  An “optimum contact” is produced by 
“optimum Cu diffusion” resulting in a Wd of ~0.3 to 0.5 µm 
when the device is biased near MPP.  If Cu incorporation 
from the contact increases beyond its optimum 
concentration, Na-Nd can continue to increase, and lower 
values of reverse saturation current (Jo) can result.  
Unfortunately, this amount of Cu incorporation will produce 
voltage-dependent collection because the Wd is too 
narrow.  Cu can also diffuse into the CdS layer, reduce 
this layer’s net donor density (Nd-Na), and produce a 
manifestation of photoconductivity, as confirmed by red vs. 
blue light-bias voltage-dependent quantum efficiency [2].  
These complications moderate the potential benefits of a 
lower Jo, reducing the open-circuit voltage (Voc) and fill 
factor of the device.  Similar (but longer-term) 
redistribution of Cu into the CdS layer may be linked to 
certain types of device instability. 

 
In the above description, a tacit assumption is that τ in 

the CdTe layer is not significantly affected as Cu 
concentration in the CdTe increases.  In this study, we 
have tested this assumption using time-resolved 
photoluminescence (TRPL) measurements of sets of well-
characterized ZnTe:Cu/Ti-contacted devices. 

 
EXPERIMENTAL 

 
CdS/CdTe materials used in this study were produced 

by three different groups.  The samples produced at NREL 
incorporated 7059 Glass, SnO2:F/SnO2 produced by 
chemical vapor deposition from CBrF3, Sn(CH3)4, and O2 
CdS deposited by solution growth, CdTe deposited by 
CSS, and a vapor CdCl2 process [3].  The second sample 
set was produced at Colorado State University (CSU) and 
utilized Tec 15 (soda lime) glass substrates, with CdS, 
CdTe, and CdCl2 processed in vacuum using the CSU 
reactor [4].  The third set of samples was produced using 
Tec 15 glass, a commercial vapor transport deposition 
(VTD) process, for CdS and CdTe, and a wet CdCl2 
process.  For all CdS/CdTe materials, no contact or 
precontact process was performed prior to the application 
of the ZnTe:Cu/Ti contact.   

 
The ZnTe:Cu/Ti contact was produced at NREL as 

follows:  Samples were placed into a multisource vacuum 
processing chamber and preheated for 120 min at the 
indicated contact deposition temperature (25 to 360°C).  
Prior to ZnTe:Cu deposition, ion-beam milling was 
performed with a 3-cm Kaufman-type ion gun, operating at 
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a beam energy and current of 500 eV and 6 mA, 
respectively, using UHP-grade Ar.  ZnTe:Cu layers (~9 
at.% Cu) were deposited by r.f. sputter deposition to the 
desired thicknesses (1.0 µm for the temperature study, 
and 0.04, 0.1, 0.2, 0.5, or 1.0 µm for the thickness study).  
The sample heater was turned off following ZnTe:Cu 
deposition and allowed to cool to an indicated temperature 
of ~185°C (unnecessary for 25°C sample), at which point 
0.5 µm of Ti was deposited using d.c. magnetron 
sputtering.  Following contact formation, a pattern of 
individual 0.25-cm2 cells were defined photolitho-
graphically on each sample.  Cell definition was by two-
step chemical etching, first using TFT Ti Etchant 
(Transene Co. Inc., Rowley, MA) to remove the Ti, 
followed by an aqueous solution of 39% FeCl3 to remove 
the ZnTe:Cu and CdTe.  A perimeter contact to the SnO2 
layer was formed with ultrasonically soldered In. 

 
Electrical analysis included light and dark current-

voltage (LIV/DIV) measurements at room temperature 
using an XT-10 solar simulator adjusted to approximate 
Global AM1.5 current from a CdS/CdTe reference cell.  
Capacitance-voltage (C-V) measurements were performed 
in the dark using an HP 4274 LCR meter at a frequency of 
100 kHz within a bias voltage range of –2.0 to +0.6 volts 
(i.e., forward bias to the approximate MPP voltage of the 
devices). 

 
Secondary ion mass spectrometry (SIMS) analysis 

was performed on some devices following chemical 
removal of the Ti layer with the TFT etchant.  SIMS was 
performed from the contacted side of the devices using a 
Cameca IMS-3F instrument tuned for a mass resolution 
(M/∆M) of ~4000 to allow for separation of 63Cu+ from 
126Te2+ species.   

 
TRPL was measured at 820 nm through the glass 

side of the devices using a 650-nm excitation wavelength 
and a beam diameter of ~1 mm at a 250 kHz rep rate.  
Measurements were performed at two different laser-
injection intensities (0.25 and 2.5 mW average CW power) 
in the hope of observing and negating any effect that 
increasing electric field strength as a function of Cu 
incorporation may have on the measurement of τ.  

 
RESULTS AND DISCUSSION 

 
Previous studies have shown that the parameters of the 
ZnTe:Cu/Ti back contact that affect Cu diffusion also 
influence the electrical performance of the resultant device 
(see for example Figure 1).  Diffusion-linked parameters 
include the temperature during contact processing and the 
amount of Cu available at the contact (as determined by 
the thickness of the ZnTe:Cu layer).  Figures 2 and 3 show 
SIMS profiles confirming systematic variation in Cu 
diffusion due to contact temperature (Fig. 2) and Cu 
availability (Fig. 3).  Figure 4 shows C-V analysis 
indicating that an increase in net acceptor concentration 
(NA-ND) is observed for changes in ZnTe:Cu thickness.  
These changes coincide with the increase in Cu 
concentration shown in Figures 3.  A similar (but not 
shown) trend in the C-V data has also been established 

showing that increasing contact temperature increases NA-
ND [5].  Numerical simulation has further linked the general 
trends in observed device performance with these 
changes in NA-ND [1]. 

 
Fig. 1.  IV characteristics for CdS/CdTe/ZnTe:Cu/Ti 
devices contacted at 360°C as a function of the indicated 
ZnTe:Cu thickness. 
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Fig. 2.  Quantified SIMS depth profiles of Cu concentration 
in CdTe/CdS devices for indicated approximate contact 
temperature.  Analysis was performed from the ZnTe side. 
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Fig. 3.  Quantified SIMS depth profiles of Cu concentration 
in CdTe/CdS devices for indicated ZnTe:Cu thickness.  
Analysis was performed from the ZnTe side.  The 
approximate ZnTe:Cu/CdTe is interface indicated as “0” 
depth. 
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Fig. 4. C-V analysis (room temperature, dark) for devices 
with indicated ZnTe:Cu thickness.  Maximum forward 
voltage is 0.6 V.  Location of Wd is indicated for each data 
set at location of arrow. 

 
The preceding review suggests a compelling 

description of junction evolution during Cu contact 
formation.  However, it does not account for reports 
detailing reduction in τ with Cu incorporation [6,7,8].  If 
reduction in τ with increasing Cu is true for all Cu 
containing CdTe back contacts (including the ZnTe:Cu/Ti 
contact), it is difficult to describe why voltage-dependant 
collection decreases near optimum Cu incorporation [5].  
Specifically, a shorter minority-carrier diffusion length (i.e., 
reduced τ) would make it increasingly difficult to collect 
carriers outside of an increasingly narrow depleted region.  
This study has been designed to examine how τ may 
evolve as Cu diffuses from the ZnTe:Cu/Ti contact.  
Because Cu incorporation into the CdTe layer is known to 
increase with both contact temperature and Cu availability 
for the ZnTe:Cu/Ti contact (shown in Figs. 2 and 3), two 
different studies were conducted.  The first examines how 
τ varies as a function of contact deposition temperature (at 
near-optimum ZnTe:Cu thickness), while the second 
examines variation in τ with ZnTe:Cu layer thickness (at 
near-optimum contact temperature). 

 
The sample sets used for the first TRPL study include 

those shown in Figs. 1-4.  This set was produced using 
material from the commercial VTD process.  Figure 5 
shows the TRPL-measured lifetime as a function of 
ZnTe:Cu layer deposition temperature.  Inspection of the 
related PL decay curves for individual cells show that 
these samples demonstrate a gentle biexponential decay 
at 2.5 mW.  At lower intensity (0.25 mW), the fast decay 
component makes the biexponential aspect of the decay 
more pronounced.  Longer duration scans taken at even 
lower intensity (~0.07 mW) for two samples indicated a 
continuing decrease in lifetime with decreasing injection 
level (note that signal intensity becomes borderline at this 
injection level).  This injection dependence is in contrast to 
what is observed for cells measured at NREL with other 
types of contacts [6], and could be a sign of charge 
separation consistent with a stronger junction field in these 
devices relative to previously measured devices.  
However, trap recombination and saturation are also 
possible explanations.   

 

Because the photoluminescence decay for these 
devices was biexponential, values of τ were calculated 
from biexponential fits for both the “fast” decay region (τ1) 
and for the longer-term decay (τ2).  The different functional 
forms suggest that τ1 at 0.25 mW may be more 
representative of interface recombination kinetics, 
whereas the other τ values are more representative of 
bulk recombination.  τ values for both fast and slow 
regions are shown in Fig. 5.  The results indicate that 
some of these samples demonstrate very respectable 
lifetimes for CdTe PV devices.  This is especially true at 
the higher injection level (2.5 mW) where the influence of 
junction field should be screened efficiently by the 
photoinjected carriers. 
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Fig. 5.  Minority carrier lifetime in the junction region of a 
CdS/CdTe/ZnTe:Cu/Ti device as a function of contacting 
temperature.  Figure shows two different excitation 
intensities (2.5 mW and 0.25 mW) and fits of the fast (t1) 
and slow (t2) decay times.  The temperature regions 
indicated as “Insufficient Cu,” Optimum Cu,” and 
“Excessive Cu” are consistent with those identified in Figs. 
2 and 3. 

 
Trend analysis of τ with Cu diffusion (Fig. 5) shows 

that τ decreases slightly as the contacting temperature 
increases from room temperature to ~250°C.  Previous 
studies have shown that this temperature region yields 
CdTe Cu concentrations that are considered “insufficient” 
for high-performance devices [1,5],  The most exciting 
result of this study is observed in the contact temperature 
range of ~280 to ~320°C, where τ is observed to increase 
significantly.  Previous studies have shown this 
temperature range produces a Cu concentration in the 
CdTe that is “optimum” for producing high-performance 
devices.  Finally, the figure shows that for substrate 
temperatures >~300°C, τ drops precipitously, consistent 
with a region previously identified as producing 
“excessive” Cu concentration and poor device 
performance.  The observed τ increase within the 
“optimum” temperature range not only suggests why high-
performance devices result in that temperature range for 
the ZnTe:Cu/Ti contact, but may suggest why other 
contact processes tend to be optimized within this 
temperature range.  The result may also suggest why the 
Cu-contact formation processes are often “forgiving” of 
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changes in the contact process parameters (i.e., a contact 
process may yield a Wd that is either too wide or too 
narrow, but still produce a good device because the longer 
τ will allow for enhanced collection in lower-field regions of 
the junction). 

 
Upon initial inspection, the observation that τ can 

increase with Cu diffusion appears to be in stark contrast 
to existing reports that indicate τ decreases monotonically 
with increasing Cu diffusion into CdS/CdTe [6,7].  
However, it should be noted that in those studies.  Cu 
incorporation into the CdTe and CdS layers was varied by 
changing the amount of Cu available from the contact 
processes at near-optimum temperature (i.e., fixing the 
diffusion temperature at ~280°C and changing the Cu 
metal thickness).  For the study shown in Fig. 5, the Cu 
diffusion was controlled by varying the contact 
temperature while maintaining a fixed amount of Cu 
available to the contact (i.e., the ZnTe:Cu thickness 
remained constant at ~5000 Å).  Additionally, for most 
other contacts, the lowest amount of Cu that can be 
diffused into the CdTe is known to produce apparent 
quantum efficiency under red-light bias that exceeds 100% 
in the CdS-absorbing region [2].  In contrast, the extent of 
Cu diffusion during the ZnTe:Cu/Ti contacting can be 
controlled so that devices with optimum performance 
result, yet QE greater than expected from the CdS region 
does not result (i.e., Cu does not diffuse significantly into 
the CdS, see Figure 6).  A final difference to consider is 
that Cu diffusion in the ZnTe:Cu contacting process occurs 
at a slightly higher temperature than is typical for Cu-
based CdTe contacts (280-350°C, compared to ≤280°C).  
This higher-temperature diffusion may provide benefits 
similar to those observed during the ~400°C CdCl2 
process (i.e., many CdCl2 sources contain Cu as a 
residual contaminant).   
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Fig. 6.  Apparent quantum efficiency (AQE) analysis of 
ZnTe:Cu/Ti-contacted samples of Fig. 2 with “insufficient” 
(dashed lines), “optimum” (dotted lines), and “excessive” 
(solid lines) Cu at zero-volts bias and various light bias 
conditions (triangles = no light bias, crosses = white light, 
squares = blue light, and circles = red light).  Notable 
changes in the AQE are only observed under red-light bias 
for the "excessive" Cu condition, indicating that sufficient 

Cu has diffused into the CdS to cause apparent 
photoconductivity in this layer. 
 

Considering the above results, an additional TRPL 
study was performed that more closely replicates the 
experimental design of previous Cu diffusion studies but 
using the ZnTe:Cu contact.  This study fixed the 
temperature the ZnTe:Cu/Ti contact near an optimum 
value and varied the Cu diffusion by varying the ZnTe:Cu 
thickness.  If the ZnTe:Cu/Ti contact behaved like contacts 
based on other Cu sources (e.g., CuxTe, metallic Cu, etc.), 
the expected observation would be a monotonic decrease 
in τ with ZnTe:Cu thickness.  This study also included 
CdS/CdTe structures produced by several different groups 
to allow an investigation of how τ functionality may be 
affected by different materials.   
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Fig. 7.  TRPL analysis showing changes in τ1 as a function 
of ZnTe:Cu thickness at indicated contact deposition 
temperature. 
 

Unlike the results of the initial study (i.e., effect of 
contact temperature on τ), the results of the second study 
(Fig. 7) are much more consistent with previous reports 
where other forms of Cu were used [6,7,8], and generally 
show a decrease in τ with increasing Cu concentration in 
the CdTe and CdS layers.  The increase in τ for the VTD 
material for ZnTe:Cu thicknesses between 400-2000 Å is 
still being investigated.  However, there is some evidence 
that trap emission related to Cu incorporation may be 
affecting the PL decay curves and lifetime values for the 
VTD samples.  It should be noted that all values of τ 
measured in this second study are relatively long, 
compared to those resulting from non-optimum 
temperatures of the first study and shown in Fig. 5.  The 
observation that τ values are lower for the NREL and CSU 
materials than for the VTD materials may suggest that an 
optimum temperature for Cu diffusion has not yet been 
identified for these materials.  This is not unexpected 
because a thorough optimization of the ZnTe:Cu/Ti 
contact on these source materials has not yet been 
undertaken. 
 

CONCLUSIONS 
 

This study has shown that the carrier lifetime (τ) 
within the junction region of a CdS/CdTe PV device can 
increase or decrease during ZnTe:Cu/Ti contacting 
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depending upon the amount of Cu that is diffused into the 
junction and the temperature during contact diffusion.  
Previous reports that indicate Cu diffusion leads only to 
reduction in τ may not account for the fact that τ can be 
longer than as-deposited values when the “optimum” 
contact temperature is used.  This new insight suggests 
the following sequence to optimize a Cu-containing 
contact for CdS/CdTe devices: 1) Determine the 
temperature of Cu diffusion that produces the highest 
possible value of τ within the junction region.  This 
assessment should be performed at the lowest amount of 
Cu that can be added to the contact that produces a 
working device.  2) While maintaining “optimum” contact 
temperature, add additional Cu to the contact layers(s).  
This will increase NA-ND in the CdTe, increase Voc and 
reduce Wd.  Adding additional Cu to the CdTe will reduce τ 
from its maximum value, and, depending on the absolute 
value of τ, voltage-dependant collection (reduced fill 
factor) may be observed once the space-charge width is 
approximately equal to the absorption length at MPP.  Fill-
factor reductions caused by voltage-dependent collection 
will likely be of a degree that overall device performance 
cannot be offset by any further increases in Voc.  
Alternatively, if the CdTe material quality and/or contact 
process yield a value of τ that remains sufficiently long, it 
is likely that CdS donor reduction caused by Cu diffusion 
into the CdS could become the limiting mechanism of 
device performance. 
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