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Most groups of chondritic meteorites experienced diverse styles of secondary alteration to various 

degrees that resulted in formation of hydrous and anhydrous minerals (e.g., phyllosilicates, 

magnetite, carbonates, ferrous olivine, hedenbergite, wollastonite, grossular, andradite, nepheline, 

sodalite, Fe,Ni-carbides, pentlandite, pyrrhotite, Ni-rich metal). Mineralogical, petrographic, and 

isotopic observations suggest that the alteration occurred in the presence of aqueous solutions 

under variable conditions (temperature, water/rock ratio, redox conditions, and fluid compositions) 

in an asteroidal setting, and, in many cases, was multistage. Although some alteration predated 

agglomeration of the final chondrite asteroidal bodies (i.e. was pre-accretionary), it seems highly 

unlikely that the alteration occurred in the solar nebula, nor in planetesimals of earlier generations. 

Short-lived isotope chronologies (26Al-26Mg, 53Mn-53Cr, 129I-129Xe) of the secondary minerals 

indicate that the alteration started within 1-2 Ma after formation of the Ca,Al-rich inclusions and 

lasted up to 15 Ma. These observations suggest that chondrite parent bodies must have accreted 

within the first 1-2 Ma after collapse of the protosolar molecular cloud and provide strong 

evidence for an early onset of aqueous activity on these bodies. 
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1. INTRODUCTION 

In this chapter, we review the mineralogy, petrology, and time-scales for secondary 

alteration of type 1-3 carbonaceous (CI, CM, CR, CV, and ungrouped carbonaceous chondrite 

MAC88107), enstatite and ordinary chondrites that resulted in the formation of hydrous and 

anhydrous minerals (e.g., phyllosilicates, carbonates, magnetite, Ni-bearing sulfides, fayalite, 

ferrous olivine, andradite, hedenbergite, wollastonite, grossular, nepheline, sodalite). Although 

thermal and shock metamorphism are also among the secondary processes which affected most 

chondritic meteorites and resulted in some mineralogical modifications, the ages of these 

processes are not discussed here. 

Chondrites consist of four major components: chondrules, Fe,Ni-metal grains and/or metal-

troilite aggregates, refractory inclusions [Ca,Al-rich inclusions (CAIs) and amoeboid olivine 

aggregates (AOAs)], and fine-grained matrix material. The only exception is CI chondrites 

which lack chondrules, refractory inclusions, and Fe,Ni-metal grains. In addition, some 

chondrites contain foreign lithic clasts. It is generally believed that the refractory inclusions, 

chondrules, and Fe,Ni-metal formed in the solar nebula by high temperature processes that 

included evaporation and condensation. Many CAIs and most chondrules and Fe,Ni-metal were 

subsequently melted during multiple brief heating episodes. The refractory inclusions are 

considered to be the oldest solids formed in the solar nebula 4567.2 ± 0.6 Ma ago (Amelin et al., 

2002). Chondrule formation appears to have started less than 1 Myr after CAIs and lasted for at 

least 4 Myr (Amelin et al., 2004; Bizzarro et al., 2004). Chondrules and matrices in a primitive 

chondrite are chemically complementary (Bland, pers. comm., 2004), suggesting that most of the 

matrix materials could have been thermally processed during chondrule formation (Scott and 

Krot, 2004). 



 3

Most chondrite groups show evidence for relatively low temperature alteration that affected 

all their chondritic components (Brearley and Jones, 1998). The nature of this alteration remains 

controversial and has been attributed to nebular (or pre-accretionary) and/or asteroidal 

processing (e.g., Brearley, 2003). Timing of the alteration using short-lived chronology such as 

26Al-26Mg, 53Mn-53Cr, and 129I-129Xe, can potentially resolve this controversy and constrain ages 

of chondrule formation and time of accretion of the chondrite parent asteroids. We note that 

because the life time of the solar nebula is poorly constrained (Podosek and Cassen, 1994), 

dating of secondary alteration alone typically cannot distinguish between nebular and asteroidal 

settings of alteration, which should be based on mineralogical and isotopic (e.g., oxygen) 

observations, thermodynamic analysis, and petrologic experiments. At the same time, the 

prolonged duration of alteration and similar ages of alteration to other asteroidal processes, such 

as thermal metamorphism and igneous differentiation, favor asteroidal settings of alteration. 

Since the environment of alteration (nebular vs. asteroidal) remains controversial, in each section 

we briefly summarize the mineralogical, petrologic and isotopic (oxygen isotopic compositions) 

arguments supporting nebular or asteroidal settings for the alteration of a chondrite group (see 

also Brearley, 2003, 2005). 

2. SHORT-LIVED ISOTOPE CHRONOLOGY OF SECONDARY ALTERATION OF 

CHONDRITIC METEORITES 

2.1. 26Al-26Mg Ages 

 26Al is a short-lived radionuclide that β-decays to 26Mg with a half-life of ~0.73 Ma. 

Excess 26Mg (26Mg*) can be detected by secondary ionization mass spectrometry (SIMS) or by 

other mass spectrometric techniques in bulk samples or mineral fractions [e.g., thermal 
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ionization mass spectrometry (TIMS) and inductively coupled plasma mass spectrometry (ICP-

MS)]. If 26Mg* is derived from in situ decay of 26Al, then the data points plotted as δ26Mg 

[permil (‰) deviation from the terrestrial 26Mg/24Mg ratio of 0.13932] against the 27Al/24Mg 

ratio will define a straight line (Al-Mg isochron) with the slope proportional to 26Al/27Al at the 

time of Al-Mg isotope system closure. Based on the measured abundances of 26Mg* in numerous 

CAIs, the solar system initial 26Al/27Al ratio, called "canonical", is estimated to be ~5×10-5 (e.g., 

MacPherson et al., 1995; Bizzarro et al., 2004). The difference in the initial 26Al/27Al ratios 

between the unknown sample and the canonical 26Al/27Al ratio in CAIs corresponds to their 

relative formation age:  

 (1)  ∆tsample-CAI (Ma) = 1/λ × ln[(26Al/27Al)CAI/(26Al/27Al)sample], 

where λ = ln2/0.73 is the 26Al decay constant; negative/positive values correspond to 

older/younger ages than CAIs with a canonical 26Al/27Al ratio. 

2.2. 53Mn-53Cr Ages 

53Mn is a short-lived radionuclide that β-decays to 53Cr with a half-life of ~3.7 Ma (Lugmair 

and Shukolyukov, 1998). This half-life and the fact that Mn and Cr are reasonably abundant 

elements that experienced extensive fractionation during aqueous alteration, make the 53Mn-53Cr 

chronometer very useful for dating aqueous activity on chondrite parent asteroids (e.g., 

formation of carbonates and fayalite). 

The excess of 53Cr (53Cr*) relative to the terrestrial 53Cr/52Cr ratio of 0.113458 

(Papanastassiou, 1986) can be detected by SIMS in individual minerals having high (>100) 

Mn/Cr ratios, which can yield a high concentration of radiogenic 53Cr, with minimal interference 

from non-radiogenic Cr. If 53Cr* is derived from in situ decay of 53Mn, then the data points 



 5

plotted as δ53Cr (‰ deviation from the terrestrial 53Cr/52Cr ratio) against 55Mn/52Cr ratio will 

define a straight line (Mn-Cr isochron) with the slope proportional to 53Mn/55Mn ratio at the time 

of the isotope closure of Mn-Cr system. The relative ages of two samples, 1 and 2, are then 

calculated from their 53Mn/55Mn ratios:  

 (2) ∆t1-2 (Ma) = 1/λ × ln[(53Mn/55Mn)2/(53Mn/55Mn)1],  

where λ = ln2/3.7 is the 53Mn decay constant. Due to the uncertainty in the solar system initial 

abundance of 53Mn [estimates range from 0.84×10-5 (Lugmair and Shukolyukov, 1998) to 1.4×10-

5 (Lugmair and Shukolyukov, 2001) to (2.8±0.3)×10-5 (Nyquist et al., 2001) to 4.4×10-5 (Birck 

and Allègre, 1988; Birck et al, 1999)], the Mn-Cr ages discussed below are given relative to the 

(53Mn/55Mn)0 ratio of (1.25±0.07)×10-6 for the angrite Lewis Cliff (LEW) 86010 (∆tLEW) that has 

the absolute age determined by Pb/Pb of 4557.8±0.5 Ma (Lugmair and Shukolyukov, 1998).  

2.3. 129I-129Xe Ages 

The incorporation of live 129I into solid matter in the early solar system and subsequent β-

decay resulted in production of its stable 129Xe daughter (129*Xe) at iodine-bearing sites. Isotopic 

closure, achieved when I and Xe migration ceased, preserved a parent-daughter record that is 

observable today in whole-rock samples or mineral separates in many meteorites. If no Xe losses 

have occurred, the ratio of radiogenic 129*Xe to stable 127I equals the value for the initial iodine 

(129I/127I) at the time of isotopic closure. Due to the 15.7 Ma half-life of 129I, 129I/127I evolved 

rapidly in the early solar system. Differences in this initial iodine among meteoritic samples form 

the basis of I-Xe dating (Reynolds, 1960). The analytical technique of I-Xe dating involves 

neutron irradiation in a reactor, which converts a fraction of 127I to 128*Xe [127I (n, γβ) →  128*Xe]. 

Correlated quantities of two iodine derived Xe isotopes (129*Xe and 128*Xe) released in stepwise 
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pyrolysis and measured by ion counting mass spectrometry (Hohenberg, 1980). The simplicity of 

this technique is enhanced by including in the irradiation a meteorite standard of known age 

(Nichols et al., 1994) with the relative I-Xe age then given by the relative slopes of the isochrons. 

Typically, the ratio of 129Xe to some Xe isotope not produced in the irradiation, such as 130Xe or 

132Xe, is plotted against the ratio of 128Xe to that same isotope. The choice of 130Xe or 132Xe 

normalization is usually determined by the relative correction (if any) for spallation or fission 

effects, respectively, at these isotopes. If the 128*Xe and 129*Xe are both derived from iodine of 

uniform isotopic composition, then the data points will define a straight line (I-Xe isochron), 

with the slope proportional to the 129I/127I ratio at the last time Xe isotopes were in equilibrium 

(Swindle and Podosek, 1988). The I-Xe isochron is thus a two-component mixture of trapped and 

I-derived Xe. The trapped Xe component is confined to lie at the lower end of this isochron and 

typically of “planetary” composition (Lavielle and Marti, 1992). Therefore, I-Xe ages are 

calculated directly from the differences in isochron slopes (129*Xe/128*Xe)sample with that of the 

standard (129*Xe/128*Xe)standard (Shallowater aubrite or Bjurböle L4 ordinary chondrite; Bjurböle 

predates Shallowater by 460,000 yrs, Brazzle et al., 1999):  

 (3) ∆tsample-Shallowater (Ma) = 1/λ × ln[(129I/127I)Shallowater/(129I/127I)sample], 

where λ = ln2/15.7 is the 129I decay constant; negative/positive values correspond to 

older/younger ages than Shallowater. Based on the comparison of I-Xe and Mn-Cr systems with 

the absolute Pb-Pb chronometer for samples analysed by mulitple systems, Gilmour et al. (work 

in progress) concluded that the I-Xe system closed in Shallowater aubrite 5.7±1.1 Ma earlier than 

the Mn-Cr system closed in LEW86010 angrite, at 4563.5±1.0 Ma before the present. Use of St. 

Severin as internal standard during the early measurements (e.g., Zaikowski, 1980), which was 

later shown to be inhomogeneous (Hohenberg et al., 1981), makes these measurements difficult 
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to compare with recent results, although the relative ages should be meaningful (Pravdivtseva et 

al., 2003a). 

Because iodine is a mobile element, the I-Xe chronometry has been shown to be a promising 

technique for dating secondary alteration processes, that is capable of resolving age differences 

of a few hundred thousand years between closure times of different mineral phases from the 

same meteorite (e.g., Swindle, 1998; Brazzle et al., 1999; Pravdivtseva and Hohenberg, 2001; 

Pravdivtseva et al., 2001, 2003a-c; Hohenberg et al., 2004). Special attention, however, must be 

paid to proper selection and preparation of the samples for I-Xe dating, and to its interpretation 

(what mineral phases or process are being dated), which should be based on detailed 

mineralogical study (e.g., Krot et al., 1999). If samples contain more than one iodine-bearing 

phase and if the different mineralogical sites degas with different time-temperature profiles, 

stepwise pyrolysis can simulate mineral separation (Swindle, 1998). Whole-rock samples 

occasionally produce well-defined isochrons, but the results cannot be adequately interpreted if 

the major iodine carrier phase is unknown (e.g., Kennedy et al., 1988). On the other hand, some 

chondritic components such as chondrules, CAIs, lithic chondritic clasts (often called "dark 

inclusions"), although representing mixtures of several mineral phases, can often be studied as 

simple objects if the major iodine carrier can be identified (e.g., Kirschbaum, 1988). 

3. TIMESCALES AND SETTINGS FOR SECONDARY ALTERATION OF 

CHONDRITIC METEORITES 

3.1. Timescale of Aqueous Alteration of CI Chondrites 

Although CI chondrites are chemically the most primitive meteorites in that they provide the 

best compositional match to the solar photosphere (Anders and Grevesse, 1989; Palme and 
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Jones, 2003), their primary mineralogy and petrography were erased by extensive aqueous 

alteration at ~50-150°C on their parent body (e.g., Richardson, 1978; McSween, 1979; Kerridge 

et al., 1979a,b; Bunch and Chang, 1980; Clayton and Mayeda, 1984; Zolensky et al., 1989; 

Endress and Bischoff, 1996; Endress et al., 1996; Leshin et al., 1997). Subsequently, some CI 

chondrites experienced thermal metamorphism (e.g., Tonui et al., 2003). All known CI 

chondrites are regolith breccias consisting of various types (lithologies) of heavily-hydrated 

lithic fragments composed of a fine-grained phyllosilicate-rich matrix containing magnetite, 

sulfides, sulfates, and carbonates. The fragments are cemented by networks of secondary Ca- and 

Mg-sulfate veins which could be of terrestrial origin (Gounelle and Zolensky, 2001). 

Four chemically distinct types of carbonates are found in CI chondrites: dolomite 

[CaMg(CO3)2], breunnerite [Mg(Fe,Mn)(CO3)2], calcite (CaCO3) and Mg,Ca-bearing siderite 

(FeCO3), with dolomite being the dominant phase (Richardson, 1978; Fredriksson and Kerridge, 

1988; Johnson and Prinz, 1993; Riciputi et al., 1994; Endress and Bischoff, 1996). Mineralogical 

and isotopic (oxygen, carbon) observations suggest that the carbonates precipitated from aqueous 

solutions circulating on the CI parent body (e.g., Clayton and Mayeda, 1984; Grady et al., 1988; 

Endress and Bischoff, 1996; Leshin et al., 2001). Carbonates are commonly intergrown with 

magnetite of different textural types (platelet, framboidal, spherulitic), phosphates, and sulfides, 

suggesting a related paragenesis (Endress and Bischoff, 1996). Based on the chemical differences 

among dolomites within and among CI chondrites and petrographic observations of dissolution 

textures, composite grains etc., Endress et al. (1996) concluded that several episodes of aqueous 

alteration occurred on the CI parent body. In spite of such complexity, there have been no 

attempts yet to combine petrographic observations with isotopic measurements to date the 

different episodes of aqueous activity of the CI parent body. 



 9

3.1.1. Strontium isotope dating of CI carbonates 

Strontium isotope measurements of carbonate separates from the CI chondrite Orgueil reveal 

that dolomite and breunnerite formed within 50 Myr after accretion of its parent body 

(Macdougal et al., 1984; Macdougal and Lugmair, 1989). Relatively large variations of 87Sr/86Sr 

ratios (0.699-0.702) observed among different carbonates suggest different formation times for 

different types of CI carbonates (Macdougal et al., 1984). 

3.1.2. Chromium isotope dating of CI carbonates 

Scatena-Wachel et al. (1984) reported 53Cr* corresponding to an upper limit for the 

53Mn/55Mn ratio of 3.8×10-7 in a breunnerite grain from Orgueil, but did not draw any conclusion 

about the timescale of aqueous activity. Subsequently Endress et al. (1996) measured Cr-isotope 

compositions of five dolomite fragments from the CI chondrites Orgueil and Ivuna. These 

fragments occur between lithic clasts and are not genetically related to lithological units; they 

may represent debris of former carbonate veins, which were subsequently destroyed and 

distributed during impact-induced regolith gardening (Endress and Bischoff, 1996). All five 

fragments show 53Cr* linearly correlated with the 55Mn/52Cr ratios, indicative of in situ decay of 

53Mn (Figs. 1a,b). The data points for two fragments from Orgueil and for an Ivuna fragment plot 

along a line corresponding to the initial 53Mn/55Mn ratio of (1.99±0.16)×10-6; the data points for 

two other fragments from Orgueil define a line with slope (1.42±0.16)×10-6. The difference 

between the lines, if significant, corresponds to a time difference of 1.8 Ma. Alternatively, all 

five carbonates formed contemporaneously, but some of the Orgueil carbonates experienced 

partial isotopic equilibration of the Mn-Cr system (Endress et al., 1996). 

Subsequently, evidence for live 53Mn in isolated carbonate grains from Orgueil (Fig. 1c; see 

also Fig. 1 in Hoppe et al., 2004) and a CI-like clast from the Supuhee (H6) chondrite breccia 
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(Fig. 1d) have been reported by Hutcheon and Phinney (1996), Hutcheon et al. (1997), and 

Hoppe et al. (2001). Chromium isotope measurements in Orgueil carbonates imply 53Mn/55Mn 

ratio ranging from (1.77±0.15)×10-6 to (3.88±0.39)×10-6 at the time of formation of these grains. 

This difference in slope was interpreted as (i) it may indicate isotopic disequilibrium among 

carbonates subjected to several alteration events reflecting either the growth of carbonates from 

isotopically disparate fluids or partial Cr isotopic reequilibration, or (ii) it may have 

chronological significance, corresponding to an interval of ~4 Myr between episodes of aqueous 

activity. The latter is consistent with the variation in the times of formation of dolomites and 

breunnerites suggested from Sr isotope studies (Macdoudal and Lugmair, 1989). Chromium 

isotope measurements of carbonates in Supuhee define a correlation line with a slope 

corresponding to (53Mn/55Mn)0 ratio of (8±4)×10-6, suggesting that the aqueous activity on the 

CI-like parent body started earlier than recorded by the Orgueil carbonates (Hutcheon et al., 

1997). 

The observed range in the initial 53Mn/55Mn ratios in CI carbonates [from (1.42±0.16)×10-6 

to (8±4)×10-6] corresponds to an age difference of ~9 Ma and may represent the duration of 

aqueous activity of the CI parent body that started ~10±3 Ma prior to differentiation of the 

angrite parent body. 

3.1.3. Iodine-xenon isotope dating of CI magnetites 

Jeffery and Anders (1970) showed that the trapped Xe resided mostly in phyllosilicates and 

the radiogenic 129Xe in magnetite of Orgueil. Later, Herzog et al. (1973) and Lewis and Anders 

(1975) reported the apparent I-Xe age of the Orgueil magnetites as being ~7 Myr older than 

Shallowater and interpreted this age as the condensation time of the solar nebula. These results 

and interpretation are clearly inconsistent with petrographic evidence for asteroidal formation of 
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magnetite (e.g., Kerridge et al., 1979a) and with relatively young 53Mn-53Cr and 87Sr/86Sr ages of 

carbonates described above. Recent reexamination of the anomalous 129I-129Xe age of Orgueil 

magnetite (fraction containing >90% magnetite) showed much later closing time of the I-Xe 

system, 1.9±0.2 Myr older than Shallowater (Fig. 2; Hohenberg et al., 2000; Pravdivtseva et al., 

2003b). The differences between the two studies are probably due to difficulties with the 

irradiation monitors in the early studies (Hohenberg et al., 2000). 

For a highly magnetic fraction (composed of ~14% magnetite and ~86% hydrated 

carbonaceous material) separated from Orgueil with a hand magnet, the I-Xe ages are 3.0±0.4 

Myr (Hohenberg et al., 2000) and 1.5±0.3 Myr (Pravdivtseva et al., 2003b) younger than 

Shallowater, suggesting that the magnetic fraction may contain several iodine carriers recording 

different stages of aqueous activity on the CI parent body. This is consistent with oxygen 

isotopic compositions of separated components from CI chondrites (Fig. 3). In each CI chondrite, 

magnetite (∆17O = 1.3‰ to 1.8‰) is out of oxygen isotopic equilibrium with the phyllosilicates 

(∆17O = -0.3‰ to 0.3‰), suggesting that phyllosilicates continued to equilibrate with water as 

anhydrous silicates are progressively altered to phyllosilicates, whereas isotope exchange 

between magnetite and fluid was kinetically slow (Rowe et al., 1994). Carbonates (∆17O = 0.3‰ 

to 0.5‰) are in isotopic equilibrium with phyllosilicates (Leshin et al., 2001), suggesting 

precipitation from a fluid of similar oxygen isotopic composition. 

3.2. Timescale of Aqueous Alteration of the Polymict Chondrite Breccia Kaidun: Evidence 

from Chromium Isotope Compositions of Carbonates 

Kaidun is a polymict chondrite breccia containing lithic clasts of the C1, CM-like, CR-like, 

CV, R, EH, and EL chondrites (Clayton and Mayeda, 1999; Zolensky and Ivanov, 2003). Most 
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clasts have been extensively altered at ~250-450°C by hydrothermal fluids that resulted in 

formation of phyllosilicates, and carbonate- and phyllosilicate-filled veins (Johnson and Prinz, 

1993; Weisberg et al., 1994; Zolensky et al., 1996). All lithic clasts contain carbonates, with 

calcite being the dominant phase; dolomite is less abundant (Johnson and Prinz, 1993; Weisberg 

et al., 1994). Calcite occurs within altered chondrules, CAIs and mineral fragments, and as 

fragments dispersed throughout the matrix and in veins. The veins occur along the boundaries 

between lithic clasts, suggesting some calcite formed after agglomeration of the Kaidun breccia. 

Chromium isotopic compositions of five calcite and one dolomite grain from three different 

lithologies (CR-like, CM1, and C1) measured by Hutcheon et al. (1999) are plotted in Figure 4a. 

The slope of the correlation line on a 53Mn-53Cr evolution diagram corresponds to an initial 

53Mn/55Mn ratio of (9.4±1.6)×10-6, suggesting nearly contemporaneous formation of carbonates 

in the lithologies studied (∆tLEW ~10.8±1 Myr). 

3.3. Timescale of Aqueous Alteration of CM chondrites 

The CM carbonaceous chondrites are a diverse group of petrologic type 1-2 meteorites that 

experienced low-temperature (~0-25°C) aqueous alteration to various degrees in an asteroidal 

setting that resulted in formation of a variety of secondary phases, including phyllosilicates, 

magnetite, Fe,Ni-sulfides, and carbonates (e.g., Kerridge and Bunch, 1979; Zolensky and 

McSween, 1988; Zolensky et al., 1993; Brearley and Jones, 1998). Some CM chondrites [e.g., 

Begica-7904, Yamato (Y) 86720] subsequently experienced thermal metamorphism and partial 

dehydration (e.g., Tomeoka et al., 1989; Tomeoka, 1990; Ikeda, 1992; Clayton and Mayeda, 

1999). 
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Detailed mineralogical and isotopic studies of CM carbonates revealed their complex 

formation history, involving periods of dissolution and reprecipitation due to interactions with 

fluids of different compositions (e.g., Zolensky et al., 1989; Johnson and Prinz, 1993; Riciputi et 

al., 1994; Brearley et al., 1999, 2001; Brearley and Hutcheon, 2000, 2002; Benedix et al., 2003). 

Carbonates occur in fine-grained rims around chondrules and mineral fragments and within 

altered CAIs (e.g., Bunch and Chang, 1980). There is no common association of carbonates with 

other phases in CM chondrites, although textural observations suggest that carbonates must have 

coprecipitated with phyllosilicates, magnetite, and tochilinite (e.g., Kerridge and Bunch, 1979; 

Bunch and Chang, 1980; Barber, 1981; Mackinnon et al., 1984; Johnson and Prinz, 1993). 

However, oxygen isotope compositions of carbonates (Clayton and Mayeda, 1984; Brearley et 

al., 1999; Benedix et al., 2003), magnetite (Rowe et al., 1994), and phyllosilicate-rich matrix 

(Clayton and Mayeda, 1984) in the CM chondrite Murchison (Fig. 3) indicate that the 

phyllosilicates are not in isotope equilibrium with carbonates and magnetite. It is suggested that 

carbonates and magnetites precipitated from an isotopically evolving water reservoir, prior to 

formation of phyllosilicates (Rowe et al., 1994; Brearley et al., 1999; Benedix et al., 2003). 

Timing of aqueous activity on the CM parent body remains poorly constrained and is largely 

based on a limited number of chromium isotope measurements in carbonates (Brearley and 

Hutcheon, 2000; Brearley et al., 2002). 

3.3.1. Chromium isotope dating of CM carbonate formation 

In the relatively weakly-altered and virtually unbrecciated CM chondrite Y791198 calcite is 

the only carbonate present. Calcite grains show complex zoning indicating periods of dissolution 

and reprecipitation (Brearley et al., 2001). Three out of six calcite grains analyzed for Cr isotopic 

compositions showed the presence of 53Cr* correlated with the respective 55Mn/52Cr ratios, 
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indicating in situ decay of 53Mn. The slope of the correlation line on a 53Mn-53Cr evolution 

diagram corresponds to an initial 53Mn/55Mn ratio of (8.7±1.5)×10-6 (Fig. 4b). 

In the heavily-altered CM1 chondrite Allan Hills (ALH) 84034 both calcite and dolomite are 

present; calcite is much less abundant (Brearley and Hutcheon, 2000). The two phases always 

occur separately, except within altered CAIs where they can coexist. Dolomites are commonly 

intergrown with serpentines and pentlandite; calcites are inclusion-free. One of the dolomite 

grains exhibits resolvable 53Cr* corresponding to an initial 53Mn/55Mn ratio of (5.0±1.5)×10-6 

(Fig. 4c). 

The observed range in the initial 53Mn/55Mn ratios in CM carbonates [from (1.3±0.6)×10-5 to 

(5.0±1.5)×10-6] corresponds to an age difference of ~5 Ma and may represent duration of 

aqueous activity of the CM parent body that started ~12.5±2.5 Ma prior to differentiation of the 

angrite parent body (Lugmair and Shukolyukov, 1998). 

3.4. Timescale of in situ Aqueous Alteration of the Ungrouped Carbonaceous Chondrite 

MAC88107: Evidence from Petrographic Observations and Chromium Isotope 

Compositions of Secondary Fayalite 

The ungrouped carbonaceous chondrite MacAlpine Hills (MAC) 88107 has a bulk chemical 

composition intermediate between CO and CM chondrites, and O-isotopic composition similar to 

CO-CV-CK chondrites (Clayton and Mayeda, 1999). In contrast to CK and most CO chondrites, 

MAC88107 shows no evidence for thermal metamorphism; its thermoluminescence properties 

(Sears et al., 1991) suggest low petrographic type (3.0-3.1). Chondrules and CAIs are 

surrounded by continuous fine-grained, accretionary rims, indicating that the meteorite largely 

escaped post-accretional brecciation (Krot et al., 2000a). 
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The meteorite experienced a small degree of in situ alteration that resulted in formation of 

saponite, serpentine, magnetite, pentlandite, fayalite, and hedenbergite (Krot et al., 2000a). We 

emphasize that similar secondary phases are observed in the Bali-like oxidized CV chondrites, 

where their origin remains controversial (see below). Because, MAC88107 may provide a clue 

for understanding the origin of secondary mineralization in CV chondrites, it is discussed in 

detail in this chapter. Fayalite (Fa90-100) and hedenbergite (~Fs50Wo50) occur as veins, which start 

at the opaque nodules in the chondrule peripheries, crosscut fine-grained rims and either 

terminate at the boundaries with the neighboring fine-grained rims or continue as layers between 

these rims (Fig. 5a,b). Fayalite also overgrows isolated forsteritic (Fa1-5) and fayalitic (Fa20-40) 

olivine grains without any evidence for Fe-Mg interdiffusion (Fig. 5c), and replaces magnetite-

sulfide grains (Fig. 5d). All textural varieties of fayalite are compositionally similar and 

characterized by high MnO content (0.4-0.85 wt%) and nearly complete absence of Cr2O3. 

Based on the petrographic observations and thermodynamic analysis of phase relations in 

the Si-Fe-Ca-O-H system, Krot et al. (2000a) concluded that phyllosilicates, magnetite, 

pentlandite, fayalite, and hedenbergite in MAC88107 formed during low-temperature (~150-

200°C) alteration in the presence of aqueous solution capable of transporting Si, Fe, Ca, Mn, and 

Mg. Because most fayalite grains in MAC88107 are too small (<10 µm) for Mn-Cr-isotope study 

by an ion microprobe, the Cr isotope compositions were measured only for a coarse-grained 

fayalite replacing a magnetite-sulfide nodule (Fig. 5d) and adjacent matrix. Both analyses of the 

fayalite grain show large 53Cr* correlated with the respective 55Mn/52Cr ratios, indicative for  the 

in situ decay 53Mn (Fig. 6a). The slope of the correlation line fitted to the data, passing through 

the normal Cr isotope composition of matrix (δ53Cr = 0) at Mn/Cr ≅ 1, corresponds to the initial 

53Mn/55Mn ratio of (1.58±0.26)×10-6 at the time the fayalites formed (∆tLEW = -1.25±0.83 Ma). 
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3.5. CV Chondrites and Settings of Their Alteration 

The CV carbonaceous chondrites are currently subdivided into the reduced (CVred) and two 

oxidized subgroups, Allende-like (CVoxA) and Bali-like (CVoxB) (McSween, 1977; Weisberg and 

Prinz, 1998), which largely reflect their complex alteration history and may represent different 

lithological varieties of the same asteroidal body (Krot et al., 1998a). 

The CVoxB chondrites (e.g., Kaba, Bali) experienced aqueous alteration resulting in 

replacement of primary minerals in chondrules, CAIs, and AOAs by secondary phyllosilicates, 

magnetite, Fe,Ni-sulfides, Fe,Ni-carbides, fayalite, salite-hedenbergite pyroxenes (Fs10-50Wo45-

50), and andradite. Their matrices largely consist of the secondary minerals, including 

concentrically-zoned nodules of Ca,Fe-pyroxene and andradite, coarse (>10 µm) grains of nearly 

pure fayalite (>Fa90), abundant phyllosilicates, and very fine-grained (<1-2 µm) ferrous olivine 

(~Fa50) (Fig. 7a). 

The CVoxA chondrites (e.g., Allende, ALH84128) are more extensively altered than the 

CVoxB, but contain very minor phyllosilicates (this alteration is often referred as iron-alkali 

metasomatism). Chondrules and refractory inclusions in the CVoxA chondrites contain secondary 

nepheline, sodalite, Ca,Fe-pyroxenes, andradite, Fe,Ni-sulfides, magnetite, Ni-rich metal, and 

ferrous olivine. Their matrices are coarser-grained than those in the CVoxB and largely consist of 

Ca,Fe-pyroxene±andradite nodules, lath-shaped ferrous olivine (~Fa50), and nepheline (Fig. 7c). 

The CV chondrite Mokoia is a complex breccia containing clasts of the CVoxA and CVoxB 

lithologies and heavily-metamorphosed oxidized chondritic clasts (Krot et al., 1998a). The 

CVoxA clasts experienced aqueous alteration that overprints "anhydrous" Allende-like alteration 

(Kimura and Ikeda, 1998). Some oxidized CVs (e.g., MET00430) are mineralogically 

intermediate between the CVoxB and CVoxA chondrites (Fig. 7b; Krot et al., 2004a).  
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The CVred chondrites Efremovka and Leoville experienced alteration similar to that of CVoxA, 

but to a smaller degree. The reduced CV chondrite breccia Vigarano contains clasts of the CVoxB 

and CVoxA materials (Krot et al., 2000b); the reduced portion experienced aqueous alteration 

resulting in formation of phyllosilicates and magnetite. 

In addition to the oxidized and reduced CV subgroups, CV chondrites contain dark inclusions 

which are chemically and petrographically similar to their host meteorites (Fig. 7d), but appear to 

have experienced more extensive alteration (e.g., Fruland et al., 1978; Kurat et al., 1989; 

Johnson et al., 1990; Buchanan et al., 1997; Krot et al., 1997a, 1998a, 1999, 2001). 

3.5.1. Nebular vs. Asteroidal alteration of CV chondrites 

The origin of secondary mineralization in CV chondrites remains controversial; nebular and 

asteroidal settings have been proposed. According to the nebular models (Palme and Wark, 

1988; Weisberg and Prinz, 1998), chondrules and refractory inclusions in the CVoxA were 

exposed to a highly oxidized nebular gas resulting in their alteration; matrix minerals directly 

condensed from this gas. This model is, however, inconsistent with (a) the presence of poorly-

graphitized carbon (PGC) and pentlandite inclusions in matrix olivine (Brearley, 1999), (b) the 

lack of volatility-controlled rare earth element (REE) patterns in matrix Ca,Fe-pyroxenes and 

andradite (Brearley and Shearer, 2000), (c) the large mass-dependent fractionation of oxygen 

isotopes (δ18O ~ 20‰) in secondary fayalite, magnetite, Ca,Fe-rich pyroxenes, and andradite 

(Krot et al., 2000c; Choi et al., 2000; Cosarinsky et al., 2003), and (d) the thermodynamic 

analysis of condensation of ferrous olivine (Grossman and Fedkin, 2003). 

According to the asteroidal models (Krot et al., 1995, 1997, 1998a,b, 2004a; Kojima and 

Tomeoka, 1996), CV chondrites experienced fluid-assisted thermal metamorphism to various 

degrees, which resulted in mobilization of Ca, Si, Fe, Mg, Mn, Na, and S, and replacement of 
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primary phases in chondrules, CAIs and matrices by secondary minerals. It was originally 

suggested that secondary ferrous olivine in CV chondrites formed by dehydration of 

phyllosilicates during thermal metamorphism (Kojima and Tomeoka, 1996; Krot et al., 1995, 

1997a). This mechanism, however, appears to be inconsistent with the lack of mass-dependent 

fractionation of oxygen isotopes in bulk CV chondrites (Clayton and Mayeda, 1999), which is 

expected for extensively aqueously-altered and dehydrated meteorites (e.g., metamorphosed 

CI/CM). Recently, Krot et al. (2004a) concluded that ferrous olivine in CV chondrites formed by 

several mechanisms during fluid-assisted metamorphism, including replacement of opaque 

nodules, magnesian olivine and pyroxene, direct precipitation from a supersaturated fluid, and, 

possibly by dehydration of phyllosilicates. 

3.5.2. Settings and timescale of secondary alteration of the CVoxB chondrites 

There are several lines of evidence suggesting that the secondary minerals in the CVoxB 

formed during relatively low-temperature aqueous alteration of the CV asteroidal body, rather 

than by high-temperature gas-solid reactions in the solar nebula. (a) The secondary minerals 

occur in all CVoxB chondritic components, including chondrules, CAIs, AOAs, and matrices. (b) 

Fine-grained rims around chondrules are commonly crosscut by fayalite-bearing veins that start 

at the opaque nodules in the chondrule peripheries (Figs. 8a,b). (c) Fayalite replacing magnetite-

sulfide nodules in type I chondrules (Figs. 8c,d) show large mass-dependent fractionation of 

oxygen isotopes and contain sulfide inclusions (Fig. 9a), suggesting low-temperature formation. 

(d) Euhedral fayalite grains of variable compositions overgrow forsterite grains of AOAs without 

any evidence for Fe-Mg interdiffusion in the neighboring forsterite grains, suggesting 

precipitation from a low-temperature fluid of variable chemical composition (Fig. 8e). 

Occasionally, ferrous olivine pseudomorphs chondrule phenocrysts (Fig. 8d) supporting the 
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presence of aqueous solutions during the alteration. (e) Low Al contents in secondary Ca,Fe-

pyroxenes, indicating large Ca/Al fractionation during their formation, is inconsistent with their 

high-temperature condensation origin (both Ca and Al are refractory lithophile elements of 

similar volatility and are not expected to be fractionated from each other during condensation). 

These observations and thermodynamic analysis of phase relations in the Si-Fe-Ca-O-H system 

(Krot et al., 1998a) suggest that secondary minerals in CVoxB chondrites in the presence of 

aqueous solutions capable of transporting Si, Fe, Ca, Mn, and Mg. 

Petrographic observations of type I chondrules (Hua and Buseck, 1995; Krot and Todd, 

1998; Krot et al., 1998a,b) suggest the following sequence of secondary mineral formation. 

Magnetite and Fe,Ni-sulfides replacing Fe,Ni-nodules formed first. Phyllosilicates replacing 

chondrule mesostases and phenocrysts formed either subsequently or contemporaneously with 

magnetite. Fayalite, Ca,Fe-pyroxenes and andradite replace magnetite and coexist with 

phyllosilicates, possibly indicating contemporaneous formation of these phases; occasionally, 

fayalite is corroded by Ca,Fe-pyroxenes. 

3.5.2.1. Manganese-chromium isotope dating of secondary fayalite in Kaba and Mokoia 

High MnO contents (up to 1.5 wt%) in secondary fayalite and nearly complete absence of 

chromium (Mn/Cr ratios range up to 2×106) favor chromium isotope measurements of fayalite to 

constrain its crystallization time (Hutcheon et al., 1998; Hua et al., 2003, 2004). Hutcheon et al. 

(1998) measured Cr isotope compositions of six fayalite grains replacing magnetite-sulfide 

nodules within type I chondrules from Mokoia. Hua et al. (2002, 2004) analyzed Cr isotope 

compositions of twelve fayalite grains associated with magnetite and sulfides in Kaba matrix. 

Fayalite grains in both textural occurrences have large 53Cr* correlated with 55Mn/52Cr ratios, 

indicative for in situ decay of 53Mn, which define similar initial 53Mn/55Mn ratios of 
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(2.32±0.18)×10-6 and (2.28±0.37)×10-6, respectively (∆tLEW = ~3.0±0.7 Myr) respectively (Figs. 

6b,c). 

3.5.2.2. Iodine-xenon dating of magnetite and phyllosilicates formation in Kaba and Bali 

Pravdivtseva and Hohenberg (2001) measured Xe isotope compositions of magnetic 

fractions separated with a hand magnet from fine-crushed Kaba, Bali, and Mokoia. The 128Xe 

and 129Xe release profiles in Kaba and Bali suggest one major iodine carrier in magnetic 

separates that yield well-defined isochrons in temperature ranges of 1400-1750°C and 1450-

1950°C, respectively (Figs. 10a,d). The isochrons correspond to closure time of the I-Xe system 

in the Kaba and Bali magnetite of 4.2±0.3 Ma and 7.9±0.2 Ma relative to the Shallowater 

internal reference standard, respectively. 

The 128Xe and 129Xe release profiles at 1400-1900°C of the Mokoia magnetic fraction 

suggest multiple iodine carrier; no isochron was obtained. These results are consistent with the 

complex brecciated nature and multistage alteration history of this meteorite (Krot et al., 1998a; 

Kimura and Ikeda, 1998). 

Two non-magnetic fractions hand picked from coarsely crushed samples of Kaba and Bali 

and tentatively identified (using EDS) as enstatite and a mixture of plagioclase-rich mesostasis 

and Al-rich phyllosilicates were measured for Xe isotope compositions (Pravdivtseva et al., 

2001). Considering very fine scale of primary and secondary mineral intergrowths in the CVoxB 

chondrules, it is difficult to expect good mineral separation, and the results should be treated 

cautiously. The enstatite separates define precise high-temperature isochrons from ~1400°C to 

~1800°C with similar I-Xe ages: -2.0±0.8 Ma for Kaba and -2.1±0.7 Ma for Bali, relative to 

Shallowater internal standard (Figs. 10b,e). The mixture of plagioclase-rich mesostasis and Al-

rich phyllosilicates yield lower temperature isochrons corresponding to I-Xe ages of 8.9±0.7 Ma 
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and 9.0±0.8 Ma, for Kaba and Bali, respectively (Figs. 10c,f). These ages are systematically 

younger than the corresponding magnetite ages and may suggest that either magnetite formation 

predates formation of phyllosilicates or that I-Xe isotope closure in magnetite occurred prior to 

that in phyllosilicates. The overall I-Xe data suggest that the aqueous alteration on the CVoxB 

parent body lasted for at least 10 Ma. 

3.5.3. Settings and timescale of alteration of the CVoxA chondrites 

There are several lines of evidence suggesting that iron-alkali metasomatic alteration of the 

CVoxA chondrites resulted from fluid-assisted thermal metamorphism of the CV asteroidal body 

(e.g., Krot et al., 1998a), rather than from high-temperature gas-solid reactions in the solar 

nebula (e.g., Palme and Wark, 1988). (a) The secondary minerals occur in all CVoxA chondritic 

components, including chondrules, CAIs, AOAs, and matrices (e.g., Hashimoto and Grossman, 

1987; MacPherson et al., 1988; Krot et al., 1995) and show evidence for in situ formation (e.g., 

veins, rims, chondrule pseudomorphs; Fig. 11) (Krot et al., 1997a, 1998a,b, 2001; MacPherson 

and Krot, 2002). (b) Oxygen isotope compositions of the secondary Ca,Fe-pyroxenes, andradite, 

and wollastonite in matrix and rims around CAIs plot parallel to terrestrial fractionation line at 

∆17O ~ -2.5‰ with a large range in δ18O (~20‰) (Fig. 9b), comparable to the range reported for 

the secondary magnetites and fayalites in the CVoxB chondrites (Fig. 9a), suggesting low-

temperature formation. This mechanism is also consistent with the presence of sulfide inclusions 

(Fig. 11b) and lack of volatility-controlled REE patterns in Ca,Fe-pyroxenes and andradite in the 

Allende matrix (Brearley and Shearer, 2000). (c) Secondary ferrous olivine replacing low-Ca 

pyroxene phenocrysts in type I chondrules coexists with talc and amphibole (Brearley, 1999), 

suggesting that Fe was transported by low-temperature aqueous solutions (Krot et al., 2004a), 

rather than by high-temperature gas phase (Dohmen et al., 1998). 
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Although there are many textural and mineralogical similarities in secondary alteration of 

the CVoxB and CVoxA chondrites (Figs. 8, 11a-d), the latter are more extensively altered and 

contain secondary ferrous olivine (Fa40-60), nepheline and sodalite instead of fayalite (Fa90-100) 

and phyllosilicates. There are also some difference in ∆17O values of the secondary phases 

(fayalite, magnetite, and Ca,Fe-rich silicates) in the CVoxB (~-0.6‰) and CVoxA chondrites (-

2.6‰) (Figs. 9a,b). Secondary fayalites in the intermediate CVoxA-B meteorites (e.g., MET00430) 

show inverse compositional zoning (Figs. 7b, 11e) and evidence for dissolution of fayalite and 

precipitation of more forsteritic olivine (Fig. 11f). These observations may indicate that the 

CVoxA experienced alteration at higher temperatures than the CVoxB. 

Petrographic observations on type I chondrules in the CVoxA (Figs. 11a-d; Krot et al., 

1998a,b) suggest the following sequence of secondary mineral formation. Magnetite and Fe,Ni-

sulfides replacing Fe,Ni-nodules formed first. Ferrous olivine and Ca,Fe-pyroxenes formed later; 

they preferentially replace magnetite of the nodules and contain abundant inclusions of Fe,Ni-

sulfides (Figs. 11a-c). Ferrous olivine also replaces low-Ca pyroxene phenocrysts and overgrows 

or replaces forsteritic olivine phenocrysts (Figs. 10c,d; Krot et al., 1997a). Nepheline and 

sodalite replace chondrule mesostasis and may have formed prior to, contemporaneously or after 

ferrous olivine (e.g., Kimura and Ikeda, 1995). 

In addition to iron- and alkali-rich minerals in the CVoxA chondrites, coarse-grained CAIs in 

Allende contain secondary grossular, monticellite, wollastonite, and forsterite which typically 

replace melilite-anorthite assemblages (Hutcheon et al., 1978; Hutcheon and Newton, 1981; 

Wark, 1987; Krot et al., 2004b). Based on petrographic observations and thermodynamic 

analysis,  Hutcheon and Newton (1981) concluded that grossular and monticellite formed during 

a prolonged heating in the solar nebula at ~950 K via the closed-system reaction: 
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(4)  3Ca2MgSi2O7 + Ca2Al2SiO7 + CaAl2Si2O8 = 2Ca3Al2Si3O12 + 3CaMgSiO4. 

Krot et al. (2004b) concluded instead that other closed-system reactions took place: 

 (5) 3Ca2MgS2O7 + Ca2Al2SiO7 + 2CaAl2Si2O8 = 3Ca3Al2Si3O12 + CaMgSiO4 + 

Mg2SiO4  

and 

 (6) 4Ca2MgSi2O7 + Ca2Al2SiO7 + CaAl2Si2O8 = 2Ca3Al2Si3O12 + 4CaMgSiO4 + 

CaSiO3. 

Although under equilibrium conditions these reaction occur below 950 K, the common presence 

of unaltered melilite-anorthite intergrowths in the Allende Type C CAIs implies the lack of 

equilibrium (i.e. temperature estimates should be considered with caution). 

3.5.3.1. Aluminum-magnesium isotope dating of secondary alteration of the CV CAIs 

Secondary minerals (nepheline, sodalite, grossular) in the CV CAIs generally show no 

evidence for 26Mg* suggesting that the alteration took place at least several half-lives of 26Al 

after the formation of the primary phases typically having canonical 26Al/27Al ratios of ~5×10-5 

(e.g., Hutcheon and Newton, 1981). The only Allende CAI with excesses of 26Mg in secondary 

nepheline and sodalite is a fine-grained spinel-rich inclusion analyzed by Brigham et al. (1986). 

The observed 26Mg* corresponds to an initial 26Al/27Al ratio of (6-7)×10-5. MacPherson et al. 

(1995) interpreted these data as evidence for an early, nebular formation of the secondary 

minerals that continued over an extended (several Ma) period of time. However, taking into 

account the low 27Al/24Mg ratios in the analyzed minerals, the anomalously high initial 26Al/27Al 

ratio inferred for this CAI, and the clear evidence for metamorphic redistribution of Mg isotopes 

in the Allende CAIs (e.g., Yurimoto et al., 2000), it seems more likely that this "isochron" 
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resulted from Mg-isotopic exchange between the primary and secondary minerals of the CAI and 

does not have a chronological meaning (see also Fig. 2 in MacPherson et al., 1995).  

3.5.3.2. Iodine-xenon dating of secondary alteration of CAIs and chondrules in Allende 

I-Xe isotope data for the coarse-grained and fine-grained CAIs in Allende, which 

experienced iron-alkali metasomatic alteration, encompass a spread of >10 Ma, supporting an 

asteroidal setting of alteration (Swindle et al., 1988). The strong correlation of iodine with 

chlorine in two fine-grained CAIs analyzed by Kirschbaum (1988) together with the fact that 

sodalite is the only significant chlorine-bearing mineral in these CAIs, verified sodalite as the 

major iodine-carrier phase. 

Recent xenon isotope measurements (Pravdivtseva et al., 2003b) showed that heavily-

altered fine-grained CAIs in Allende define isochrons with ages between 3.1±0.2 and 3.7±0.2 

Ma younger than Shallowater (Figs. 12a-c). The CAIs have nearly identical release profiles for 

radiogenic 129*Xe and 128*Xe, suggesting the same iodine carrier for both (probably sodalite; 

Kirschbaum, 1988). 

Although Allende chondrules often contain large fractions of radiogenic Xe, and an I-Xe 

association suggestive chronometry, they rarely yield isochrons that are well-defined at the level 

of precision provided by the isotopic data. Among nine chondrules studied by Swindle et al. 

(1983), eight have a pattern of increasing model age with each incrementally increased 

temperature step. This was attributed to relatively slow cooling (~10-20ºC/Ma using the lower 

release temperatures (600-1100°C) or of 50-300°C/Ma using release temperatures above 

1300°C) or the monotonic (with release temperature) relaxation of other conditions during 

thermal metamorphism or alteration (Swindle et al., 1983; Nichols et al., 1990). One chondrule 

gave a well-defined isochron with an apparent age of 0.53±0.15 Ma younger than the Bjurböle 
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whole rock age standard (Swindle et al., 1983), and the I-Xe ages of four different chondrules 

gave ages ranging from -0.37±0.16 Ma to 1.54±0.07 Ma, relative to Bjurböle (Nichols et al., 

1990). Four coarse-grained chondrule rims tended to be slightly older than the interiors, but these 

rims were separated from a different set of chondrules, and the only chondrule/rim pair 

combination yielded concordant ages. 

3.5.4. Setting and I-Xe dating of alteration of the CV dark inclusions 

Dark inclusions in Allende experienced similar secondary alteration to their host meteorite, 

but to a higher degree (Figs. 13a,b). The very heavily-altered dark inclusions consist almost 

entirely of secondary ferrous olivine, Ca,Fe-pyroxenes, andradite, nepheline, sodalite, and Fe,Ni-

sulfides, and, if not brecciated, are surrounded by continuous, multilayered Ca,Fe-rich rims (Fig. 

14) composed of Ca,Fe-pyroxenes, andradite, ±wollastonite, ±kirschteinite. The outermost layer 

of the rims is often intergrown with chondrule fragments and matrix olivine of the Allende host 

(Fig. 13f in Krot et al., 1998a; Fig. 10 in Krot et al., 2001). Some of the dark inclusions are 

crosscut by multiple Ca,Fe-rich veins (Fig. 14a), which are mineralogically similar to the Ca,Fe-

rich rims and often connected to them. The outer portions of the rimmed dark inclusions are 

depleted in Ca, whereas the Allende matrix just outside the rims contain abundant Ca,Fe-rich 

silicate inclusions (Figs. 14a,b). Oxygen isotope compositions of Ca,Fe-rich silicates within and 

around dark inclusions in Allende (Fig. 9c) plot parallel to the terrestrial fractionation line at 

∆17O ~ -2‰ with a large range in δ18O (~30‰), suggesting low temperature formation of these 

minerals (Krot et al., 2000c). 

Based on these observations and thermodynamic analysis of phase relations in the Si-Fe-Ca-

O-H system, Krot et al. (2001) concluded that the rimmed dark inclusions in Allende 

experienced at least two-stages of alteration in the presence of aqueous solutions. During an 
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early stage of the alteration, which took place in an asteroidal setting, but not in the current 

location of the dark inclusions, chondrule silicates were replaced by secondary ferrous olivine, 

nepheline, and sodalite. Calcium lost from the chondrules was redeposited as Ca,Fe-pyroxene-

andradite veins and nodules in the dark inclusion matrices. The second stage of alteration took 

place in situ, during the alteration of the Allende host, and resulted in mobilization of Ca from 

the dark inclusions and its redeposition as Ca,Fe-rich rims around the dark inclusions and as 

Ca,Fe-rich nodules in the neighboring matrix of Allende. 

Xenon isotope compositions were measured in bulk samples of seventeen Allende dark 

inclusions (Pravdivtseva et al., 2003b). All dark inclusions yielded similar release profiles with 

two major peaks, suggesting two major iodine carriers (sodalite, and possibly Ca,Fe-pyroxenes 

or nepheline), and well-defined I-Xe isochrons (Figs. 12d-f) with ages ranging from 0.5±0.3 to 

2.8±0.3 Ma older than the Shallowater internal standard (Table 1). In contrast, three heavily-

altered fine-grained CAIs in Allende yielded well-defined isochrons with ages 3.1±0.2, 3.0±0.2, 

and 3.7±0.2 Ma younger than Shallowater (Pravdivtseva et al., 2003b. The I-Xe ages of the dark 

inclusions were interpreted as the time of their early alteration prior incorporation into Allende. 

The younger I-Xe ages of the fine-grained spinel-rich CAIs may reflect hydrothermal alteration 

of the Allende host, which could have occurred contemporaneously with the second stage of 

alteration of the Allende dark inclusions. The lack of evidence for the disturbance of I-Xe system 

in the Allende dark inclusions suggests that fluid responsible for the alteration of the Allende 

CAIs must have been in equilibrium with the I- and Xe-bearing phases of the dark inclusions, so 

the latter were not affected by the second stage of alteration. 

Dark inclusions in the CVred chondrites Efremovka, Leoville, and Vigarano experienced 

different styles of aqueous alteration to various degrees (Figs. 13c-f) that resulted in formation of 



 27

ferrous olivine, andradite, magnetite, and phyllosilicates (Kracher et al., 1985; Tomeoka and 

Kojima, 1998; Brearley, 1998; Krot et al., 1999). The presence of aqueous solutions during the 

alteration is supported by the textural observations (e.g., chondrule pseudomorphs), the presence 

of minor phyllosilicates (Krot et al., 1999), and bulk oxygen isotope compositions, which on a 

three oxygen isotope plot deviate to the right from the CCAM line (Clayton and Mayeda, 1999). 

Xenon isotope compositions were measured in bulk samples of six dark inclusions from the 

reduced CVs (Swindle et al., 1998; Krot et al., 1999; Pravdivtseva et al., 2003c). The iodine 

carriers in the dark inclusions have not been identified; phyllosilicates and magnetite are two 

possible candidates. The I-Xe ages of the dark inclusions range from -4.9±1.8 to 9.5±2.3 Ma 

relative to Shallowater and are generally younger than those of the Allende dark inclusions 

(Table 1). For the Efremovka dark inclusions, there is a correlation between the degree of 

alteration and I-Xe closure times: E39 and E80 are more altered than E53 and show an apparent 

closure time ~4 to 6 ±2 Ma later than E53 (Fig. 15).  

In spite of the different degrees and styles of alteration of dark inclusions in the reduced and 

oxidized CV chondrites, all of them require "sub-planetary" trapped Xe, which has been 

interpreted as a result of shock or thermal metamorphism that occurred after precipitation of 

iodine host, while Xe and some I were still in solution (Hohenberg et al., 2003). This 

interpretation is generally consistent with the aqueous alteration - dehydration model proposed 

for the dark inclusions (e.g., Kojima and Tomeoka, 1996) and with shock metamorphism features 

observed in some of the dark inclusions (e.g., lineation of chondrule pseudomorphs; Fig. 1 in 

Krot et al., 1999). 
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To summarize, the I-Xe ages of the CV dark inclusions, which probably represent fragments 

of the CV asteroidal body, span ~14 Ma, suggesting a long period of aqueous alteration on the 

CV parent body. 

3.6. Timescale of Aqueous Alteration of Ordinary Chondrites 

The effects of aqueous alteration are best documented in chondrules and matrices of the type 

3 ordinary chondrites Semarkona (LL3.0), Bishunpur (LL3.1), Krymka (LL3.1), Parnallee 

(LL3.4), Chainpur (LL3.4), and Tieschitz (H/L3.6) (Hutchison et al., 1987, 1998; Alexander et 

al., 1989a,b; Bridges et al., 1997; Krot et al., 1997b; Keller, 1998; Choi et al., 1998; Grossman 

et al., 2000, 2002). This alteration must have occurred in an asteroidal setting and resulted in 

formation of secondary phyllosilicates, magnetite, maghemite, Fe,Ni-carbides, calcite, Ni-

bearing sulfides, ferrous olivine, and alkali-rich secondary phases. Chondrules in some of the 

altered ordinary chondrites were dated using I-Xe systematics (Swindle et al., 1991a,b; Ash et al., 

1995).  

In Semarkona, evidence for aqueous alteration in an asteroidal setting include (a) the large 

range in mass-dependent fractionation of oxygen isotope compositions of magnetite grains (δ18O 

~ 13‰), indicative of Rayleigh fractionation as a result of growth in the presence of a limited 

water reservoir (Choi et al., 1998), (b) the presence of carbide-magnetite-sulfide veins 

crosscutting fine-grained rims around chondrules (Krot et al., 1997b), (c) the presence of 

phyllosilicates in the chondrules and matrix (Hutchison et al., 1987; Alexander et al., 1989a,b), 

(d) the presence of bleached chondrules and evidence for removal of chondrule mesostasis by 

dissolution, (e) the elevated D/H ratios in the bleached chondrules and matrix of Semarkona, 

suggesting exchange with an isotopically similar reservoir, most likely aqueous solution 

(Grossman et al., 2000). Swindle et al. (1991a) observed a range of > 10 Ma in apparent I-Xe 
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isotope ages (from -4.4±2.9 Ma to 5.4±0.5 Ma, relative to Shallowater) for seventeen chondrules 

analyzed in Semarkona (Table 2; Fig. 16). The oldest I-Xe ages were attributed to chondrule 

formation, whereas the younger ages to aqueous alteration. Taking into account the petrographic 

evidence for multistage aqueous alteration of the Semarkona chondrules (e.g., Grossman et al., 

2000) and the possible presence of several iodine carriers (e.g., magnetite, phyllosilicates), we 

suggest instead that the entire range of I-Xe ages may reflect duration of aqueous alteration on 

the LL asteroidal body. 

The H/L3.6 chondrite Tieschitz contains secondary nepheline, albite, and unidentified 

hydrous (?) phases that precipitated from a halogen-bearing aqueous fluid in interchondrule 

voids and replaced chondrule mesostasis leached out by the fluid (Hutchison et al., 1998). Based 

on the evidence for partial resetting of the Sm-Nd and K-Ar systems at ~2 Ga (Turner et al., 

1978; Krestina et al., 1996), Hutchison et al. (1998) speculated that aqueous activity on the 

Tieschitz parent body occurred ~ 2 Ga ago. However, the I-Xe ages of the Tieschitz chondrules 

(Nichols et al., 1991) do not support this hypothesis [decoupling of I-Xe chronometer from Ar-

Ar chronometer has also been observed for chondrules from the EH3 chondrite Qingzhen, Ash et 

al. (1997)]. The best isochrons for three chondrules define closure ages of 1.3, 3.6 and 4.9 Ma 

after Bjurböle (Fig. 17). All of the chondrules display the regular I-Xe structure: the high 

temperature sites have higher values of 129I/127I than the low temperature sites, suggesting slow 

cooling or monotonic relaxation of the conditions during metamorphism (Nichols et al., 1991). 

Using a non-diffusive, activation energy dependent model, cooling rates corresponding to a few 

hundred degrees per Ma, for the high temperature sites, down to a few degrees per Ma, for the 

low temperature sites, are estimated (Nichols et al., 1991). This is the same range of values 

observed for the Allende CAIs and chondrules (Swindle et al., 1983, 1988). These slow 
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"cooling" rates suggest that the post-formational processes in the regolith are likely responsible 

for the I-Xe fine structure. 

Bridges et al. (1997) described a number of chondrules separated from Chainpur (LL3.4) 

and Parnallee (LL3.6) that contain mesostasis enriched in Na and Cl and contain microcrystalline 

sodalite, nepheline, and scapolite, and attributed these features to a pre-accretionary (which 

could be nebular or asteroidal) metasomatism. The I-Xe ages of the Parnallee chondrules (Ash et 

al., 1995), which range from 1.75±0.16 Ma to 5.0±0.70 Ma after Bjurböle chondrule closure 

(Table 2), favor an asteroidal setting for the alteration. Two chondrules contain 128Xe*, but no 

129Xe*, suggesting that they formed after the decay of 129I, possibly by impact (Ash et al., 1995). 

Swindle et al. (1991b) showed that the range of apparent I-Xe ages of Chainpur chondrules is ~ 

50 Ma and that the chondrules evolved in a common reservoir with a chondritic I/Xe ratio. Based 

on these observations, Swindle et al. (199b) concluded that these ages reflect an asteroidal 

processing in a regolith. 

The presence of halite (NaCl) and sylvite (KCl) containing inclusions of aqueous salt 

solutions in the H chondrite regolith breccias Monahans (1998) (H5) and Zag (H3-6) indicates 

that some of the aqueous alteration on the H chondrite parent body postdated thermal 

metamorphism (Zolensky et al., 1999). We note, however, that there is no evidence that the halite 

in Zag and Monahans formed in situ (e.g., Rubin et al., 2002). Based on the presence of 

secondary fluid inclusions in halite of both meteorites, Zolensky et al. (1999) concluded that 

aqueous activity occurred at low temperature (<50°C) and was episodic. A Rb-Sr model age for 

a halite crystal in Monahans (1998), calculated for an initial ratio of 87Sr/86Sr = 

0.69876±0.00040, the average for H-group chondrites, is 4.7±0.2 Ga (Zolensky et al., 1999). 

Subsequently, Whitby et al. (2000) reported essentially pure radiogenic 129Xe in halite from Zag. 
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Correlated release of 129Xe and 128Xe corresponds to an initial (129I/127I) ratio of (1.35±0.05)×10-4 

and an apparent formation time for the halite of 4.8±0.9 Ma before the formation of Bjurböle 

reference chondrite, suggesting an early onset of aqueous activity on the Zag parent body. The 

retention of a high 129Xe*/127I ratio implies that halite has not been subjected to substantial 

dissolution and recrystallization in the 4.5 Ga since its formation, suggesting that the processes 

that led to aqueous activity on the Zag parent body may have ended quickly after evaporation of 

water into space (Whitby et al., 2000). 

3.7. Timescale of Alteration of Enstatite Chondrites 

Ash et al. (1997) reported apparent I-Xe ages of chondrules from the EH3 enstatite chondrite 

Qingzhen. Most chondrules give excellent isochrons with errors < 1 Ma; only one of the 

chondrules shows evidence for a slight isotopic disturbance. The observed range in I-Xe ages, 

from -1.08 to +1.98 relative to Shallowater (Table 2), is comparable to those in most 

unequilibrated ordinary chondrites. Based on the apparent lack of evidence for secondary 

alteration in Qingzhen, these ages were interpreted as primary, corresponding to the ages of 

chondrule formation. The iodine carrier in enstatite chondrites is unknown, but the presence of 

sodalite-like mesostases in some type I chondrules in Qingzhen suggests that it could be sodalite. 

The origin of these mesostases, and the interpretation of I-Xe ages, remain unclear. 

4. SUMMARY AND FUTURE WORK 

Mineralogical, petrographic, and isotopic observations indicate that most groups of 

chondritic meteorites experienced asteroidal alteration to various degrees, resulting in formation 

of secondary minerals such as phyllosilicates, magnetite, carbonates, ferrous olivine (Fa40-100), 

salite-hedenbergite pyroxenes (Fs10-50Wo45-50), wollastonite, andradite, nepheline, pentlandite, 
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pyrrhotite, Fe,Ni-carbides, and Ni-rich metal. The alteration occurred in the presence of aqueous 

solutions under variable conditions (temperature, water/rock ratio, fO2, and fluid compositions) 

and in many cases was multistage. Although some alteration predated agglomeration of the final 

chondrite asteroidal bodies (e.g., dark inclusions in CV chondrites), there is no compelling 

evidence that the alteration occurred in the solar nebula nor in planetesimals of earlier 

generations. The 26Al-26Mg, 53Mn-53Cr, and 129I-129Xe dating of secondary minerals suggests that 

alteration may have started within 1-2 Ma after formation of the CV CAIs having absolute Pb-Pb 

age of 4567.2±0.6 Ma and lasted up to 15 Ma (Tables 1-3; Figs. 18, 19). Based on these 

observations, we infer that the chondrite parent bodies must have accreted within the first 1-2 Ma 

after collapse of the protosolar molecular cloud. 

There are several carbonaceous chondrite groups not discussed in this chapter with clear 

evidence for secondary alteration; these include CR, CH, CB, and CO chondrites. The CR 

chondrites experienced aqueous alteration to various degrees that resulted in formation of 

phyllosilicates, magnetite, and carbonates (e.g., Krot et al., 2002). The CB and CH chondrites 

contain heavily aqueously-altered clasts composed of phyllosilicates, framboidal and platelet 

magnetite, and carbonates (Greshake et al., 2002). The CO chondrites experienced alteration 

similar to that observed in CV chondrites (see CV chondrites and their alteration). The alteration 

resulted in formation of nepheline, sodalite, ferrous olivine, magnetite, Fe,Ni-carbides, and Ni-

bearing sulfides (e.g., Jones, 1997a,b; Rubin, 1998; Russell et al., 1998; Chizmadia et al., 2002; 

Itoh and Tomeoka, 2003). A degree of alteration correlates with petrologic types of the host 

meteorites, suggesting that it occurred in an asteroidal setting (e.g., Itoh and Tomeoka, 2003). 

Although the secondary mineralization in the CR, CO, CB, and CH chondrites has been well-

documented, there have yet been no attempts made to date it. 
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Future studies of isotope dating of secondary mineralization of chondritic meteorites should 

also be focused on understanding the multistage alteration histories using combinations of 

analytical tools, including SEM, EPMA, CL, TEM, SIMS, and ICP-MS. This approach has 

already been successfully used in dating carbonate formation in CM carbonaceous chondrites 

(Brearley et al., 1999, 2001; Brearley and Hutcheon, 2000, 2002). Small grain sizes of the 

secondary minerals suitable for in situ Mn-Cr isotope dating (e.g., carbonates, ferrous olivine) 

will probably require use of NanoSIMS (e.g., Hoppe et al., 2004). 

Finally, we would like to emphasize that progress in the chronology of the early solar 

system processes requires better understanding the origin of short-lived radionuclides [external 

(injection) vs. internal (irradiation)] and their distribution (homogeneous vs. heterogeneous) in 

the protoplanetary disk (e.g., Goswami et al., 2000, 2004; Gounelle et al., 2001), and 

establishing a unified chronology of the early solar system processes using these radionuclides 

(e.g., Gilmour and Saxton, 2001; Gilmour et al., 2004). These issues remain unresolved. 
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Table 1. The I-Xe ages of the dark inclusions from the reduced and oxidized CV chondrites 
relative to the age of Shallowater (4563.5 ± 1.0 Ma; Gilmour et al., work in progress) internal 
standard. 
 

 chondrite/classif. sample I-Xe age, Ma ref. 
 1a-1  -2.8 ± 0.3 
 12b-1  -2.0 ± 0.3 
 4294-1 -1.9 ± 0.3 
 4a1/b1  -1.9 ± 0.3 
 IV-1  -1.9 ± 0.2 
 14b-1  -1.6 ± 0.2 
 4884-2 -1.5 ± 0.2 
 4301-1 -1.5 ± 0.1 
 4884-1 -1.4 ± 0.8 
 4314-3 -1.1 ± 0.2 
 1-3 -1.1 ± 0.2 
 25sl-tw1 -1.1 ± 0.2 
 4320-1 -1.0 ± 0.3 
 4884-6 -1.0 ± 0.2 
 IV-2  -0.8 ± 0.3 
 4884-5 -0.7 ± 0.2 

 Allende CVoxA  

 4884-3 -0.5 ± 0.3 

[1] 

 E53 -4.9 ± 1.8 
 E39 +0.8 ± 2.0 

[2, 3] Efremovka CVred 

 E80 -1.0 ± 0.5  
 LV1 +3.0 ± 0.1 [4]  Leoville CVred 
 LV2 +9.5 ± 2.3  

 Vigarano CVbreccia  2226 +8.8 ± 0.6  

References: [1] Pravdivtseva et al. (2003b); [2] Krot et al. (1999); [3] Swindle et al. (1998); [4] 
Pravdivtseva et al. (2003c). 
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Table 2. The I-Xe ages of chondrules from type 3 ordinary and enstatite chondrites relative to the 
age of Shallowater (4563.5±1.0 Ma; Gilmour et al., work in progress) internal standard. 

chondrite/classif. chd# I-Xe age, Ma ref. 
 CD-159(l) +4.9 ± 0.5  
 CD-159(h) -4.9 ± 2.9  
 CD-92  -1.9 ± 1.1  
 CD-95  +4.1 ± 1.2  
 CD-54  -0.4 ± 1.2  
 CD-79  +0.6 ± 1.7  
 CD-60  -2.4 ± 1.7  
 CD-173 -1.8 ± 2.1  
 CD-160 +4.7 ± 1.1  
 CD-8(l)  +0.6 ± 1.1  
 CD-8(h) -4.5 ± 2.3  
 CD-84(l) +0.8 ± 0.3  
 CD-84(h) -2.5 ± 0.9  
 CD-129  +1.3 ± 1.0  
 CD-153 -1.8 ± 2.8  
 CD-169  0 ± 0.3  

 Semarkona, LL3.0 

 CD-139 -2.6 ± 2.5  

[1] 

 CD-101  -4.2 ± 0.6   
 CD-174 -1.9 ± 1.7  

 

 Parnallee, LL3.4  CB1 +4.16 ± 0.44  [2] 
  CB2 +1.29 ± 0.16   
  P6 +4.54 ± 0.70   
  P9 no 129Xe*  
  Feline +5.05   
  P32 +1.94 ± 0.26   
  MC1 no 129Xe*  
 Qingzhen, EH3  QC1 +1.98  [3] 
  QC3 +0.44   
  QC4 -1.08   
  QC5 +1.41   
  QC6 +0.10   
  QC7 +0.64   
  QC8 +1.70   

References: [1] Swindle et al. (1991a); [2] Ash et al. (1995); [3] Ash et al. (1997). 
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Table 3. The initial 53Mn/55Mn ratios in secondary carbonate and fayalite in carbonaceous 
chondrites and their Mn-Cr ages relative angrite LEW86010 (4557.8±0.5 Ma). 
            

chondrite classification mineral (53Mn/55Cr)0 age relative ref.
    analyzed    LEW86010   
 Orqueil & Ivuna CI  dolomite  (1.99±0.16)×10-6  -2.5±0.7  [1]
 Orqueil CI  dolomite  (1.42±0.16)×10-6  -0.7±0.9 [1]
 Orqueil CI  breunnerite  (1.97±0.18)×10-6  -2.5±0.8 [2]
 Orqueil CI  breunnerite  (3.4±0.4)×10-6  -5.3±0.9 [2]
 Orqueil CI  Cr-carbonates  3.4×10-6  -5.3 [3]
 Supuhee, clast CI-like  carbonates  (8±4)×10-6  -9.9±2.5 [3]

 Kaidun* breccia 
 calcite,  
 dolomite  (9.4±1.6)×10-6  -10.8±1.1 [4]

 ALH84034 CM1  dolomite  (5.0±1.5)×10-6  -7.4±1.7 [5]
 Y791198 CM2  calcite  (8.7±1.5)×10-6  -10.3±2.2 [6]
 Kaba CVoxB  fayalite  (2.32±0.18)×10-6  -3.3±0.7 [7]
 Mokoia CVoxB  fayalite  (2.28±0.37)×10-6  -3.2±1.0 [8]
 MAC88107 ungrouped  fayalite  (1.58±0.28)×10-6  -1.3±1.2 [9]
References: 1 - Endress et al. (1996); 2 - Hutcheon and Phinney (1996); 3 - Hutcheon et al. 
(1997); 4 - Hutcheon et al. (1999); 5 - Brearley and Hutcheon (2000); 6 - Brearley et al. 
(2001); 7 - Hutcheon et al. (1998); 8 - Hua et al. (2002); 9 - Krot et al. (2000a). *contains 
CR-, C1- and CM-like materials. 
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FIGURE CAPTIONS 

Fig. 1. 53Mn-53Cr evolution diagrams for carbonates in CI chondrites. a - Dolomite fragments 

from Orgueil and Ivuna; b - an expanded-scale view of the lower left-hand corner of this plot. 

The labels a, b and c denore different spots on a given dolomite fragment. The line of slope 

1.99×10-6 is a best-fit line through all data points for Orgueil 5 and normal Cr (that is, δ53Cr = 0 

at 55Mn/52Cr = 0). The data points for Orqueil 8 and Ivuna 2 fragments are consistent with this 

line, the data points for the remaining two fragments, Orgueil 1 and 2, fall close to the line of 

slope 1.42×10-6 but, compared to the analytical errors, the deviations are not large enough to 

clearly establish that different carbonates formed at different times (from Endress et al., 1996). c, 

d - Breunnerite and dolomite in Orgueil (c) and dolomite in Supuhee (d) CI carbonaceous 

chondrites. Different symbols represent different grains. The lines of slope (1.97±0.18)×10-6 and 

(8±4)×10-6 are the best-fit lines through all data points and normal Cr; error bars are 2σ (from 

Hutcheon and Phinney, 1996; Hutcheon et al., 1997). 

Fig. 2. 129I-129Xe evolution diagrams for the Orgueil magnetic separates and Shallowater aubrite. 

The 129I-129Xe ages for the nearly pure magnetite fraction containing >90% magnetite predate 

Shallowater by 1.9±0.2 Ma. For the highly magnetic fraction composed of ~14% magnetite and 

~86% hydrated carbonaceous material, the I-Xe age is 3.0±0.4 Myr Ma younger than 

Shallowater (4563.5±1 Ma; Gilmour et al., work in progress), suggesting that the magnetic 

fraction may contain several iodine carriers recording different stages of aqueous activity on the 

CI parent body; error bars are 1σ (data from Hohenberg et al., 2000 and Pravdivtseva et al., 

2003b). 

Fig. 3. Oxygen isotopic compositions of separated components from CI and CM chondrites. 

Phyllosilicate-rich matrix (phyl) + carbonates and magnetite (mgt) in CI chondrites, as well as 
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phyllosilicate-rich matrix and carbonates in CM chondrites are out of isotopic equilibrium. 

Similar ∆17O values for calcite and dolomite fractions from the same splits of the same CM 

chondrites indicate that both minerals in each split precipitated from a single fluid reservoir. The 

terrestrial fractionation (TF) line is shown for reference (data from Rowe et al., 1994; Leshin et 

al., 2001; Benedix et al., 2003). 

Fig. 4. 53Mn-53Cr evolution diagrams for carbonates from (a) Kaidun, and CM carbonaceous 

chondrites (b) Y791198 and (c) ALH84034. Different symbols represent different grains. The 

lines of slope (9.4±1.6)×10-6, (8.7±1.5)×10-6, and (5.0±1.5)×10-6 are the best-fit lines through all 

data points and normal Cr; error bars are 2σ (data from Hutcheon et al., 1999; Brearley et al., 

2001; Brearley and Hutcheon, 2000). 

Fig. 5. Backscattered electron (BSE) images of (a, b) a porphyritic olivine-pyroxene type I 

chondrule, (c) isolated fayalitic olivine grain and (d) magnetite-sulfide nodule in the ungrouped 

carbonaceous chondrite MAC88107. a, b - The chondrule is surrounded by a continuous fine-

grained rim (FGR) crosscut by fayalite (fa) - hedenbergite (hed) - magnetite (mgt) veins. The 

veins start at the opaque nodules composed of Ni-bearing sulfide and magnetite in the peripheral 

portion of the chondrule. Chondrule mesostasis (lm) is largely leached out, whereas forsteritic 

olivine (fo) and low-Ca pyroxene (px) phenocrysts appear to be unaltered. c - Fayalitic olivine 

(fa ol) is overgrown by fayalite. d - Fayalite preferentially replaces magnetite of the sulfide-

magnetite nodule. Low-Ca pyroxene grains at the contact with fayalite and magnetite and 

forsteritic olivine grain overgrown by fayalite appear to be unaltered (after Krot et al., 2000a). 

Fig. 6. 53Mn-53Cr evolution diagrams for (a) a fayalite grain from the ungrouped carbonaceous 

chondrite MAC88107, (b) four fayalite grains in three porphyritic olivine-pyroxne type I 

chondrules from the CVoxB chondrite Mokoia, and (c) twelve fayalite grains in matrix of the 



 58

CVoxB chondrite. The lines of slope (1.58±0.26)×10-6, (2.32±0.18)×10-6 and (2.28±0.37)×10-6, 

are the best-fit lines through the data points and normal Cr; error bars are 2σ  (data from 

Hutcheon et al., 1998; Krot et al., 2000a; Hua et al., 2002). 

Fig. 7. BSE images of matrices in the oxidized CV chondrites (a-b) and Allende dark inclusions 

(d). All matrices contain Ca,Fe-pyroxenes-andradite (hed-andr) nodules. Matrix in the CVoxB 

Kaba contains nearly pure fayalite (~Fa100) and very fine-grained groundmass largely composed 

of ferrous olivine (~Fa50) and phyllosilicates. Matrix in the CVoxA-B MET00430 contains fayalite 

grains showing inverse compositional zoning (Fa80-50) and coarser grained lath-shaped ferrous 

olivine (~Fa50). Matrices in the CVoxA ALH81258 and Allende dark inclusion contain relatively 

coarse-grained, lath-shaped compositionally uniform (~Fa50) ferrous olivine. 

Fig. 8. BSE images of different textural occurrences of secondary fayalite in the CVoxB 

chondrites Kaba and Mokoia. a, b - Porphyritic olivine-pyroxene (POP) type I chondrule 

surrounded by a continuous fine-grained rim crosscut by fayalite (fa) - magnetite (mgt) veins. 

The veins start at the opaque nodules composed of Ni-bearing sulfide (sf) and magnetite in the 

peripheral portion of the chondrule. Region outlined in "a" is shown in detail in "b". c - Opaque 

nodule in type I chondrule replaced by magnetite, Ni-bearing sulfides, fayalite, and salite-

hedenbergite pyroxenes (hed). d - Opaque nodule within type I POP chondrule; numbers 

correspond to fayalite content (in mol%). Magnetite is replaced by pure fayalite (Fa100); forsterite 

phenocrysts (Fa1) are partly pseudomorphed by ferrous olivine (Fa63); an outline of one of the 

grains is indicated by arrows. Fayalite is crosscut by a vein of ferrous olivine (Fa87), suggesting 

that forsterite if the source of Mg. e - Amoeboid olivine aggregate composed of forsterite, spinel, 

Al-diopside, and anorthite. Forsterite grains are overgrown by euhedral ferrous olivines ranging 

in compositions from Fa<50 to Fa73; some of the fayalite grains contain inclusions of Fe,Ni-
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sulfides (sf). f - Fine-grained CAI consisting of concentrically-zoned objects composed of spinel 

(sp) surrounded by phyllosilicates (phyl) and Al-diopside (di); phyllosilicates probably replace 

primary anorthite or melilite. Euhedral fayalite grains occur between these bodies; Ca,Fe-

pyroxenes (hed) overgrow Al-diopside. 

Fig. 9. Oxygen isotopic compositions of secondary magnetite (Mgt), fayalite (Fa), Ca,Fe-rich 

pyroxenes (CaFe-px), andradite (Andr), and wollastonite (Wol), and primary forsteritic olivine 

(Fo) (a) in type I chondrules in the CVoxB chondrites Kaba and Mokoia (data from Choi et al., 

2000; Hua et al., 2003), (b) in chondrules, matrix (mx), and in rims around CAIs (data from Choi 

et al., 2000; Cosarinsky et al., 2003), and (c) in and around Allende dark inclusions (data from 

Krot et al., 2000c); error bars are 2σ. The terrestrial fractionation (TF) line and carbonaceous 

chondrite anhydrous mineral (CCAM) line are shown for reference. (a) In Mokoia, the magnetite 

and fayalite differ in δ18O by ~ 20‰, suggesting formation at low-temperature. In Kaba, the 

compositions of fayalite and magnetite reported by Choi et al. (2000) are nearly identical, and 

very close to the intersection of the TF and CCAM lines. The compositions of Kaba fayalites 

reported by Choi et al. (2000) are inconsistent with those reported by Hua et al. (2003); the latter 

are similar to those of Mokoia fayalites. We note that compositions of fayalite and magnetite in 

Kaba reported by Choi et al., 2000) were collected with a 3 month interval and might be in error. 

Compositions of forsteritic olivine phenocrysts plot along CCAM line and are not in equilibrium 

with those of the secondary minerals. (b) Oxygen isotope compositions of Ca,Fe-rich pyroxenes 

and andradite in matrix (mx) and in rims around CAIs are similar and plot parallel to the TF with 

a range in δ18O of ~20‰, suggesting formation at low-temperature. Oxygen isotope 

compositions of magnetite overlap with those of Ca,Fe-pyroxenes and andradite, but plot largely 

to the left from CCAM line. 
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Fig. 10. 129I-129Xe evolution diagrams for mineral fractions separated from the CVoxB chondrites 

(a-c) Kaba and (d-f) Bali; error bars are 1σ. The I-Xe ages shown are relative to the Shallowater 

internal standard (4563.5±1 Ma; Gilmour et al., work in progress). Numbers next to points 

represent extraction W-coil temperatures in °C (the sample is probably 150-200°C cooler). 

Fig. 11. a-d - BSE images of secondary minerals in POP type I chondrules in the CVoxA 

chondrite ALH84028. Magnetite-sulfide nodules are replaced by ferrous olivine (fa) and Ca,Fe-

pyroxenes (CaFe-px); both contain abundant inclusions of sulfides (sf). Low-Ca pyroxene 

phenocryststs (px) are replaced by ferrous olivine. Chondrule mesostasis is replaced by 

nepheline (nph). Forsteritic olivine (fo) phenocrysts are largely unaltered, but show enrichment 

in fayalite contents near the edges and along the fractures. e, f - BSE images of secondary 

fayalite in the CVoxA-B chondrite MET00430. e - Fayalite overgrowing olivine-pyroxene 

chondrule fragment shows inverse compositional zoning (Fa75-50). f - Euhedral fayalite grain 

overgrowing low-Ca pyroxene (px) phenocryst in outer part of a type I chondrule shows complex 

chemical zoning suggesting dissolution of fayalite and precipitation of more forsteritic olivine 

from a fluid phase. Numbers correspond to fayalite contents (from Krot et al., 2004a). 

Fig. 12. a-c - 129I-129Xe evolution diagrams for fine-grained CAIs in Allende (from Pravdivtseva 

et al., 2003b). The contribution from trapped Xe component is within experimental uncertainty 

consistent with the "planetary" OC-Xe (Lavielle and Marti, 1992). d-f - 129I-129Xe evolution 

diagrams for Allende dark inclusions. Two isochrons plotted for the dark inclusion IV-1 

correspond to low- and high-temperature Xe released. All isochrons suggest “sub-planetary” 

trapped components (Hohenberg et al., 2004). Error bars are 1σ. I-Xe ages are relative to the 

Shallowater internal standard (4563.5±1 Ma; Gilmour et al., work in progress). 
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Fig. 13. BSE images of altered chondrules in the dark inclusions (DI) 3529 (a), 4301-2 (b), E53 

(c, d), and E39 (e, f) in the oxidized CV chondrite Allende (a, b) and in the reduced CV 

chondrite Efremovka (c-f). a, b - Chondrules are replaced to various degrees by ferrous olivine, 

nepheline (nph; black in "d"), and Ca,Fe-pyroxenes (Ca,Fe-px). Chondrule shown in "a" is 

surrounded by a fine-grained rim composed of lath-shaped ferrous olivine (fa) and nepheline. 

The rim is crossut by a vein composed of Ca,Fe-pyroxenes and Fe,Ni-sulfides (white). The vein 

starts at the opaque nodule (outlined) that is replaced by Ca,Fe-pyroxenes and ferrous olivine; 

sulfide grains (white) are relict. c, d - Chondrules in E53 are pseudomorphed to a various degree 

by a fine-grained mixture of ferrous olivine (fa) and very minor phyllosilicates (phyl). e, f - 

Chondrules in E39 are nearly completely replaced by a fine-grained mixture of ferrous olivine, 

phyllosilicates, and andradite (andr). Forsteritic olivine (fo) and high-Ca pyroxenes (cpx) are 

relict. mes = mesostasis; met = Fe,Ni-metal (from Krot et al., 1998a, 1999). 

Fig. 14. Ca Kα X-ray elemental maps of the heavily-altered dark inclusions 4301-2 (a) and IV-1 

(b) in the oxidized CV chondrite Allende. The dark inclusions (DI) contain chondrule 

pseudomorphs (indicated by stars) which are depleted in Ca and consist of the secondary ferrous 

olivine, nepheline, sodalite, and Fe,Ni-sulides (see Fig. 14b). The dark inclusion 4301-2 is 

crosscut by multiple veins composed of Ca,Fe-pyroxenes and andradite. Both dark inclusions are 

surrounded by continuous Ca-rich rims composed of Ca,Fe-pyroxenes, andradite, wollastonite, 

and kirschteinite. The outer portions of the dark inclusions are depleted in Ca, whereas the 

neighboring matrix of Allende contains abundant Ca,Fe-rich nodules composed of Ca,Fe-

pyroxenes, andradite, and wollastonite, suggesting that Ca lost from the dark inclusions 

precipitated as rims and nodules around them (from Krot et al., 2001). 
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Fig. 15. 129I-129Xe evolution diagrams for the Efremovka dark inclusions E53, E39 (data from 

Swindle et al., 1998; Krot et al., 1999), and E80; error bars are 1σ (data from Pravdivtseva et al., 

2003c). The ages shown are relative to the Shallowater internal standard (4563.5±1 Ma; Gilmour 

et al., work in progress). The two apparent isochrons for E80 correspond to different peaks in the 

release profiles of radiogenic 128Xe and 129Xe, suggesting that E80 contains two different iodine-

carrying mineral phases with the same closure time but different trapped components. The 

circled temperature points represent intermediate extraction steps between these two release 

peaks where radiogenic 128Xe and 129Xe do not correlate. 

Fig. 16. Representative three-isotope plots for Xe from irradiated Semarkona chondrules. These 

include one sample with dual isochrons (CD-159), and samples with single isochrons with 

apparent old (CD-92 and CD-101) and young (CD-160) I-Xe ages. Diamonds denote points 

included in high-temperature isochrons and circles are those included in low-temperature (or 

single) isochrons; erros bars are 1σ. Numbers next to points represent extraction coil 

temperatures in °C (the sample is probably 200-300°C cooler) (from Swindle et al., 1991a). 

Fig. 17. 129I-129Xe evolution diagrams for Tieschitz chondrules. Numbers next to points represent 

extraction coil temperatures in °C (the sample is probably 200-300°C cooler); erros bars are 2σ 

(from Nichols et al., 1991). 

Fig. 18. Mn-Cr ages of the secondary carbonates and fayalite in carbonaceous chondrites relative 

to the LEW86010 angrite; errors are 2σ (data from Endress et al., 1996; Hutcheon and Phinney, 

1996; Hutcheon et al., 1997, 1998, 1999; Brearley and Hutcheon, 2000); Brearley et al., 2001; 

Hua et al., 2002; Krot et al., 2000a). Absolute ages of CAIs from CV chondrites (4567.2±0.6 

Myr; Amelin et al., 2002) and ages calculated based on the initial 53Mn/55Mn ratios of 1.4×10-5 
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(Lugmair and Shukolyukov, 2001), (2.8±0.3)×10-5 (Nyquist et al., 2001), and 4.4×10-5 (Birck and 

Allègre, 1988; Birck et al, 1999) are plotted for reference. 

Fig. 19. I-Xe ages of the CV chondritic components (CAIs, chondrules, matrix, dark inclusions) 

and mineral fractions (magnetite, phyllosilicates) relative to the Shallowater aubrite internal 

standard; errors are 1σ (data from Swindle et al., 1983, 1988, 1998; Krot et al., 1999; Hohenberg 

et al., 2001; Pravdivtseva et al., 2003b,c). Based on the comparison of I-Xe and Mn-Cr systems 

with the absolute Pb-Pb chronometer for samples analysed by mulitple isotope systems, Gilmour 

et al. (work in progress) infer that the I-Xe system closed in Shallowater aubrite at 4563.5±1.0 

Ma before the present, i.e. 5.7±1.1 Ma earlier than the Mn-Cr system closed in LEW86010 

angrite. 
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Fig. 17.  



 81

Fig. 18. 

 



 82

Fig. 19. 

 




