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Abstract

I present measurements of the relative branching ratios, Dalitz plot struc-
tures and CP -asymmetry values in the three-body singly Cabibbo-suppressed
decays D0 → π−π+π0 and D0 → K−K+π0 using data collected by the BABAR

detector at the PEP-II asymmetric-energy ring at SLAC. I apply the results of
the D0 → π−π+π0 analysis to extracting CP -violation parameters related to
the CKM angle γ (or φ3) using the decay B− → Dπ+π−π0K−.
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Chapter 1

Introduction

1.1 Standard Model

The Standard Model (SM) [1] of particle physics is the most accepted theory for
describing the interactions between the elementary particles that form the building
blocks of the universe. It says that everything around us is made of fundamental
particles called quarks and leptons, with three types of fundamental forces acting on
them through “carrier particles”. It describes these forces - electromagnetic, weak
nuclear, and strong nuclear - in a unified way. It has, so far, been able to account
for almost all observed experimental phenomena.

Despite its incredible success, the SM has a few serious deficiencies. For example,
it does not describe the fourth fundamental force of natute, the gravity, at all. Also,
now we know that 96 percent of the universe is not made of matter, which does not
fit well into the SM.

1.2 Weak interaction

The weak nuclear force (also called the “weak force”) is one of the fundamental
interactions described by the SM. In general, it can act between two leptons, between
a lepton and a hadron, or between two hadrons. It was first observed and studied in
the β decay,

n → p + e− + ν̄e . (1.1)

The weak interaction is the only interaction in which both the electric charge of
the fermions involved and their flavor quantum numbers may change. The change
of charge follows from the fact that the W± field quanta (the boson carriers of the
weak interaction) carry electrical charges. Also, only left-handed quarks feel the
weak force, right-handed ones do not. In this document, we always refer only to
left-handed quarks, and therefore, drop the prefix “left-handed” from now on.

1.3 Charged weak decays

In the SM description of the weak interaction, the weak eigenstates of down-
type quarks (d′, s′, and b′) are mixtures of the mass eigenstates (d, s, and b). The
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up-type quarks (u, c, and t) are unmixed. This allows an up-type quark to decay,
via emission of a W , to any energetically allowed down-type quark.

For the first two quark generations, the transitions between quark types are
described by a real transformation matrix [2]:(

d′

s′

)
=

(
cos θc sin θc

− sin θc cos θc

)(
d
s

)
In this description, the Cabibbo angle (θc) has been measured to be approximately
0.23 radians. Transitions with both c → s and u → d have matrix elements propor-
tional to cos2 θc. These transitions are called “Cabibbo favored”. The transitions
with either c → d or s → u have matrix elements proportional to sin θc and decay
rates proportional to sin2 θc. Transitions with both c → d and s → u have ma-
trix elements proportional to sin2 θc and decay rates proportional to sin4 θc. Decay
rates proportional to sin2 θc are called singly Cabibbo-suppressed and those propor-
tional to sin4 θc are called doubly Cabibbo-suppressed. The Feynman diagrams of
the Cabibbo-favored D0 → K−π+, the singly Cabibbo-suppressed D0 → K−K+,
and the doubly Cabibbo-suppressed D0 → K+π− decays are shown in Figure 1.1.

For three generations of quarks, the above matrix is generalized, and is replaced
with a complex matrix, called the CKM matrix [2], which describes the “mixing”
between different quark generations and gives weak eigenstates.⎛

⎝d′

s′

b′

⎞
⎠ =

⎛
⎝Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞
⎠

⎛
⎝d

s
b

⎞
⎠

In this formalism, the transition rates between different quark generations are
described by the values of the elements of V . As an example, the Cabibbo-suppressed
c → d transition rate is proportional to |Vcd|2. In the CKM matrix, the diagonal
elements are near unity while the off-diagonal elements are small. Enforcing the
unitarity of this matrix provides additional constraints on the values of its elements.

For the Cabibbo suppressed decay D0 → K−K+ shown in Figure 1.1, the transi-
tion probability is proportional to |Vcs|2|Vus|2; the factor of Vcs in the matrix element
for the vertex where the c quark turns into an s quark and the factor Vus comes from
the W decay vertex.

1.4 Weak decays of charmed mesons

Charm quark decays to s or d via emission of a W under the weak interaction.
The W may decay leptonically or hadronically to form a final state. Figure 1.2 shows
the hadronic and leptonic decays of W produced with c → s(d) transitions. The
quarks produced this way form a hadronic final state under the strong interaction.
The decays D0 → π−π+π0 and D0 → K−K+π0 are singly Cabibbo-suppressed while
the D0 → K−π+π0 is a Cabibbo-favored decay. Figure 1.3 shows all the possible
tree-level Feynman diagrams for the decay D0 → π−π+π0. Figure 1.4 shows the
same for the decay D0 → K−K+π0.
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� �c s{D0 }K−
�

�
�

�

�
�

�
�

W+

�

�
�

�
�

u

�
�

�
�

�

d̄

}π+

(a) Cabibbo-favored

�ū ū
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� �c d{D0 }π−
�

�
�

�

�
�

�
�

W+

�

�
�

�
�

u

�
�

�
�

�

s̄

}K+

(c) Doubly Cabibbo-suppressed

Figure 1.1: Examples of (a) Cabibbo-favored, (b) singly Cabibbo-suppressed, and
(c) doubly Cabibbo-suppressed decays. The weak vertices shown with open circles
are Cabibbo-favored while those shown with filled circles are Cabibbo-suppressed.
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Figure 1.2: Hadronic and semi-leptonic decay of the charm quark.
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Figure 1.3: Three types of tree-level Feynman diagrams for the decay D0 → π−π+π0.

1.5 Introduction to CP -violating CKM phase γ

The angle γ of the unitarity triangle is the phase of the CKM matrix defined as
γ ≡ arg [−VudV

∗
ub/VcdV

∗
cb ], which corresponds to the phase of the element V ∗

ub, i.e.
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Figure 1.4: Three types of tree-level Feynman diagrams for the decay D0 →
K−K+π0.

Vub = |Vub|e−iγ , in the Wolfenstein parameterization [3]. Various methods have been
proposed to extract γ using B∓ → D̃0K∓ decays, all exploiting the interference
between the color allowed B− → D0K− (b → cus ∝ Vcb) and the color suppressed
B− → D̄0K− (b → ucs ∝ Vub) transitions1, when the D0 and D0 are reconstructed
in a common final state [4, 5, 6]. The symbol D̃0 indicates either a D0 or a D̄0

meson. The extraction of γ with these decays is theoretically clean because the
main contributions to the amplitudes come from tree-level diagrams (see Fig. 1.5).

1.6 Measurement of phase γ

The most effective method to measure the CP -violating phase γ of the quark-mixing
matrix is to exploit the interference between b → ucs and b → cus amplitudes in the
decay B− → DK− where the neutral D meson decays to a multi-body final state
(D → π+π−π0 in our case 2). The sensitivity to γ arises from the interference of
the Cabibbo-allowed B− → D0K− decay and the doubly Cabibbo-suppressed decay

1Reference to the charge-conjugate state is implied here.
2D denotes either D0 or D0 here.
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Figure 1.5: Diagrams contributing to B− → D̃0K− decay. The left diagram proceeds
via b → cus transition, while the right diagram proceeds via b → ucs transition and
is color suppressed.

B− → D0K−with D → π+π−π0 in both cases. We define the amplitudes

A(B− → D0K−) ≡ AB (1.2)
A(B− → D0K−) ≡ ABrBei(δB−γ) (1.3)

where we define all phases and amplitudes relative to the B− → D0K− decay.
Therefore δB is the difference in the strong phase (sometimes also referred to as “CP
even phase”) between the two decays and γ is the weak phase. The amplitude for the
CP conjugate B+ decay is obtained by changing the sign of the weak phase γ → −γ.
The amplitude, f , of the 3-body D-decay is parametrized in terms of its Dalitz plot
variables 3:

A(D0 → π−π+π0) ≡ fD0(s+0, s−0) (1.4)
A(D0 → π+π−π0) ≡ fD0(s−0, s+0) (1.5)

where we have used the CP symmetry of the strong interactions and the fact that the
final state is a spin zero state, pi is the 4-momentum of the pion and sij = (pi + pj)2

is the invariant mass squared of the pair of pions whose charges are given by i and
j. Note that the choice of the Dalitz variables leads to a symmetric Dalitz plot
boundary. With the above definitions, the amplitude of the cascade decay is

AB−→Dπ+π−π0K−(s+0, s−0) = AB (fD0(s+0, s−0) + z−fD0(s−0, s+0)) ,

AB+→Dπ+π−π0K+(s+0, s−0) = AB (fD0(s−0, s+0) + z+fD0(s+0, s−0)) , (1.6)

where
z± ≡ rBei(δB±γ). (1.7)

With a specific model for the Dalitz amplitude fD0, determined separately from a D0

sample from D∗+ → D0π+ decays, one can extract the CP parameters rB, δB , and γ
(or the Cartesian coordinates x±, y±, where z± = x± + iy±) using a simultaneous fit

3We neglect any direct CP violation in the neutral D-decay here.
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to B− → Dπ+π−π0K− and B+ → Dπ+π−π0K+ events. We describe the measurement
of the amplitudes of the decay D0 → π−π+π0 in Chapter 5. In Chapter 4 we describe
the amplitudes of the decay D0 → K−K+π0.

We note that not only the functional form of the fD0 but also the absolute
magnitudes of the squares of the amplitudes in Eq. (1.6) can be used to obtain
information about the CP parameters from the decay B− → Dπ+π−π0K−. We
describe this in detail in Chapter 6.

1.7 Search for CP violation in charm decays

CP violation [7] occurs when the decay rate of a particle (e.g., D0) differs from the
decay rate of its CP -conjugate anti-particle (e.g., D0). This phenomenon requires at
least two intefering complex quantum mechanical amplitudes with different strong
and weak phases. The strong phase of each amplitude always respects CP symmetry
while the weak phase changes sign under CP . Decay rates are proportional to the
square of the magnitude of the complex sum of the quantum mechanical amplitudes,
therefore rates for particle and anti-particle can differ. In the Standard Model, the
relative weak phase is typically between “tree level” and SM “penguin” amplitudes.
The penguin amplitude in charm decays is, however, too small to provide significant
CP violation. Extensions of the SM, which introduce new forces, introduce additional
amplitudes with relative weak phases that can contribute to CP violation. So, at
current experimental sensitivities, a search for CP violation in charm decays [8] is a
way to look for physics beyond the SM. Any observation of direct CP violation [9,
10, 11] will provide a “smoking gun” signal of new physics.

1.8 CP asymmetry in Cabibbo-suppressed D0 decays

Singly Cabibbo-suppressed (SCS) neutral D decays have the amplitudes of the form
c → us̄s and c → ud̄d (and the respective CP -conjugates). These amplitudes lead
to final states which are common to both D0 and D

0. These states can be CP
eigenstates (e.g., φ(1020) π0, ρ0φ0, f0(980) π0), or flavor states (e.g., ρ±π∓, K∗±K∓).

The time-integrated CP asymmetry, aCP , for a final state f can be written as:

aCP ≡ Γ(D0 → f) − Γ(D0 → f)
Γ(D0 → f) + Γ(D0 → f)

, (1.8)

where Γ denotes the decay rate.
Time-integrated CP asymmetries in D0 decays can have three components: direct

CP violation in decays to specific states, indirect CP violation in D0–D0 mixing, and
indirect CP violation in interference of decays with and without mixing. Indirect CP
violation should be universal, but direct CP violation can be non-universal depending
on the specifics of the new physics [9]. We search for time-integrated CP violation in
the three-body SCS decays D0 → π−π+π0,K−K+π0 by comparing features of D0

and D0. We will describe this in detail in Chapter 7.
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Chapter 2

BABAR Detector and Event
Reconstruction

2.1 The BABAR experiment

The primary physics goal of the BABAR [12] experiment is the systematic study of CP
violating asymmetries in the decay of neutral B mesons to CP eigenstates. Secondary
goals are precision measurements of decays of beauty and charm mesons and searches
for rare processes. The PEP-II B Factory is an asymmetric e+e− collider designed
to operate at a luminosity of 3×1033 cm−2s−1 and above, at a center-of-mass energy
of 10.58GeV, the mass of the Υ (4S) resonance. This resonance decays exclusively
to B0 B0 and B+B− pairs and thus provides an ideal laboratory for the study of
B mesons. Also, continuum production of bb̄, cc̄, ss̄, dd̄, and uū processes at the
enegies of around 10.58GeV enables the study of other physics topics. B0 mixing had
been discovered in 1987 [13] and it was soon proposed to use mixing to measure CP
violation using the time-difference between neutral B decays [14]. An asymmetric
collider makes this possible by allowing the B’s from the Υ (4S) decay to move in
the laboratory reference frame. The two separate energy rings (one each for e−

and e+) also allow high beam currents and high luminosities [15]. While most of
the BABAR data are recorded at the peak of the Υ (4S) resonance, about 10% are
taken at a center-of-mass energy 40MeV lower. In PEP-II, the electron beam of
9.0GeV collides head-on with the positron beam of 3.1GeV resulting in a Lorentz
boost to the Υ (4S) resonance of βγ = 0.56. The crucial test of CP invariance is
a comparison of the time-dependent decay rates for B0 and B0 to a self-conjugate
state. This requires events in which one B meson decays to a CP eigenstate that is
fully reconstructed and the other B meson is tagged as a B0 or a B0 by its decay
products: a charged lepton, a charged kaon, or other flavor sensitive features such
as a low momentum charged pion from a D∗ decay.

The peak cross section at the Υ (4S) is about 1.1 nb for bb̄ events and about 1.8 nb
for cc̄ events. A brief overview of the principal components of the BABAR detector
is given in the next section.
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Figure 2.1: BABAR detector longitudinal section (source Ref. [12]).

Figure 2.2: BABAR detector end view (source Ref. [12]).
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2.2 Detector overview

Figure 2.1 shows a longitudinal section through the detector center, and Figure 2.2
shows an end view with the principal dimensions. The detector surrounds the PEP-
II interaction region. The inner detector consists of a silicon vertex tracker, a drift
chamber, a ring-imaging Cherenkov detector, and a CsI calorimeter. These detector
systems are surrounded by a superconducting solenoid that is designed for a field of
1.5 T. The steel flux return is instrumented for muon and neutral hadron detection.
The polar angle coverage extends to 350mrad in the forward direction and 400mrad
in the backward direction, defined relative to the high energy beam. As indicated
in the two drawings, the right handed coordinate system is anchored on the main
tracking system, the drift chamber, with the z-axis coinciding with its principal axis.
The positive y-axis points upward and the positive x-axis points away from the center
of the PEP-II storage rings.

2.2.1 Detector components

The charged particle tracking system is made of two components, the silicon detector
and the drift chamber.

The silicon detector is designed to measure angles and positions of charged par-
ticles just outside the beam pipe. It is composed of five layers of double-sided silicon
strips. The inner three layers primarily provide position and angle information for
the measurement of the vertex position. The outer two layers are at much larger
radii, providing the coordinate and angle measurements needed for linking the tracks
reconstructed in the silicon detector and in the drift chamber.

The principal purpose of the drift chamber is the momentum measurement for
charged particles. It also supplies information for the charged particle trigger and
a measurement of dE/dx for particle identification. The drift chamber is of com-
pact design, with 40 layers of small, approximately hexagonal cells. Longitudinal
information is derived from wires placed at small angles to the principal axis. The
helium/isobutane gas mixture reduces the scattering and improves the measurement
of low momentum tracks [16].

The detector [17] of internally reflected Cherenkov light, also referred to as “par-
ticle identification system”, is a novel device providing separation of pions and kaons
from about 500MeV/c to the kinematic limit of 4.5GeV/c. Cherenkov light is pro-
duced in bars of synthetic fused silica and transported by total internal reflection,
preserving the angle of emission, to an array of photomultiplier tubes. Images of
the Cherenkov rings are reconstructed from the position and time of arrival of the
signals in the photomultiplier tubes.

The electromagnetic calorimeter is designed to detect electromagnetic showers
with excellent energy and angular resolution over the energy range from 20MeV to
4GeV. This coverage allows the detection of low energy π0s and η0s and higher
energy photons and electrons from electromagnetic, weak, and radiative processes.
The calorimeter is a finely segmented array of thallium-doped cesium iodide (CsI(Tl))
crystals. The individual crystals are read out by pairs of silicon PIN diodes.

The instrumented flux return is designed to identify muons. The electronics,
trigger, data acquisition, and online computing represent a collection of tightly cou-

22



pled hardware and software systems. These systems were designed to maximize the
physics data acceptance, maintainability, and reliability while managing complexity,
and minimizing deadtime.

2.2.2 Trigger

The trigger system operates as a sequence of two independent stages, the second con-
ditional upon the first. The Level-1 (first stage) trigger is responsible for interpreting
incoming detector signals, recognizing and removing beam-induced background to a
level acceptable for the Level-3 (second stage) software trigger which runs on a farm
of commercial processors. Level-1 consists of pipelined hardware processors designed
to provide an output trigger rate of <∼ 2 kHz. The Level-1 trigger selection is based
on data from the drift chamber and the calorimeter. The maximum Level-1 response
latency for a given collision is 12μs. Based on both the complete event and Level-1
trigger information, the Level-3 software algorithms select events of interest which
are then stored for processing. The Level-3 output rate is typically around 160 Hz.

2.2.3 Beam parameters

PEP-II is an e+e− storage ring system designed to operate at a center-of-mass (c.m.)
energy of 10.58GeV, corresponding to the mass of the Υ (4S) resonance. The param-
eters of these energy asymmetric storage rings are presented in Table 2.1.

In the interaction region, closely-spaced bunches of electrons and positrons collide
head-on and are separated magnetically in the horizontal plane by a pair of dipole
magnets, followed by a series of offset quadrupoles. The beam parameters most
critical for BABAR performance are the luminosity, the energies of the two beams, and
the position, angles, and size of the luminous region. BABAR measures the absolute
luminosity from QED processes, primarily e+e−, and μ+μ− pairs. The rms energy
spreads of the LER and HER beams are 2.3MeV and 5.5MeV, respectively. To
ensure that data are recorded close to the peak of the Υ (4S) resonance, the observed
ratio of BB enriched hadronic events to lepton pair production is monitored online.
Near the peak of the resonance, a 2.5% change in the BB production rate corresponds
to a 2MeV change in the c.m. energy. The direction of the beams relative to BABAR

is measured iteratively run-by-run using e+e− → e+e− and e+e− → μ+μ− events.
The resultant uncertainty in the direction of the boost from the laboratory to the
c.m. frame, �β, is about 1mrad.

2.2.4 Beam background sources

The primary sources of accelerator backgrounds are: the beam-gas bremsstrahlung
and Coulomb scattering between the beam particles and the residual gas in either
ring; and electromagnetic showers generated by beam-beam collisions. Since the
magnet bends the particles from the two beams in opposite directions, most BABAR

detector systems exhibit occupancy peaks in the horizontal plane, i.e., the LER
background near φ = 0

◦
and HER background near φ = 180

◦
.
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Table 2.1: PEP-II beam parameter values for a typical colliding beam operation.
HER and LER refer to the high energy e− and low energy e+ ring, respectively.
σLx, σLy, and σLz refer to the horizontal, vertical, and longitudinal rms size of the
luminous region.

Parameters Values

Energy HER/LER (GeV) 9.0/3.1
Current HER/LER (A) 1.8/3.0
σLx (μm) 120
σLy (μm) 5.6
σLz (mm) 9
Luminosity (1033 cm−2s−1) 8–12

2.3 Data sample

The analyses described in this document are done selecting D∗+ → D0π+
s , D0 →

h−h+π0 and charge-conjugate events, where h refers to π or K. The analyses use
either the BABAR Runs 1–4 (integrated luminosity, L = #events

cross−section , being roughly
232 fb−1) or the Runs 1–5 (385 fb−1) data sample. This includes on-resonance and
off-resonance data. The size of the data-sample used in a particular analysis is
mentioned in the respective chapters. For optimization of analysis variables, we
use similated events: e+e− → bb (2045 fb−1), cc (327.5 fb−1) and also uū, dd̄, ss̄
(322.5 fb−1). Special signal Monte Carlo samples of D0 → K−π+π0 (4.7 million),
D0 → π−π+π0 (4.7 million), and D0 → K−K+π0 ( 1.4 million ) signal modes
(D0 and D0 combined, generated uniformly in phase space) are also used to study
detector acceptance and signal-reconstruction efficiency.

2.4 Charged particle track reconstruction

Charged particle tracks are reconstructed by using information from the drift cham-
ber and the silicon detector. They are found by fitting the expected helices formed
by charged particles in the magnetic field to the sequences of hits. The tracks are pa-
rameterized by five parameters (d0, z0, φ0, ω, tan λ). These parameters are measured
at the point of closest approach to the z-axis. d0 is the distance of this point from
the origin of the coordinate system in the x-y plane and z0 is that distance along the
z-axis. φ0 is the azimuthal angle, λ the dip angle relative to the transverse plane,
and ω = 1/pT is the curvature of the track, pT being the transverse momentum. The
signs of d0 and ω depend on the charge of the particle.

The particles actually observed in the detector are pions, electrons, muons, kaons,
protons and photons. All other particles that have decayed in flight are reconstructed
from these long-lived particles. The criteria used to select charged particle tracks
used in the present analyses are summarized in Table 2.2.
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Variable Selection
pT > 0.1GeV/c
# drift chamber hits ≥ 12
|x0| < 1.5 cm
|z0| < 10.0 cm

Table 2.2: The basic track selection criteria used for charged particles. |x0| is the
absolute value of the closet distance between the track and the beam spot in the
x − y plane.

2.5 π0 reconstruction

The π0 candidates are formed by combining a pair of photon candidates. The in-
variant mass of the photon pair is required to be within 0.115 < M(γ, γ) < 0.150
GeV/c2 and each photon has energy at least 100MeV . Selected γ candidates are
kinematically fitted so that the γγ invariant mass is equal to the nominal π0 mass.
Also, the π0 energy is required to be greater than 350MeV. Both photons in the
pair are also required to have at least one hit in the calorimeter and LAT < 0.8.
Here LAT is the lateral energy distribution variable and is defined as

LAT =
∑N

i=3 Eir
2
i∑N

i=3 Eir2
i + E1r2

0 + E2r2
0

, E1 ≥ E2 ≥ ...... ≥ En (2.1)

where N is the number of crystals in a shower, r0 is the average distance between
two crystal front faces (about 5 cm), Ei is the energy deposited in the ith crystal,
and ri is the distance between the ith crystal and the shower center. The LAT
variable can be used to discriminate between electromagnetic and hadronic showers.
For electromagnetic showers, most of the energy is deposited in a small number of
crystals, so that one expects a low value for the LAT parameter. Hadronic showers,
however, generally result in a distribution of energy which is more even over a number
of crystals, resulting in a value for the LAT parameter which is closer to one.

2.6 Charged particle identification

Charged particle candidates are identified by specific energy-loss (dE/dx) measure-
ments in the tracking detectors together with the number of Cherenkov photons
reconstructed in the particle identification system. For each particle hypothesis a
likelihood (L) is calculated using the above variables. Particles are identified us-
ing different cuts on the relevant likelihood ratios. Figure 2.3 (2.4) shows the kaon
(pion) identification efficiency and the pion (kaon) mis-identification rate. The values
of likelihood ratios and other parameters are summarized in Table 2.3.

2.7 Event reconstruction

Events for this analysis are pre-selected from a pool of events classified as “useful
physics events” by the online prompt reconstruction algorithm. This includes events
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Figure 2.3: Kaon identification efficiency (top) and pion mis-identification rate (bot-
tom) as a function of track momentum for positive (left) and negative (middle)
tracks. The rightmost plots show ratios of efficiencies in data and simulation.
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Figure 2.4: Pion identification efficiency (top) and kaon mis-identification rate (bot-
tom) as a function of track momentum for negative (left) and positive (middle)
tracks. The rightmost plots show ratios of efficiencies in data and simulation.
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Parameter For Kaons For Pions
LKaon/(LKaon + LPion) > 0.9 < 0.5
LKaon/(LKaon + LProton) > 0.2 —
LProton/(LProton + LPion) — < 0.98

Table 2.3: Charged particle identification requirements. The tracks are also required
to be inconsistent with electron hypothesis if their momentum is > 0.4GeV/c.

assigned to any of the physics sub-streams by the background filter. The selected
events are also required to belong to the class of hadronic events which contain at
least three charged tracks. Using the criteria listed in Tables 2.2–2.3, the D0 →
h−h+π0 events are reconstructed going backward in the decay chain.

We select only those events where the D0 → h−h+π0 candidate comes from
D∗ decays. Using two distinct pairs of oppositely charged tracks with π± and K±

mass hypotheses and a π0, we form D0 candidates by adding the four-momenta and
minimizing the χ2 of the vertex. In order to suppress background from charged track
combinatorics in D0 reconstruction, we require both the charged tracks to have a
minimum transverse momentum, pT , 100 MeV/c. We also require them to have at
least 20 drift chamber hits and at least 6 hits in the silicon tracker with a minimum of
one hit in each of three inner layers. We also require the charged tracks to be within
the fiducial volume of the Cherenkov detector acceptance range of lab-momentum
and polar angle (because particle identification performances are known reliably in
this range only). Similarly, in order to minimize background from fake soft pions
in D∗ candidate reconstruction, we require the soft pion pT to be greater than 100
MeV/c, at least 20 drift chamber hits and at least 6 hits in silicon detector with a
minimum of one hit each in the three inner layers.

To minimize background coming from π0 mis-reconstruction, we require the π0

candidate lab-energy to be greater than 350 MeV. We also constrain the π0 candidate
invariant mass to nominal π0 mass in order to have a a good resolution in D0

candidate mass.
At this stage we also use particle identification method, described earlier, to

identify kaons and pions. At various stages of this process, we use appropriate selec-
tion criteria to reject background and to speed up the reconstruction process. We
require the D0 vertex-fit to have χ2 probability greater than 0.5%, and the resultant
invariant mass to lie between 1.7 GeV/c2 and 2.0GeV/c2. This selection retains only
events in the interesting mass window. The minimum center-of-mass momentum of
the candidate is 2.77GeV/c. This selection removes B decay products and reduces
high multiplicity events. The selected candidates after the above requirements are
combined with the third charged track to make a D∗ candidate. The tracks are
required to originate close to the beam spot.

To get a reasonably clean sample of h−h+π0 events from data samples, we studied
the Δm (D∗ - D0 mass difference) distributions in data and Monte Carlo samples,
in order to be able to apply optimal selection cuts on this variable. The mean
value of Δm is the same for data and simulation (145.4 MeV/c2) and for all the
three modes under study but the r.m.s. width is slightly different in data and
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simulation ( ∼ 0.32 MeV/c2 in data and ∼ 0.25 MeV/c2 in simulation), therefore
any cut applied on Δm will not have exactly the same effect on data and simulation.
Since eventually we obtain the signal reconstruction efficiency using simulated signal
events, it is important that we apply uniform selection cuts (as far as possible) to
all the three modes under study so that any small discrepancy between data and
simulation mostly cancels out in the ratio of branching ratio. Accordingly, we use a
uniform Δm selection, |Δm − 145.4| < 0.6 MeV/c2, for all the three decay modes
under study, in both data and simulation. We study systematic uncertainty in our
final result due to this selection, this will be described in detail in a later section.

If the D∗ candidate’s vertex fit is good and the mass difference between the
reconstructed D∗ and D0 candidates is within 0.6 MeV/c2 of the central value, then
these events are the most probable D0 → h−h+π0 signal candidates.

The event selection criteria are summarized in Table 2.5 and Table 2.7 shows the
reconstruction efficiency after successive cuts. Events which pass the above selections
are investigated further for analysis.

Decay Mean [MeV/c2 ] RMS [MeV/c2 ]
K−π+π0 data 145.42 ± 0.01 0.34 ± 0.02

K−π+π0 simulation 145.44 ± 0.01 0.26 ± 0.04
π−π+π0 data 145.42 ± 0.01 0.32 ± 0.02

π−π+π0 simulation 145.43 ± 0.01 0.26 ± 0.01
K−K+π0 data 145.42 ± 0.01 0.30 ± 0.07

K−K+π0 simulation 145.43 ± 0.01 0.24 ± 0.01

Table 2.4: Mean and rms values of Δm distribution for reconstructed D0 candidates
having mass within 1 σ of the central value.

Variable Cut
Charged tracks and πs pT ≥ 100 MeV/c

Hits in the silicon strip detector ≥ 6 total, 2 in r-φ plane, 1 in inner 3 layers
Hits in the drift chamber ≥ 20

|Δm − 145.4| < 0.6 MeV/c2

P ∗(D0/D0) > 2.77 GeV/c
Eγ > 100 MeV
Eπ0 > 350 MeV
mπ0 [115 − 160] MeV/c2

Kaon, pion identification Yes

Table 2.5: Event selection criteria

2.8 Dealing with multiple candidates

When reconstructing the whole D∗ decay chain, it can sometimes happen that more
than one combination satisfies the selection criteria in the same event. The rate
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Selection Efficiency after selection (in % )
D0 → π−π+π0 D0 → K−π+π0 D0 → K−K+π0

PCM
D0 > 2.77 GeV/c 49.46 49.67 49.58

Track quality requirements 7.29 6.31 5.45
Eπ0 > 350 MeV 7.12 6.16 5.22

Δm selection 6.23 5.51 4.74

Table 2.6: Efficiency after successive selection requirements.

at which this occurs depends on the selection cuts applied but is the same for all
the three h−h+π0 modes under study. The multiplicity after applying analysis-level
selection cuts (summarized in table 2.5) is 1.03 per event for all three decay modes.

The main sources of multiple candidates are:

• Charged track combinatorics in D0 → h−h+π0 reconstruction.

• Right D0 combined with a fake πs to make a D∗.

• More than one π0 candidate with or without a shared photon.

• Fake/mis-reconstructed π0.

In order to select only one candidate per event, it is necessary to define a criterion
that permits one to identify, as far as possible, the combination with the largest
probability of being a true signal. In events with multiplicity greater than one,
we select the candidate with the minimum value of combined vertex χ2, where the
vertex χ2 is calculated for the whole decay chain (D∗+ → D0π+

s , D0 → h−h+π0 ,
π0 → γγ). We studied the effect of this selection criterion on simulated events and
found that our procedure selects the correct candidate ∼ 82 % of the time.

2.9 Next steps

At this stage, we have already obtained a relatively clean subset of the data sample
and optimized selection criteria to obtain h−h+π0 signals with greater sensitivity.
Now we store the necessary event variables needed for physics analysis, extract the
number of signal events, and calculate event reconstruction efficiencies. We describe
the physics analysis procedure in detail in the next chapters.
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Chapter 3

Branching Ratio Measurements
of D0 → π−π+π0, K−K+π0

In this chapter we describe the measurement [18] of the relative branching ratios
of the three-body singly Cabibbo-suppressed decays D0 → π−π+π0 and D0 →
K−K+π0 with respect to the Cabibbo-favored decay D0 → K−π+π0. The rela-
tive branching ratios B(D0→π−π+π0)

B(D0→K−π+π0)
and B(D0→K−K+π0)

B(D0→K−π+π0)
are simply the ratios of the

reconstructed signal events after being corrected for detector acceptance and recon-
struction efficiency

B(D0 → π−π+π0)
B(D0 → K−π+π0)

=
Sπ−π+π0 × Wπ−π+π0

SK−π+π0 × WK−π+π0

, (3.1)

and
B(D0 → K−K+π0)
B(D0 → K−π+π0)

=
SK−K+π0 × WK−K+π0

SK−π+π0 × WK−π+π0

, (3.2)

where S and W denote, respectively, the raw number of signal events detected and
the average inverse signal reconstruction efficiency. We obtain the raw number of
signal events using the invariant mass distribution of the reconstructed D0 candidate
and fitting for the signal peak around the nominal D0 mass. We estimate signal
reconstruction efficiency using simulated events.

3.1 Description of backgrounds

For all the three modes under study, there are combinatorial backgrounds normally
encountered in any multi-body charm decay events. The sources of this combinatorial
background are:

• Charged track combinatorics in D0 → h−h+π0 reconstruction.

• Fake/mis-reconstructed π0.

• Real D0, fake πs.
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Figures 3.1–3.1 show the Δm = mD∗−mD0 distributions for the reconstructed
D0 events in simulation and data. The combinatorial background is non-peaking
and uniform and, therefore, can be modelled by a linear or exponential function.
Apart from the combinatorial background, for π−π+π0 and K−K+π0 modes, there
is a peaking background in the lower and upper sidebands respectively due to the
K−π+π0 reflection ( i.e., when the kaon in K−π+π0 is mis-identified as a pion thus
peaking in the lower sideband of π−π+π0 invariant mass or when the pion in K−π+π0

is mis-identified as a kaon thus peaking this time in the upper sideband of K−K+π0

invariant mass). The levels of different background contributions in π−π+π0 and
K−K+π0 invariant mass are shown in Figure 3.3. The details of this background
and its parameterization are described in the next section.

3.2 Extracting signal events

To estimate the number of signal events, all of the h−h+π0 samples are fit using
similar procedures. The D0 signals are always fit as the sums of three Gaussians.
The central values, as well as the widths, of these Gaussians are allowed to vary.
All three decay modes have combinatorial backgrounds which are modeled using
linear functions. In addition, reflections of misidentified D0 → K−π+π0 signals are
explicitly added to the background descriptions for the π−π+π0 and K−K+π0 sam-
ples. In order to estimate the systematic error in the number of signal events due to
background modeling, we repeat the D0 mass fit with exponential and polynomial
function for combinatorial background.

The π−π+π0 samples have background from D0 → K−π+π0 decays in which the
kaon is misidentified as a pion. To determine the shape of this reflection, Monte
Carlo signal events of D0 → K−π+π0 are reconstructed as π−π+π0. The reflected
invariant mass distribution of these events is shown in Figure 3.3. Figure 3.4 shows
the shape and number of K−π+π0 reflection events in the π−π+π0 reconstruction.
The shape is parameterized using a sum of three Gaussians having different means
and widths (there is no physical significance to this particular parameterization, we
simply used a PDF which fits the reflection peak well). The level of K−π+π0 re-
flection in π−π+π0 data sample is determined by fitting the distribution of these
mis-identified data events using the K−π+π0 hypothesis. The peak at the D0 mass
clearly arises from reflection, and its area determines the level of this contamination.
The reflection contribution to the π−π+π0 mass fit is fixed by this level and by the
shape determined from Monte Carlo.

The K−K+π0 samples have background from D0 → K−π+π0 decays in which
the pion is misidentified as a kaon. To determine the shape of this reflection, Monte
Carlo signal events of D0 → K−π+π0 are reconstructed as K−K+π0. Figure 3.5
shows the shape and number of K−π+π0 reflection events in the K−K+π0 recon-
struction. Again the shape is parameterized using a sum of three Gaussians having
different means and widths. The level of K−π+π0 reflection in K−K+π0 data
sample is determined by fitting the distribution of these reflection events using the
K−π+π0 hypothesis.
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Figure 3.1: Δm = mD∗ − mD0 distributions for K−π+π0 (top), π−π+π0 (middle),
and K−K+π0 (bottom) generic cc simulated events around ±1σ of the D0 invariant
mass.
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Figure 3.2: Δm = mD∗ − mD0 distributions for K−π+π0 (top), π−π+π0 (middle),
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of this reflection in π−π+π0 data sample (right).
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Mode Mean [ GeV/c2 ] RMS [ GeV/c2 ]
K−π+π0 data 1.8646 ± 0.0002 0.0160 ± 0.0005

K−π+π0 simulation 1.8615 ± 0.0001 0.0153 ± 0.0005
π−π+π0 data 1.8637 ± 0.0004 0.0174 ± 0.0008

π−π+π0 simulation 1.8609 ± 0.0002 0.0150 ± 0.0009
K−K+π0 data 1.8649 ± 0.0004 0.0135 ± 0.0010

K−K+π0 simulation 1.8624 ± 0.0002 0.0086 ± 0.0009

Table 3.1: Mean and RMS values of D0 candidate invariant mass distribution with
both signal and some background.

Mode Signal Mass Width
π−π+π0 60964 ± 341 1.8637 ± 0.0004 0.0174 ± 0.0008
K−π+π0 505660 ± 750 1.8646 ± 0.0002 0.0160 ± 0.0005
K−K+π0 10773 ± 122 1.8649 ± 0.0004 0.0135 ± 0.0010

Table 3.2: A summary of the number of observed events and other fit results for the
reconstructed D0 invariant mass.

3.3 Signal reconstruction efficiency

We estimate signal efficiency for each event as a function of its position in the Dalitz
plot [19] using simulated D0 → h−h+π0 events from cc decays, generated uniformly
in the available phase space and subjected to the same reconstruction and selection
procedure applied to data. To correct for differences in particle-identification rates
in data and simulation, we determine the ratio of these for each track, and apply an
event-by-event correction factor.

We parametrize this efficiency with a 3rd order polynomial shape in two dimen-
sions in terms of squared invariant masses m2(h−π0) and m2(h+π0). The signal
reconstruction efficiencies for each of the three h−h+π0 decays are shown in Fig-
ure 3.7. The Dalitz plots for real data events for h−h+π0 data samples are shown in
Figure 3.3.

We use the observed bin-by-bin efficiency for applying the efficiency-correction
to data events. The parametrized efficiency serves as a cross-check. We calculate
the efficiency for each real data signal event and take the inverse of the efficiency
as the event’s weight. The average weight for each decay mode is computed by
summing the weights of events in the signal region and subtracting scaled weights
from sidebands to account for background events in the signal region. Signal data
events are selected in the mass region of ± 3 rms width from the central value.
Background under the signal is subtracted selecting events from the sidebands. For
K−π+π0mode, we use two side bands, 1.73 < M(h−h+π0) < 1.77 GeV/c2 and
1.95 < M(h−h+π0) < 1.99 GeV/c2 which are almost symmetrically spaced around
the D0 mass. For π−π+π0mode we use the upper sideband (1.93 < M(h−h+π0) <
1.99 GeV/c2) only because of the presence of K−π+π0 reflection events in the lower
sideband. Similarly , we use lower sideband (1.75 < M(h−h+π0) < 1.80 GeV/c2)
for the K−K+π0 mode because of the presence of K−π+π0 reflection events in the
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Figure 3.7: Efficiency across Dalitz plots for K−π+π0, π−π+π0, and K−K+π0 signal
reconstruction obtained using simulated events from cc decays, generated uniformly
in the available phase space. The observed efficienciencies are shown on the left and
the parametrized ones (using a 3rd order polynomial) are shown on the right.
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upper sideband. The contribution from the sideband is scaled to the area of the
background shape in the signal region.

3.4 Number of signal events produced

The number of signal events produced in the experiment is

Sproduced =
∑(

1
εi

)
(3.3)

where the sum is taken over observed signal events and εi is the overall reconstruction
efficiency for each of those events. We cannot separate signal and background events
in our final sample event by event, so we estimate an average value of 1/ε for signal
events in each sample and use these to weight the observed signals; see Eqns. 3.1
and 3.2. The average weight for each sample depends upon the distribution of signal
events in the Dalitz plot and upon the efficiency determined from the Monte Carlo
simulation. The average weight for signal events in the signal region is calculated by
summing the weights of all the events in a signal region and subtracting the scaled
weights of events in the sideband to account for the weights of background events in
the signal region, and then dividing by the number of signal events, as described in
previous sections. Therefore, the number of signal events produced in the experiment
for each mode, is the product of the number of signal events obtained from the fit
to the D0 candidate mass (scaled to the area of the signal region, i.e., within 3 RMS
width from the central value) and the average weight of signal events.

Sproduced = SSignalRegion× < W > (3.4)

3.5 Calculation of ratios of branching ratios

Table 3.3 summarizes the numbers used to calculate the central values of the ratios of
branching ratios, the statistical errors, and part of the systematic errors. The second
column reports the number of signal events detected in each decay mode along with
statistical error in them, as reported earlier in Table 3.2. The third column reports
the average inverse efficiency after correcting for difference in particle-identification
rates in data and simulation.

Mode Signal(S) ave.weight(< W > ) ave.weight from fit
π−π+π0 60964 ± 341 9.4308 ± 0.0198 9.4485 ± 0.0194
K−π+π0 505660 ± 750 10.7471 ± 0.0182 10.7366 ± 0.0187
K−K+π0 10773 ± 122 12.6101 ± 0.0530 12.6312 ± 0.0551

Table 3.3: Final yield and average weight and errors associated with them.

3.6 Study of systematic uncertainties

We investigate the following sources of systematic uncertainty in the measurement
of ratios of branching ratios:
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Figure 3.8: Efficiency corrected K−π+π0, π−π+π0, and K−K+π0 Dalitz plots.
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• Uncertainty due to finite size of the simulated data sample which is used to
determine signal reconstruction efficiency.

• Variation in signal optimization criteria ( Δm selection)

• Error from estimation of background events in signal region

• Effect of background shape on signal yield

• Effect of difference in D0 CM momentum distribution in data and simulation

• Systematic uncertainty from particle identification

• Tracking efficiency systematics

Also, as consistency check, we did the analysis seperately for D0 and D0 events in
different D0 candidate lab momentum ranges to look for systematic variations as a
function of charge or momentum outside the levels accounted for in our estimates of
statistical and systematic uncertainties. Each of them are described in detail in the
following sections.

3.7 Systematic error in average weight

There are two sources of systematic error in the average weight obtained by above
method:

• the uncertainty in event reconstruction efficiency due to limited statistics of
the Monte Carlo sample.

• the uncertainty due to the assumption that the average weight of background
events in the signal region is the same as the average weight of background
events in the sideband.

3.7.1 Systematic error due to simulation statistics

We estimate the systematic error in the average weight in the following way. In each
bin of the Dalitz plot we assign an efficiency by generating a random number with
Gaussian distribution having the following parameters:

• mean = number of events reconstructed in a particular bin / number of events
generated in that bin

• width = fractional error in the above ratio

Now, we calculate the average weight using this new efficiency. We repeat this
process several times and take the average of all these measurements. The deviation
of this value from the originally obtained average weight represents the systematic
error in the average weight.
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3.7.2 Systematic error from background subtraction

First of all, we did a feasibility study to find out whether the background events in
the signal region and the sideband have the same Dalitz plot distribution or not. We
proceeded in four steps:

• First, we compared the Dalitz plot distributions for events in the sidebands
of mD0 in real data and in generic qq̄ simulation. For this purpose, we use
only the upper sideband of D0 → π−π+π0 and the lower sideband of D0 →
K−K+π0 events, because of contamination from D0 → K−π+π0 events in the
lower (upper) sideband of D0 → π−π+π0 (D0 → K−K+π0). Figures 3.9
and 3.10 show the normalized residuals of these two distributions for π−π+π0

and K−K+π0 decays respectively. The agreement between the Dalitz plot
distributions in the sidebands of data and simulation is good.
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Figure 3.9: Comparison of D0 → π−π+π0 Dalitz plot distributions for events in the
upper sideband of mD0 in data and simulation.

• Next, we compared the Dalitz plot distributions of the background events in the
signal region and the sideband for generic qq̄ simulated events. The normalized
residuals of these two distributions are shown in Figures 3.11 and 3.12 for
π−π+π0 and K−K+π0 decays respectively. Again the agreement between data
and simulation is very good.
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Figure 3.10: Comparison of D0 → K−K+π0 Dalitz plot distributions for events in
the lower sideband of mD0 in data and simulation.
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Figure 3.11: Comparison of D0 → π−π+π0 Dalitz plot distributions for events in the
signal region and in the upper sideband of mD0 in simulation.

43



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

5

10

15

20

25

30

Signal

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

5

10

15

20

25

30

Sideband

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

-4

-3

-2

-1

0

1

2

3

4
Normalized Residual

 / ndf 2χ  8.742 / 9
Constant  1.75± 11.12 

Mean      0.13565± -0.09053 
Sigma     0.130± 1.062 

-4 -3 -2 -1 0 1 2 3 4
0

2

4

6

8

10

12

14

 / ndf 2χ  8.742 / 9
Constant  1.75± 11.12 

Mean      0.13565± -0.09053 
Sigma     0.130± 1.062 

Distribution of Normalized Residuals

Figure 3.12: Comparison of D0 → K−K+π0 Dalitz plot distributions for events in
the signal region and in the lower sideband of mD0 in simulation.
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• We also did a comparison study of D0 candidate mass and Dalitz plot distri-
butions for truth-matched and non-truth-matched Monte Carlo signal events
to make sure that they have very similar distributions.

• Finally, by repeating the whole analysis on generic cc events and doing the
background subtraction of true background events in the signal region, we find
a systematic error of 0.6% for B(D0→π−π+π0)

B(D0→K−π+π0)
and 0.9% for B(D0→K−K+π0)

B(D0→K−π+π0)
.

3.8 Δm systematics

As described earlier (in section Optimization of Analysis Cuts), we select only those
D∗+ → D0π+

s events which are in the Δm (m(D∗) - m(D0)) window of 0.6 MeV/c2

from the central value. In order to estimate systematic uncertainty due to this
selection, we repeated the whole analysis for the Δm window of 0.4 MeV/c2 and 0.8
MeV/c2 which correspond to roughly 1.5 σ and 3 σ respectively of the Δm resolution.
The results are summarized in Table 3.4.

Based on this study, we assign a systematic uncertainty of 0.3% in B(D0→π−π+π0)
B(D0→K−π+π0)

and 0.9% in B(D0→K−K+π0)
B(D0→K−π+π0) measurements.

Ratio Δm cut = 0.4 MeV/c2 Δm cut = 0.6 MeV/c2 Δm cut = 0.8 MeV/c2

B(D0→π−π+π0)
B(D0→K−π+π0)

0.1065 ± 0.0006 0.1064 ± 0.0006 0.1061 ± 0.0006
B(D0→K−K+π0)
B(D0→K−π+π0)

0.0236 ± 0.0004 0.0238 ± 0.0004 0.0238 ± 0.0004

Table 3.4: Results for different Δm cuts.

3.9 Effect of background model on signal yield

We performed the mass plot fits with different combinatorial background models
(linear, polynomial, and exponential shapes). We assign half the maximum deviation
in the signal yield (with respect to the default linear background) as the systematic
uncertainty in the number of signal events. We find systematic uncertainty of 0.014%
in K−π+π0, 0.157% in π−π+π0, and 0.125% in K−K+π0 signal yields. Accordingly,
we assign a systematics of 0.16% to B(D0→π−π+π0)

B(D0→K−π+π0)
and 0.13% to B(D0→K−K+π0)

B(D0→K−π+π0)
due

to background modeling.

3.10 Effect of difference in P ∗ distributions in data and
simulation

The D0 candidate momentum in the event’s CM frame (P ∗) has slightly different
distribution in data than in simulation (used to obtain reconstruction efficiency). In
order to estimate the uncertainty due to this difference, we correct the reconstruc-
tion efficiency by the P ∗

data/P ∗
MC ratio event-by-event and obtain average inverse

efficiency for the three decay modes again. With this correction, we find that the av-
erage inverse efficiency goes down by 0.31% for the K−π+π0, 0.79% for the π−π+π0,
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and 0.27% for the K−K+π0 decays. We use this corrected average inverse efficiency
in the calculation of central value of our result and assign half the difference as
systematics.

Accordingly, we assign systematic uncertainty of 0.24% to B(D0→π−π+π0)
B(D0→K−π+π0)

and

0.02% to B(D0→K−K+π0)
B(D0→K−π+π0)

due to different P ∗ distributions in data and simulation.

3.11 Particle-identification correction and systematics

The systematic uncertainty due to difference in particle-identification efficiencies in
data and simulation mostly cancel out in the ratio of Branching Ratios. There is a
small residual uncertainty though as explained below.

There are two components two this systematics:

• The systematic errors in kaon and pion identification efficiencies and mis-
identification rates.

• The systematic uncertainties in event-reconstruction efficiency calculation due
to differences in particle-identification rates in data and simulation.

The first type of systematic uncertainty is estimated empirically to be 0.48 % for
kaon identification and 0.52 % for pion identification. In order to estimate the second
type of uncertainty, we proceed in two steps. First, we obtain particle-identification
efficiency distribution for real data and simulated events using the standard BABAR

calibration sample (D∗± → DK∓π± π±) but with stricter track selection criteria,
as used in the present analysis. Then we plot their ratio, εdata /εMC, for both
kaon and pion tracks. A comparison of this ratio for our (stricter) track selection
criteria with the standatd track selection is shown in Fig 3.13. We repeat the whole
analysis by applying this new correction to the signal reconstruction efficiency and
take the difference in the final result as a systematic uncertainty. With the new
data-simulation correction factor, we find that the average inverse efficiency changes
by -0.31 % for K−π+π0, by 0.58 % for π−π+π0, and by -0.84 % for K−K+π0 modes.
We apply this correction factor to the average weight and assign half the difference
to systematics.

Combining the two types of uncertainties described above, we assign a systematic
of 0.77% due to particle-identification to B(D0→π−π+π0)

B(D0→K−π+π0)
and 0.84% to B(D0→K−K+π0)

B(D0→K−π+π0)
.

3.12 Tracking efficiency systematics

There are two types of issues related to data-simulation tracking efficiency correction
and systematics :

• How well does simulation mimic the real data with respect to hit-pattern and
resolution in the drift chamber and silicon tracker?

• As tracks traverse the detector they interact, scattering elastically or inelas-
tically. The simulation has cross-sections built into it according to some hy-
pothesis. How much does this cross-section differ from the one in real data?
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Figure 3.13: Comparison of the ratio of particle-identification rates in data and
simulation for our track selection with those from the standard calibration.

The correction for the data-simulation difference due to the first effect is exactly
the same for both kaons and pions and cancels out in the ratio of branching ratios.
The correction for the second effect is also the same for kaons and pions but the
uncertainty in this correction is slightly different for the two particles (0.8 ± 0.5%
for kaons and 0.8 ± 0.3% for pions) according to empirical studies. Accordingly, we
conservatively assign a systematic uncertainty of 0.6% to both B(D0→π−π+π0)

B(D0→K−π+π0)
and

B(D0→K−K+π0)
B(D0→K−π+π0)

ratios due to uncertainty in tracking efficiency corrections.

3.13 Removal of D0 → K0
Sπ0 from D0 → π−π+π0 events

The D0 → K0
Sπ0 decay is a Cabibbo favored decay and is a background for the

D0 → π−π+π0 mode reconstruction. The long lifetime of the K0
S means that the

two-body decay D0 → K0
Sπ0 will not interfere with any other resonance and will

form a narrow peak in the π−π+ invariant mass plot. We estimate the level of
K0

S contamination in π−π+π0 sample by fitting the m(π−π+) distribution in this
narrow peak region for the signal region of π−π+π0 invariant mass. We get 538
± 41 K0

Sπ0 events and subtract this contribution from π−π+π0 signal yield (and
include the uncertainty in the number of K0

Sπ0 events in the final systematics).
Figure 3.14 shows the fit for the invariant mass and flight-length distributions for
the reconstructed K0

S candidates.
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Figure 3.14: Fit for K0
S peak in the π−π+ invariant mass plot (top) and the distri-

bution of signed distance of the π−π+ vertex from the beam spot (bottom).

3.14 Summary of corrections

Table 3.14 lists all the corrections applied to the ratio of branching ratios. The
overall correction is -0.47% for B(D0→π−π+π0)

B(D0→K−π+π0)
and -0.49% for B(D0→K−K+π0)

B(D0→K−π+π0)
.

Correction B(D0→π−π+π0)
B(D0→K−π+π0)

B(D0→K−K+π0)
B(D0→K−π+π0)

P ∗ distribution (data/simulation) -0.48% +0.04%
particle-identification +0.89% -0.53%

K0
S Removal -0.88% 0.0%

Total -0.47% -0.49%

Table 3.5: Summary of corrections

3.15 Summary of systematic uncertainties

Table 3.6 lists results of all the systematic studies done for this analysis. Combining
all these uncertainties, the final systematic error in B(D0→π−π+π0)

B(D0→K−π+π0)
measurement is

1.25% and in B(D0→K−K+π0)
B(D0→K−π+π0)

measurement is 1.71%.

3.16 Consistency check: analysis on disjoint data sub-
samples

For consistency check, we split the whole data sample into 10 disjoint sub-samples
as described below, and analyze each sub-sample as an independent dataset. We do
this to look for systematic variations as a function of charge or momentum outside
the levels accounted for in our estimates of statistical and systematic uncertainties.
To the extent that the results from disjoint samples agree within errors, we gain
confidence that our error estimates for the combined, final sample are correct. First,
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Uncertainty B(D0→π−π+π0)
B(D0→K−π+π0)

B(D0→K−K+π0)
B(D0→K−π+π0)

Simulation statistics 0.27% 0.47%
Δm cut 0.30% 0.90%

Background Subtraction 0.60% 0.90%
Background PDF model 0.16% 0.13%

Different P ∗ in data and simulation 0.24% 0.02%
Particle Identification 0.77% 0.84%
Tracking Efficiency 0.60% 0.60%

K0
S Removal 0.07% 0.0 %

Total 1.25% 1.71%

Table 3.6: Summary of systematic uncertainties

the data is divided into disjoint D0 and D
0 subsets. Then, each of these is divided

into five ranges of laboratory momentum, each momentum range having a roughly
equal number of events. They are as follows: 0 < Pl < 2.80 GeV/c, 2.80 < Pl < 3.40
GeV/c, 3.40 < Pl < 4.00 GeV/c, 4.00 < Pl < 4.65 GeV/c, and Pl > 4.65 GeV/c.
Table 3.7 summarizes the results for the disjoint samples. These are consistent with
the main analysis results. Figure 3.16 shows the measured ratio of branching ratios
for the disjoint data samples for the two Cabibbo-suppressed decay modes.
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Figure 3.15: Measured B(D0→π−π+π0)
B(D0→K−π+π0)

(left) and B(D0→K−K+π0)
B(D0→K−π+π0)

(right) of disjoint
data samples. The horizontal red line shows the result for the full data sample.
Errors are statistical only.

3.17 Results and conclusions

Using Eqns 3.1 and 3.2, along with the results reported in Tables 3.3, 3.14 and 3.6,
we obtain: B(D0→π−π+π0)

B(D0→K−π+π0)
= 10.59±0.06 (stat) ±0.13 (syst) ×10−2 and B(D0→K−K+π0)

B(D0→K−π+π0)
=

2.37 ± 0.03 (stat) ±0.04 (syst) ×10−2.
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Data Mode Signal ave. weight av. weight from fit
D0 π−π+π0 30976± 239 9.2603± 0.0287 9.3966±0.0298

K−π+π0 253781± 529 10.7681± 0.0263 10.7365± 0.0282
K−K+π0 5420± 83 12.3497± 0.0723 12.1916± 0.0822

D0 π−π+π0 30413± 215 9.5853± 0.0279 9.7048± 0.0281
K−π+π0 252138± 538 10.7251±0.0258 10.6985±0.0206
K−K+π0 5359± 83 12.8629±0.0756 12.6800±0.0763

D0 1st Mom. Bin π−π+π0 5822± 109 12.0442± 0.0667 12.3367± 0.0638
(0 < Pl < 2.80 GeV/c) K−π+π0 46382± 232 14.9154±0.0572 14.8734±0.0540

K−K+π0 1010± 35 17.4724± 0.1709 17.9814± 0.1796

D0 1st Mom. Bin π−π+π0 5698± 101 13.3347±0.0689 13.7304±0.0657
(0 < Pl < 2.80 GeV/c) K−π+π0 45915± 241 15.8238±0.0599 15.6749±0.0515

K−K+π0 955± 35 19.5717±0.1645 19.6980±0.1809
D0 2nd Mom. Bin π−π+π0 5891± 98 5.5272±0.0672 5.6689±0.0659
(2.80 < Pl < 3.40 GeV/c) K−π+π0 50964± 236 6.2629±0.0611 6.3026±0.0541

K−K+π0 1097± 36 7.6498±0.1651 7.7257±0.1880

D0 2nd Mom. Bin π−π+π0 5937± 108 5.6762±0.0649 5.8176±0.0692
(2.80 < Pl < 3.40 GeV/c) K−π+π0 50698± 241 6.1144±0.0570 6.0922±0.0610

K−K+π0 1035± 35 7.6226±0.1687 7.8588±0.1917
D0 3rd Mom. Bin π−π+π0 5923± 91 5.2437±0.0644 5.3373±0.0657
(3.40 < Pl < 4.00 GeV/c) K−π+π0 51135± 238 5.9546±0.0563 5.9651±0.0672

K−K+π0 1141± 37 6.6878±0.1720 6.6591±0.1612

D0 3rd Mom. Bin π−π+π0 5967± 94 5.3260±0.0675 5.4245±0.0635
(3.40 < Pl < 4.00 GeV/c) K−π+π0 50629± 228 5.7211±0.0506 5.7522±0.0619

K−K+π0 1091± 38 6.7398±0.1642 6.7785±0.1964
D0 4th Mom. Bin π−π+π0 5935± 111 6.3010±0.0628 6.3262±0.0683
(4.00 < Pl < 4.65 GeV/c) K−π+π0 50209± 231 7.1674±0.0591 7.1662±0.0576

K−K+π0 1082± 38 8.1019±0.1926 8.2742±0.1707

D0 4th Mom. Bin π−π+π0 5859± 88 6.3084±0.0613 6.3143±0.0622
(4.00 < Pl < 4.65 GeV/c) K−π+π0 50518± 239 7.1590±0.0535 7.1509±0.0582

K−K+π0 1139± 36 8.3149±0.1795 8.2573±0.1902
D0 5th Mom. Bin π−π+π0 6834± 93 16.0507±0.0544 16.1518±0.0562
(Pl > 4.65 GeV/c) K−π+π0 54672± 243 18.6637±0.0494 18.3631±0.0504

K−K+π0 1041±43 21.1034±0.1602 21.6436±0.1711

D0 5th Mom. Bin π−π+π0 6919± 98 16.2426±0.0556 16.5615±0.0565
(Pl > 4.65 GeV/c) K−π+π0 55046± 249 18.8196±0.0507 18.7154±0.0499

K−K+π0 1175 ± 35 21.3309±0.1621 21.7394±0.1668

Table 3.7: Measurements of disjoint samples.
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Using the PDG [20] fit value (13.9 ± 0.9%) of the branching ratio of D0 →
K−π+π0, the absolute branching ratios for the two decay modes are: B(D0 →
π−π+π0) = (1.472 ± 0.008 ± 0.018 ± 0.097) ×10−2 and B(D0 → K−K+π0) =
(0.332 ± 0.004 ± 0.006 ± 0.021) ×10−2, where the first error is statistical, the second
error is systematic, and the third error is due to uncertainty in B(D0 → K−π+π0).
Table 3.8 compares the previous measurements with those from this analysis.

Ratios of Branching ratios this analysis PDG Value
B(D0→π−π+π0)
B(D0→K−π+π0)

10.59 ± 0.06 ± 0.13% 8.40 ± 3.11%
B(D0→K−K+π0)
B(D0→K−π+π0)

2.37 ± 0.03 ± 0.04% 0.92 ± 0.31%

Table 3.8: A comparison of the previous PDG [20] results with this analysis.

The decay rates for each of the processes considered in this analysis are propor-
tional to the product of the relevant quantum mechanical matrix element and phase
space factor. For each process we can write

Γ = 〈|M|2〉 × Φ (3.5)

where Γ is the decay rate to a particular three-body decay integrated over the Dalitz
plot, 〈|M|2〉 is the average value of |M|2 over the Dalitz plot, and Φ is the three-body
phase space which is proportional to the area of the Dalitz plot. Because the mass
of the kaon is greater than the mass of the pion, the phase space available for the
decay D0 → K−K+π0 is less than that for D0 → K−π+π0, which is less than that
for D0 → π−π+π0. This can be seen in Fig. 3.16 which shows the boundaries of the
the three Dalitz plots. Table 3.9 summarizes the areas, calculated numerically. The
ratios of the matrix elements are calculated by dividing the ratios of the decay rates
(branching ratios) by the ratios of the Dalitz plot areas. Combining the statistical
and systematic errors, we find:

|M|2(D0 → π−π+π0)
|M|2(D0 → K−π+π0)

= 0.0668 ± 0.0004 ± 0.0008 ,

|M|2(D0 → K−K+π0)
|M|2(D0 → K−π+π0)

= 0.0453 ± 0.0006 ± 0.0008 ,

|M|2(D0 → K−K+π0)
|M|2(D0 → π−π+π0)

= 0.6781 ± 0.0007 ± 0.0011 . (3.6)

To the extent that the differences in the matrix elements are only due to Cabibbo-
suppression at the quark level, as seen in Fig. 1.4, the ratios of the matrix elements
squared for singly Cabibbo-suppressed decays to that for the Cabibbo-favored decay
should be approximately sin2 θC ≈ 0.05 and ratio of the matrix elements squared
for the two singly Cabibbo-suppressed decays should be the unity. We can compare
these results to those for the two-body decays where the phase space is proportional
to the magnitude of the decay momentum in the D0 center-of-mass frame. For these
we use the PDG averages to calculate

|M|2(D0 → π−π+)
|M|2(D0 → K−π+)

= 0.0338 ± 0.0009 ;
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|M|2(D0 → K−K+)
|M|2(D0 → K−π+)

= 0.1114 ± 0.0023 ;

|M|2(D0 → K−K+)
|M|2(D0 → π−π+)

= 3.5289 ± 0.0026 . (3.7)

In summary, we have measured the ratios of branching ratios for the three-body
decays D0 → π−π+π0, D0 → K−K+π0, and D0 → K−π+π0. The ratios of the
singly Cabibbo-suppressed decay rates relative to the Cabibbo-favored decay rate are
measured with significantly better precision than previously reported. The average
matrix elements squared for both the singly Cabibbo-suppressed decays studied here,
D0 → π−π+π0 and D0 → K−K+π0, are roughly a factor of sin2 θC smaller than that
for the corresponding Cabibbo-favored decay D0 → K−π+π0. This can be compared
to the case for the corresponding two-body decays where the matrix elements squared
for the D0 → K−K+ and D0 → π−π+ decays differ roughly by a factor of two.

Mode area
π−π+π0 5.053
K−π+π0 3.188
K−K+π0 1.668

Table 3.9: Areas covered by Dalitz plots.

Figure 3.16: Dalitz boundaries
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Chapter 4

Amplitude Analysis of the
Decay D0 → K−K+π0

Using 385 fb−1 of e+e− collisions, we study the amplitudes of the singly Cabibbo-
suppressed decay D0 → K−K+π0 [21]. We measure the strong phase difference
between the D0 and D0 decays to K∗(892)+K− to be −35.5◦ ± 1.9◦ (stat) ±2.2◦

(syst), and their amplitude ratio to be 0.599 ± 0.013 (stat) ± 0.011 (syst). We
observe contributions from the Kπ and K−K+ scalar and vector amplitudes, and
analyze their angular moments. We find no evidence for charged κ, nor for higher
spin states. We also perform a partial-wave analysis of the K−K+ system in a
limited mass range.

4.1 Introduction

The amplitudes describing D meson weak decays into three-body final states are
dominated by intermediate resonances that lead to highly nonuniform intensity dis-
tributions in the available phase space. Analyses of these distributions have led to
new insights into the role of the light-meson systems produced [22]. The K±π0 sys-
tems from the decay D0 → K−K+π0 1 can provide information on the Kπ S-wave
(spin-0) amplitude in the mass range 0.6–1.4 GeV/c2, and hence on the possible ex-
istence of the κ(800), reported to date only in the neutral state (κ0 → K−π+) [23].
If the κ has isospin 1/2, it should be observable also in the charged states. Re-
sults of the present analysis can be an input for extracting the CP -violating phase
γ = arg (−VudV

∗
ub/VcdV

∗
cb) of the quark mixing matrix by exploiting interference

structure in the Dalitz plot [19] from the decay B± → D0
K−K+π0K

± [24, 25]. Singly
Cabibbo-suppressed decays are also important because they might be sensitive to di-
rect CP violation in charm decays [9], the discovery of which might indicate physics
beyond the Standard Model.

1Reference to the charge-conjugate decay is implied throughout this chapter unless stated oth-
erwise. The initial state referred to is D0, not D0.
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4.2 Event selection

We perform the present analysis on 385 fb−1 of e+e− collision data collected at
and around 10.58 GeV center-of-mass (CM) energy with the BABAR detector [12] at
the PEP-II storage ring. We distinguish D0 from D0 by reconstructing the decays
D∗+ → D0π+ and D∗− → D0π−. The event-selection criteria are the same as those
used in our measurement of the branching ratio of the decay D0 → K−K+π0 [18].
In particular, we require that the CM momentum of D0 candidate be greater than
2.77 GeV/c, and that |mD∗+ − mD0 − 145.4| < 0.6 MeV/c2, where m refers to a
reconstructed invariant mass. To minimize uncertainty from background shape, we
choose a sample of very high purity (∼ 98.1%) using 1855 < mD0 < 1875 MeV/c2,
and find 11278 ± 110 signal events.

4.3 Efficiency calculation

We estimate the signal efficiency for each event as a function of its position in the
Dalitz plot using simulated D0 → K−K+π0 decays from e+e− → cc events, gener-
ated uniformly in the available phase space. To correct for differences in particle-
identification rates in data and simulation, we determine the ratio of these for each
track, and apply an event-by-event correction factor.

To obtain the efficiency function, a simulation sample of about 1.5 million D0 →
K−K+π0 signal events uniformly populated in phase space was generated. A track
parameters-dependent particle-identification correction was applied to this sample
on an event-by-event basis, using the ratio of signal reconstruction efficiencies in
data and simulation in bins of momentum and polar angle. For this purpose, the
generated and reconstructed Dalitz plots are divided into N × N cells, N chosen in
such a way to have at least 25 reconstructed events per cell on average. The efficiency
map is then obtained by dividing the reconstructed Dalitz plot over the generated
one. The efficiency is parametrized as a 3rd order polynomial in the two Dalitz plot
variables s+0(= m2

K+π0) and s−0(= m2
K−π0) as

ε(s+0, s−0) = 1 + s1(s+0 + s−0)
+ s2(s2

+0 + s2
−0) + s3(s3

+0 + s3
−0)

+ s4(s−0s
2
+0 + s+0s

2
−0) + s5 (s+0s−0). (4.1)

In addition, ε(s+0, s−0) ≡ 0 for all points outside the physical boundary of the Dalitz
plot. The results of the fit are
s1 = -0.58 ± 0.02
s2 = 0.30 ± 0.06
s3 = -0.15 ± 0.05
s4 = 0.27 ± 0.11
s5 = 0.39 ± 0.12
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4.4 Parametrization of amplitudes

Neglecting CP violation in D meson decays, we define the D0 (D0) decay amplitude
A (Ā) in the D0 → K−K+π0 Dalitz plot of Fig. 4.1, as:

A[D0 → K−K+π0] ≡ fD0(m2
K+π0 ,m

2
K−π0), (4.2)

Ā[D0 → K+K−π0] ≡ fD0(m2
K−π0,m

2
K+π0). (4.3)

The complex quantum mechanical amplitude f is a coherent sum of all relevant quasi-
two-body D0 → (r → AB)C isobar model [26] resonances, f =

∑
r are

iφrAr(s).
Here s = m2

AB , and Ar is the resonance amplitude. We obtain coefficients ar and
φr from a likelihood fit. The probability density function for signal events is |f |2.
We model incoherent background empirically using events from the lower sideband
of the mD0 [18] distribution.
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Figure 4.1: Dalitz plot for D0 → K−K+π0 data (a), and the corresponding squared
invariant mass projections (b–d). The three-body invariant mass of the D0 candidate
is constrained to the nominal value. In plots (b–d), the dots (with error bars, black)
are data points and the solid lines (blue) correspond to the best isobar fit models.
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4.5 Parametrization of P- and D- wave amplitudes

For D0 decays to spin-1 (P-wave) and spin-2 states, we use the Breit-Wigner ampli-
tude,

ABW (s) = ML(s, p)
1

M2
0 − s − iM0Γ(s)

, (4.4)

Γ(s) = Γ0

(M0√
s

)( p

p0

)2L+1[ FL(p)
FL(p0)

]2
, (4.5)

where M0 (Γ0) is the resonance mass (width) [20], L is the angular momentum
quantum number, p is the momentum of either daughter in the resonance rest frame,
and p0 is the value of p when s = M2

0 . The function FL is the Blatt-Weisskopf
barrier factor [27]: F0 = 1, F1 = 1/

√
1 + Rp2, and F2 = 1/

√
9 + 3Rp2 + Rp4,

where we take the meson radial parameter R to be 1.5 GeV−1 [28]. We define the
spin part of the amplitude, ML, as: M0 = M2

D0 , M1 = -2 �pA. �pC , and M2 = 4
3

[ 3( �pA. �pC)2 − | �pA|2.| �pC |2] M−2
D0 , where MD0 is the nominal D0 mass, and �pi is the

3-momentum of particle i in the resonance rest frame.

4.6 Parametrization of K±π0 S-wave amplitudes

For D0 decays to K±π0 S-wave states, we consider three amplitude models. One
model uses the LASS amplitude for K−π+ → K−π+ elastic scattering [29],

AKπ(S)(s) =
√

s

p
sin δ(s)eiδ(s), (4.6)

δ(s) = cot−1
( 1

pa
+

bp

2

)
+ cot−1

( M2
0 − s

M0Γ0 · M0√
s
· p

p0

)
, (4.7)

where M0 (Γ0) refers to the K∗
0 (1430) mass (width), a = 1.95 ± 0.09 GeV−1c, and

b = 1.76 ± 0.36 GeV−1c. The unitary nature of Eq. 4.6 provides a good description
of the amplitude up to 1.45 GeV/c2 (i.e., Kη′ threshold). In Eq. 4.7, the first term
is a nonresonant contribution defined by a scattering length a and an effective range
b, and the second term represents the K∗

0 (1430) resonance. The phase space factor√
s/p converts the scattering amplitude, as measured by LASS, to the invariant

amplitude required in the present analysis. Our second model uses the E-791 results
for the K−π+ S-wave amplitude from an energy-independent partial-wave analysis
in the decay D+ → K−π+π+ [30]. The third model uses a coherent sum of a uniform
nonresonant term, and Breit-Wigner terms for the κ(800) and K∗

0 (1430) resonances.

4.7 Nature of K±π0 S-wave

In Fig. 4.7 we compare the Kπ S-wave amplitude from the E-791 analysis [30] to
the LASS amplitude of Eqs. 4.6–4.7. For easy comparison, we have normalized
the LASS amplitude in Fig. 4.7a approximately to the E-791 measurements with√

s > 1.15GeV/c2, and have reduced the LASS phase, δ(s), in Fig. 4.7b by 80◦. We

56



then observe good agreements in the mass dependence of amplitude and phase for√
s > 1.15GeV/c2. As the mass decreases from 1.15 GeV/c2, the E-791 amplitude

increases while the LASS amplitude decreases, with the ratio finally reaching ∼1.7 at
threshold. At the same time, their phase difference increases to ∼40◦ at threshold.
This behavior might be due to the form factor describing D0 decay to a Kπ S-
wave system and a bachelor K̄. Since no centrifugal barrier is involved, such an
effect should be more significant for S-wave than for higher spin waves because of
the larger overlap between the initial and final state wave functions. However, the
inverse momentum of the Kπ system in the D0 rest frame increases from 0.27 Fermi
at Kπ threshold to 0.48 Fermi at 1.15 GeV/c2, therefore any form factor effect would
decrease with increasing Kπ mass. If the effect is essentially gone by 1.15 GeV/c2,
similar mass dependence of amplitude and phase in D0 decay and Kπ scattering
would be observable at higher mass values, in agreement with Fig. 4.7. In the present
analysis, we make an attempt to distinguish between the two rather different Kπ
S-wave mass dependences in the region below ∼1.15 GeV/c2. In each case, we also
allow the fit to determine the strength and phase of these amplitudes relative to the
K∗(892)+ reference.

4.8 Parametrization of K−K+ S-wave amplitude

We describe the D0 decay to a K−K+ S-wave state by a coupled-channel Breit-
Wigner amplitude for the f0(980) and a0(980) resonances, with their respective cou-
plings to ππ, KK̄ and ηπ, KK̄ final states [31],

Af0[a0](s) =
M2

D0

M2
0 − s − i(g2

1 ρππ[ηπ] + g2
2 ρKK̄)

. (4.8)

Here ρ represents Lorentz invariant phase space, 2p/
√

s. For the f0(980), we use
the BES [32] parameter values M0 = 965±10 MeV/c2, g2

1 = 165±18 MeV2/c4, and
g2
2/g2

1 = 4.21±0.33. For the a0(980), we use the Crystal Barrel [33] values M0 =
999±2 MeV/c2, g1 = 324±15 MeV/c2, and g2

1/g
2
2 = 1.03±0.14. Only the high mass

tails of f0(980) and a0(980) are observable, as shown in Fig. 4.3a. They are similar, so
we try a model for each as a description of the K−K+ S-wave amplitude. In Fig. 4.3b
we show, in the same mass range, the K−K+ P-wave amplitude parametrized by
the φ(1020) meson.

4.9 Maximum likelihood fit to data

To fit the Dalitz plot, we try several models incorporating various combinations of
intermediate states. In each fit, we include the K∗(892)+ and measure the complex
amplitude coefficients of other states relative to it. As a check on the quality of each
fit, we compare the number of events observed in bins in the Dalitz plot with the
number predicted by the fit. We compute residuals and statistical uncertainties to
form a χ2, and take χ2/ν (where ν is the number of bins less the number of variable
parameters) as a figure of merit. We also compare the distributions of angular
moments (described later) predicted by the fit and actually observed in the data.
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Figure 4.2: LASS (solid line, blue) and E-791 (dots with error bars) Kπ S-wave
amplitudes (a), in arbitrary units, and phase (b). The double headed arrow (red)
indicates the mass range available in the decay D0 → K−K+π0.
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Table 4.1: The results obtained from the D0 → K−K+π0 Dalitz plot fit. We define
amplitude coefficients ar and φr relative to those of the K∗(892)+. The errors are
statistical and systematic, respectively. We show the a0(980) contribution, when it
is included in place of the f0(980), in square brackets. We denote the Kπ S-wave
states here by K±π0(S). We use LASS amplitude to describe the Kπ S-wave states
in both the isobar models (I and II).

Model I
State Amplitude, ar Phase, φr (◦) Fraction, fr (%)
K∗(892)+ 1.0 (fixed) 0.0 (fixed) 45.2±0.8±0.6
K∗(1410)+ 2.29±0.37±0.20 86.7±12.0±9.6 3.7±1.1±1.1
K+π0(S) 1.76±0.36±0.18 -179.8±21.3±12.3 16.3±3.4±2.1
φ(1020) 0.69±0.01±0.02 -20.7±13.6±9.3 19.3±0.6±0.4
f0(980) 0.51±0.07±0.04 -177.5±13.7±8.6 6.7±1.4±1.2[
a0(980)0

]
[0.48±0.08±0.04] [-154.0±14.1±8.6] [6.0±1.8±1.2]

f ′
2(1525) 1.11±0.38±0.28 -18.7±19.3±13.6 0.08±0.04±0.05

K∗(892)− 0.601±0.011±0.011 -37.0±1.9±2.2 16.0±0.8±0.6
K∗(1410)− 2.63±0.51±0.47 -172.0±6.6±6.2 4.8±1.8±1.2
K−π0(S) 0.70±0.27±0.24 133.2±22.5±25.2 2.7±1.4±0.8

Model II
K∗(892)+ 1.0 (fixed) 0.0 (fixed) 44.4±0.8±0.6
K+π0(S) 3.66±0.11±0.09 -148.0±2.0±2.8 71.1±3.7±1.9
φ(1020) 0.70±0.01±0.02 18.0±3.7±3.6 19.4±0.6±0.5
f0(980) 0.64±0.04±0.03 -60.8±2.5±3.0 10.5±1.1±1.2[
a0(980)0

]
[0.68±0.06±0.03] [-38.5±4.3±3.0] [11.0±1.5±1.2]

K∗(892)− 0.597±0.013±0.009 -34.1±1.9±2.2 15.9±0.7±0.6
K−π0(S) 0.85±0.09±0.11 108.4±7.8±8.9 3.9±0.9±1.0

Table 4.2: Parameter index for the correlation matrix.
Index Parameter Index Parameter Index Parameter Index Parameter
1 af0(980) 2 φf0(980) 3 af ′

2(1525) 4 φf ′
2(1525)

5 aK∗(892)− 6 φK∗(892)− 7 aK∗(1410)+ 8 φK∗(1410)+

9 aK∗(1410)− 10 φK∗(1410)− 11 aK+π0(S) 12 φK+π0(S)

13 aK−π0(S) 14 φK−π0(S) 15 aφ(1020) 16 φφ(1020)
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Table 4.3: Parameter correlation matrix for fit Model-I. The parameter indices are
explained in Table 4.2.

No. 1 2 3 4 5 6 7 8
1 1.00 -0.43 -0.09 0.33 0.18 -0.23 0.51 -0.71
2 -0.43 1.00 0.04 0.03 -0.23 0.55 0.18 0.58
3 -0.09 0.04 1.00 -0.02 -0.01 0.00 -0.09 0.10
4 0.33 0.03 -0.02 1.00 0.12 0.07 0.34 -0.27
5 0.18 -0.23 -0.01 0.12 1.00 -0.13 0.02 -0.12
6 -0.23 0.55 0.00 0.07 -0.13 1.00 0.16 0.47
7 0.51 0.18 -0.09 0.34 0.02 0.16 1.00 -0.21
8 -0.71 0.58 0.10 -0.27 -0.12 0.47 -0.21 1.00
9 0.42 -0.35 0.05 0.19 0.18 -0.42 0.14 -0.44
10 0.55 -0.09 -0.12 0.23 0.33 0.06 0.26 -0.29
11 -0.14 0.46 -0.00 0.02 -0.15 0.36 0.22 0.24
12 -0.43 0.50 -0.02 -0.05 0.01 0.58 -0.00 0.56
13 -0.48 -0.28 0.06 -0.35 0.02 -0.29 -0.63 0.17
14 0.57 -0.13 -0.08 0.30 0.14 0.08 0.39 -0.32
15 -0.12 -0.02 0.00 -0.01 0.08 -0.02 -0.05 0.03
16 -0.33 0.59 0.06 0.11 -0.17 0.33 0.05 0.34
No. 9 10 11 12 13 14 15 16
1 0.42 0.55 -0.14 -0.43 -0.47 0.57 -0.12 -0.33
2 -0.35 -0.09 0.46 0.50 -0.28 -0.13 -0.02 0.59
3 0.05 -0.12 -0.00 -0.02 0.06 -0.08 0.00 0.06
4 0.19 0.23 0.02 -0.05 -0.35 0.30 -0.01 0.11
5 0.18 0.33 -0.15 0.01 0.02 0.14 0.08 -0.17
6 -0.42 0.06 0.36 0.58 -0.29 0.08 -0.02 0.33
7 0.14 0.26 0.22 -0.00 -0.63 0.39 -0.05 0.05
8 -0.44 -0.29 0.24 0.56 0.17 -0.32 0.03 0.34
9 1.00 0.18 -0.38 -0.36 -0.06 0.25 0.16 0.10
10 0.18 1.00 -0.06 -0.07 -0.33 0.41 -0.04 -0.03
11 -0.38 -0.06 1.00 0.28 -0.33 0.21 -0.03 0.20
12 -0.36 -0.07 0.28 1.00 -0.22 -0.11 0.07 0.41
13 -0.06 -0.33 -0.33 -0.22 1.00 -0.48 0.19 -0.20
14 0.25 0.41 0.21 -0.11 -0.48 1.00 -0.16 -0.08
15 0.16 -0.04 -0.03 0.07 0.19 -0.16 1.00 0.24
16 0.10 -0.03 0.20 0.41 -0.20 -0.08 0.24 1.00
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Figure 4.3: The phase-space-corrected K−K+ S- and P-wave amplitudes, |S| and
|P | respectively, in arbitrary units, as functions of the invariant mass. (a) Lineshapes
for (solid line, blue) f0(980), and (broken line, blue) a0(980), derived from Eq. 4.8.
(b) Lineshape for φ(1020) (solid line, blue). In each plot, solid circles with error bars
correspond to values obtained from the model-independent analysis for |S| and |P |
using Eq. 4.9. In (a), the open triangles (red) correspond to values obtained from
the decay D0 → K−K+K̄0 (see text).

Table 4.4: Parameter correlation matrix for fit Model-II. Parameters with indices
1–4 of Table 4.2 are not included in this fit model.

NO. 5 6 7 8 9 10 11 12 13 14 15 16

5 1.00 -0.42 0.42 0.19 -0.07 0.38 0.48 0.01 0.07 0.34 0.31 0.27
6 -0.42 1.00 -0.46 -0.11 0.10 -0.21 -0.40 0.08 -0.03 -0.22 -0.13 -0.20
7 0.42 -0.46 1.00 0.32 -0.38 0.62 0.83 0.12 0.04 0.75 0.06 0.69
8 0.19 -0.11 0.32 1.00 -0.62 -0.24 0.44 0.78 -0.72 0.67 -0.12 0.59
9 -0.07 0.10 -0.38 -0.62 1.00 0.12 -0.54 -0.70 0.56 -0.71 0.23 -0.46
10 0.38 -0.21 0.62 -0.24 0.12 1.00 0.49 -0.45 0.54 0.25 0.26 0.36
11 0.48 -0.40 0.83 0.44 -0.54 0.49 1.00 0.21 0.02 0.87 0.17 0.62
12 0.01 0.08 0.12 0.78 -0.70 -0.45 0.21 1.00 -0.90 0.57 -0.29 0.49
13 0.07 -0.03 0.04 -0.72 0.56 0.54 0.02 -0.90 1.00 -0.33 0.32 -0.38
14 0.34 -0.22 0.75 0.67 -0.71 0.25 0.87 0.57 -0.33 1.00 -0.08 0.74
15 0.31 -0.13 0.06 -0.12 0.23 0.26 0.17 -0.29 0.32 -0.08 1.00 0.00
16 0.27 -0.20 0.69 0.59 -0.46 0.36 0.62 0.49 -0.38 0.74 0.00 1.00
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4.10 Result on Kπ S-wave

The LASS Kπ S-wave amplitude gives the best agreement with data and we use it in
our nominal fits (see next paragraph). The Kπ S-wave modeled by the combination
of κ(800) (with parameters taken from Ref. [23]), a nonresonant term and K∗

0 (1430)
has a smaller fit probability (χ2 probability < 5%). The best fit with this model (χ2

probability 13%) yields a charged κ of mass (870 ± 30) MeV/c2, and width (150 ±
20) MeV/c2, significantly different from those reported in Ref. [23] for the neutral
state. This does not support the hypothesis that production of a charged, scalar
κ is being observed. The E-791 amplitude [30] describes the data well, except near
threshold (χ2 probability 23%). Though our data favor the LASS parametrization for√

s < 1.15GeV/c2, the insensitivity of the fit to small variations in amplitude at these
masses does not allow an independent S-wave measurement with the present data
sample. Therefore, we use the E-791 amplitude to estimate systematic uncertainty
in our results.

4.11 Results of the Dalitz plot fit

We find that two different isobar models describe the data well. Both yield al-
most identical behavior in invariant mass (Fig. 4.1b–4.1d) and angular distribution
(Fig. 4.4). We use LASS amplitude to describe the Kπ S-wave amplitudes in both
the isobar models (I and II). We summarize the results of the best fits (Model I:
χ2/ν = 702.08/714, probability 61.9%; Model II: χ2/ν = 718.89/717, probability
47.3%) in Table 4.1. We also list the fit fraction for each resonant process r, defined
as fr ≡ ∫ |arAr|2dτ/

∫ |fD0|2dτ , where dτ = dm2
K−π0dm2

K+π0 , in Table 4.1. Due to
interference among the contributing amplitudes, the fr do not sum to one in general.
We find that the Kπ S-wave is not in phase with the P-wave at threshold as it was
in the LASS scattering data. For Model I (II), the S-wave phase relative to the
K∗(892)+ is ∼180◦ (150◦) for the positive charge and 135◦ (110◦) for the negative
charge. We give the correlation matrix for the parametrization coefficients of the
D0 → K−K+π0 Dalitz plot fit in Tables 4.2–4.4.

4.12 Are there additional states ?

We have also considered the possible contributions from other resonant states such
as: K∗

2 (1430), f2(1270), f0(1370), and f0(1510). We find that none of them is needed
to describe the Dalitz plot, they all provide small contributions and lead to smaller
χ2 probabilities.

4.13 Description of angular moments

Angular distributions provide a more detailed information on specific features of
the amplitudes used in the description of the Dalitz plot. We define the helicity
angle θH for the decay D0 → (r → AB)C as the angle between the momentum
of A in the AB rest frame and the momentum of AB in the D0 rest frame. The
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Figure 4.4: The mass dependence of the spherical harmonic moments of cos θH

after efficiency corrections and background subtraction: K+π0 (top) and K−K+

(bottom). The circles with error bars are data points and the curves (red) are
derived from the fit functions (see text). For the sake of visibility, we do not show
error bars on the curves.
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moments of cos θH , defined as the efficiency-corrected and background-subtracted
invariant mass distributions of events weighted by spherical harmonic functions,

Y 0
l (θH) =

√
2l+1
4π Pl(cos θH), where the Pl are Legendre polynomials of order l, are

shown in Fig. 4.4 for the K+π0 and K−K+ channels, for l = 0 − 7. The K−π0

moments are similar to those for K+π0.

4.14 Model-independent partial wave analysis

The mass dependent K−K+ S- and P-wave complex amplitudes can also be obtained
directly from our data in a model-independent way in a limited mass range around
1 GeV/c2. In a region of the Dalitz plot where S- and P-waves in a single channel
dominate, their amplitudes are given by the following Legendre polynomial moments,

P0 =
|S|2 + |P |2√

2
,

P1 =
√

2|S||P | cos θSP ,

P2 =

√
2
5

|P |2 , (4.9)

using
1∫

−1

PlPmd(cos θH) = δlm. Here |S| and |P | are, respectively, the magnitudes

of the S- and P-wave amplitudes, and θSP = θS − θP is the relative phase between
them. We use these relations to evaluate |S| and |P |, shown in Fig. 4.3, for the
K−K+ channel in the mass range mK−K+ < 1.15 GeV/c2. The measured values of
|S| agree well with those obtained in the analysis of the decay D0 → K−K+K̄0 [34].
They also agree well with either the f0(980) or the a0(980) lineshape. The measured
values of |P | are consistent with a Breit-Wigner lineshape for φ(1020). Results for
cos θSP and θSP are shown in Figs. 4.5a–4.5b. A twofold ambiguity in the sign of
θSP exists, as shown in Fig. 4.5b. It is, however, straightforward to choose the
physical solution. In this region, the φ(1020) meson (P-wave) has a very rapidly
rising phase, while we expect the S-wave phase to be relatively slowly varying. Thus,
the upper solution, in which θS − θP is rapidly falling, is the physical solution. We
take the Breit-Wigner phase of φ(1020), shown in Fig. 4.5c, to be a good model
for θP and obtain θS , as plotted in Fig. 4.5d. These results show little variation in
S-wave phase up to about 1.02–1.03 GeV/c2, then a rapid rise above that. Also, in
Fig. 4.3b, we observe that |P | follows the φ(1020) curve well up to about the same
mass, with a significant deviation above that. The behavior observed matches well
to that obtained from the isobar model I or II. No distinction between them appears
possible from this analysis. The partial-wave analysis described above is valid, in
the absence of higher spin states, only if no interference occurs from the crossing
Kπ channels. The behavior observed in both S- and P-waves above ∼1.03 GeV/c2

can, therefore, be attributed to high mass tails of the K∗(892) and low mass tails of
possible higher K∗ resonances.
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Figure 4.5: Results of the partial-wave analysis of the K−K+ system using Eq. 4.9
described in the text. (a) Cosine of relative phase θSP = θS − θP , (b) two solutions
for θSP , (c) P-wave phase taken from Eqs. 4.4–4.5 for the φ(1020) meson, and (d)
S-wave phase derived from the upper solution in (b). Solid bullets are data points,
and open circles (blue) and open triangles (red) correspond, respectively, to isobar
models I and II. The number of simulated events used for the two models is 10 times
larger than data. Errors for quantities from the isobar models arise from Monte
Carlo statistical limitations, and differ from errors derived from Eq. 4.9.
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4.15 Systematic uncertainties

Systematic uncertainties in quantities in Table 4.1 arise from experimental effects,
and also from uncertainties in the nature of the models used to describe the data. We
determine these separately and add them in quadrature. In both cases, we assign
the maximum deviation in the observed quantities (i.e., ar, φr, and fr) from the
central value as a systematic uncertainty, taking correlations among fit parameters
into account. We characterize the uncertainties due to Kπ S-wave amplitudes and
resonance mass-width values as model dependent. We estimate them conservatively
taking symmetric errors from the spread in results when either the LASS amplitude
is replaced by the E-791 amplitude, or the resonance parameters are changed by one
standard deviation (σ). Similarly, we estimate the experimental uncertainty from
the variation in results when either the signal efficiency parameters are varied by 1σ,
or the background shape is taken from simulation instead of the data sideband, or
the ratio of particle-identification rates in data and simulation is varied by 1σ. Model
and experimental systematics contribute almost equally to the total uncertainty. As
a consistency check, we analyze disjoint data samples, in bins of reconstructed D0

mass and laboratory momentum, and find consistent results.

4.16 Strong-phase difference and suppression factor

Neglecting CP violation, the strong phase difference, δD, between the D0 and D0

decays to K∗(892)+K− state and their amplitude ratio, rD, are given by

rDeiδD =
aD0→K∗−K+

aD0→K∗+K−
ei(δK∗−K+−δK∗+K− ). (4.10)

Combining the results of models I and II, we find δD = −35.5◦ ± 1.9◦ (stat) ±2.2◦

(syst) and rD = 0.599 ± 0.013 (stat) ± 0.011 (syst). These results are consistent
with the previous measurements [35], δD = −28◦ ± 8◦ (stat) ±11◦ (syst) and rD =
0.52 ± 0.05 (stat) ± 0.04 (syst).

4.17 Summary

In conclusion, we have studied the amplitude structure of the decay D0 → K−K+π0,
and measured δD and rD. We find that two isobar models give excellent descrip-
tions of the data. Both models include significant contributions from K∗(892), and
each indicates that D0 → K∗+K− dominates over D0 → K∗−K+. This suggests
that, in tree-level diagrams, the form factor for D0 coupling to K∗− is suppressed
compared to the corresponding K− coupling. While the measured fit fraction for
D0 → K∗+K− agrees well with a phenomenological prediction [36] based on a large
SU(3) symmetry breaking, the corresponding results for D0 → K∗−K+ and the
color-suppressed D0 → φπ0 decays differ significantly from the predicted values. It
appears from Table 4.1 that the K+π0 S-wave amplitude can absorb any K∗(1410)
and f ′

2(1525) if those are not in the model. The other components are quite well
established, independent of the model. The Kπ S-wave amplitude is consistent with
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that from the LASS analysis, throughout the available mass range. We cannot, how-
ever, completely exclude the behavior at masses below ∼1.15 GeV/c2 observed in the
decay D+ → K−π+π+ [23, 30]. The K−K+ S-wave amplitude, parametrized as ei-
ther f0(980) or a0(980)0, is required in both isobar models. No higher mass f0 states
are found to contribute significantly. In a limited mass range, from threshold up
to 1.02 GeV/c2, we measure this amplitude using a model-independent partial-wave
analysis. Agreement with similar measurements from D0 → K−K+K̄0 decay [34],
and with the isobar models considered here, is excellent.
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Chapter 5

Amplitude Analysis of the
Decay D0 → π−π+π0

5.1 Data and simulation samples

Using 232 fb−1 of e+e− collision data at the center-of-mass energies of 10.58 and
10.54 GeV with the BABAR detector [12] at the PEP-II storage rings, we study the
amplitudes of the singly Cabibbo-suppressed decay D0 → π−π+π0 [25]. We measure
the strong phase difference between the D0 and D0 decays to ρ(770)+π− to be
−2.0◦±0.6◦ (stat) ±0.6◦ (syst), and their amplitude ratio to be 0.714 ± 0.008 (stat)
± 0.003 (syst). We observe contributions from the ππ scalar and vector amplitudes,
and analyze their angular moments.

For selection optimizations, we use the generic simulation samples of e+e− →
bb (2045 fb−1), cc (327.5 fb−1) and also uū, dd̄, ss̄ (322.5 fb−1). In addition, D0 →
π−π+π0 signal events (4.7 million) generated uniformly in phase space from cc events
are also used to study detector acceptance and relative signal efficiency.

5.2 Event selection

We distinguish D0 from D0 by reconstructing the decays D∗+ → D0π+ and D∗− →
D0π−. The event-selection criteria are the same as those used in our measurement
of the branching ratio of the decay D0 → π−π+π0 [18] described in Chapter 3..
In particular, we require that the CM momentum of D0 candidate be greater than
2.77 GeV/c, and that |mD∗+ − mD0 − 145.4| < 0.6 MeV/c2, where m refers to
a reconstructed invariant mass. We exclude the decay mode D → K0

Sπ0, which
is a Cabibbo-favored CP eigenstate not related to the present study, by rejecting
candidates with 489 < M(π+π−) < 508 MeV/c2 or for which the distance between
the π+π− vertex and the D∗ candidate decay vertex is more than 1.5 cm. To minimize
uncertainty from background shape, we choose a sample of very high purity (∼
98.1%) using 1848 < mD < 1880 MeV/c2, and find NS = 44780 ± 250 signal and
NB = 830 ± 70 background events. We estimate the signal efficiency for each event
as a function of its position in the Dalitz plot using simulated D0 → π−π+π0 events
from cc decays, generated uniformly in the available phase space. To correct for

68



differences in particle-identification rates in data and simulation, we determine the
ratio of these for each track, and apply an event-by-event correction factor.

5.3 Efficiency calculation

To obtain the efficiency function, a simulation sample of about 4.6 million D0 →
π−π+π0 signal events uniformly populated in phase space was generated. A track
parameter-dependent particle-identification correction is applied to this sample on an
event-by-event basis, using the ratio of signal reconstruction efficiencies in data and
simulation in bins of momentum and polar angle. For this purpose, the generated
and reconstructed Dalitz plots are divided into N × N cells, N chosen in such a way
to have at least 25 reconstructed events per cell on average. The efficiency map is
then obtained by dividing the reconstructed Dalitz plot over the generated one. The
efficiency is parametrized as a 3rd order polynomial in the two Dalitz plot variables

ε(s+, s−) = 1 + s1(s+ + s−)
+ s2(s2

+ + s2
−) + s3(s3

+ + s3
−)

+ s4(s−s2
+ + s+s2

−) + s5 (s+s−). (5.1)

In addition, ε(s+, s−) ≡ 0 for all points outside the physical boundary of the Dalitz
plot. The results of the fit are
s1 = 3.56 ± 0.25
s2 = -1.18 ± 0.20
s3 = 0.08 ± 0.05
s4 = 0.38 ± 0.13
s5 = -2.15 ± 0.38

5.4 Background model for Dalitz plot

The Dalitz plot PDF for the background events is obtained from the sideband 1.930 <
M(π−π+π0) < 1.990 GeV/c2. To justify this procedure, we did a feasibility study to
find out whether the background events in the signal region and the sideband have
consistent Dalitz plot distributions. We proceeded in two steps:

• First, we compared the Dalitz plot distributions for events in the (upper) side-
band of mD0 in data and simulation. We find that there is good agreement
between them.

• Next, we compared the Dalitz plot distributions of the background events in
the signal region and in the sideband for generic qq̄ simulation events. Again,
the agreement is very good.

Thus, we have verified that there is a good agreement between Dalitz plot distri-
butions of the background events in the signal region and in the sideband, and the
background shape can be taken from the sideband.
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5.5 Fitting simulated events

We conducted simulation experiments using CLEO parameters [41] for D0 → π−π+π0

decay. The invariant mass projections for one experiment are shown in Fig. 5.1. The
pull distributions for the fit parameters are also shown. Fig. 5.2 shows the Dalitz
plot variable projections for an experiment that also contains background.
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Figure 5.1: (Row 1) Invariant-mass projections for π−π+π0 simulated events gener-
ated with CLEO parameters of Ref. [41] and fitted with a sum of three Breit-Wigners
for ρ(770) states. (Rows 2–3) Pull distributions for the fit parameters.

5.6 Dalitz plot fit for data

The results of the Dalitz plot fit to the data are shown in Table 5.1. The amplitude of
the ρ(770)+ component is fixed to 1 and its phase is fixed to 0 (i.e., all amplitudes and
phases are measured with reference to ρ(770)+). In addition to the fit parameters,
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Figure 5.2: π−π+π0 Dalitz plot for events generated with CLEO parameters and
fitted with a sum of three Breit-Wigner amplitudes for the three ρ(770) states. Back-
ground generated and fitted with a shape taken from Data sideband.

we also show the “fit fraction” for each PDF component r, defined as

Fr =
∫ |arAr(s+, s−)ds−ds+|2∫ |fD0(s+, s−)|2ds−ds+

. (5.2)

Due to interference among the contributing states, the fit fractions do not sum
to one in general. The efficiency-corrected Dalitz plot and invariant mass-squared
projections are shown in Fig. 5.3.
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Figure 5.3: Efficiency-corrected Dalitz plot and invariant mass-squared projections
for the D0/D0 → π−π+π0 decay excluding D0/D0 → K0

s π0.
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Table 5.1: Result of the fit to the D0 → π−π+π0 Dalitz plot distribution. The
amplitudes and phases are defined relative to those of the ρ+. The fraction is
fr ≡ ∫ |arAr|2ds−ds+/

∫ |fD0|2ds−ds+. The errors are statistical and systematic,
respectively. We take the mass (width) of the σ meson to be 400 (600) MeV/c2. The
χ2/ν for the fit is 1.38 for nu = 565.

State Amplitude ar Phase φr Fraction fr(%)
ρ+(770) 1 0 67.8±0.0±0.6
ρ0(770) 0.588±0.006±0.002 16.2±0.6±0.4 26.2±0.5±1.1
ρ−(770) 0.714±0.008±0.003 -2.0±0.6±0.6 34.6±0.8±0.3
ρ+(1450) 0.21±0.06±0.13 -146±18±24 0.11±0.07±0.12
ρ0(1450) 0.33±0.06±0.04 10±8±13 0.30±0.11±0.07
ρ−(1450) 0.82±0.05±0.04 16±3±3 1.79±0.22±0.12
ρ+(1700) 2.25±0.18±0.14 -17±2±3 4.1±0.7±0.7
ρ0(1700) 2.51±0.15±0.13 -17±2±2 5.0±0.6±1.0
ρ−(1700) 2.00±0.11±0.07 -50±3±3 3.2±0.4±0.6
f0(980) 0.052±0.004±0.006 -59±5±4 0.25±0.04±0.04
f0(1370) 0.22±0.03±0.03 156±9±6 0.37±0.11±0.09
f0(1500) 0.20±0.02±0.02 12±9±4 0.39±0.08±0.07
f0(1710) 0.39±0.05±0.06 51±8±7 0.31±0.07±0.08
f2(1270) 0.30±0.01±0.06 -171±3±4 1.32±0.08±0.10
σ 0.24±0.02±0.04 8±4±8 0.82±0.10±0.10
Nonres 0.57±0.07±0.08 -11±4±2 0.84±0.21±0.12

5.7 Parameter-correlation matrix

In this section we give the correlation matrix for the parametrization coefficients of
the D0 → π−π+π0 Dalitz plot, the results for which were shown in the previous
section. The matrix index is as follows:

Table 5.2: Parameter index for the correlation matrix.
Index Parameter Index Parameter Index Parameter Index Parameter
0 af0(1370) 1 φf0(1370) 2 af0(1500) 3 φf0(1500)

4 af0(1710) 5 φf0(1710) 6 af0(980) 7 φf0(980)

8 af2(1270) 9 φf2(1270) 10 aNonres 11 φNonres
12 aρ(770)− 13 φρ(770)− 14 aρ(770)0 15 φρ(770)0

16 aρ(1700)+ 17 φρ(1700)+ 18 aρ(1700)− 19 φρ(1700)−

20 aρ(1700)0 21 φρ(1700)0 22 aρ(1450)+ 23 φρ(1450)+

24 aρ(1450)− 25 φρ(1450)− 26 aρ(1450)0 27 φρ(1450)0

28 aσ 29 φσ
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30x30 matrix is as follows

| 0 | 1 | 2 | 3 | 4 |
------------------------------------------------------------------

0 | 1 -0.2356 0.8357 0.1554 0.5407
1 | -0.2356 1 -0.5204 0.7713 -0.3029
2 | 0.8357 -0.5204 1 -0.157 0.5155
3 | 0.1554 0.7713 -0.157 1 0.1556
4 | 0.5407 -0.3029 0.5155 0.1556 1
5 | -0.01515 0.5391 -0.4107 0.477 -0.2196
6 | -0.1353 -0.01806 -0.05153 -0.07615 -0.0155
7 | 0.1329 -0.1756 0.1565 -0.04219 0.141
8 | 0.06097 -0.09621 0.08569 -0.03675 0.1387
9 | -0.1682 0.13 -0.1347 0.01787 -0.07357

10 | 0.5228 0.1503 0.1681 0.4585 0.1887
11 | -0.5087 0.6745 -0.667 0.2112 -0.7863
12 | -0.2868 0.1802 -0.2207 -0.05966 -0.1164
13 | -0.04772 -0.03172 0.04465 -0.06311 0.1999
14 | -0.05465 0.06647 -0.05539 -0.03166 -0.04545
15 | -0.08901 0.02413 -0.03172 -0.04343 0.05924
16 | 0.0579 0.02674 0.009089 0.06522 -0.05452
17 | -0.1131 0.2479 -0.1978 0.07684 -0.2322
18 | -0.276 0.1633 -0.2082 -0.02957 -0.1589
19 | 0.04161 -0.1691 0.1234 -0.106 0.1646
20 | -0.03848 -0.009926 -0.01021 -0.01175 -0.004637
21 | 0.0599 -0.01329 0.03247 0.023 0.02173
22 | 0.09854 -0.2499 0.1966 -0.06721 0.2539
23 | -0.1042 -0.04156 -0.01684 -0.08125 0.06925
24 | -0.2312 0.1911 -0.2067 0.01687 -0.2082
25 | 0.003918 -0.07692 0.05523 -0.08746 0.1034
26 | -0.169 0.05698 -0.09764 -0.03304 -0.06963
27 | 0.03561 -0.003513 0.01682 0.00415 0.002918
28 | -0.2836 0.1486 -0.2049 -0.06843 -0.1226
29 | -0.1598 0.2909 -0.23 0.1126 -0.2131

| 5 | 6 | 7 | 8 | 9 |
------------------------------------------------------------------

0 | -0.01515 -0.1353 0.1329 0.06097 -0.1682
1 | 0.5391 -0.01806 -0.1756 -0.09621 0.13
2 | -0.4107 -0.05153 0.1565 0.08569 -0.1347
3 | 0.477 -0.07615 -0.04219 -0.03675 0.01787
4 | -0.2196 -0.0155 0.141 0.1387 -0.07357
5 | 1 -0.09946 -0.02705 -0.02609 -0.09017
6 | -0.09946 1 -0.0276 -0.02194 0.02558
7 | -0.02705 -0.0276 1 0.0307 0.1195
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8 | -0.02609 -0.02194 0.0307 1 -0.06202
9 | -0.09017 0.02558 0.1195 -0.06202 1

10 | 0.6832 -0.2192 0.1577 0.09087 -0.2114
11 | 0.3494 -0.1027 -0.1679 -0.227 0.183
12 | -0.1473 -0.03959 -0.1173 0.3026 0.04804
13 | -0.3004 0.02347 0.1371 -0.1473 0.3923
14 | -0.02874 -0.03721 -0.04732 0.09571 -0.08144
15 | -0.1831 -0.03337 0.1177 -0.1021 0.3342
16 | 0.1928 -0.02104 0.03927 0.1398 -0.13
17 | 0.1028 -0.06639 0.03605 0.0299 -0.0283
18 | -0.1826 -0.01285 0.0163 0.02245 0.3509
19 | -0.1606 0.0419 -0.01201 -0.1588 0.01283
20 | -0.03194 0.01625 0.03815 0.04781 0.05558
21 | 0.05951 0.03758 -0.04348 -0.05002 -0.1632
22 | -0.1419 0.05789 0.05739 -0.06812 0.2061
23 | -0.2597 -0.01566 0.09683 -0.03585 0.2204
24 | -0.05096 -0.04939 0.02854 0.1133 0.1478
25 | -0.1869 0.06194 0.02688 -0.01812 -0.001243
26 | -0.0993 -0.03873 0.09389 0.004726 0.3514
27 | 0.04253 0.03821 0.003612 0.05381 -0.1036
28 | -0.2209 -0.07249 -0.1629 -0.2181 0.07613
29 | 0.002023 -0.1811 0.06474 -0.1663 0.2833

| 10 | 11 | 12 | 13 | 14 |
------------------------------------------------------------------

0 | 0.5228 -0.5087 -0.2868 -0.04772 -0.05465
1 | 0.1503 0.6745 0.1802 -0.03172 0.06647
2 | 0.1681 -0.667 -0.2207 0.04465 -0.05539
3 | 0.4585 0.2112 -0.05966 -0.06311 -0.03166
4 | 0.1887 -0.7863 -0.1164 0.1999 -0.04545
5 | 0.6832 0.3494 -0.1473 -0.3004 -0.02874
6 | -0.2192 -0.1027 -0.03959 0.02347 -0.03721
7 | 0.1577 -0.1679 -0.1173 0.1371 -0.04732
8 | 0.09087 -0.227 0.3026 -0.1473 0.09571
9 | -0.2114 0.183 0.04804 0.3923 -0.08144

10 | 1 -0.1295 -0.2681 -0.3357 -0.08065
11 | -0.1295 1 0.1741 -0.007278 0.0479
12 | -0.2681 0.1741 1 -0.04145 0.3547
13 | -0.3357 -0.007278 -0.04145 1 0.01535
14 | -0.08065 0.0479 0.3547 0.01535 1
15 | -0.2654 0.0735 0.04638 0.5447 0.01657
16 | 0.1703 -0.099 0.1921 -0.2783 0.1964
17 | -0.04375 0.2739 0.2776 0.08383 0.462
18 | -0.2429 0.2963 0.2305 0.2196 -0.1554
19 | -0.1705 -0.1922 -0.1031 0.1459 0.2057
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20 | -0.03269 -0.0337 0.0857 -0.05826 0.01137
21 | 0.03621 -0.07938 0.02176 -0.02492 0.09802
22 | 0.03915 -0.2518 -0.3176 0.01122 -0.4528
23 | -0.2315 0.1017 -0.1534 0.3338 -0.2699
24 | -0.1161 0.2543 0.2904 0.06046 -0.04922
25 | -0.1877 -0.08817 -0.07504 0.2281 0.144
26 | -0.1622 0.1159 0.1654 0.122 0.08473
27 | 0.01618 -0.07243 0.02566 -0.08642 0.1187
28 | -0.6089 0.3085 0.0226 0.3581 0.007737
29 | 0.01449 0.5437 0.07951 0.2759 -0.07119

| 15 | 16 | 17 | 18 | 19 |
------------------------------------------------------------------

0 | -0.08901 0.0579 -0.1131 -0.276 0.04161
1 | 0.02413 0.02674 0.2479 0.1633 -0.1691
2 | -0.03172 0.009089 -0.1978 -0.2082 0.1234
3 | -0.04343 0.06522 0.07684 -0.02957 -0.106
4 | 0.05924 -0.05452 -0.2322 -0.1589 0.1646
5 | -0.1831 0.1928 0.1028 -0.1826 -0.1606
6 | -0.03337 -0.02104 -0.06639 -0.01285 0.0419
7 | 0.1177 0.03927 0.03605 0.0163 -0.01201
8 | -0.1021 0.1398 0.0299 0.02245 -0.1588
9 | 0.3342 -0.13 -0.0283 0.3509 0.01283

10 | -0.2654 0.1703 -0.04375 -0.2429 -0.1705
11 | 0.0735 -0.099 0.2739 0.2963 -0.1922
12 | 0.04638 0.1921 0.2776 0.2305 -0.1031
13 | 0.5447 -0.2783 0.08383 0.2196 0.1459
14 | 0.01657 0.1964 0.462 -0.1554 0.2057
15 | 1 -0.128 0.1323 0.1397 0.1257
16 | -0.128 1 0.1934 0.1906 0.3401
17 | 0.1323 0.1934 1 -0.2139 0.4608
18 | 0.1397 0.1906 -0.2139 1 -0.1395
19 | 0.1257 0.3401 0.4608 -0.1395 1
20 | 0.01926 0.6767 0.1311 0.4478 0.4787
21 | -0.1768 0.2284 0.5628 -0.3661 0.6338
22 | -0.1128 -0.1173 -0.7419 0.4094 -0.09901
23 | 0.2586 -0.7061 -0.1659 0.2328 -0.3636
24 | -0.05375 0.3297 -0.1477 0.7167 -0.3582
25 | 0.06645 0.1589 0.4391 0.1379 0.6617
26 | 0.292 0.2702 -0.2218 0.5906 -0.1153
27 | 0.03328 0.4093 0.4475 -0.1198 0.612
28 | 0.2922 -0.255 0.05661 0.05732 0.1923
29 | 0.1926 -0.3731 0.06554 0.4546 -0.1347
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| 20 | 21 | 22 | 23 | 24 |
------------------------------------------------------------------

0 | -0.03848 0.0599 0.09854 -0.1042 -0.2312
1 | -0.009926 -0.01329 -0.2499 -0.04156 0.1911
2 | -0.01021 0.03247 0.1966 -0.01684 -0.2067
3 | -0.01175 0.023 -0.06721 -0.08125 0.01687
4 | -0.004637 0.02173 0.2539 0.06925 -0.2082
5 | -0.03194 0.05951 -0.1419 -0.2597 -0.05096
6 | 0.01625 0.03758 0.05789 -0.01566 -0.04939
7 | 0.03815 -0.04348 0.05739 0.09683 0.02854
8 | 0.04781 -0.05002 -0.06812 -0.03585 0.1133
9 | 0.05558 -0.1632 0.2061 0.2204 0.1478

10 | -0.03269 0.03621 0.03915 -0.2315 -0.1161
11 | -0.0337 -0.07938 -0.2518 0.1017 0.2543
12 | 0.0857 0.02176 -0.3176 -0.1534 0.2904
13 | -0.05826 -0.02492 0.01122 0.3338 0.06046
14 | 0.01137 0.09802 -0.4528 -0.2699 -0.04922
15 | 0.01926 -0.1768 -0.1128 0.2586 -0.05375
16 | 0.6767 0.2284 -0.1173 -0.7061 0.3297
17 | 0.1311 0.5628 -0.7419 -0.1659 -0.1477
18 | 0.4478 -0.3661 0.4094 0.2328 0.7167
19 | 0.4787 0.6338 -0.09901 -0.3636 -0.3582
20 | 1 0.2223 0.2547 -0.3167 0.4323
21 | 0.2223 1 -0.3278 -0.4725 -0.266
22 | 0.2547 -0.3278 1 0.2861 0.3061
23 | -0.3167 -0.4725 0.2861 1 0.07072
24 | 0.4323 -0.266 0.3061 0.07072 1
25 | 0.3274 0.5468 -0.1752 -0.2389 -0.1284
26 | 0.1828 -0.6175 0.3294 0.1611 0.4867
27 | 0.6436 0.4257 -0.1942 -0.4366 -0.1042
28 | -0.07876 -0.008576 -0.09723 0.2514 -0.09644
29 | -0.035 -0.1932 0.1077 0.4378 0.2305

| 25 | 26 | 27 | 28 | 29 |
------------------------------------------------------------------

0 | 0.003918 -0.169 0.03561 -0.2836 -0.1598
1 | -0.07692 0.05698 -0.003513 0.1486 0.2909
2 | 0.05523 -0.09764 0.01682 -0.2049 -0.23
3 | -0.08746 -0.03304 0.00415 -0.06843 0.1126
4 | 0.1034 -0.06963 0.002918 -0.1226 -0.2131
5 | -0.1869 -0.0993 0.04253 -0.2209 0.002023
6 | 0.06194 -0.03873 0.03821 -0.07249 -0.1811
7 | 0.02688 0.09389 0.003612 -0.1629 0.06474
8 | -0.01812 0.004726 0.05381 -0.2181 -0.1663
9 | -0.001243 0.3514 -0.1036 0.07613 0.2833
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10 | -0.1877 -0.1622 0.01618 -0.6089 0.01449
11 | -0.08817 0.1159 -0.07243 0.3085 0.5437
12 | -0.07504 0.1654 0.02566 0.0226 0.07951
13 | 0.2281 0.122 -0.08642 0.3581 0.2759
14 | 0.144 0.08473 0.1187 0.007737 -0.07119
15 | 0.06645 0.292 0.03328 0.2922 0.1926
16 | 0.1589 0.2702 0.4093 -0.255 -0.3731
17 | 0.4391 -0.2218 0.4475 0.05661 0.06554
18 | 0.1379 0.5906 -0.1198 0.05732 0.4546
19 | 0.6617 -0.1153 0.612 0.1923 -0.1347
20 | 0.3274 0.1828 0.6436 -0.07876 -0.035
21 | 0.5468 -0.6175 0.4257 -0.008576 -0.1932
22 | -0.1752 0.3294 -0.1942 -0.09723 0.1077
23 | -0.2389 0.1611 -0.4366 0.2514 0.4378
24 | -0.1284 0.4867 -0.1042 -0.09644 0.2305
25 | 1 -0.2248 0.5234 0.1432 -0.03996
26 | -0.2248 1 -0.2168 0.02286 0.1774
27 | 0.5234 -0.2168 1 -0.01875 -0.1923
28 | 0.1432 0.02286 -0.01875 1 0.1542
29 | -0.03996 0.1774 -0.1923 0.1542 1

-------------------------------------------------------------------

5.8 Fit with CLEO parametrization

In this section we give the results of an alternative parametrization, where we fit
the data with only ρ(770) and a nonresonant term, as done by the CLEO collab-
oration [41]. The results of this fit are shown in Table 5.3. The Dalitz plot and
invariant mass-squared projections for this fit are shown in are shown in Fig. 5.4. As
can be easily seen, this parametrization does not reproduce the features observed in
our data.

Table 5.3: Result of the fit to the D0 → π−π+π0 Dalitz plot with only ρ(770) states
and a nonresonant term. The errors are statistical only. The χ2/ν for the fit is 2.82
for ν = 574.

State Amplitude ar Phase φr Fraction fr(%)
ρ+(770) 1 0 71.7
ρ0(770) 0.594±0.004 11.1±0.5 26.2±0.4
ρ−(770) 0.680±0.004 -4.0±0.5 33.1±0.4
Nonres 1.21±0.02 -114.5±1.2 4.1±0.1
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Figure 5.4: Invariant mass projections (top row), Dalitz plot (second row), and
normalized residuals (bottom row) for the fit with only ρ(770) and a nonresonant
term.
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5.9 Effort to include p-wave nonresonant terms

When we fit the data with nonresonant p-wave components, the fit fractions of these
components are of order 10. To understand why this is so, we study a PDF with only
these components, and with the parameters obtained in the data. These parameters
are given in Table 5.4. Also given in the table are the fit fractions for the three
nonresonant p-wave components.

It is evident from the magnitude of the fit fractions that with their amplitudes
and phases nearly identical, the three nonresonant p-wave amplitudes experience
strong destructive interference, so that they cancel down to about one part in 500.
We note that the amplitudes and fractions for the three components are consistent
with being identical. When setting them to be truly identical, we find that their fit
fractions are 11700.

Furthermore, the cross-terms of these states with the charged rho’s also have
large destructive interference, as evidenced by their O(10) fit fractions on the data,
and validated in toy fits that contain only nonresonant p-wave and rho terms.

Given the hugely destructive interference, it is difficult to conclude that the
nonresonant p-wave contributions in the data actually have a physical origin. It
seems quite likely that the parameters that the fit finds for these terms are such that
they help to improve the goodness of the fit only due to the greater flexibility that
they provide, without actually corresponding to true physical states.

P-wave pair Amplitude Phase Fit fraction
π0π+ 15.6 ± 1.7 −51.4 ± 7.5 483
π−π0 16.3 ± 1.7 −51.8 ± 7.1 518
π+π− 15.8 ± 1.7 −50.7 ± 7.5 475

Table 5.4: Parameters of the nonresonant p-wave found in the data fit, and the
corresponding fit fractions (not in percent!) of these components for a PDF that
contains only these components with the parameters shown.

5.10 Description of angular moments

Since the decay D0 → π−π+π0 has three spinless particles in the final state, the
Dalitz plots in Fig. 5.3 uniquely represents the kinematics of the final state. The
angular distributions provide information on the detailed event-density variations in
various regions of the phase space in a different form. We define the helicity angle
θH for decays D0 → (r → AB)C as the angle between the momentum of A in the
AB rest frame and the momentum of AB in D0 rest frame. The moments of the
cosine of the helicity angle, Y 0

l (θH) are defined as the efficiency-corrected invariant
mass distributions of events when weighted by spherical harmonic functions

Y 0
l (θH) =

√
1
2π

Pl(cos θH), (5.3)
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where Pl are Legendre polynomials of order l:

1∫
−1

Pl(x) Pn(x) dx = δln. (5.4)

Figure 5.5 shows the distribution of Pl(m) for events corresponding to the decay
D0/D0 → π−π+π0 for the channels π+π0 and π+π−. The moments in the π−π0

channel have distributions similar to those of π+π0.
These angular moments have an obvious physical significance. Since spherical

harmonic functions are the eigen functions of the angular momentum, the Dalitz
plot of a three-body decay can be represented by the sum of an infinite number of
spherical harmonic moments in any two-body channel. In a region of the Dalitz plot
where S- and P-waves in a single channel dominate, their amplitudes are given by
the following Legendre polynomial moments,

P0 =
|S|2 + |P |2√

2
, P1 =

√
2|S||P | cos θSP , P2 =

√
2
5

|P |2 , (5.5)

where |S| and |P | are, respectively, the magnitudes of the S- and P-wave amplitudes,
and θSP = θS − θP is the relative phase between them. It is worth noting that this
partial-wave analysis is valid, in the absence of higher spin states, only if no interfer-
ence occurs from the crossing channels. In the presence of substantial interference
from crossing channels, it is not possible to decompose the Dalitz plot amplitude
into partial waves (i.e., S, P, D waves etc.). Because of the large interference from
crossing channels in the decay D0 → π−π+π0, the model-independent partial-wave
analysis using this method is not possible in the present case (unlike in the case of
D0 → K−K+π0, as described in Chapter 4).

5.11 Systematic uncertainties

We determine the experimental and model systematic uncertainties separately and
add them in quadrature to obtain the total systematic uncertainty. The only signif-
icant model dependent uncertainty comes from the large uncertainties in the masses
and widths of the σ and ρ(1700) resonances. We vary their masses and widths and
assign the larger of the variation in the σ and ρ(1700) fit parameter values with
respect to the nominal fit parameters as model systematics. The systematic un-
certainty due to reconstruction efficiency parametrization is estimated by comparing
results of the nominal fit with the fit performed with uniform efficiency. Similarly, we
study the systematic uncertainty due to different particle identification efficiencies
in data and simulation by comparing the nominal fit results with the one performed
without applying correction for this difference. We estimate the uncertainty due to
the background shape by using simulation, instead of the mD0 sideband, to model
the distribution of background events. We assign the maximum deviation in the ob-
served quantities (amplitudes, phases, and fit fractions) with respect to the nominal
fit as the systematic uncertainties.
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Figure 5.5: The mass dependence of the spherical harmonic moments of cos θH after
efficiency corrections and background subtraction: π+π0 (top) and π−π+ (bottom)
channels of the D0/D0 → π−π+π0 decay. The circles with error-bars are data points
and the curves (red) are derived from the fit parametrization of Table 5.1. For the
sake of visibility, we do not show error bars on the curves.
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5.12 Strong-phase difference and suppression factor

Neglecting CP violation, the strong phase difference, δD, between the D0 and D0

decays to ρ(770)+π− state and their amplitude ratio, rD, are given by

rDeiδD =
aD0→ρ−π+

aD0→ρ+π−
ei(δρ−π+−δρ+π−). (5.6)

Using the results of Table 5.1, we find δD = −2.0◦ ± 0.6◦ (stat) ±0.6◦ (syst) and rD

= 0.714 ± 0.008 (stat) ± 0.003 (syst). These results are consistent with the previous
measurements [41], δD = −4◦ ± 3◦ (stat) ±4◦ (syst) and rD = 0.65 ± 0.03 (stat) ±
0.04 (syst).

5.13 Summary

In conclusion, we have studied the amplitude structure of the decay D0 → π−π+π0,
and measured δD and rD. We find significant contributions from the three ρ(770)
states. The decay D0 → ρ(770)+π− dominates over D0 → ρ(770)−π+. This suggests
that, in tree-level diagrams, the form factor for D0 coupling to ρ− is suppressed
compared to the corresponding π− coupling.

The measured fit fractions for the observed states do not agree well with a phe-
nomenological prediction [36] based on a large SU(3) symmetry breaking. It appears
from the Dalitz plot distribution of Fig. 5.3 and the results reported in Table 5.1, that
the decay D0 → π−π+π0 is marked by three destructively interfering ρπ amplitudes
(with different radial excitations of the ρ states), suggesting an I = 0, ΔI = 1/2
dominated final state [37].
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Chapter 6

Measurement of γ Using
B± → Dπ+π−π0K±

We report [25] the results of a CP violation analysis of the decay B± → Dπ+π−π0K±,
where D0 → π−π+π0 indicates a neutral D meson detected in the final state π+π−π0,
excluding K0

Sπ0. The analysis makes use of 324 million e+e− → BB events recorded
by the BABAR experiment at the PEP-II e+e− storage ring. By analyzing the π+π−π0

Dalitz plot distribution and the B± → Dπ+π−π0K± branching fraction and decay
rate asymmetry, we calculate parameters related to the phase γ of the CKM uni-
tarity triangle. We also measure the magnitudes and phases of the components
of the D0 → π+π−π0 decay amplitude. We observe 170 ± 29 B± → Dπ+π−π0K±

events and calculate the branching fraction and decay rate asymmetry: B(B± →
Dπ+π−π0K±) = (4.6±0.8±0.4)×10−6 , A(B± → Dπ+π−π0K±) = −0.02±0.15±0.03,
the errors being statistical and systematic, respectively. We find the CP -violation
parameters: ρ− = 0.72± 0.11± 0.06, θ− = (173± 42± 19)◦, ρ+ = 0.75± 0.11± 0.06,
θ+ = (147±23±13)◦ , where the first errors are statistical and the second are system-
atic. The parameters ρ±, θ± are defined as ρ± ≡ |z± − x0|, θ± ≡ tan−1

( �[z±]
	[z±]−x0

)
,

where z± ≡ rBei(δ±γ) (δ is a CP -even phase and rB is the ratio of the magnitudes of
the b → ucs and b → cus amplitudes), and x0 = 0.850 is a coordinate transformation
parameter. Using these results, we find the following one-standard-deviation con-
straints on the amplitude ratio and on the weak and strong phases: 0.06 < rB < 0.78,
−30◦ < γ < 76◦, −27◦ < δ < 78◦.

To apply the results of the amplitude analysis of the decay D0 → π−π+π0 to the
measurement of quantities related to the quark-mixing phase γ (or φ3) using the de-
cay chain B± → Dπ+π−π0K±, I teamed up with three other BABAR colleagues from
different institutions: Abi Soffer, Frank Winklmeier, and Jinlong Zhang. Because
the decay D0 → π−π+π0 involves three particles in the final state, it proceeds via
intermediate resonances which interfere with each other. I performed a detailed anal-
ysis of the quantum-mechanical amplitudes involved in these decays, as described in
chapter 5, in order to understand the relative contributions and underlying properties
of the intermediate resonances. As a part of this team, I also helped in understand-
ing the likelihood behavior of the fit for extracting CP violation parameters related
to phase γ, and contributed to the documentation of the analysis procedure. I am
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listed as a leading author of this analysis, Abi Soffer being the primary corresponding
author.

6.1 Introduction

An important component of the program to study CP violation is the measurement of
the angle γ = arg (−VudV

∗
ub/VcdV

∗
cb) of the unitarity triangle related to the Cabibbo-

Kobayashi-Maskawa quark mixing matrix [2]. The decays B → D(∗)0K(∗) can be
used to measure γ with essentially no hadronic uncertainties, exploiting interference
between b → ucs and b → cus decay amplitudes [4]. In one of the measurement
methods [6], γ is extracted by analyzing the D-decay Dalitz plot distribution in
B± → DK± with multi-body D decays 1. This method has only been used with
the Cabibbo-favored (also has a small doubly Cabibbo-suppressed component) decay
D → K0

Sπ+π− [38, 39], and Cabibbo-suppressed decays are expected to be similarly
sensitive to γ [40]. We present here the first CP -violation study of B± → DK± with
a multibody, Cabibbo-suppressed D decay, D → π+π−π0.

6.2 Detector and dataset

The data used in this analysis were collected with the BABAR detector at the PEP-II
e+e− storage ring, and include 288 fb−1 taken on the Υ (4S) resonance and 27 fb−1

collected 40 MeV below the resonance. Samples of simulated Monte Carlo (MC)
events were analyzed with the same reconstruction and analysis procedures. These
samples include an e+e− → BB sample about five times larger than the data; a
continuum e+e− → qq sample, where q is a u, d, s, or c quark, with luminosity
equivalent to the data; and a signal sample about 300 times larger than the data,
with both phase space D decays and decays generated according to the amplitudes
measured by CLEO [41]. The BABAR detector and the methods used for particle
reconstruction and identification are described in Ref. [12].

6.3 Event selection

We use event-shape variables [42] to suppress continuum background, and identify
kaon and pion candidates using specific ionization and Cherenkov radiation. The
invariant mass of D candidates must satisfy 1830 < MD < 1895 MeV/c2. We

require 5272 < mES < 5300 MeV/c2, where mES ≡
√

E2
CM/4 − |pB|2, ECM is the

total e+e− center-of-mass (CM) energy, and pB is the B candidate CM momentum.
Events must satisfy −70 < ΔE < 60 MeV, where ΔE = EB − ECM/2 and EB

is the B candidate CM energy. We exclude the decay mode D → K0
Sπ0, which

is a previously studied CP eigenstate not related to the method of Ref. [6], by
rejecting candidates with 489 < M(π+π−) < 508 MeV/c2 or for which the distance
between the π+π− vertex and the B− candidate decay vertex is more than 1.5 cm.

1We use the symbol D in this chapter to indicate any linear combination of a D0 and a D0 meson
state.

84



We reject B± → Dπ+π−π0K± candidates in which the K±π∓ invariant mass satisfies
1840 < M(K±π∓) < 1890 MeV/c2, to suppress B− → D0

K−π+ρ− decays. We require
d > 0.25, where d [42] is a neural net variable that separates signal candidates (which
peak toward d = 1) from those with a misreconstructed D (peaking toward d = 0).
In events with multiple candidates (9% of the sample), we keep the candidate whose
mES value is closest to the nominal B± mass [20]. The final signal reconstruction
efficiency is ε = 11.4%.

6.4 Signal-background discrimination

For each B± → Dπ+π−π0K± candidate, we compute the neural net variable q [42].
The q distribution of BB events peaks toward q = 1, while that of continuum peaks

at q = 0. For ν ∈ {q, d}, we define the variables ν ′ ≡ tanh−1
[

ν− 1
2
(νmax+νmin)

1
2
(νmax+νmin)

]
, where

qmax = dmax = 1, qmin = 0.1, and dmin = 0.25 are the allowed ranges for q and d.
The ν ′ variables can be conveniently fit with Gaussians, as described later.

6.5 Event types

As in Ref. [42], we identify in the MC samples ten event types, one signal and
nine different backgrounds. We list them here with the labels used to refer to
them throughout the paper. DKsig: B± → Dπ+π−π0K± events that are cor-
rectly reconstructed; these are the only events considered to be signal. DKbgd:
B± → Dπ+π−π0K± events that are misreconstructed; that is, some of the particles
used to form the final state do not originate from the B± → Dπ+π−π0K± decay.
DπD (Dπ �D): B− → D0π−, D0 → π+π−π0 decays, where the decay D0 → π+π−π0

is correctly reconstructed (misreconstructed). DKX: B → D(∗)K(∗)− events not
containing the decay D → π+π−π0. DπX: B → D(∗)π− and B → D(∗)ρ− decays,
excluding D → π+π−π0. BBCD (BBC�D): all other BB events with a correctly
reconstructed (misreconstructed) D candidate. qqD (qq�D): continuum e+e− → qq
events with a correctly reconstructed (misreconstructed) D candidate.

6.6 Analysis procedure

The measurement of the CP parameters proceeds in three steps, each involving an
unbinned maximum likelihood fit. In step 1 (described in detail in chapter 5), we
measure the complex Dalitz plot amplitude α(s+, s−) for the decay D0 → π+π−π0,
where s± = m2(π±π0) are the squared invariant masses of the π±π0 pairs. In step 2,
we extract the numbers of B+ and B− signal events and background yields. We
obtain the CP parameters in step 3.

We parameterize α(s+, s−) using the isobar model, α(s+, s−) = [aNReiφNR +∑
r are

iφrAr(s+, s−)]/Nα, where the first term represents a nonresonant contribu-
tion, the sum is over all intermediate two-body resonances r, and Nα is such that∫

ds+ds−|α(s+, s−)|2 = 1. The amplitude for the decay chain D0 → rC, r → AB

is Ar(s+, s−) = FrFs

(
m2

r − M2
AB − imrΓr(MAB)

)−1, where mr is the peak mass
of the resonance [20], M2

AB is the squared invariant mass of the AB pair, Fr is a
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spin-dependent form factor [43], and Γr(MAB) is the mass-dependent width for the
resonance r [43]. The spin factors Fs are F0 = m2

D, F1 = M2
BC − M2

AC + (m2
D −

m2
C)(m2

A −m2
B)M−2

AB , and F2 =
(
F 2

1 − 1
3μ2

CD μ2
AB

)
m−2

D , where μ2
jk ≡ M2

AB − 2m2
j −

2m2
k +

(
m2

j − m2
k

)2
M−2

jk , and mi is the mass of particle i [20].

6.7 Step 1: D0 Dalitz plot fit using D* sample

In step 1, we determine the parameters aNR, ar, φNR, and φr by fitting a large sample
of D0 and D0 mesons, flavor-tagged through their production in the decay D∗+ →
D0π+ [18]. To select this sample, we require the CM momentum of the D∗ candidate
to be greater than 2770 MeV/c, and |MD∗ − MD − 145.4 MeV/c2| < 0.6 MeV/c2,
where MD∗ is the invariant mass of the D∗ candidate. The signal reconstruction
procedure is described in detail in Chapter 3. The signal and background yields are
obtained from a fit to the reconstructed MD distribution, modeling the signal as
a Gaussian and the background as an exponential. The signal Gaussian peaks at
1863.7 ± 0.4 MeV/c2 and has a width of 17.4 ± 0.8 MeV/c2.

Of the D0 candidates in the signal region 1848 < MD < 1880 MeV/c2, we obtain
from the fit NS = 44780±250 signal and NB = 830±70 background events. To obtain
the parameters of α(s±, s∓), we fit these candidates with the probability distribution
function (PDF) NS |α(s+, s−)|2ε(s+, s−) + NB |fB(s+, s−)|2, where the background
PDF fB(s+, s−) is a binned distribution obtained from events in the sideband 1930 <
MD < 1990 MeV/c2, and ε(s+, s−) is an efficiency function, parameterized as a two-
dimensional third-order polynomial determined from MC. To within the MC-signal
statistical uncertainty, ε(s+, s−) = ε(s−, s+). The region MD < 1848 MeV/c2, which
contains D0 → K−π+π0 events that are absent from the signal region, is not used.

Table 6.1 summarizes the results of this fit, with systematic errors obtained by
varying the masses and widths of the ρ(1700) and σ resonances, setting Fr = 1,
and varying ε(s+, s−) to account for uncertainties in reconstruction and particle
identification. The Dalitz plot distribution of the data is shown in Fig. 6.1(a-c). The
distribution is marked by three destructively interfering ρπ amplitudes, suggesting
an I = 0-dominated final state [37]. We refer to Chapter 4 for further details on the
Dalitz plot analysis of the decay D0 → π−π+π0.

6.8 Next Steps

The fit for step i ∈ {2, 3} uses the PDF

PC
i =

∑
t

Nt

2η
(1 − CAt)P(C)

i,t (ξi) ÷
∫

P(C)
i,t (ξ′i) dniξ′i, (6.1)

where ξi is the set of ni event variables ξ1 = {ΔE, q′, d′}, ξ2 = {ΔE, q′, s−, s+}, t
corresponds to one of the ten event types listed above, Nt = N+

t +N−
t is the number

of events of type t, At = (N−
t − N+

t )/Nt is their charge asymmetry, C = ±1 is the
electric charge of the B candidate, and η ≡ ∑

t Nt. Using MC, we verify that the
variables in each set ξi are uncorrelated for each event type. Therefore, the PDFs
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Table 6.1: Result of the fit to the D∗+ → D0π+ sample, showing the amplitudes
ratio Rr ≡ ar/aρ+(770), phase differences Δφr ≡ φr − φρ+(770), and fit fractions
fr ≡ ∫ |arAr(s+, s−)|2ds−ds+. The first (second) errors are statistical (systematic).
We take the mass (width) of the σ meson to be 400 (600) MeV/c2.

State Rr (%) Δφr (◦) fr(%)
ρ+(770) 100 0 67.8±0.0±0.6
ρ0(770) 58.8±0.6±0.2 16.2±0.6±0.4 26.2±0.5±1.1
ρ−(770) 71.4±0.8±0.3 −2.0±0.6±0.6 34.6±0.8±0.3
ρ+(1450) 21±6±13 −146±18±24 0.11±0.07±0.12
ρ0(1450) 33±6±4 10±8±13 0.30±0.11±0.07
ρ−(1450) 82±5±4 16±3±3 1.79±0.22±0.12
ρ+(1700) 225±18±14 −17±2±3 4.1±0.7±0.7
ρ0(1700) 251±15±13 −17±2±2 5.0±0.6±1.0
ρ−(1700) 200±11±7 −50±3±3 3.2±0.4±0.6
f0(980) 1.50±0.12±0.17 −59±5±4 0.25±0.04±0.04
f0(1370) 6.3±0.9±0.9 156±9±6 0.37±0.11±0.09
f0(1500) 5.8±0.6±0.6 12±9±4 0.39±0.08±0.07
f0(1710) 11.2±1.4±1.7 51±8±7 0.31±0.07±0.08
f2(1270) 104±3±21 −171±3±4 1.32±0.08±0.10
σ(400) 6.9±0.6±1.2 8±4±8 0.82±0.10±0.10
Non-Res 57±7±8 −11±4±2 0.84±0.21±0.12

P(C)
i,t are the products

P2,t(ΔE, q′, d′) = Et(ΔE)Qt(q′) Ct(d′)

PC
3,t(ΔE, q′, s+, s−) = Et(ΔE)Qt(q′)D′C

t (s+, s−). (6.2)

The parameters of the Dalitz plot PDF D′C
DKsig

(s+, s−) are obtained from the data
as described below. Those of all other functions in Eq. (6.2) are obtained from the
MC samples. The functions Et(ΔE) are parameterized as the sum of a Gaussian and
a second-order polynomial. The PDFs Qt(q′) and Ct(d′) are the sum of a Gaussian
and an asymmetric Gaussian. The PDF parameters are different for each event type.
Assuming no CP violation in the background, we take D′+

t (s+, s−) = D′−
t (s−, s+)

and At = 0 for t 
= DKsig. The functions D′C
DπX(s+, s−) and D′C

DKbgd
(s+, s−)

are binned histograms obtained from the MC. For other event types, D′C
t (s+, s−) =

ε(s+, s−)DC
t (s+, s−), where the efficiency function ε(s+, s−) has different parameters

for well-reconstructed and misreconstructed D candidates.
We define z± ≡ rBei(δ±γ), where δ is a CP -even phase and rB is the ratio of the

magnitudes of the b → ucs and b → cus amplitudes. Ignoring negligible D0 − D0

mixing effects [44], the signal Dalitz PDF is

D±
DKsig

(s+, s−) = |α(s∓, s±) + z±α(s±, s∓)|2 . (6.3)

87



6.9 Signal yields and asymmetry

In the step-2 fit, we extract the B± → Dπ+π−π0K± signal yield and asymmetry,
as well as some background yields, as described in Ref. [42]. From this fit we find
NDKsig

= 170±29 signal events and a decay rate asymmetry ADKsig
= −0.02±0.15.

Errors are statistical only.

6.10 Likelihood function

Only the complex parameters z± are free in the step-3 fit. This fit minimizes the
function

L = −
Nev∑
e=1

logPCe
3 (ξe

3) +
1
2
χ2, (6.4)

where Nev is the number of events in the data sample. The term χ2 =
∑2

u,v=1 XuV −1
uv Xv

increases the sensitivity of the fit by using the results of the step-2 fit via

X1 = NDKsig
− (n− + n+),

X2 = ADKsig
− (n− − n+)/(n− + n+), (6.5)

where

n± = N0

∫ D′±
DKsig

(s+, s−)ds+ds−∫ |α(s∓, s±)|2ε(s+, s−)ds+ds−
(6.6)

are the expected numbers of B± signal events. In Eq. (6.6), N0 is the product of
the number NB+B− of charged B+B− pairs in the dataset, the branching fractions
B(B− → D0K−) [20] and B(D0 → π+π−π0) [18], and the reconstruction efficiency
ε. The error matrix Vuv is the sum of two components: the step-2 fit error matrix
V stat

uv , which is almost diagonal (the correlation coefficient is −2.8%), and the N0

systematic error matrix V syst
uv . Here V syst

12 = V syst
22 = 0, and V syst

11 =
∑4

c=1(N
0 σrel

c )2,
where σrel

c are the relative errors on the four components NB+B− (1.1%), ε (3.3%),
B(D → π+π−π0) (3.8%) [18], and B(B− → D0K−) (5.9%) [20].

6.11 Polar coordinates

We parameterize z± with the polar coordinates

ρ± ≡ |z± − x0|, θ± ≡ tan−1

( �[z±]
�[z±] − x0

)
, (6.7)

where x0 is a coordinate transformation parameter,

x0 ≡ −
∫

� [α(s+, s−)α∗(s−, s+)] ε(s+, s−)ds+ds−

= 0.850. (6.8)

This parameterization is optimal due to the polar symmetry of n± = N0(1 + ρ±2 −
x0

2). Other parameterizations, such as (rB , γ, δ) or (�[z±],�[z±]), result in signifi-
cant nonlinear correlations between the fit variables, which cannot be parameterized
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with an error matrix, and bias the fit result. The polar coordinates enable a signifi-
cant improvement in sensitivity due to the χ2 term in Eq. (6.4), and are determined
from parameterized simulation to be unbiased. The step-3 fit yields

ρ− = 0.72 ± 0.11 ± 0.04, θ− = (173 ± 42 ± 2)◦,
ρ+ = 0.75 ± 0.11 ± 0.04, θ+ = (147 ± 23 ± 1)◦, (6.9)

where the first errors are statistical and the second are systematic, due only to V syst
11 .

The largest correlation coefficient is cρ−ρ+ = 14%, originating from V syst
11 . All others

are 1% or less. Contours of constant L values are shown in Fig. 6.1(d). Projections
of the data and the PDF onto s+ and s− are shown in Fig. 6.1(e-f).

6.12 Systematics

Additional systematic errors due to the analysis procedure are evaluated for the
signal branching fraction, charge asymmetry, ρ±, and θ±. The uncertainty in the
model used for α(s+, s−) is the largest source of error on the CP parameters: σmodel

ρ± =
0.03, σmodel

θ− = 14◦, σmodel
θ+

= 11◦. This error is evaluated by removing all but the
ρ(770), ρ(1450), f0(980), and nonresonant terms in α(s+, s−); adding an f ′

2(1525), an
ω, and a nonresonant P-wave contribution; varying the meson “radius” parameter
in Fr [43]; and propagating the errors from Table 6.1. Uncertainties due to the
masses and widths of the ρ(1700) and σ resonances are small by comparison. Other
errors are due to uncertainties on background yields that are fixed in the fits [42],
finite MC sample size, a possible reconstruction efficiency charge asymmetry, and
uncertainties in the background PDF shapes, evaluated by comparing MC and data
in signal-free sidebands of the variables MD, ΔE, and mES . We also evaluate errors
due to possible charge asymmetries in DKX and DKbgd, uncertainties in particle
identification and the efficiency functions, the finite s± measurement resolution, the
background PDF fB in the D∗ sample, D-flavor mistagging in the D∗ sample, and
correlations between the D flavor and the kaon charge in qqD events. These errors
add in quadrature to σsyst

ρ± = 0.05, σsyst
θ− = 19◦, σsyst

θ+
= 13◦, and are combined with

the systematic errors of Eqs. (6.9).

6.13 Validation

The analysis procedure is validated in several ways. Conducting the analysis on the
MC sample yields results consistent with the generated values. We carry out the step-
3 fit on a sample of 1800 ± 70 B− → D0

π+π−π0π
− events, obtaining the background

Dalitz plot distribution from the ΔE sideband. The fit yields ρ− = 0.815 ± 0.034,
θ− = (186 ± 7)◦, ρ+ = 0.854 ± 0.035, θ+ = (192 ± 7)◦, consistent with ρ± = x0,
θ± = 180◦, which corresponds to z± = 0. We verify the signal efficiency by measuring
the branching fraction B(B− → D0π−) with D0 → K−π+π0 and D0 → π+π−π0. We
compare the fit variable distributions of data and MC events in signal-free sidebands.
Good agreement is found in all cases.
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Figure 6.1: (Charge conjugation is implied for all plots.) (a,b) Projections of the
D∗+ → D0π+ data events and PDF onto the Dalitz plot variables s+ and s−. (c)
The 2-dimensional (s+, s−) distribution of the D∗+ → D0π+ data. (d) One-, two-
, and three-standard-deviation contours of L as a function of θ± vs. ρ±. The
solid (dashed) curves correspond to B+ (B−) results. The no-interference point
(ρ± = x0, θ± = 180◦) is marked with an ×. (e,f) Projection of the B− → Dπ+π−π0K−

candidate data onto s+ and s−.
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6.14 Results in terms of experimental parameters

In summary, using a sample of (324.0 ± 3.6) × 106 e+e− → BB events, we observe
170 ± 29 B± → Dπ+π−π0K± events. We calculate the branching fraction and decay
rate asymmetry

B(B± → Dπ+π−π0K±) = (4.6 ± 0.8 ± 0.4) × 10−6,

A(B± → Dπ+π−π0K±) = −0.02 ± 0.15 ± 0.03, (6.10)

and the CP -violation parameters

ρ− = 0.72 ± 0.11 ± 0.06, θ− = (173 ± 42 ± 19)◦,
ρ+ = 0.75 ± 0.11 ± 0.06, θ+ = (147 ± 23 ± 13)◦, (6.11)

where the first errors are statistical and the second are systematic. The parameters
ρ±, θ± are defined in Eq. (6.7). While the errors on θ± are too large for a meaningful
determination of γ with these results alone, our errors on ρ± are small enough to
make a non-negligible contribution to the overall precision of γ in a combination of
all measurements related to γ. In addition, we measure the magnitudes and phases
of the components of the amplitude of the decay D0 → π+π−π0 in the isobar model.

6.15 Constraints on physical parameters
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Figure 6.2: (a) Projection of the three-dimensional confidence level, 1 − α, onto rB

and γ. (b) confidence level, 1 − α, versus γ.

We use the frequentist approach outlined in Ref. [39] to extract confidence regions
of p = (rB , γ, δ), accounting for the dependence of the experimental errors on the
values of z± and for small non-Gaussian effects in the likelihood function. Two-
dimensional projections onto rB and γ of regions of one, two, and three standard
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deviations are shown in Fig. 6.1a. These regions are defined as containing the p
values with three-dimensional significance α smaller than 19.9%, 73.9%, and 97.1%,
respectively. Fig. 6.2b shows the projected γ-dependence of the confidence level,
1 − α. We find the one-standard-deviation regions

0.06 < rB < 0.78,
−30◦ < γ < 76◦,
−27◦ < δ < 78◦, (6.12)

including both statistical and systematic errors. Sensitivity to rB, γ, and δ arises
from both the Dalitz plot distribution and the signal branching fraction and asym-
metry.
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Chapter 7

Search for CP Violation in
Charm Decays

Using 385 fb−1 of e+e− collisions at the center-of-mass energies of around 10.6
GeV, we search for time-integrated CP violation in the Cabibbo-suppressed de-
cays D0/D0 → π−π+π0 and D0/D0 → K−K+π0 using both model-independent
and model-dependent methods. We find no evidence of CPV at the 1% level, as
expected from the Standard Model. Measured values of asymmetry in the ampli-
tudes of flavor states and CP eigenstates provide constraints on theories beyond the
Standard Model some of which predict CP violation in these days at the 1% level or
higher.

7.1 Motivation

CP violation (CPV ), manifested in an asymmetry between the decay rates of a
particle and its CP -conjugate anti-particle, requires at least two interfering quan-
tum mechanical amplitudes with different phases. The strong phase of each respects
CP symmetry while the weak phase changes sign under CP -conjugation. In the
Standard Model (SM), the relative weak phase is typically between “tree level” and
SM “penguin” amplitudes. The SM penguin amplitudes in charm decay are ∼ O
0.1%. Extensions of the SM introduce additional amplitudes which can produce CP
asymmetry [8] as large as 1% [9, 10, 11]. With current experimental sensitivities
(∼ O 1%), observation of CPV would provide a signal of new physics. The singly
Cabibbo-suppressed (SCS) D0 decays are uniquely sensitive to CPV in c → ud̄d, us̄s
transitions and probe contributions from supersymmetric gluonic penguins and mod-
els where up-sector quarks play a special role [9]. Such transitions can affect neither
the Cabibbo favored (c → sd̄u) nor the doubly Cabibbo-suppressed (c → ds̄u) de-
cays. Experimental searches [41, 45, 46, 47, 48, 49] are approaching this interesting
level of sensitivity.

Time-integrated CP asymmetries in D0 decays can have three components: di-
rect CPV in decays to specific states, indirect CPV in D0–D0 mixing, and indirect
CPV in interference of decays with and without mixing. Indirect CPV should be
universal, but direct CPV can be non-universal depending on the specifics of the
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new physics [9]. We search for time-integrated CPV in the three-body, SCS decays
D0/D0 → π−π+π0,K−K+π0 by comparing features of D0 amplitudes to those of
D0. These decays proceed via both CP eigenstates and flavor states, thus making it
possible to probe CPV in both types of amplitudes and in the interference between
them. Measuring interference effects in a Dalitz plot probes asymmetries in both
the magnitudes and phases of the amplitudes, not simply in the overall decay rates.
It is also insensitive to the experimental asymmetry associated with D0–D0 mistag-
ging. We adopt four approaches in our blind search for evidence of CPV, three of
which are model-independent. First, we quantify differences between the D0 and
D0 Dalitz plots bin-by-bin. Second, we look for differences in the angular moments of
the D0 and D0 amplitudes. Third, in a model-dependent approach, we parametrize
the amplitudes for D0 and D0 decays separately, and look for CP asymmetries in
the intermediate states. Finally, we look for the phase-space-integrated asymmetry
in the D0 and D0 decays.

7.2 Previous experimental studies

Table 7.1 summarizes experimental searches for CP asymmetries in various D0 decay
modes. Most of these studies looked for CP asymmetry in the decay rates of two-body
or quasi-two-body decays, and were therefore less sensitive to any asymmetry in the
weak phase. Experimentally such a phase can show up directly in the interference
effects observable in parts of the phase-space of three-body or higher multi-body
decays. Since three-body decays of D mesons proceed mostly via intermediate vector
and scalar resonances populating different parts of the phase space (Dalitz plot [19]),
it is likely that the asymmetry will be localized, and to have different magnitude and
sign in different parts of the Dalitz plot. When integrated over the entire phase-
space, these effects may partially, or completely, cancel each other out. Therefore,
one needs to disentangle the effects of the magnitude and the phase of the new
physics amplitude in the localized regions of the Dalitz plot. This requires a thorough
understanding and an established parameterization of the ordinary (SM) Dalitz plot
interference structure as well as knowledge of the branching fractions of the D0

decays to these modes.

Table 7.1: Experimental measurements of direct CP asymmetry in D0–D0 decays
(source: Ref. [20]).

Decay Mode Asymmetry
D0/D0 → K+K− 0.014 ± 0.010
D0/D0 → π+π− 0.013 ± 0.012
D0/D0 → π0π0 0.00 ± 0.05
D0/D0 → π−π+π0 0.01 ± 0.08
D0/D0 → K+K−π+π− -0.08 ± 0.07
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7.3 Why three-body decays ?

We search for direct CP asymmetry in the three body, singly Cabibbo-suppressed
decays to the self-conjugate final states:

D0/D0 → π−π+π0, (7.1)
D0/D0 → K−K+π0, (7.2)

by comparing features of D0 decays to those of D̄0. These decays proceed via both
CP eigenstates (e.g., D0/D0 → ρ0π0, D0/D0 → φ(1020)π0, D0/D0 → f0(980)π0

etc.) and non-CP eigenstates (e.g., D0/D0 → ρ±π∓, D0/D0 → K∗±K∓ etc.).
We choose these channels for several reasons:

• It is possible to isolate relatively large and very pure data samples (purity
∼98%).

• Small contributions to direct CP asymmetry from the SM processes in the
singly Cabibbo-suppressed decays make these modes particularly sensitive to
new physics as described by Grossman et al. [9]: “Singly Cabibbo-suppressed
D decays are now more sensitive to gluonic penguin amplitudes than are the
charmless B decays”.

• Decay modes with three-body final states are sensitive to phase information.

• The effect of charm-flavor mistagging is relatively small compared to two-body
decays because the Dalitz plot is self normalized and the mistagging is sym-
metric between D0 and D0.

• The technique of measuring interference effects in a Dalitz plot provides the
tool to investigate asymmetry directly in the amplitude, not simply in the
overall decay rate.

In the absence of direct CPV , the Dalitz plot amplitude A can be parameterized
using the isobar model as the sum of amplitudes Ar(s+, s−) of all intermediate
two-body resonances r with complex coefficients, i.e., A =

∑
r ar eiδr Ar(s+, s−).

Here s± are the squared invariant masses of the pair of final state particles with
charges (+, 0) and (-, 0), respectively. The quantities ar and δr are, respectively,
the magnitude and phase of the complex amplitude-coefficients; they determine the
relative contributions of the interfering resonances. To permit the possibility of direct
CPV , we allow a second process - not necessarily of SM origin - to contribute to
each of the amplitudes Ar, thus allowing the amplitude coefficients of D0 and D0 to
differ.

7.4 Event selection

We perform the present analysis on 385 fb−1 of e+e− collision data collected at and
around 10.58 GeV center-of-mass (CM) energy with the BABAR detector [12] at the
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PEP-II storage ring. Tracking of charged particles is provided by a silicon-strip de-
tector and a drift chamber operating in a 1.5-T magnetic field of a superconducting
solenoid. Particle types are identified using specific ionization energy loss measure-
ments in the two tracking devices and Cherenkov photons detected in a ring-imaging
detector [17]. We distinguish D0 from D0 by reconstructing the decays D∗+ → D0π+

and D∗− → D0π−.
The event-selection criteria are the same as those used in our measurement of the

branching ratio of the decays D0/D0 → π−π+π0, K−K+π0 [18]. In particular, we
require that the CM momentum of the D0/D0 candidate be greater than 2.77 GeV/c,
and that |mD∗± −mD0/D0 − 145.4| < 0.6 MeV/c2, where m refers to a reconstructed
invariant mass. In the signal region, ±1σ around the reconstructed D0 mass peak,
we find 82468 ± 321 D0/D0 → π−π+π0 and 11278 ± 110 D0/D0 → K−K+π0 signal
events, in both cases with a purity of about 98.1%.

7.5 Signal reconstruction efficiency

We determine the signal reconstruction efficiency of an event as a function of the
Dalitz plot variables using simulated D0/D0 → π−π+π0, K−K+π0 events from cc
decays, generated uniformly in the available phase space, and subjected to the same
selection procedure applied to the data. In the efficiency estimation we include a bin-
by-bin correction (in bins of momentum and polar angle of the particle tracks in the
event) for any difference in the particle identification rates in data and simulation.
We fit the efficiency with a cubic polynomial:

ε(s+, s−) = 1 + s1(s+ + s−)
+ s2(s2

+ + s2
−) + s3(s3

+ + s3
−)

+ s4(s−s2
+ + s+s2

−) + s5 (s+s−)
(7.3)

In addition to the relation (7.3), ε(s+, s−) ≡ 0 for all points outside the physical
boundary of the Dalitz plot. The result of the efficiency fit is listed in Table 7.5.

parameter D0 → π−π+π0 D0 → π−π+π0 D0 → K−K+π0 D0 → K−K+π0

s1 3.47 ± 0.38 3.59 ± 0.40 −0.60 ± 0.03 −0.57 ± 0.03
s2 -1.17 ± 0.30 -1.20 ± 0.28 0.31 ± 0.08 0.28 ± 0.09
s3 0.02 ± 0.09 -0.03 ± 0.08 −0.16 ± 0.06 −0.15 ± 0.06
s4 0.43 ± 0.21 0.37 ± 0.21 0.29 ± 0.15 0.23 ± 0.14
s5 -2.08 ± 0.54 -2.27 ± 0.51 0.33 ± 0.16 0.47 ± 0.20

Table 7.2: Fit results for the efficiency coefficients of Eq. (7.3) for the signal recon-
struction efficiency.
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7.6 Sensitivity study with simulated data

In this section, we report on the studies made using a model-independent approach
using approximately 675 fb−1 of D0/D0 → π−π+π0 and 440 fb−1 of D0/D0 →
K−K+π0 simulated events. No CP violation was generated in the production of the
simulated signal sample, but we did introduce such effects by weighting each event
by the ratio of the probability density functions with and without such CP violation.
We applied an “accept/reject” approach for preserving the sample to have events of
weight unity.

7.6.1 Asymmetry in two-dimensional Dalitz plot

A straightforward comparison of the efficiency-corrected two-dimensional scatter
Dalitz plots for D0 and D0 events is the most intuitive way to look for CP asym-
metry. We compare the number of D0 and D0 events observed in bins in the Dalitz
plot, and plot the two-dimensional normalized residual of the difference. For this
purpose, we divide the Dalitz plot in variables m2(h+π0, h−π0), where h = π or K,
into bins. We calculate normalized residual,

Δ = (nD0 − R · nD0)/
√

σ2
nD0

+ R2 · σ2
nD0

,

in each bin, where n denotes the number of events and σ denotes statistical uncer-
tainty. The quantity R is the ratio of the total number of D0 to D0 events. The
factor R is introduced since the total number of events in the D0 and D0 Dalitz
plots may differ because of production crosssection asymmetry and/or asymmetry
in the branching ratio. In Figs. 7.1, we show the normalized residuals for D0 and
D0 Dalitz plots in simulated data. In Fig. 7.2 we show these for a 5% change in
amplitude and 5◦ difference in phase in the D0 decays relative to the corresponding
decays of D0’s. This high level of CP asymmetry is generated in order to clearly see
the precise location(s) of asymmetry in the phase-space of the decays.
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Figure 7.1: The difference between D0 and D0 Dalitz plot distributions, in units of
σ, for decays to the π−π+π0 (left) and K−K+π0 (right) final states. The amplitudes
and phases for D0 and D0 events are equal. The size of the simulated sample used
here is roughly 25 times larger than our data sample.
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Figure 7.2: Difference between D0 and D0 Dalitz plot distributions, in units of σ, for
the π−π+π0 (top) and K−K+π0 (bottom) decays. In the top left (right) plot D0 →
ρ0π0 (D0 → ρ−π+) amplitude has been changed by +5%, and its phase has been
changed by +5◦. In the bottom left (right) plot D0 → φπ0 (D0 → K∗(892)−K+)
amplitude has been changed by +5%, and its phase has been changed by +5◦. The
size of the simulated sample used here is ∼ 25 times larger than our data sample.
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7.6.2 Asymmetry in distribution of angular moments

The distribution of angular moments provides a very useful and important tool to
investigate CP asymmetry. It provides a model-independent framework to analyze
the Dalitz plot structure without depending on the details of the parametrization. On
the flip side, it is not easy to correlate the observed asymmetry in angular moments
to the asymmetry in one particular intermediate resonant state.

In order to study any difference between the D0 and D0 decay amplitudes, we
plot the “normalized” (in number of σ) difference in their moments,

ΔPl = (Pl − R · Pl)/
√

σ2
Pl

+ R2 · σ2
Pl

,

up to order l = 7 (i.e., the first 8 moments). The values of ΔPl are expected to
approach zero for larger l, so the value of χ2 obtained will depend on the chosen
limit of l. From studies made with simulated data, we observe that effects of CP
violation show up predominantly in moments up to l = 7, and that little further
information is obtained above that value. We therefore limit our study to this range
of moments only. We show in Fig. 7.3 the difference, ΔPl, for the π−π+π0 simulated
events with no CP violation. As expected, the results appear to be consistent with
zero. To illustrate the statistical sensitivity to CP violation effects, we made similar
plots for events weighted to generate 5% change in amplitude and 5◦ difference in
phase for D0 → ρ+π− (D0 → K∗+K−) or D0 → ρ0π0 (D0 → φπ0) relative to the
corresponding decays of D0’s. These are shown in Figs. 7.4 and 7.5 for π−π+π0 and
K−K+π0) decays respectively.

As observed, both model-independent methods - direct comparison of Dalitz
plot distributions, and differences in moments (up to order l = 7) - clearly show
CP violation effects if sufficiently large. In the former method, the value of χ2/ν,
evaluated from a binned Dalitz plot such as that in Figs. 7.1 and 7.2, serves as a
figure of merit and objective test for the presence of CP asymmetry.

7.6.3 χ2/ν from Dalitz plot distribution

We compare the number of D0 and D0 events observed in bins in the Dalitz plot,
and plot the two-dimensional normalized residual of the difference. For this purpose,
we divide the Dalitz plot in variables m2(h+π0, h−π0), where h = π or K, into bins
of size 0.05 (GeV/c2)2 × 0.05 (GeV/c2)2. The normalized residuals are calculated as

Δ =
(nD0 − R · nD0)√
σ2

nD0
+ R2 · σ2

nD0

, (7.4)

where nD0 is the number of D0 events, nD0 is the number of D0 events in each bin
and σ is the uncertainty in the numbers. The χ2 of the difference in the two Dalitz
plots is given by

χ2 =
∑
bins

Δ2. (7.5)

Values of χ2 per degrees of freedom (number of non-empty bins - 1) for various cases
of new physics scenarios are quoted in Table 7.3.
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Figure 7.3: The difference in π−π+ channel Legendre polynomial moments between
D0 and D0 decays to the π−π+π0 final state (in number of σ’s). The top two rows
correspond to the case of no asymmetry. In the bottom two rows, the D0 → ρ0π0

amplitude has been changed by +5%, and its phase has been changed by +5◦. The
size of the simulated sample roughly corresponds to the size of our data sample.
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Figure 7.4: The difference in π+π0 channel Legendre polynomial moments between
D0 and D0 decays to the π−π+π0 final state (in number of σ’s). The top two rows
correspond to the case of no asymmetry. In the bottom two rows, the D0 → ρ−π+

amplitude has been changed by +5%, and its phase has been changed by +5◦. The
size of the simulated sample roughly corresponds to the size of our data sample.
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Figure 7.5: The difference in K−K+ channel Legendre polynomial moments between
D0 and D0 decays to the K−K+π0 final state (in number of σ’s). The top two rows
correspond to the case of no asymmetry. In the bottom two rows, the D0 → φπ0

amplitude has been changed by +5%, and its phase has been changed by +5◦. The
size of the simulated sample roughly corresponds to the size of our data sample.
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Figure 7.6: The difference in K+π0 channel Legendre polynomial moments between
D0 and D0 decays to the K−K+π0 final state (in number of σ’s). The top two
rows correspond to the case of no asymmetry. In the bottom two rows, the D0 →
K∗(892)−K+ amplitude has been changed by -5%, and its phase has been changed
by -5◦. The size of the simulated sample corresponds to the size of our data sample.
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Table 7.3: Model-independent χ2/ν values obtained from the difference in Dalitz
plots of D0 and D0 events for different levels of asymmetry in one of the intermediate
states of the simulated D0 → π−π+π0 (ν = 1429, size 675 fb−1) and D0 → K−K+π0

(ν = 726, size 440 fb−1) samples.

Asymmetry in state Δar/ar (%) Δφr (◦) χ2/ν

D0 → ρ+π− 5 5 1.57
2 2 1.34
1 1 1.12
0 0 1.01

D0 → ρ0π0 5 5 1.41
2 2 1.19
1 1 1.08
0 0 1.01

D0 → K∗(892)+K− 5 5 1.19
2 2 1.08
1 1 1.01
0 0 0.99

D0 → φ(1020)π0 5 5 1.27
2 2 1.10
1 1 1.04
0 0 0.99

7.6.4 χ2/ν from angular moment distribution

We then calculate a combined χ2/ν (where ν = 320) in Legendre polynomial mo-
ments for the D0 and D0 samples, taking correlation among moment distributions
into account.

χ2 =
∑
bins

∑
i

∑
j

Xi ρij Xj, (7.6)

where

Xi =
(P D0

i − R · PD0

i )√
σ2

P D0
i

+ R2 · σ2
P D0

i

, (7.7)

and ρij is the correlation coefficient between the difference in pair of moments of
orders i and j.

7.6.5 Correlation among the angular moments

The correlation coefficient, ρij , between the difference in pair of moments of orders
i and j is given by

ρij =
〈XiXj〉 − 〈Xi〉 〈Xj〉√〈

X2
i

〉 − 〈Xi〉2
√〈

X2
j

〉
− 〈Xj〉2

. (7.8)
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In order to determine 〈Xi〉,
〈
X2

i

〉
, and 〈XiXj〉, we generate several hundred

samples (each of the size of our data sample) of simulated D0 and D0 events with
no asymmetry in any of the amplitudes and phases. We calculate the correlation
coefficients in each of the relevant two-body invariant mass bins.

Values of χ2/ν, where ν = 320, for various new physics scenarios are quoted in
Tables 7.4–7.5. The distributions of χ2/ν for D0/D0 → π−π+π0 and D0/D0 →
K−K+π0 obtained from simulation are shown in Fig. 7.7 and Fig. 7.9.

Table 7.4: Model-independent χ2/ν (where ν = 320) values obtained from the dif-
ference in Legendre polynomial moments of D0 and D0 events for different levels
of asymmetry in one of the amplitudes (ρ+ or ρ0) of the simulated D0 → π−π+π0

sample of size 675 fb−1. The amplitude ratios are in percent and the angles are in
degrees.

Δar
ar

Δφr (χ2/ν)ρ+ (χ2/ν)ρ0
Δar
ar

Δφr (χ2/ν)ρ+ (χ2/ν)ρ0

-5 -5 2.45 2.12 +5 -5 1.73 1.89
-2 1.89 1.86 -2 1.59 1.70
-1 1.74 1.84 -1 1.55 1.62
0 1.52 1.65 0 1.52 1.51

+1 1.70 1.69 +1 1.79 1.67
+2 1.79 1.76 +2 2.09 1.82
+5 2.09 1.96 +5 3.15 2.13

-2 -5 2.08 2.11 +2 -5 1.80 1.92
-2 1.44 1.60 -2 1.60 1.68
-1 1.33 1.52 -1 1.47 1.47
0 1.14 1.46 0 1.43 1.33

+1 1.32 1.48 +1 1.62 1.40
+2 1.52 1.61 +2 1.85 1.61
+5 1.88 1.68 +5 2.26 1.80

-1 -5 1.87 1.85 +1 -5 1.95 1.90
-2 1.53 1.60 -2 1.74 1.73
-1 1.49 1.48 -1 1.70 1.61
0 1.44 1.12 0 1.38 1.39

+1 1.56 1.51 +1 1.54 1.47
+2 1.74 1.79 +2 1.64 1.60
+5 2.03 1.90 +5 1.80 2.10

0 -5 2.05 1.81 0 +5 2.04 1.84
-2 1.51 1.55 +2 1.44 1.58
-1 1.28 1.29 +1 1.24 1.25
0 1.03 1.03

7.6.6 Model dependent analysis on simulated data

We the simulated data sample using exactly the same procedure and phase con-
ventions as in the previous chapters. The results of the fit, for various cases of
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Table 7.5: Model-independent χ2/ν (where ν = 160) values obtained from the dif-
ference in Legendre polynomial moments of D0 and D0 events for different levels
of asymmetry in one of the amplitudes (K∗(892)+ or φ(1020)) of the simulated
D0 → K−K+π0 sample of size 440 fb−1. The amplitude ratios are in percent and
the angles are in degrees.

Δar
ar

Δφr (χ2/ν)K∗ (χ2/ν)φ
Δar
ar

Δφr (χ2/ν)K∗ (χ2/ν)φ
-5 -5 1.94 1.86 +5 -5 1.86 1.82

-2 1.80 1.72 -2 1.80 1.76
-1 1.74 1.65 -1 1.72 1.64
0 1.67 1.54 0 1.49 1.46

+1 1.78 1.58 +1 1.64 1.64
+2 1.82 1.63 +2 1.72 1.88
+5 2.07 1.85 +5 1.87 1.99

-2 -5 1.81 1.81 +2 -5 1.88 1.72
-2 1.72 1.70 -2 1.74 1.59
-1 1.63 1.64 -1 1.66 1.43
0 1.49 1.49 0 1.32 1.31

+1 1.56 1.61 +1 1.46 1.42
+2 1.70 1.75 +2 1.70 1.44
+5 1.74 1.82 +5 1.82 1.53

-1 -5 1.74 1.60 +1 -5 1.79 1.64
-2 1.69 1.52 -2 1.67 1.51
-1 1.43 1.47 -1 1.54 1.21
0 1.24 1.35 0 1.22 1.17

+1 1.29 1.49 +1 1.41 1.24
+2 1.42 1.56 +2 1.63 1.30
+5 1.62 1.63 +5 1.72 1.58

0 -5 1.54 1.48 0 +5 1.40 1.42
-2 1.51 1.31 +2 1.24 1.28
-1 1.34 1.17 +1 1.14 1.13
0 1.02 1.02
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Figure 7.7: χ2/ν for difference in angular moments in case of no CP asymmetry
obtained from simulation: π+π− channel of D → π−π+π0 (left), K+K− channel of
D → K−K+π0 (right).
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Figure 7.8: χ2/ν for difference in angular moments in case of no CP asymmetry
obtained from simulation: π+π0 channel of D → π−π+π0 (left), K+π0 channel of
D → K−K+π0 (right).
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Figure 7.9: χ2/ν for difference in Dalitz plot structure in case of no CP asymmetry
obtained from simulation: D → π−π+π0 (left), D → K−K+π0 (right).
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asymmetry are listed in the Tables 7.6-7.9. It is clear from these results that we
are able to get generated parameters back from the fit for all studied cases of CP
violation effects. We also observe that we have statistically significant sensitivity in
determining the phase-shift and amplitude variation in the dominant decay modes
of the D0/D0 → π−π+π0 decay if such changes are more than 1% in amplitude or
more than 1◦ in phase. As expected, the sensitivity for detecting either phase-shift or
amplitude variation in the D0/D0 → K−K+π0 decay is substantially smaller than
that in D0 → π−π+π0. However, if the asymmetry is large (∼ 5% or 5◦) in any
dominant decay mode, then we should be able to observe it with good sensitivity
even in the D0/D0 → K−K+π0 decay.

Table 7.6: Model-dependent asymmetry values obtained from the likelihood fit for
different levels of generated asymmetry in the D0 → ρ0π0 state in the Monte Carlo
D0 → π−π+π0 sample of size 675 fb−1. The amplitude ratios are in percent and the
angles are in degrees.

Gen Fit Gen Fit
Δar
ar

Δφr
Δar
ar

Δφr
Δar
ar

Δφr
Δar
ar

Δφr

-5 -5 -5.97±0.56 -4.74±0.39 +5 -5 +5.53±0.62 -5.36±0.47
-2 -4.84±0.58 -1.92±0.38 -2 +4.71±0.65 -2.65±0.41
-1 -5.60±0.58 -1.36±0.42 -1 +5.20±0.56 -0.86±0.40
0 -5.75±0.60 +0.22±0.41 0 +4.40±0.58 -0.23±0.40

+1 -4.65±0.60 +0.79±0.43 +1 +5.08±0.66 +1.22±0.48
+2 -6.08±0.58 +2.44±0.45 +2 +4.57±0.62 +1.89±0.42
+5 -4.83±0.61 +4.32±0.42 +5 +4.15±0.63 +4.52±0.44

-2 -5 -1.65±0.58 -5.86±0.46 +2 -5 +1.45±0.58 -4.45±0.45
-2 -2.25±0.60 -2.69±0.41 -2 +1.66±0.61 -2.81±0.44
-1 -3.23±0.61 -1.03±0.44 -1 +2.47±0.61 -1.51±0.42
0 -2.08±0.60 -0.65±0.42 0 +2.04±0.58 -0.38±0.45

+1 -2.59±0.63 +1.38±0.43 +1 +1.97±0.61 +0.41±0.46
+2 -1.67±0.61 +1.64±0.43 +2 +1.51±0.60 +1.57±0.42
+5 -3.25±0.63 +4.69±0.42 +5 +2.51±0.64 +5.91±0.48

-1 -5 -1.62±0.54 -4.26±0.44 +1 -5 +0.14±0.60 -4.80±0.42
-2 -1.26±0.60 -2.18±0.46 -2 +1.09±0.61 -1.74±0.43
-1 -0.87±0.63 +0.04±0.39 -1 +1.31±0.62 -0.44±0.45
0 -1.05±0.54 +0.31±0.40 0 +0.92±0.63 +0.64±0.44

+1 -1.58±0.54 +0.63±0.47 +1 +0.34±0.61 +1.83±0.44
+2 -0.72±0.58 +1.65±0.42 +2 +1.27±0.61 +2.64±0.46
+5 -1.10±0.58 +4.62±0.43 +5 +0.60±0.65 +5.55±0.42

0 -5 -0.22±0.56 -6.11±0.45 0 +5 -0.49±0.63 +4.08±0.44
-2 -0.81±0.61 -2.85±0.47 +2 +0.89±0.62 +1.69±0.43
-1 +0.57±0.63 -0.82±0.48 +1 +0.34±0.58 +1.15±0.43
0 +0.14±0.60 +0.29±0.45
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Table 7.7: Model-dependent asymmetry values obtained from the likelihood fit for
different levels of generated asymmetry in the D0 → ρ+π− state in the Monte Carlo
D0 → π−π+π0 sample of size 675 fb−1. The amplitude ratios are in percent and the
angles are in degrees.

Gen Fit Gen Fit
Δar
ar

Δφr
Δar
ar

Δφr
Δar
ar

Δφr
Δar
ar

Δφr

-5 -5 -4.27±0.67 -4.91±0.28 +5 -5 +5.30±0.67 -4.61±0.34
-2 -4.45±0.68 -1.40±0.29 -2 +5.27±0.69 -1.74±0.35
-1 -5.10±0.61 -0.66±0.29 -1 +4.48±0.66 -0.44±0.38
0 -4.61±0.68 -0.10±0.31 0 +4.31±0.68 +0.33±0.37

+1 -5.88±0.64 +1.49±0.33 +1 +4.37±0.69 +1.28±0.39
+2 -5.07±0.59 +2.60±0.29 +2 +5.64±0.61 +2.64±0.38
+5 -4.52±0.65 +5.69±0.29 +5 +5.02±0.64 +5.58±0.32

-2 -5 -2.10±0.68 -4.96±0.32 +2 -5 +1.06±0.63 -4.81±0.32
-2 -1.12±0.70 -1.48±0.34 -2 +2.07±0.66 -1.57±0.34
-1 -2.00±0.61 -0.24±0.35 -1 +1.68±0.65 -0.75±0.34
0 -1.83±0.60 -0.44±0.29 0 +2.18±0.65 -0.54±0.33

+1 -1.33±0.61 +1.21±0.31 +1 +2.52±0.67 +1.42±0.34
+2 -1.94±0.65 +2.40±0.32 +2 +2.19±0.67 +2.41±0.34
+5 -2.45±0.66 +5.17±0.32 +5 +2.10±0.60 +5.42±0.37

-1 -5 -0.80±0.69 -4.40±0.38 +1 -5 +1.28±0.67 -4.49±0.39
-2 -0.45±0.62 -2.01±0.31 -2 +1.50±0.60 -1.86±0.31
-1 -1.26±0.63 -0.62±0.30 -1 +0.90±0.69 -0.80±0.30
0 -0.93±0.65 +0.10±0.31 0 +1.72±0.63 +0.32±0.33

+1 -1.08±0.67 +1.19±0.39 +1 +1.74±0.63 +1.24±0.34
+2 -0.98±0.64 +2.18±0.31 +2 +1.66±0.64 +1.95±0.33
+5 -1.17±0.69 +5.53±0.34 +5 +1.10±0.67 +5.72±0.35

0 -5 -0.96±0.65 -5.40±0.30 0 +5 +0.44±0.63 +5.62±0.36
-2 +0.29±0.64 -1.80±0.32 +2 +0.81±0.62 +2.23±0.34
-1 +0.45±0.67 -1.13±0.30 +1 -0.26±0.69 +1.63±0.30
0 +0.74±0.68 -0.16±0.32
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Table 7.8: Model-dependent asymmetry values obtained from the likelihood fit for
different levels of generated asymmetry in the D0 → φ(1020)π0 state in the Monte
Carlo D0 → K−K+π0 sample of size 440 fb−1. The amplitude ratios are in percent
and the angles are in degrees.

Gen Fit Gen Fit
Δar
ar

Δφr
Δar
ar

Δφr
Δar
ar

Δφr
Δar
ar

Δφr

-5 -5 -3.79±1.05 -5.70±1.82 +5 -5 +6.84±1.13 -5.94±1.68
-2 -5.05±1.06 -1.45±1.75 -2 +5.48±1.12 -3.72±1.70
-1 -6.85±1.05 -1.62±1.71 -1 +4.19±1.09 -2.30±1.71
0 -4.18±1.08 -0.79±1.74 0 +5.75±1.10 +0.68±1.68

+1 -7.10±1.11 +1.94±1.77 +1 +3.88±1.14 +1.59±1.67
+2 -5.32±1.06 +3.61±1.76 +2 +4.44±1.05 +3.07±1.69
+5 -3.85±1.07 +5.88±1.78 +5 +4.89±1.08 +4.44±1.70

-2 -5 -2.86±1.06 -6.87±1.74 +2 -5 +2.14±1.04 -4.52±1.76
-2 -3.32±1.05 -3.48±1.73 -2 +1.88±1.05 -3.36±1.65
-1 -1.39±1.05 +0.62±1.74 -1 +1.27±1.12 -0.86±1.73
0 -1.78±1.04 -0.21±1.68 0 +2.96±1.07 -0.11±1.75

+1 -2.14±1.07 +0.24±1.70 +1 +2.38±1.10 +0.09±1.72
+2 -1.65±1.10 +1.11±1.73 +2 +1.44±1.09 +2.88±1.70
+5 -2.22±1.08 +3.31±1.74 +5 +1.78±1.06 +6.73±1.71

-1 -5 +0.20±1.11 -4.08±1.72 +1 -5 +0.43±1.04 -5.75±1.75
-2 -1.64±1.09 -1.31±1.76 -2 +0.87±1.07 -1.96±1.71
-1 -0.76±1.09 -1.22±1.73 -1 +1.59±1.05 -1.49±1.67
0 -0.49±1.10 -0.01±1.72 0 +1.88±1.06 -0.37±1.71

+1 -2.01±1.08 +1.85±1.74 +1 +0.29±1.04 +0.17±1.71
+2 -1.24±1.07 +2.16±1.70 +2 +0.95±1.05 +1.24±1.71
+5 -0.91±1.08 +4.49±1.73 +5 +1.95±1.09 +4.11±1.68

0 -5 +0.32±1.06 -4.37±1.74 0 +5 +0.18±1.05 +3.99±1.74
-2 -0.81±1.04 -3.16±1.75 +2 -0.02±1.06 +2.06±1.72
-1 -0.25±1.05 -2.03±1.71 +1 +0.76±1.07 +0.15±1.71
0 +0.54±1.07 -0.82±1.69
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Table 7.9: Model-dependent asymmetry values obtained from the likelihood fit for
different levels of generated asymmetry in the D0 → K∗(892)+K− state in the Monte
Carlo D0 → K−K+π0 sample of size 440 fb−1. The amplitude ratios are in percent
and the angles are in degrees.

Gen Fit Gen Fit
Δar
ar

Δφr
Δar
ar

Δφr
Δar
ar

Δφr
Δar
ar

Δφr

-5 -5 -4.81±0.82 -5.28±0.86 +5 -5 +4.47±0.88 -5.49±0.85
-2 -3.79±0.84 -1.77±0.81 -2 +7.16±0.91 -2.43±0.89
-1 -5.26±0.89 -0.35±0.85 -1 +5.31±0.89 -1.84±0.86
0 -5.25±0.81 -0.21±0.80 0 +4.82±0.90 -1.16±0.87

+1 -4.68±0.85 1.07±0.87 +1 +6.09±0.90 1.75±0.85
+2 -4.16±0.83 1.79±0.86 +2 +5.57±0.89 1.75±0.87
+5 -6.64±0.84 4.15±0.87 +5 +5.82±0.89 4.63±0.89

-2 -5 -2.48±0.82 -5.66±0.86 +2 -5 +3.60±0.87 -5.04±0.85
-2 -0.11±0.83 -2.32±0.88 -2 +2.83±0.88 -0.77±0.81
-1 -2.39±0.88 -2.10±0.86 -1 +0.69±0.86 -2.30±0.84
0 -1.70±0.80 0.77±0.89 0 +3.51±0.83 0.36±0.88

+1 -0.67±0.88 0.77±0.87 +1 +0.64±0.85 1.33±0.82
+2 -2.61±0.87 1.63±0.82 +2 +3.17±0.80 2.91±0.87
+5 -3.05±0.84 5.52±0.85 +5 +2.73±0.83 4.95±0.86

-1 -5 -0.47±0.81 -5.84±0.89 +1 -5 +0.73±0.87 -6.23±0.87
-2 -1.97±0.88 -2.29±0.88 -2 +2.89±0.83 -2.13±0.84
-1 -2.01±0.85 -2.14±0.88 -1 +0.81±0.88 -1.96±0.86
0 -1.45±0.88 0.60±0.87 0 +0.02±0.80 -0.67±0.88

+1 +0.24±0.85 2.15±0.88 +1 +1.27±0.80 1.16±0.87
+2 -2.23±0.84 0.02±0.86 +2 +0.17±0.89 2.73±0.86
+5 -1.48±0.88 6.78±0.88 +5 +1.67±0.81 4.09±0.87

0 -5 +1.00±0.86 -4.73±0.82 0 +5 -0.91±0.84 3.23±0.89
-2 +0.52±0.83 -2.91±0.87 +2 +1.19±0.81 2.05±0.86
-1 -0.66±0.86 0.47±0.87 +1 -1.73±0.85 2.29±0.85
0 -0.84±0.81 0.37±0.86
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7.7 Systematic uncertainty in simulated data

Though eventually the systematic uncertainty in our measurements will depend on
the measured values of asymmetry parameters from data, we have made several
preliminary studies to quantify approximately the level of systematic uncertainty we
expect.

7.7.1 Experimental and model-dependent systematics

Systematic uncertainties in quantities describing CP asymmetry arise from experi-
mental effects, and also (in case of the model-dependent analysis) from uncertainties
in the nature of the models used to describe the Dalitz plot structure. We determine
these separately and add them in quadrature. In both cases, we assign the maxi-
mum deviation in the observed quantities (i.e., Δar/ar, Δφr, and χ2/ν) from the
central value as a systematic uncertainty, taking correlations among fit-parameters
(or moment distributions in case of the model-independent analysis) into account.

We characterize the following types of uncertainties as model dependent:

• uncertainties due to mass-width values of the resonances and damping factor
used to describe the Dalitz plot amplitudes. We estimate this from the spread
in amplitudes when either of the resonance parameters are changed by one
standard deviation (σ).

• uncertainties in lineshape of the intermediate states, e.g., Kπ S-wave and
f0/a0(980). We estimate this uncertainty by trying alternative lineshapes.

• in case of D0/D0 → K−K+π0, there are two models to describe the Standard
Model Dalitz plot distribution. We use Model-I for our analysis, and estimate
the systematic uncertainty due to this by using Model-II instead.

Similarly, we estimate the experimental uncertainty from the variation in results
when

• either the signal efficiency parameters for D0 and D0 events are varied by 1σ
in each case, or

• the background shape is varied.

• We also repeat the measurements using the same efficiency function and back-
ground shape for both D0 and D0 events and take the shift in central values
as another experimental systematic uncertainty.

• Another experimental systematic uncertainty due to D0/D0 mistagging in our
data sample is described below.

7.7.2 Systematic uncertainty from D0/D0 mistagging

Unlike in two-body (D0 → K−K+, π−π+) analysis, here we are trying to measure
asymmetry in the underlying amplitudes and phases of the interfering intermediate
resonances with almost equal numbers of D0 and D0 events. Now, some of the D0
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events may be misidentified as D0 or vice versa which will change the Dalitz plot
interference structure somewhat. But this change is rather small and systematic
uncertainty due to misidentification is a second-order effect. Below we tabulate the
results of our studies of this systematic effect using simulation for different levels of
mistagging.

Table 7.10: Observed asymmetry in amplitude and phase and the χ2/dof values
for different levels of cross-feed. In the model-dependent fit, the amplitude and
phase coefficients are determined using D0 → ρ+π− (for D0 → π−π+π0) and D0 →
K∗+K− (for D0 → K−K+π0) decay.

Cross-feed (%) Δaρ0/aρ0 (%) Δφρ0 (◦) χ2/ν Δaφ/aφ (%) Δφφ (◦) χ2/ν

0.1 0.02 0.03 0.99 0.01 0.05 1.02
0.2 0.16 0.12 1.03 0.05 0.13 1.01
0.4 0.21 0.19 1.04 0.12 0.45 1.04
0.5 0.28 0.32 1.07 0.15 0.47 1.05
0.8 0.36 0.84 1.10 0.24 1.21 1.11
1.0 0.44 1.12 1.09 0.41 1.68 1.10

7.8 Validation study using simulation treated as data

In order to validate the methodology proposed in this document for establishing CP
violation and for extracting the corresponding asymmetry parameters, we perform
the whole analysis on simulated event sample of the size of our present dataset. We
perform this validation study for two extreme cases: (a) no CP violation, and (b) 5%
CP violation. The statistical uncertainties in the χ2/ν values for model-independent
analysis have been taken from Fig. 7.7 (for angular moments distributions) and
Fig. 7.9 (for Dalitz plot distributions). The expectations for the null hypothesis (no
CP violation) in the two model-independent analysis methods are also summarized
in Table 7.11.

Mode χ2/ν: Dalitz plot χ2/ν: h+h− moments χ2/ν: h+π0 moments
π−π+π0 1.012 ± 0.018 1.032 ± 0.026 1.027 ± 0.021
K−K+π0 1.021 ± 0.036 1.019 ± 0.033 1.017 ± 0.028

Table 7.11: The values and spread of χ2/ν for the null hypothesis (no CP violation)
in the two model-independent analysis methods. These were obtained using 500
simulation experiments. See Fig. 7.7 (for angular moments distributions) and Fig. 7.9
(for Dalitz plot distributions) for further details.

7.8.1 Analysis with CP -symmetric D → π−π+π0 simulated events

We perform the analysis on a simulated data sample in which both D0 and D0

events have exactly the same amplitudes and phases. The size of the sample is
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roughly equal to the size of our present dataset. The results of the analysis and con-
fidence levels (CL) for for consistency with no CP asymmetry are summarized below.

χ2/ν (Dalitz) = 1.051 ± 0.018 (stat.) ± 0.011 (syst.) [ν = 1429]
CL for consistency with no CP violation = 1

2 . Erfc
(

1.051−1.012√
2×0.018

)
= 1.51%.

χ2/ν (π+π− moments) = 1.069 ± 0.026 (stat.) ± 0.015 (syst.) [ν = 320]
CL for consistency with no CP violation = 1

2 . Erfc
(

1.069−1.032√
2×0.026

)
= 7.74%.

Δaρ0

aρ0
= 0.0027 ± 0.0089 (stat.) ± 0.0036 (syst.)

Δφρ0 = 0.28◦ ± 0.72◦ (stat.) ± 0.35◦ (syst.)
Δaρ+

aρ+
= 0.0018 ± 0.0047 (stat.) ± 0.0019 (syst.)

Δφρ+ = 0.23◦ ± 0.43◦ (stat.) ± 0.20◦ (syst.)

7.8.2 Analysis with asymmetric D → π−π+π0 simulated events

We perform the analysis on a simulated data sample in which D0 → ρ0π0 have 5%
larger amplitude and 5◦ larger phase compared to those of D0 → ρ0π0. The size of
this sample is roughly equal to the size of our present dataset. The results of the
analysis are summarized below.

χ2/ν (Dalitz) = 1.389 ± 0.018 (stat.) ± 0.016 (syst.) [ν = 1429]
CL for consistency with no CP violation = 1

2 . Erfc
(

1.389−1.012√
2×0.018

)
= 0.00%.

χ2/ν (π+π− moments) = 1.654 ± 0.026 (stat.) ± 0.021 (syst.) [ν = 320]
CL for consistency with no CP violation = 1

2 . Erfc
(

1.654−1.032√
2×0.026

)
= 0.00%.

Δaρ0

aρ0
= 0.0478 ± 0.0084 (stat.) ± 0.0045 (syst.)

Δφρ0 = 5.16◦ ± 0.77◦ (stat.) ± 0.40◦ (syst.)
Δaρ+

aρ+
= 0.0024 ± 0.0044 (stat.) ± 0.0023 (syst.)

Δφρ+ = 0.21◦ ± 0.40◦ (stat.) ± 0.22◦ (syst.)

7.8.3 Analysis with CP -symmetric D → K−K+π0 simulated events

We perform the analysis on a simulated data sample in which both D0 and D0 events
have exactly the same amplitudes and phases. The size of the sample is roughly equal
to the size of our present dataset. The results of the analysis are summarized below.

χ2/ν (Dalitz) = 1.036 ± 0.036 (stat.) ± 0.043 (syst.) [ν = 726]
CL for consistency with no CP violation = 1

2 . Erfc
(

1.036−1.021√
2×0.036

)
= 33.85%.

χ2/ν (K+K− moments) = 1.045 ± 0.033 (stat.) ± 0.092 (syst.) [ν = 160]
CL for consistency with no CP violation = 1

2 . Erfc
(

1.045−1.019√
2×0.033

)
= 21.54%.
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Δaφ

aφ
= 0.0038 ± 0.0114 (stat.) ± 0.0081 (syst.)

Δφφ = 0.76◦ ± 1.20◦ (stat.) ± 1.22◦ (syst.)
ΔaK∗+

aρ+
= -0.0082 ± 0.0084 (stat.) ± 0.0047 (syst.)

ΔφK∗+ = 0.33◦ ± 0.87◦ (stat.) ± 0.36◦ (syst.)

7.8.4 Analysis with asymmetric D → K−K+π0 simulated events

We perform the analysis on a simulated data sample in which D0 → φ(1020)π0 have
5% larger amplitude and 5◦ larger phase compared to those of D0 → φ(1020)π0. The
size of the sample is roughly equal to the size of our present dataset. The results of
the analysis are summarized below.

χ2/ν (Dalitz) = 1.293 ± 0.036 (stat.) ± 0.059 (syst.) [ν = 726]
CL for consistency with no CP violation = 1

2 . Erfc
(

1.293−1.021√
2×0.036

)
= 0.00%.

χ2/ν (K+K− moments) = 1.406 ± 0.033 (stat.) ± 0.124 (syst.) [ν = 160]
CL for consistency with no CP violation = 1

2 . Erfc
(

1.406−1.019√
2×0.033

)
= 0.00%.

Δaφ

aφ
= 0.0641 ± 0.0116 (stat.) ± 0.0087 (syst.)

Δφφ = 3.98◦ ± 1.73◦ (stat.) ± 1.28◦ (syst.)
ΔaK∗+
aK∗+ = -0.0074 ± 0.0082 (stat.) ± 0.0038 (syst.)

ΔφK∗+ = 0.45◦ ± 0.82◦ (stat.) ± 0.44◦ (syst.)

7.8.5 Validation of the model-independent method on data

Since we obtained the correlation between the angular moments distributions using
simulation, we perform a validation study of the method on real data and describe
the results here. Being still blind to the charm-flavor of the D0 candidate, we divide
the D0/D0 → π−π+π0 data sample into two categories by randomly assigning the
events. We repeat this procedure 500 times. Since there is an almost infinite number
of ways to to randomly assign ∼ 100000 events into two categories of roughly equal
size, the 500 samples obtained by this procedure are quasi-independent.

Now, we perform the model-independent (moments method) analysis on all these
samples and plot the resulting χ2/ν distributions. These are shown in Fig. 7.10. The
results obtained are consistent with the no CP -violation hypothesis.

7.8.6 Validation on full available simulation sample

Till now, we have performed the validation study of our methods to measure CP
asymmetry using simulated events treating them as data. In order to obtain CP -
violating sample from a CP -symmetric simulation sample, we had to throw away lots
of events. So, to keep the procedure simple, we used exactly the same size datasets
for both CP -symmetric and CP -violating samples in the validation process (this size
being same as the size of our real data).
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Figure 7.10: The spread of χ2/ν values corresponding to the difference in angular
moments distributions between two catagories of randomly chosen data events: π+π−

(left) and π+π0 (right).

However, for the CP -symmetric case, we can also use all the available simulation
dataset (∼675 fb−1 of π−π+π0 and ∼440 fb−1 of K−K+π0) and repeat the valida-
tion exercise. If the analysis of this dataset yields no CP asymmetry at reasonable
confidence levels, we will gain further confidence in our procedure.

The results of this analysis are presented below.

For the π−π+π0 final state:

χ2/ν (Dalitz) = 1.017 ± 0.018 (stat.)
Confidence Level for consistency with no CP violation = 39.06%.

χ2/ν (π+π− moments) = 1.040 ± 0.026 (stat.)
Confidence Level for consistency with no CP violation = 37.92%.

χ2/ν (π+π0 moments) = 1.032 ± 0.021 (stat.)
Confidence Level for consistency with no CP violation = 40.59%.

Table 7.12: The results obtained from the model-dependent analysis of D0/D0 →
π−π+π0 Dalitz plot. We define amplitude coefficients, ar and φr, relative to those
of the ρ(770)+. The errors are statistical.

State aD0

r − aD0

r (%) φD0

r − φD0

r (◦) fD0

r − fD0

r (%)
ρ+(770) 0. (fixed) 0. (fixed) 0.05±0.32
ρ0(770) 0.13± 0.46 -0.12± 0.63 0.18±0.59
ρ−(770) -0.06± 0.53 0.23± 0.72 -0.02±0.66
Non-Res 1.7± 3.8 2± 4 0.08±0.27

For the K−K+π0 final state:
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Table 7.13: The results obtained from the model-dependent analysis of D0/D0 →
K−K+π0 Dalitz plot. We define amplitude coefficients, ar and φr, relative to those
of the K∗(892)+. The errors are statistical. We use Model-I of Ref. [21] here.

State aD0

r − aD0

r φD0

r − φD0

r (◦) fD0

r − fD0

r (%)
K∗(892)+ 0. (fixed) 0. (fixed) 0.2±1.1
K∗(1410)+ 0.21±0.58 3±13 -0.8±1.8
K+π0(S) -0.22±0.48 5±24 1.9±4.2
φ(1020) -0.01±0.02 8±18 0.0±1.0
f0(980) 0.4±1.1 -10±17 -0.5±0.8
f ′
2(1525) -0.11±0.50 20±25 0.05±0.06

K∗(892)− 0.01±0.02 -1.0±2.2 0.2±1.0
K∗(1410)− -0.31±0.76 -8±10 2.1±2.3
K−π0(S) 0.06±0.44 5±30 0.3±2.1

χ2/ν (Dalitz) = 1.014 ± 0.036 (stat.)
Confidence Level for consistency with no CP violation = 57.71%.

χ2/ν (K+K− moments) = 1.022 ± 0.033 (stat.)
Confidence Level for consistency with no CP violation = 46.38%.

χ2/ν (K+π0 moments) = 1.013 ± 0.028 (stat.)
Confidence Level for consistency with no CP violation = 55.68%.

7.9 Asymmetry in Dalitz plot

It is worth noting that the three methods to determine CP asymmetry explained
earlier are complementary to each other.

• The χ2/ν value obtained from the difference in 2-dimensional scatter Dalitz
plot distribution tells us whether there is an asymmetry anywhere in the Dalitz
plot or not. But it does not tell much about the amount of asymmetry or in
which two-body channel the source of asymmetry is located.

• The χ2/ν value obtained from the difference in angular moments distribution
tells us in which two-body channel the source of asymmetry is located. But it
does not tell much about the amount of asymmetry.

• The model-dependent “isobar model” fit can tell us about the amount of asym-
metry as well as the source of asymmetry down to a specific intermdediate state
(or set of intermdediate states). The only drawback with this method, apart
from the model-dependence, is the fact that there may be a discrete ambiguity.
This ambiguity can be resolved either by parametrizing the Dalitz plot in an
alternative way or with the help of the model-independent χ2/ν value obtained
from the difference in angular moment distributions. We will follow both these
approaches.
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7.10 Asymmetry in branching ratio

So far in this document we have talked about measuring direct CP -asymmetry in
neutral D meson decays by using the difference in the Dalitz plot structures of D0 and
D0. We note, however, that any difference in the overall signal branching fraction
(integrated over the entire phase space available) between D0 and D0 decays to the
π−π+π0, K−K+π0 final states will also indicate a direct CP -asymmetry in charmed
meson decays. This information is not captured by the difference in the Dalitz plot
structures, and is complementary to the full Dalitz plot analysis. To incorporate all
the available information in our data, we also look for asymmetry in the signal yield
of the D0 and D0 decays to these three-body final states.

The procedure to extract signal yield and efficiency corrections and the estimation
of statistical and systematic uncertainties is described in Chapter 3. With 385 fb−1,
we propose to repeat the same procedure and measure the asymmetries

aπππ0

CP =
Γ(D0 → π−π+π0) − Γ(D0 → π+π−π0)
Γ(D0 → π−π+π0) + Γ(D0 → π+π−π0)

(7.9)

aKKπ0

CP =
Γ(D0 → K−K+π0) − Γ(D0 → K+K−π0)
Γ(D0 → K−K+π0) + Γ(D0 → K+K−π0)

. (7.10)

In order to be able to calculate CP asymmetry in the signal yields, we must take
into account the forward-backward (FB) asymmetry in cc̄ production which causes an
integrated asymmetry between the reconstruction of D0 and D0 decays at the center-
of-mass energies of around 10.6 GeV. The production asymmetry has two physical
components: (1.) the interference in e+e− → cc̄ production between the processes
mediated by a virtual γ and by a virtual Z0, and (2.) higher-order QED effects
having polar angle dependence, which may peak sharply in the forward or backward
directions. For precise quantification of this asymmetry in D0-flavor assignment
(tagging), we use the relative soft pion efficiency map, i.e.,

ε
π+

s
ε
π
−
s

as function of the

soft pion momentum-magnitude and polar angle. The azimuthal angle is found to be
uncorrelated, and is therefore sufficiently treated as an integrated scale factor since
charm production is azimuthally uniform. Fig. 7.11 shows this efficiency map for data
events. The uncertainties shown here are due to the statistical uncertainties in the
sample yields. After being weighted with this πs map to correct for soft-pion tagging
asymmetry, the signal modes yields (with remaining production asymmetries) can
be analyzed for evidence of direct CP violation.

7.11 Steps for unblinding

• Step 1: Repeat the procedure of chapter 3 to obtain the asymmetry in signal
yields after applying πs efficiency corrections.

• Step 2: Separate out the asymmetry in the branching ratio from the asymmetry
in the Dalitz plot structure. For this purpose, directly compare the Dalitz plot
distributions of D0 and D0 events after normalizing them by the number of
events, and obtain χ2/ν value using exactly the same binning and procedure
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as used in the validation studies.

χ2 =
∑
bins

Δ2,

where
Δ =

nD0 − R · nD0√
σ2

nD0
+ R2 · σ2

nD0

.

Here nD0 denotes the number of D0 events, nD0 the number of D0 events in a
bin, and σ represents the uncertainty in a number. The quantity R is the ratio
of the total number of D0 events integrated over the entire phase space to the
integrated total number of D0 events.

• Step 3: Plot the difference in first eight angular moments (l = 0 − 7) between
D0 and D0 events and obtain a combined χ2/ν value, following the procedure
used in the validation studies.

χ2 =
∑
bins

∑
i

∑
j

Xi ρij Xj ,

where

Xi =
PD0

i − R.PD0

i√
σ2

P D0
i

+ R2.σ2

P D0
i

.

Here Pi and Pj are Legendre polynomial moments of order i and j respectively,
ρij is the correlation coefficient between the difference in pair of moments of
orders i and j as defined in Eq. 7.8, and R is the ratio of the total number of
D0 events integrated over the entire phase space to the integrated total number
of D0 events.
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• Step 4: Perform the Dalitz plot fit for D0 and D0 events and report the asym-
metry in the dominant intermediate states.

• Step 5: Repeat the Dalitz plot fit, this time using a different resonant state as
the reference [e.g., ρ(770)0 instead of ρ(770)+]. This may help in pinpointing
the source of any observed asymmetry, as explained in detail in Chapter 9.

• Step 6: Finalize the evaluation of systematic uncertainties, including all the
sources described earlier, and any new systematics we identify in the process.

7.12 Results from data

7.12.1 Asymmetry in Dalitz plot distribution

A direct comparison of the efficiency-corrected and background-subtracted Dalitz
plots for D0 and D0 events is the simplest way to look for CP asymmetry. Fig-
ures 7.12–7.13 show the Dalitz plots for D0 and D0 events and Fig. 7.14 shows their
difference. Figure 7.15 shows the two-dimensional normalized residuals, Δ, in Dalitz
plot area elements, where

Δ =
(
nD0 − R · nD0

)
/
√

σ2
nD0

+ R2 · σ2
nD0

, (7.11)

and n and σ denote, respectively, the number of events and its uncertainty in a Dalitz
plot element. The factor R, equal to 0.983 ± 0.006 for π−π+π0 and 1.020 ± 0.016
for K−K+π0, is the ratio of the total number of D0 events to the total number
of D0 events. This factor is introduced since the total number of events in the
D0 and D0 Dalitz plots may differ because of production crosssection asymmetry
and/or asymmetry in the branching fraction values for D0 and D0 decay to the
same final state (we extract the latter separately, as described below). We calcu-
late χ2 = (

∑
element Δ2)/ν, where ν is the number of Dalitz plot elements: 1429

for π−π+π0 and 726 for K−K+π0. We find the χ2 for π−π+π0 (K−K+π0) to be
1.020 (1.056) where we expect it to be 1.012 (1.021) with an r.m.s. deviation of
0.018 (0.036) from simulation of no CPV . We then obtain a one-sided Gaussian
confidence level (CL) for consistency with no CPV of 32.8% for π−π+π0 and 16.6%
for K−K+π0. From statistical uncertainty only there is no evidence of CPV . Sys-
tematic uncertainties are relatively small and have not been included in the CL
calculation. Including them will improve consistency with the no CPV hypothesis.

7.12.2 Asymmetry in angular moments distribution

The angular moments of the cosine of the helicity angle of the D̃ decay products
reflect the spin and mass structure of intermediate resonant and non-resonant am-
plitudes [21]. We define the helicity angle θH for decays of the type D̃ → (r → AB)C
as the angle between the momentum of A in the AB rest frame and the momentum
of AB in D̃ rest frame. The moments of cos θH , Zl(cos θH) ≡ Y 0

l (m), are defined
as the efficiency-corrected invariant mass distributions of events when weighted by
spherical harmonic functions Y 0

l (m) =
√

1/2π Pl(m). Here Pl are the Legendre
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Figure 7.12: Dalitz plots for D0 (left) and D0 (right) events in the D̃ → π−π+π0

decay.
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Figure 7.13: Dalitz plots for D0 (left) and D0 (right) events in the D̃ → K−K+π0

decay.
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Figure 7.14: Difference between the D0 and D0 Dalitz plots for D̃ → π−π+π0 (left)
and D̃ → K−K+π0 (right).
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Figure 7.16: Normalized residuals for the first three Legendre polynomial moments
of the π−π+ (row 1), π+π0 (row 2), K−K+ (row 3), and K+π0 (row 4) sub-systems.
The confidence level for no CP violation (dashed line) is obtained from the first eight
moments. The error bars represent ±1σ.

121



polynomials of order l normalized to 1. To study differences between the D0 and
D0 decay amplitudes, we obtain the normalized differences in their moments [50], Pl

and Pl, respectively, as:

Xl =
(
Pl − R · Pl

)
/
√

σ2
Pl

+ R2 · σ2
Pl

, (7.12)

for l = 0 − 7, as empirical observation shows that higher moments are vanishingly
small. We show the Xl distributions for the first three moments, i.e., l = 0 − 2,
in Fig. 7.16. We then calculate χ2 summed over all intervals in invariant mass as
χ2 = (

∑k
0

∑7
i=0

∑7
j=0 Xi ρij Xj)/8k, where k is the number of intervals and ρij is

the correlation coefficient between Xi, Xj :

ρij =
〈XiXj〉 − 〈Xi〉 〈Xj〉√〈

X2
i

〉 − 〈Xi〉2.
√〈

X2
j

〉
− 〈Xj〉2

. (7.13)

We determine ρij in each of the relevant two-body invariant mass intervals by per-
forming several hundred simulation experiments, generating D0 and D0 events with
no CPV . We validate the method on real data by randomly assigning the events,
without defining the flavor of the D̃ meson, into two disjoint categories and then
calculating the χ2 for the difference in their angular moments. We repeat this ex-
periment 500 times, each time assigning events randomly in different ways, and find
the resulting χ2 distribution consistent with no CPV , as expected. We then define
the D̃ flavor in the data and calculate the χ2 values for the two-body channels with
charge combinations +,− and +, 0. Finally, we obtain a one-sided Gaussian CL
for consistency with no CPV using the reference value and r.m.s. deviation from
simulation. We find the CL for no CPV to be 28.2% for the π+π−, 28.4% for the
π+π0, 63.1% for the K+K−, and 23.8% for the K+π0 sub-systems.

In the absence of direct CPV , the Dalitz plot amplitude A describing decay of
the type D0 → (r → AB)C can be parameterized using an isobar model representa-
tion in terms of a sum of amplitudes Ar(s+, s−) 1 for all relevant SM intermediate
states r, each with a complex coefficient, i.e., A =

∑
r ar eiφr Ar(s+, s−). Here s±

are the squared invariant masses of the pair of final state particles with charges (+,
0) and (−, 0), respectively. The quantities ar and φr are, respectively, the magnitude
and phase of the complex amplitude-coefficient. The fit fraction for each process r
is defined as fr ≡ ∫ |arAr|2 ds+ds−/

∫ |A|2 ds+ds−. We model incoherent, CP -symmetric
background empirically [25, 21]. In the absence of CPV , we expect the values of ar,
φr, and fr to be identical for D0 and D0 decay. The results obtained with this as-
sumption are listed in Ref. [25] for D̃ → π−π+π0 and in Ref. [21] for D̃ → K−K+π0.
To allow the possibility of CPV in the present analysis, we let a second process - not
necessarily of SM origin - contribute to each of the amplitudes Ar, thus permitting
the amplitude-coefficients for D0 and D0 to differ. We summarize the results of the
fit to the data in terms of differences in the magnitudes of the amplitudes, phases,
and fit fractions (Δar = aD0

r − aD0

r , Δφr = φD0

r − φD0

r , and Δfr = fD0

r − fD0

r ) in
Table 7.14 for π−π+π0, and in Table 7.15 for K−K+π0.

1The amplitude in this form is defined with respect to D0. The corresponding D0 amplitude is
Ār(s−, s+).
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7.12.3 Results of model fit

Table 7.14: Model-dependent CP asymmetry in the D̃ → π−π+π0 Dalitz plots. The
first and second errors are statistical and systematic, respectively. For details on the
Dalitz plot parametrization and the ar, φr, and fr values, see Ref. [25].

State fr (%) Δar (%) Δφr (◦) Δfr (%)
ρ+(770) 68 -3.2±1.7±0.8 -0.8±1.0±1.0 -1.6±1.1±0.4
ρ0(770) 26 2.1±0.9±0.5 0.8±1.0±0.4 1.6±1.4±0.6
ρ−(770) 35 2.0±1.1±0.8 -0.6±0.9±0.4 0.7±1.1±0.5
ρ+(1450) 0.1 2±11±8 -30±25±9 0.0±0.1±0.1
ρ0(1450) 0.3 13±8±6 -1±14±3 0.1±0.2±0.1
ρ−(1450) 1.8 -3±6±5 8±7±3 -0.2±0.3±0.1
ρ+(1700) 4 19±27±9 9±7±3 0.4±1.0±0.4
ρ0(1700) 5 -31±20±12 -7±6±2 -1.3±0.8±0.3
ρ−(1700) 3 -3±14±11 -3±8±3 -0.5±0.6±0.3
f0(980) 0.2 0.0±0.1±0.2 -3±7±4 0.0±0.1±0.1
f0(1370) 0.4 -0.3±1.3±1.2 7±14±5 -0.2±0.1±0.1
f0(1500) 0.4 0.4±1.1±0.7 -1±12±1 0.0±0.1±0.1
f0(1710) 0.3 -3±3±2 -25±13±11 0.0±0.1±0.1
f2(1270) 1.3 8±4±5 2±5±2 0.1±0.1±0.1
σ(400) 0.8 -0.3±0.7±2.0 -4±7±3 -0.1±0.1±0.1
Nonres 0.8 12±7±8 11±9±4 0.2±0.3±0.2

Table 7.15: Model-dependent CP asymmetry in the D̃ → K−K+π0 Dalitz plots. The
errors are statistical and systematic, respectively. We show the a0(980) contribution,
when it is included in place of the f0(980), in square brackets. For details on the
Dalitz plot parametrization and the ar, φr, and fr values, see Ref. [21]. We use
Model-I of Ref. [21] to obtain central values and Model-II for study of systematic
errors.

State fr (%) Δar (%) Δφr (◦) Δfr (%)
K∗(892)+ 45 2±3±2 10±12±3 0.8±1.1±0.4
K∗(1410)+ 4 101±65±37 1±21±6 1.7±1.8±0.6
K+π0(S) 16 -130±64±51 -9±10±6 -2.3±4.7±1.0
φ(1020) 19 -1±2±1 -10±20±5 -0.4±0.8±0.2
f0(980) 7 14±16±6 -12±25±8 0.4±2.6±0.2[
a0(980)0

]
[6] [19±16±6] [-7±16±8] [0.6±1.9±0.2]

f ′
2(1525) 0.1 -38±74±8 6±36±12 0.0±0.1±0.3

K∗(892)− 16 1±3±1 -7±4±2 1.7±1.3±0.4
K∗(1410)− 5 133±93±68 -23±13±9 1.7±2.8±0.7
K−π0(S) 3 8±68±36 32±39±14 0.4±2.4±0.5
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Figure 7.17: Phase-space-integrated CP asymmetry as a function of the cosine of the
polar angle of the reconstructed D̃ candidate CM momentum for (a) D̃ → π−π+π0

and (b) D̃ → K−K+π0 decays. The dashed lines represent the central values, and
the shaded regions the 1σ intervals.

7.12.4 Systematic uncertainties

Systematic uncertainties in the quantities describing CP asymmetries, reported in
Tables 7.14–7.15, arise from experimental effects, and also from uncertainties in the
the models used to describe the data. We determine these separately, as described
in Refs. [25, 21], and add them in quadrature. For all variations described below,
we assign the maximum magnitude deviation from the central value as a systematic
uncertainty, accounting for correlations among parameters. For resonance lineshapes
and form-factors, we vary the parameters [20] by ±1σ. Similarly, we vary the signal
efficiency parameters for D0 or D0 events by ±1σ, the ratios of particle-identification
rates in data and simulation by ±1σ, and the background shapes using simulation
rather than data sidebands. We include uncertainties from D0–D0 misidentification,
estimated from simulation, in experimental systematics.

7.12.5 Asymmetry in branching ratio vs asymmetry in Dalitz Plot

To this point we have described the investigation of time-integrated CP asymmetry
in neutral D meson decays using information from the Dalitz plot distributions. Any
differences in the overall branching fractions for the D0 and D0 decays to π−π+π0,
K−K+π0 would also indicate time-integrated CPV . This information is not cap-
tured by the differential comparisons of Dalitz plot structures already described, and
in fact is complementary to them. The overall-rate asymmetry is sensitive only to ra-
tios of D0 to D0 signal yields. To correct for any production asymmetry in D0-flavor
assignment, we weight each event by the relative efficiency for flavor assignment,
as described in Ref. [45]. Since there is an asymmetry [45] between the number of
events reconstructed at forward and backward polar angles of the D̃ candidate CM
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momentum, we extract the CP asymmetry value, aCP ≡ ND0−ND0

ND0+ND0
, in intervals of

the cosine of this angle. Here N denotes the number of signal events [18]. We show
the aCP distribution in Fig. 7.17 and perform χ2 minimization to obtain the central
values: (−0.31 ± 0.41 (stat.) ± 0.17 (syst)) % for π−π+π0 and (1.00 ± 1.67 (stat.)
± 0.25 (syst)) % for K−K+π0 final states. The systematic uncertainties result from
signal efficiency, particle-identification, background treatment, and D0−D0 misiden-
tification. As a consistency check, we repeat the analysis using signal events within
±2.5σ 2 of the reconstructed D0 mass peak, and find consistent results: (−0.28 ±
0.34 (stat) ± 0.19 (syst)) % for π−π+π0 and (0.62 ± 1.24 (stat) ± 0.28 (syst)) % for
K−K+π0.

7.13 Summary

In summary, our model-independent and model-dependent analyses show no evidence
of CPV in either of the SCS D̃ decay processes studied. With the null results of
Ref. [45, 46, 47, 48] for D̃ → K+K− and D̃ → π+π− decays, we conclude that any
CPV in the charm sector must occur at a rate less than 1%. These results are in
accord with the SM predictions, and provide constraints on some models beyond the
SM [9].

2To avoid getting close to the region in one of the sidebands which contains D̃ → K∓π±π0

events. See Ref. [18] for details.
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