INITIAL STATE RADIATION PHYSICS AT THE B FACTORIES ${ }^{a}$

EUGENI GRAUGÉS (BaBar collaboration)
Universitat de Barcelona. Departament d'Estructura i Constituents de la Matèria. Facultat de Física. Avda. Diagonal 647. E-08028 Barcelona, Spain

Abstract

A mini-review of the recent BaBar and Belle results on the process $e^{+} e^{-} \rightarrow$ hadrons using the initial state radiation (ISR) technique, is presented. ISR studies at the $\Upsilon(4 \mathrm{~s})$ resonance (B-Factories) can yield to the same observables as the low energy $e^{+} e^{-}$experiments: Precise cross-section measurements, the R ratio (ratio of cross-sections of hadron production to dimuon production) measurement, form factors measurements (from hadron pair production such as $\left.e^{+} e^{-} \rightarrow p \bar{p}, \Lambda \bar{\Lambda}, \Lambda \bar{\Sigma}, \Sigma \bar{\Sigma}\right)$, as well as $J^{P C}=1^{--}$hadron spectroscopy that can lead to the discovery of new states.

1 Introduction

The extraordinary performance of the B meson factories which was required for the study of CP violation in the b quark sector has made them, both BaBar and Belle, an excellent place to study hadronic final states in $e^{+} e^{-}$anihilation. Making use the so-called radiative return, where a photon is emitted by either the initial electron or positron, it is possible to study not only the produced events at the collider nominal centre-of-mass energy, but also at lower energies, from the production threshold up to the $4-5 \mathrm{GeV}$ region.

2 Cross-section measurements

The measurement, using the ISR method [1], of the cross-section for $e^{+} e^{-} \rightarrow$ hadrons at low energy allows the precise determination of the ratio $R=\sigma\left(e^{+} e^{-} \rightarrow\right.$ hadrons $) / \sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)$, which is of key importance to calculate the hadronic contribution in the theoretical prediction of [2] the muon anomalous magnetic moment $(g-2)$ and [3] the running QED coupling constant α. The advantage of using ISR events is that a scan of the entire effective centre-of-mass energy range (the available energy after the initial state radiation of a hard photon), is performed in the same experiment, avoiding uncertainties in the relative normalization when combining data from different experiments. In addition, the B-factories high luminosity and detector performances (specially their particle identification capabilities) allow the ISR data to be very competitive againsts low energy $e^{+} e^{-}$machines.

Figure 1: The $e^{+} e^{-} \rightarrow p \bar{p}$ (left) and $e^{+} e^{-} \rightarrow \Lambda \bar{\Lambda}$ (right) cross sections near threshold measured from $e^{+} e^{-}$ experiments: BaBar [12] [13], FENICE [16], DM2 [15], DM1 [14], ADONE73 [17] and BES [18].

The dominant hadronic channel below 1 GeV is $\pi^{+} \pi^{-}$, but other hadronic channels are dominant at larger centre-of-mass energies, and the total hadronic rate is obtained by summing up all the exclusive cross-sections. The majority of them have recently been measured by BaBar: $\pi^{+} \pi^{-} \pi^{0}[4], 2 \pi^{+} 2 \pi^{-}, 2 K^{+} 2 K^{-}$[5], $\pi^{+} \pi^{-} K^{+} K^{-}, \pi^{0} \pi^{0} K^{+} K^{-}, 2 K^{+} 2 K^{-}[6], 2 \pi^{+} 2 \pi^{-} \pi^{0}$, $2 \pi^{+} 2 \pi^{-} \eta, K \bar{K} \pi^{+} \pi^{-} \pi^{0}, K \bar{K} \pi^{+} \pi^{-} \eta[7], 3 \pi^{+} 3 \pi^{-}, 2 \pi^{+} 2 \pi^{-} 2 \pi^{0}$,
$K^{+} K^{-} 2 \pi^{+} 2 \pi^{-}[8], p \bar{p}[9], \Lambda \bar{\Lambda}, \Lambda \bar{\Sigma}, \Sigma \bar{\Sigma}$ [10], and $K^{+} K^{-} \eta, K^{+} K^{-} \pi^{0}, K_{s}^{0} K^{+} \pi-$ [11]. There is also a preliminary measurement of the channel $\pi^{+} \pi^{-} \pi^{0} \pi^{0}$, and work is in progress to measure from the same data sample the cross-section of the processes $\pi^{+} \pi^{-}, K^{+} K^{-}, \pi^{+} \pi^{-} 3 \pi^{0}$, $p \bar{p} p \bar{p}$, as well as the inclusive measurement of the aformentioned R ratio.

3 Form factor measurements

BaBar has measured with unprecedented accuracy the $e^{+} e^{-} \rightarrow p \bar{p}$ [12] and $e^{+} e^{-} \rightarrow \Lambda \bar{\Lambda} \quad[13]$ processes cross-sections, as well as the mass dependence of the ratio of the electric and magnetic form factors, $\left\|G_{E} / G_{M}\right\|$. These measurements, as summarized in figure 1 , have been made by means of the ISR technique, which has the advantadges of good efficiency, an energy resolution of around 1 MeV and full angular acceptance when the radiated photon is detected. A surprising feature of these cross sections is their non-vanishing values at threshold. In principle, due to the finite energy-bin width, it cannot be excluded from data vanishing cross-sections at threshold with extremely sharp rise. If that was not the case, for charged baryons ($p \bar{p}$ case), this phenomenon could be explained in terms of the Coulomb interaction between the outgoing baryon and antibaryon. However such an effect is not expected for neutral baryons ($\Lambda \bar{\Lambda}$ case), and alternative explanations might be suggested, such as sub-threshold resonances among others. Concerning the measurement of the $\left\|G_{E} / G_{M}\right\|$ form factor ratio, for $p \bar{p}$ case it is found to be significantly greater than unity near threshold, whereas for the $\Lambda \bar{\Lambda}$ case, it is consistent both with unity and with the results for $e^{+} e^{-} \rightarrow p \bar{p}$.

4 Study of charmonium-like states via ISR

Observations of charmonium-like states recoiling from a J / ψ in the inclusive process $e^{+} e^{-} \rightarrow$ $J / \psi+$ anything have been made by the Belle collaboration [19] [20], using also the ISR
technique. In the case of the $\mathrm{X}(3940)$ state its decay into $D^{*} \bar{D}$ final states is used to determine their intrisic width. Similarly, in the process $e^{+} e^{-} \rightarrow J / \psi D^{*+} D^{*-}$, another charmonium-like state, denoted as $\mathrm{X}(4160)$ has been observed [20]. The observation of this $\mathrm{X}(4160)$ state has also been hinted at the cross-section measurement (using also the ISR technique) of the process $e^{+} e^{-} \rightarrow D^{*+} D^{*-}$ [21]. In addition, the ISR method based measurements [22] of the exclusive cross section for $e^{+} e^{-} \rightarrow D^{0} D^{-} \pi^{+}$process show the first observation of the state $\mathrm{Y}(4415)$ ($\psi(4415)$) decaying into $D \bar{D}_{2}^{*}(2460)$.

B meson factories have also studied the invariant mass distribution of ($\pi^{+} \pi^{-}+$charmonium $)$ in the processes $e^{+} e^{-} \rightarrow\left(\gamma_{I S R}\right) \pi^{+} \pi^{-}+$charmonium. Both Babar and Belle found for the case $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}+\psi(2 s)$ evidence a new resonance [23][24]. The exact mass and width values are slightly different between the measurements made by the different collaborations since the mass spectrum is parametrized as a single Breit-Wigner (BW) function (BaBar) or as the coherent sum of two BW's (Belle). In particular, this new resonance appears to be uncompatible with the $\mathrm{Y}(4260)$ state, observed earlier by Babar [25] and confirmed afterwards by Belle [26], in the process $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}+J / \psi$. The CLEO-c experiment has confirmed the $\mathrm{Y}(4260)$ in direct $e^{+} e^{-} \rightarrow Y(4260)$ interactions [27]. The $\mathrm{Y}(4260)$ has also been detected in CLEO-c to decay into $\pi^{0} \pi^{0} J / \psi$ and a ratio of $\mathrm{BR}\left(e^{+} e^{-} \rightarrow \pi^{-} \pi^{+} J / \psi\right) / \mathrm{BR}\left(e^{+} e^{-} \rightarrow \pi^{0} \pi^{0} J / \psi\right)$ has been measured to be around 0.5 , which implies that the $\mathrm{Y}(4260)$ has isospin zero, as expected for a charmonium state. Observations of states such as the $\mathrm{Y}(4260)$ (and also $\mathrm{X}(3872)$ [28]) have complicated the picture in which charmonium spectroscopy was well described by potential models. Therefore at the B factories search for charmonium and other new states has also been performed in the study of exclusive ISR production of $e^{+} e^{-} \rightarrow D \bar{D}$. The $D \bar{D}$ mass spectrum shows clear evidence of the $\psi(3770)$ plus other structures near $3.9,4.1$, and $4.4 \mathrm{GeV} / \mathrm{c} 2$, but no evidence for $Y(4260) \rightarrow D \bar{D}$ is observed [29][30]. Moreover, no evidence has been found of $Y(4260)$ decays into $\phi \pi \pi$ in the $e^{+} e^{-} \rightarrow K K \pi \pi$ process [31][32], but the sub-resonant structure shows hints of a new resonance, denoted as $\mathrm{X}(2175)$, in the invariant mass distribution of $\phi(1020) f_{0}(980)$ of the $e^{+} e^{-} \rightarrow \phi(1020) f_{0}(980)$ process. Such observation of the $\mathrm{X}(2175)$ resonance seems to be supported in the analysis of the invariant mass distribution of $\phi \eta$ in the $e^{+} e^{-} \rightarrow \phi \eta$, where ϕ decays into $K^{+} K^{-}$and η decays into either a $\gamma \gamma$ pair or $\pi^{+} \pi^{-} \pi^{0}$ final state [33][34].

5 Conclusions

In this mini-review, it has been shown that the B meson factories are also $q \bar{q}$ factories and, that what is commonly thought to be background to b-quark physics, is actually a very rich and fruitful source of physics results. The ISR technique, properly applied to Babar and Belle, has revealed as a very powerful tool to obtain effective low energy $e^{+} e^{-}$experiments with unprecedented statistics. Many more new results might be expected from new and updated analysis from the B factories in the near future.

References

[1] Benayoun M., Eidelman S. I. et al, Mod. Phys. Lett. A 14, 2605-2614 (1999).
[2] M. Davier et al, Eur. Phys. J. C27, 497 (2003).
[3] H. Burkhardt and B. Pietrzyk, Phys. Lett. B 513, 46 (2001).
[4] BaBar Collaboration. B. Aubert et al, Phys. Rev. D 70, 072004 (2004).
[5] BaBar Collaboration. B. Aubert et al, Phys. Rev. D 71, 052001 (2005).
[6] BaBar Collaboration. B. Aubert et al, Phys. Rev. D 76, 012008 (2007).
[7] BaBar Collaboration. B. Aubert et al, Phys. Rev. D 76, 092005 (2007).
[8] BaBar Collaboration. B. Aubert et al , Phys. Rev. D 73, 052003 (2006).
[9] BaBar Collaboration. B. Aubert et al, Phys. Rev. D 73, 012005 (2006).
[10] BaBar Collaboration. B. Aubert et al , Phys. Rev. D 76, 092006 (2008).
[11] BaBar Collaboration. B. Aubert et al. SLAC-PUB-12968, BABAR-PUB-07-052, arXiv:0710.4451 [hep-ex]. Submitted to Phys. Rev. D.
[12] BaBar Collaboration. B. Aubert et al , Phys. Rev. D 73, 012005 (2006).
[13] BaBar Collaboration. B. Aubert et al , Phys. Rev. D 76, 092006 (2007).
[14] B. Delcourt et al. (DM1 Collaboration), Phys. Lett. B 86, 395 (1979).
[15] D. Bisello et al. (DM2 Coll.), Nucl. Phys. B 224, 379 (1983); Z. Phys. C 48, 23 (1990).
[16] A. Antonelli et al. (FENICE Collaboration), Nucl. Phys. B 517, 3 (1998).
[17] M. Castellano et al, Nuovo Cimento 14, 1 (1973).
[18] M. Ablikim et al. (BES Collaboration), Phys. Lett. B 630, 14 (2005).
[19] Belle Collaboration: K. Abe et al, Phys. Rev. Lett. 98, 082001 (2007)
[20] Belle Collaboration: I. Adachi et al, arxiv:0708.3812
[21] Belle Collaboration: G. Pakhlova et al, Phys. Rev. Lett. 98, 092001 (2007)
[22] Belle Collaboration: G. Pakhlova et al, Phys. Rev. Lett. 100, 062001 (2008)
[23] BaBar Collaboration. B. Aubert et al, Phys. Rev. Lett. 99, 212001 (2007).
[24] Belle Collaboration: X. L. Wang et al, Phys. Rev. Lett. 99, 142002 (2007)
[25] BaBar Collaboration. B. Aubert et al , Phys. Rev. Lett. 95, 142001 (2005).
[26] Belle Collaboration: Yuan et al, Phys. Rev. Lett. 99, 182004 (2007)
[27] CLEO Collaboration, T. E. Coan et al, Phys. Rev. Lett. 96, 162003 (2006)
[28] S. K. Choi et al. (Belle Collaboration), Phys. Rev. Lett. 91, 262001 (2003); D. Acosta et al. (CDF Collaboration), Phys. Rev. Lett. 93, 072001 (2004); V. M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 93, 162002 (2004); B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 71, 071103(R) (2005).
[29] BaBar Collaboration. B. Aubert et al. SLAC-PUB-12818, BABAR-PUB-07-060, arXiv:0710.1371v2 [hep-ex].
[30] Belle Collaboration: G. Pakhlova et al, arxiv:0708.0082v3
[31] BaBar Collaboration. B. Aubert et al , Phys. Rev. D 74, 091103 (2006).
[32] BaBar Collaboration. B. Aubert et al , Phys. Rev. D 76, 012008 (2007).
[33] BaBar Collaboration. B. Aubert et al , Phys. Rev. D 76, 092005 (2007).
[34] BaBar Collaboration. B. Aubert et al. BABAR-PUB-07-052, arXiv:0710.4451 [hep-ex].

