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Abstract

Recent computations of scattering amplitudes show that N = 8 supergravity is surprisingly well

behaved in the ultraviolet and may even be ultraviolet finite in perturbation theory. The novel

cancellations necessary for ultraviolet finiteness first appear at one loop in the guise of the “no-

triangle hypothesis”. We study one-loop amplitudes in pure Einstein gravity and point out the

existence of cancellations similar to those found previously in N = 8 supergravity. These cancel-

lations go beyond those found in the one-loop effective action. Using unitarity, this suggests that

generic theories of quantum gravity based on the Einstein-Hilbert action may be better behaved

in the ultraviolet at higher loops than suggested by naive power counting, though without addi-

tional (supersymmetric) cancellations they diverge. We comment on future studies that should be

performed to support this proposal.

PACS numbers: 11.15.Bt, 11.25.Db, 11.25.Tq, 11.55.Bq, 12.38.Bx
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I. INTRODUCTION

Recent calculations of four-point scattering amplitudes in the maximally supersymmetric

gravity theory of Cremmer and Julia [1] indicate the existence of novel ultraviolet cancella-

tions at three and higher loops, which may even lead to the perturbative finiteness of the

theory [2, 3]. String dualities have also been used to argue for ultraviolet finiteness of N = 8

supergravity [4], though difficulties with decoupling towers of massive states may alter this

conclusion [4, 5].

At one loop in the N = 8 theory, the corresponding novel cancellations are encapsulated

in the “no-triangle hypothesis” [6–9]. In general, dimensionally regularized amplitudes in

four dimensions can be expressed as a linear combination of scalar box, triangle and bubble

integrals together with rational terms [10, 11]. The no-triangle hypothesis states that all

one-loop amplitudes in N = 8 supergravity can be expressed solely in terms of scalar box

integrals and that neither triangle integrals, bubble integrals nor additional rational terms

appear. This hypothesis is surprising from the point of view of power counting, which —

together with standard integral reduction formulas — would imply that triangle integrals

should appear beginning at five points and bubble integrals at six points. The cancellation

of triangle and bubble integrals were first observed in maximally helicity violating (MHV)

amplitudes of the N = 8 theory [6]. More recently, this observation was extended to the

hypothesis that the same cancellations occur in all N = 8 one-loop amplitudes, so that

they are expressed solely in terms of scalar box integrals [7]. It has been confirmed for

six-graviton amplitudes, by explicit computation [9]. Furthermore, at seven points the

infrared singularities have been shown to be consistent with the no-triangle hypothesis [8,

9]. Beyond six and seven points, scaling and factorization properties of the amplitudes

provide strong evidence that the no-triangle hypothesis holds for the remaining amplitudes

in N = 8 supergravity [7, 9]. In ref. [2], these one-loop cancellations were argued to lead to

an improved ultraviolet behavior in classes of terms encountered in multi-loop calculations

in the N = 8 theory. At three loops, the improvement in the ultraviolet behavior due to

these and related cancellations has been confirmed by the explicit calculation of the complete

four-point scattering amplitude in the N = 8 theory [3]. The consistency of the Regge limit

with improved ultraviolet behavior in N = 8 supergravity has also been recently discussed

in ref. [12].
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Supersymmetry, in particular, has long been studied for its ability to reduce the degree

of divergence of gravity theories [13]. However, all superspace power counting arguments

ultimately delay the onset of divergences only by a finite number of loops, depending upon

assumptions regarding the types of superspaces and invariants that can be constructed.

If the cancellations observed in the N = 8 theory are only partly due to supersymmetry,

then what might account for the remainder of the observed cancellations? Here we pro-

pose that these extra cancellations are generic to any quantum gravity theory based on the

Einstein-Hilbert action. These cancellations are not at all obvious in Feynman diagrams

which individually obey a naive power counting. Rather, they will be manifest only in

carefully chosen representations of the amplitudes. Our proposal is that in supersymmetric

theories, the supersymmetric cancellations are on top of these cancellations. At one loop

when combined with the expected supersymmetric cancellations this implies that supergrav-

ity theories with N ≥ 3 supersymmetries should be fully “cut constructible” [14], including

rational terms, using cuts in four dimensions. For the N = 8 theory at one loop it is again

the combination of cancellations that leads to the “no-triangle hypothesis”. Following the

same line of reasoning as used in the N = 8 theory [2], suggests that the observed one-loop

cancellations in non-supersymmetric pure gravity will lead to a softening of the ultraviolet

behavior at higher loops.

For non-supersymmetric theories these additional cancellations are in general insufficient

to render the theory ultraviolet finite. Indeed, explicit calculations show that gravity coupled

to matter generically diverges at one loop [15]. Pure Einstein gravity in four dimensions

possesses a cancellation at one loop, distinct from the ones being discussed here, due to

the absence of a viable counterterm, delaying the divergence to two loops. This two-loop

divergence was established by Goroff and Sagnotti through direct computation of that di-

vergence [16] and later confirmed by van de Ven [17].

Here, as a first step in checking the hypothesis that there are novel cancellations in non-

supersymmetric gravity theories, we will investigate pure gravity at one loop. To carry out

our investigation of cancellations we make use of the unitarity method [14, 18, 19]. In order

to observe the cancellations we reduce the amplitudes to combinations of box, bubble and

triangle integrals. The cancellations then manifest themselves in unexpectedly low powers of

loop momentum in these integrals. The reduction to the basic integrals allows us to combine

the contributions coming from the higher-point integrals to make the cancellations explicit.

3



We do so using powerful new loop integration methods [9, 20–24], based on generalized

unitarity [25] and complex momenta [16, 26]. In particular, we make extensive use of the

formalism introduced in ref. [24]. This will allow us to observe the hidden cancellations

through simple scaling arguments.

The unitarity method requires as input tree amplitudes, which we construct via Kawai-

Lewellen-Tye (KLT) relations [27, 28] and on-shell recursion relations [29–32]. For MHV

tree amplitudes, we use the form obtained by Berends, Giele and Kuijf [33] via the KLT

relations. This is a particularly compact form, making apparent various useful properties of

the amplitudes.

The one-loop cancellations we observe rely on rather generic properties of gravity tree-

level amplitudes. In particular, certain scaling properties of the tree amplitudes have to be

independent of the number of scattering particles. These cancellations are quite reminiscent

of ones that occur at tree level under the large complex deformations needed to prove the

validity of on-shell recursion relations [31, 32]. Indeed, the connection of large complex de-

formations to the absence of scalar bubble integrals in N = 8 supergravity has been already

noted in ref. [9]. This connection suggests that the cancellations will be present in theories

that are “fully constructible” from on-shell recursion relations, in the sense of ref. [34]. In

such theories, the tree amplitudes can be obtained using on-shell recursion using only three

vertices as the input. Remarkably, Einstein gravity is in this class.

This paper is organized as follows. In section II, we review properties of gravity tree

amplitudes, including the cancellations that are present under large complex deformations.

Then in section III we describe the methods we use to count the leading powers of loop

momentum in the triangle and bubble integrals contributing in Einstein gravity. In this

section we also contrast these cancellations against the well known one which renders pure

Einstein gravity finite at one loop. We present the explicit power counting of the triangle

and bubble integrals in section IV. In section V we explain the relationship between the

cancellations we observe at one loop and ones that were observed previously at tree level.

We also give a heuristic explanation of observed one-loop cancellations, based on universal

factorization properties of one-loop amplitudes. We conclude and comment on the outlook

in section VI.
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II. PROPERTIES OF TREE AMPLITUDES

In this section, we first review some well known representations of tree amplitudes, used

later for explicit computations, and then review cancellations in tree amplitudes needed for

on-shell recursion relations.

A. Notation for gravity tree amplitudes

To expose useful properties of scattering amplitudes in four dimensions we employ the

spinor-helicity formalism [35, 36], with spinor products,

〈j l〉 = εαβλjαλlβ = ū−(kj)u+(kl) , [j l] = εα̇β̇λ̃jα̇λ̃lβ̇ = ū+(kj)u−(kl) , (2.1)

where u±(k) is a massless Weyl spinor with momentum k and positive or negative chirality.

It will also be convenient to use the bra-ket notation for the contractions of Weyl spinors;

〈j∓|l±〉 = ū∓(kj)u±(kl). With the normalizations used here, the spinor inner products are

related to Lorentz inner products via, 〈l j〉 [j l] = 1
2
Tr[/kj/kl] = 2kj ·kl = sjl. A useful identity

is the Schouten identity,

〈1 2〉 〈3 4〉 = 〈2 3〉 〈4 1〉 + 〈2 4〉 〈1 3〉 , (2.2)

valid for four arbitrary spinors λ1, λ2, λ3 and λ4. In the spinor-helicity formalism gluon (spin

1) polarization vectors take the form,

ε±µ (ki, qi) =
1

2

〈q∓i |γµ|k∓
i 〉

〈q∓i |k±
i 〉

, (2.3)

where ki is the momentum carried by the particle and qi is a null reference momentum. The

graviton polarization is,

ε±µν(ki, qi) = ε±µ (ki, qi)ε
±
ν (ki, qi) . (2.4)

It is worth noting that the tracelessness condition εµ
µ = 0 is automatically enforced since

〈q∓i |γµ|k∓
i 〉 is a complex null vector.

A particularly useful representation for gravity tree amplitudes is based on the Kawai,

Lewellen and Tye relations [27] between open and closed string theory tree-level amplitudes,

especially since this exposes the intimate connection between gauge and gravity amplitudes.

In the low-energy limit these become relations between gravity and gauge theory amplitudes.
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Not only do they hold for any tree amplitudes obtained from the low-energy limit of a string

theory, but they appear to hold more generally [28]. For three through six points the relations

are,

M tree
3 (1, 2, 3) = iAtree

3 (1, 2, 3) Atree
4 (1, 3, 2) , (2.5)

M tree
4 (1, 2, 3, 4) = −is12A

tree
4 (1, 2, 3, 4) Atree

4 (1, 2, 4, 3) , (2.6)

M tree
5 (1, 2, 3, 4, 5) = is12s34A

tree
5 (1, 2, 3, 4, 5)Atree

5 (2, 1, 4, 3, 5)

+ is13s24A
tree
5 (1, 3, 2, 4, 5) Atree

5 (3, 1, 4, 2, 5) , (2.7)

M tree
6 (1, 2, 3, 4, 5, 6) = −is12s45A

tree
6 (1, 2, 3, 4, 5, 6)

[
s35A

tree
6 (2, 1, 5, 3, 4, 6)

+(s34 + s35)A
tree
6 (2, 1, 5, 4, 3, 6)

]
+ P(2, 3, 4) . (2.8)

Expressions for any numbers of legs may be found in appendix A of ref. [6]. Here the

M tree
n ’s are n-point tree-level amplitudes in a gravity theory. The Atree

n ’s are color-ordered

gauge-theory partial amplitudes, with Atree
n (1, 2, . . . n) representing the kinematic coefficient

of the color trace, Tr[T a1T a2 · · ·T an ]. In the six-point case, in eq. (2.8), P(2, 3, 4) signifies a

sum over permutations over the legs 2, 3 and 4. We have suppressed factors of the coupling

constants in the gauge theory and gravity amplitudes. The KLT relations are valid for any

configuration of helicities and particles. As an abbreviation we use the labels “1, . . . , n” to

denote the momenta k1, . . . , kn and polarizations or spinors of external legs.

For example, using known expressions for the gauge theory amplitudes [36, 37], for n =

3, 4 the KLT relations give us,

M tree
3 (1−, 2−, 3+) = i

〈1 2〉6
〈2 3〉2 〈3 1〉2 ,

M tree
4 (1−, 2−, 3+, 4+) = i

[3 4] 〈1 2〉6
〈2 3〉 〈3 4〉 〈4 1〉 〈2 4〉 〈3 1〉 . (2.9)

Although very useful, the KLT form often makes all-n analyses difficult due to large

permutation sums and non-manifest factorization and scaling properties. For the specific

case of MHV all-n (n > 4) graviton amplitudes, Berends, Giele and Kuijf (BGK) [33]

presented the more manageable expression,

M tree
n (1+, 2+, . . . , a−, . . . , b−, . . . , n+) =

−i 〈a b〉8 ∑
P(3,4,...,n−1)

∏n−1
l=3 〈n−| /K2...(l−1) |l−〉∏n−2

i=1 〈i (i + 1)〉 〈1 (n − 1)〉 〈1 n〉2 〈2 n〉2∏n−1
l=3 〈l n〉 , (2.10)
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FIG. 1: A gravity Feynman diagram. Individual diagrams display bad behavior as z → ∞.

where all legs besides a and b are of positive helicity, and Kµ
2...(l−1) ≡ ∑l−1

i=2 kµ
i , and

P(3, 4, . . . , n−1) indicates the summation over all permutations of the labels 3, 4, . . . , n−1.

(The form here is slightly rearranged compared to the one in ref. [33].) This expression

has been checked numerically through 11-points against the Kawai, Lewellen and Tye rela-

tions [33], as well as those derived from on-shell recursion [31]. Although the BGK formula

has been confirmed only through 11 points, the fact that it has the correct properties as

any momentum becomes soft, makes it extremely likely to be correct to all n. Although

not manifestly so, this formula is fully crossing symmetric under an interchange of any pairs

of legs, after dividing by 〈a b〉8. The MHV graviton amplitudes, which have two positive

helicity graviton legs and the rest negative, are obtained simply by swapping angle with

square brackets.

The MHV tree amplitudes satisfy simple supersymmetry Ward identities [38], allowing

us to replace two of the graviton legs with any pair of particles of lesser spin,

M tree
n (1−h, 2−, 3+, . . . , nh) =

(〈2 n〉
〈1 n〉

)2h−4

M tree
n (1−, 2−, 3+, . . . , n+) , (2.11)

where ah represents particle a carrying helicity h, while on the right hand side of this identity,

we have a pure graviton tree amplitude. For gravitons, h takes on the values of ±2. Similarly,

for gravitinos, it takes on the values ±3/2, and so forth. (However, for simplicity of notation,

in general, for graviton amplitudes we keep only the ± label on each graviton leg.) At tree

level this identity holds even in non-supersymmetric theories, but at loop level they hold

only in supersymmetric theories. In the unitarity cuts, this identity is rather useful, giving

us a simple means of separating the cancellations due to supersymmetry from those that

happen with no supersymmetry. A similar identity holds for the MHV amplitudes, except

that angle brackets are replaced with square ones.
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B. Cancellations in tree amplitudes

One clue pointing to improved high energy behavior of gravity scattering amplitudes

comes from considerations of on-shell recursion relations [29, 30] for gravity amplitudes [31,

32]. These recursion relations are constructed by deforming the amplitude via a complex

shift of momenta. For example, we may shift two of the momenta, say those of legs i and j,

kµ
i → kµ

i (z) = kµ
i − z

2

〈
i−
∣∣∣ γµ

∣∣∣j−〉 , kµ
j → kµ

j (z) = kµ
j +

z

2

〈
i−
∣∣∣ γµ

∣∣∣j−〉 , (2.12)

where z is a complex parameter. In terms of spinor variables, the deformation (2.12) is

equivalent to a shift of λ̃i and λj ,

λ̃i → λ̃i − z λ̃j , λj → λj + z λi . (2.13)

We will refer to this as an “[i, j〉 shift”. The above shift maintains both momentum con-

servation and leaves legs i and j on shell, deforming the amplitude M tree
n (z) to become z

dependent. As described in refs. [30], if a shifted tree amplitude vanishes for large z, it can

be written as a sum over simple poles in z, giving rise to an on-shell recursion relation.

Taking z in eq. (2.12) large, corresponds to taking the momenta ki(z) and kj(z) large

in a complex direction, which may be interpreted as a particular high-energy limit. As

discussed in refs. [31, 32], for the case of gravity, it is not at all obvious from Feynman

diagrams that the shifted amplitude, M tree
n (z), will in fact vanish for large z. Consider the

single gravity Feynman diagram displayed in fig. 1, assuming we have m vertices and thus

m − 1 propagators along the line connecting legs i and j. Each of these vertices scale as

z2 since two shift momenta appear at each vertex. The shifted propagators scale as 1/z,

as can be easily checked using the fact that 〈i−| γµ |j−〉 is null. If the shifted legs i and j

are of negative and positive helicity respectively, the polarization tensors for these legs give

factors of 1/z2 each, as can be seen by applying the shift (2.13) to eq. (2.4). Combining

the various factors of z gives us an overall scaling for the diagram of zm−3 which for m ≥ 3

is badly behaved as z → ∞. In an n-point amplitude Feynman diagrams may have up to

m = n − 2 vertices, so the worst behaved diagrams scale as zn−5 at large z. This may

be contrasted to the behavior of Yang-Mills Feynman diagrams. In this case, there is at

most one momentum at each vertex, leading to a large z scaling in any diagram no worse

than 1/z, after incorporating the behavior of the polarization vectors (2.3) of legs i and j.
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helicity of shifted legs [−,+〉 [+,−〉 [+,+〉 [−,−〉
large z scaling z−2 z6 z−2 z−2

TABLE I: The leading scaling in z of n-graviton amplitudes under the shift in eq. (2.12). The “+”

and “−” labels refer to the helicities of the shifted legs.

Thus, gravity would appear to be much worse behaved at large z than gauge theory, in line

with the standard statements that gravity is badly behaved in the ultraviolet. For M tree
n (z)

to vanish as z → ∞ there need to be hidden cancellations not apparent within individual

Feynman diagrams.

Indeed this is the case: various studies of on-shell recursion relations support this [31]

and, more recently, Benincasa, Boucher-Veronneau and Cachazo [32] have given a general

proof for the vanishing of n-graviton amplitudes under a [−, +〉 shift, where the “−” and

“+” labels refer to the helicities of the shifted legs in eq. (2.12). In particular, for MHV

amplitudes, supersymmetry Ward identities give the scaling of MHV graviton amplitudes

for generic shifts which we have collected in table I. This pattern has been conjectured to

hold for any n-graviton tree amplitude [9]. By following similar reasoning as in ref. [32],

for the [−, +〉 shift, we have confirmed that under a [+,−〉 shift n-graviton amplitudes

behave as z6 for any helicity configuration. We have also confirmed that table I is correct

for all graviton helicity configurations through at least ten points, by numerically evaluating

complex deformations of amplitudes constructed via on-shell recursion. The cases of [−,−〉
and [+, +〉 shift remain to be proven for n > 10.

For MHV amplitudes, the BGK form (2.10) (or eq. (2.9) for three or four points) provides

a rather simple means to confirm the pattern in table I. Under a [1, n〉 shift, ignoring the

overall 〈a b〉8, each term in the sum in eq. (2.10) behaves as 1/z2 as z → ∞ because 〈1 n〉 is

unshifted, 〈2 n〉 → 〈2 n〉+z 〈2 1〉, and there is a cancellation of zn−3 between the products in

the numerator and denominator. The pattern in table I then follows, depending on whether

the negative helicity legs a or b, in eq. (2.10), correspond to legs 1 and n. Note that had

we chosen to shift other legs, the large z behavior would not be manifest. Indeed, each

term would appear to have a worse behavior. However, in the sum, non-trivial cancellations

between terms restore the scaling given in table I.
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Interestingly, these cancellations provide some useful insight into the ultraviolet properties

of gravity. The poor ultraviolet properties of gravity are usually ascribed to its two-derivative

coupling, as well as the appearance of an infinite number of contact terms. The very existence

of on-shell recursion relations calls into question these standard arguments. In particular,

the better than expected behavior, under large z deformations, suggests an improved high

energy behavior, since this corresponds to a limit where momenta are becoming large in

certain complex directions. Very remarkably, on-shell recursion relations allow us to obtain

all tree amplitudes in gravity theories starting solely from the three-point vertices. The

higher-point vertices that occur with conventional formulations are unnecessary. This is

undoubtedly tied to the earlier realization that the higher-point vertices of gravity follow

from principles of gauge and Lorentz covariance, without providing any additional dynamical

information to the scattering amplitudes [39].

III. ONE-LOOP GRAVITY AMPLITUDES AND POWER COUNTING

Generalized unitarity allows us to use the tree-level amplitudes, described in the previous

section, directly to obtain properties of loop-level amplitudes [25]. We use four-dimensional

amplitudes in the cuts, allowing us to apply powerful spinor methods [35, 36]. Thanks

to new developments in evaluating integrals at one loop [9, 20–23], and in particular the

formalism of ref. [24], we will be able to translate straightforwardly from power counting in

cuts to power counting in Feynman integrals.

A. Bubble-triangle cancellations

When starting from Feynman diagrams, a one-loop n-point amplitude is composed of a

sum over loop integrals with up to n propagators carrying loop momentum. Consider the

generic case of an m-gon integral with m such propagators,

Im =
∫

dDl

(2π)D

Pm(l)

l2(l − K1)2(l − K1 − K2)2 · · · (l −∑m−1
j=1 Kj)2

, (3.1)

where the Ki are sums over external momenta and Pm(l) is a numerator polynomial in the

loop momentum l. Because the integrals can contain infrared and ultraviolet divergences,

we use dimensional regularization [40], analytically continuing the loop momentum integral
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FIG. 2: The different types of box, bubble and triangle integrals are characterized by the momenta

Ki at each corner. The Ki are sums of momenta of external particles. Non-trivial cancellations of

numerator loop momentum occur within a given integral type.

to D = 4−2ε dimensions. (For the supersymmetric case we use the four-dimensional helicity

scheme variant [41], which is a relative of dimensional reduction [42].)

Given an m-gon integral with p powers of loop momentum in the numerator and mass-

less propagators there is a standard procedure — known as Brown-Feynman or Passarino-

Veltman reduction — which reduces the integral to a basis set of scalar box, triangle and

bubble integrals, with no powers of loop momentum in their numerators [10, 11]. The es-

sential trick is to trade one power of loop momentum in the numerator for a difference of

inverse propagators. For example, if 1/l2 and 1/(l − k1)
2 are two propagators and k2

1 = 0,

we can rewrite,

2l · k1 = l2 − (l − k1)
2 . (3.2)

By canceling these against propagators we obtain a difference of integrals with one less

propagator and one less power of loop momentum in their numerators. If instead of 2l · k1

the numerator factor was already an inverse propagator, say l2, we could cancel two powers

of loop momentum. Generically, both types of terms will appear, with the former leading

to a worsening of the power counting in the reduced integrals. Although this reduction

procedure cannot alter the overall ultraviolet behavior of the gravity amplitude, it does

alter the power counting of individual integrals. (Cancellations between integrals restore

the proper overall behavior.)

In gauge theories, in Feynman gauge, one-loop m-gon integrals carry up to m powers of

loop momentum in the numerator, due to the one-derivative coupling, and 2m powers in

the denominator from the propagators. Thus with increasing number of legs the ultraviolet

behavior of m-gons gets softer in the ultraviolet. One step of the integral reductions trades

one power of loop momentum in the numerator for two powers in the denominator giving
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(m−1)-gon integrals with no worse than (m−1) powers of loop momentum in the numerators

and 2(m − 1) powers in the denominators from the propagators. Carrying out the chain of

reduction down to the triangle level, we encounter triangle integrals with no more than three

powers of loop momentum in their numerators. Similarly, carrying out the reduction down

to the bubble integrals, we encounter no more than two powers of loop momentum in the

numerator. This matches the power counting for the Feynman diagrams directly containing

bubble and triangle loop integrals.

In contrast, gravity m-gon integrals may carry up to 2m powers of loop momentum in

their numerators, given the two-derivative couplings of the theory, and 2m powers in the

denominator, since propagators are quadratic in the loop momentum. Since the power of

loop momentum from vertices matches the power from the propagators, the leading ultra-

violet behavior of m-gon integrals is independent of m. Starting from Pm(l) with degree

2m, in carrying out the chain of integral reductions, we obtain (m− r)-point integrals with

numerator polynomials of degree 2m − r (where r > m − 2). In particular, in an n-point

gravity amplitude, under integral reductions, starting from an n-gon integral in the ampli-

tude, we would obtain triangle integrals with numerator polynomials P3(l) of degree n + 3

and bubble integrals with numerator polynomials P2(l) of degree n+2. That is, the triangle

and bubble integrals encountered in the chain of integral reductions would appear to have

a worse power count than their parent m-gon integrals.

The central observation of the present article is that non-trivial cancellations lead to a

very different pattern for the power counting of individual integrals. We shall find that the

maximum degree is six in the triangle case and four in the bubble case, i.e.

P2(l) ∼ l4 , P3(l) ∼ l6 , (3.3)

independent of the number of external legs.

To investigate the power counting at the triangle level, our approach will be equivalent

to reducing all (m > 3)-point integrals to scalar box integrals and tensor triangle integrals,

with no further integral reductions, as any further reductions would lower the degrees of

the triangle numerator polynomials P3(l). Similarly, to perform the power counting at the

bubble level, we will effectively reduce all m > 2 integrals to scalar boxes, scalar triangles,

and tensor bubble integrals, again with no further integral reductions that would lower the

degree of the bubble numerator polynomials P2(l). This will allow us to demonstrate the
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existence of non-trivial cancellations in one-loop gravity amplitudes. We focus in our analysis

on the tensor bubble and triangle integrals, since this allows us to identify cancellations

straightforwardly.

To obtain a complete evaluation of the amplitude one continues the reduction procedure

until only known scalar integrals remain. In this way, any dimensionally regularized one-loop

amplitude can be expressed as a linear combination of basis scalar integrals multiplied by

rational coefficients [11],

A1-loop
n =

∑
j

ajI
j
1 +

∑
j

bjI
j
2 +

∑
j

cjI
j
3 +

∑
j

djI
j
4 + finite rational , (3.4)

where Ij
2 , I

j
3 and Ij

4 are scalar bubble, triangle and box integrals, respectively and bj , cj , dj

their rational coefficients. This structure near four dimensions, where no integrals beyond

box integrals appear in the basis, is a general property. In massive theories we also obtain

“cactus” or one-point contributions, Ij
1 , but with dimensional regularization these are set to

zero for massless particles, as in the cases discussed in this paper. An unwanted side effect

of carrying out the complete reduction to the basis of scalar integrals, is that the power

counting becomes more obscure, due to the way that dimensional regularization sets power

divergences to zero. For this reason, to carry out power counting, it is much more convenient

to identify cancellations prior to eliminating tensor triangle and bubble integrals.1 Besides

the scalar integrals, there are also finite rational terms in eq. (3.4) which arise when the −2ε

dimensional components of loop momentum interfere with a 1/ε ultraviolet singularity. We

defer the study of the finite rational terms to the future.

B. Relation to one-loop finiteness

It is useful to compare the above cancellations to the well known ultraviolet cancellations

underlying the one-loop finiteness [15, 43] of pure Einstein gravity. In the language of

Lagrangian counterterms one-loop pure gravity is finite because all potential counterterms

vanish on shell or equivalently by the equations of motion. The only three potential one-loop

counterterms are: R2, R2
µν , and R2

µνσρ, where R and Rµν are the Ricci scalar and tensor,

1 The information on which tensor triangle or bubble integrals appear in the amplitude remains encoded in
the coefficients of the basis scalar integrals via powers of the spurious poles as well as particular numerical
factors.
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while Rµνσρ is the Riemann tensor. The first two of these potential counterterms can be

removed by field redefinitions and vanish on shell, while the Gauss-Bonnet theorem, in four

dimensions, allows the squared Riemann tensor to be expressed as a linear combination of

the other two, so it too is not a viable counterterm. This delays the divergences until two

loops.

In the language of S-matrix elements, the ultraviolet finiteness is due to a cancellation

between the coefficients of distinct bubble integrals, depending on different kinematic invari-

ants. If the amplitude is fully reduced to the basis of scalar integrals (3.4), the ultraviolet

divergences are found in bubble integrals, while the triangle and box integrals are infrared di-

vergent, but ultraviolet finite. The explicit form of the integrals may be found, for example,

in Appendix I of ref. [14]. In particular, the scalar bubble integral is,

I2(s) =
i

(4π)2−ε

Γ(1 + ε)Γ2(1 − ε)

Γ(1 − 2ε)

(
1

ε
− ln(−s) + 2

)
+ O(ε) , (3.5)

where 1/ε is an ultraviolet divergence. To see how the cancellation arises we may use the

four-point amplitudes in pure gravity, as explicitly computed by Dunbar and Norridge [44].

For the pure gravity one-loop amplitude M1-loop
4 (1−, 2−, 3+, 4+) the bubble integrals enter

in the combination,

I2(s14) − I2(s13) ∼ ln(s14/s13) , (3.6)

and the ultraviolet divergences cancel between the two integrals. If matter is added, the

theory will no longer be one-loop finite [15, 45]. Indeed, the four-scalar amplitude, for

example, diverges since the bubble integral divergences no longer cancel [44].

In contrast to the above cancellations between integrals, our study of cancellations con-

cerns triangle and bubble integral functions within the given class specified by the external

momenta at each corner, as displayed in fig. 2. We shall find that the power counting within

the individual classes is better than naively expected and anticipate that this will have im-

portant consequences at higher loops, in much the same way as the no-triangle hypothesis

constrains the higher-loop ultraviolet behavior in N = 8 supergravity via unitarity [2].

C. Large momentum scaling in integrals

First consider box integrals. The coefficients of these integrals are most easily determined

from quadruple cuts [20], as shown in fig. 3(a). If we replace the four Feynman propagators

14



K

(b)(a)
K

K K

K K K134

21

l

l

l

l

1

2

3

0

2

3

l0

l1 l2 1K K2

(c)

l0

l1

.. ...

.....

..

. .

..

.. ..

FIG. 3: The (a) quadruple, (b) triple and (c) ordinary double cut. (The minus sign in the definition

of K2 in the triple cut follow the conventions of ref. [24].) We take l0 ≡ l.

by on-shell delta functions we obtain an integral of the form,2

∫
d4l δ(l2) δ((l − K1)

2) δ((l − K1 − K2)
2) δ((l + K4)

2) M tree
(1) M tree

(2) M tree
(3) M tree

(4) , (3.7)

where the M tree
(i) correspond to the four tree amplitudes sitting at the corners of the box in

fig. 3(a). The quadruple cut conditions freeze the loop integral in four dimensions, since

there are four on-shell conditions,

l2 = 0 , (l − K1)
2 = 0 , (l − K1 − K2)

2 = 0 , (l + K4)
2 = 0 , (3.8)

allowing us to solve for the loop momentum directly in terms of the external momenta.

(Further details and examples of calculations with quadruple cuts may be found in refs. [20,

37].) The coefficient in front of the integral is then simply given by substituting the solution

for l into the product of tree amplitudes. Although it is an efficient means of obtaining the

rational coefficients of all basis box integrals in eq. (3.4), this has an unwanted side effect:

once the quadruple cut conditions are imposed and the solved loop momentum inserted in,

we can no longer perform power counting as the loop momentum has disappeared from the

numerator polynomials. Similar considerations also prevent us from using generalized cuts

to power count straightforwardly the m-gon integrals with m > 4.

We therefore turn to triangle and bubble functions. These functions may be determined

from triple and double cuts, as shown in fig. 3(a) and (b). With these cuts, there remain

unfixed degrees of freedom in the loop integrals, allowing us to count powers of the loop

momentum, using the parameters describing these.

2 Since these integrals are in general infrared divergent one need to replace d4l with dDl, but this turns out
to have no effect on determining the integral coefficients for D → 4; this difference, however, does affect
the finite rational remainder in eq. (3.4) [14].
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Consider then the triangle integrals and the triple cuts which determine them. In this

case, there are three cut conditions but four components of loop momentum, leaving one

unconstrained degree of freedom. Performing a triple cut as shown in figure 3(b), allows us

to isolate the triangle integral specified by the external legs at each corner. The triple cut

is of the form, ∫
d4l δ(l2) δ((l − K1)

2) δ((l − K2)
2) M tree

(1) M tree
(2) M tree

(3) . (3.9)

Following the construction of ref. [24], we parameterize the cut loop momenta in terms of

the single unconstrained parameter t,

lµi = αi2K
�,µ
1 + αi1K

�,µ
2 +

t

2
〈K�,−

1 |γµ|K�,−
2 〉 +

αi1αi2

2t
〈K�,−

2 |γµ|K�,−
1 〉 , (3.10)

where i = 0, 1, 2 corresponds to the three cut lines of the triangle as shown in fig. 3(b), with

l0 ≡ l. The basis momenta are,

K�,µ
1 =

Kµ
1 − (S1/γ)Kµ

2

1 − (S1S2/γ2)
, K�,µ

2 =
Kµ

2 − (S2/γ)Kµ
1

1 − (S1S2/γ2)
, (3.11)

S1 = K2
1 , S2 = K2

2 and γ has two solutions given by,

γ± = (K1 · K2) ±
√

∆ , ∆ = (K1 · K2)
2 − K2

1K
2
2 . (3.12)

The αij parameters are functions of the Ki whose explicit form may be found in Appendix A

of ref. [24]. This parameterization is equivalent to the one used earlier in ref. [22].

With this momentum parametrization, the spinors depending on the loop momenta are,

〈l−i | = t 〈K�,−
1 | + αi1 〈K�,−

2 |,
〈l+i | =

αi2

t
〈K�,+

1 | + 〈K�,+
2 |, (3.13)

so that inner products involving these are given by,

〈li a〉 = t 〈K�
1 a〉 + αi1 〈K�

2 a〉 , [li a] =
αi2

t
[K�

1 a] + [K�
2 a] ,

〈l0 l1〉 = −t
S1

γ
〈K�

1 K�
2〉 , [l0 l1] = −1

t
[K�

2 K�
1] ,

〈l0 l2〉 = −t 〈K�
1 K�

2〉 , [l0 l2] = −1

t

S2

γ
[K�

2 K�
1] ,

〈l1 l2〉 = −t

(
1 − S1

γ

)
〈K�

1 K�
2〉 , [l1 l2] =

1

t

(
1 − S2

γ

)
[K�

2 K�
1] , (3.14)

where each has a simple scaling in t. There is an arbitrariness in the scaling in the spinors

since one can move powers of t between the angle and square brackets, leaving eq. (3.10) the
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same. Here we use the same choice as ref. [24]. For unitarity cuts this arbitrariness cancels

because the opposite helicity spinors carrying the cut loop momenta can always be paired

up.

In ref. [24] these formulæ were used to develop an efficient method for extracting the

coefficients of the scalar triangle functions in the basis of integrals (3.4). Instead of evaluating

integral coefficients, here we use this approach to perform power counting in each class of

triangle and bubble integral functions, automatically accounting for all contributions of

integral reductions of higher-point integrals. Using the cut expressions it is then a simple

matter to determine the maximum numbers of loop momenta which occur in the numerators.

This is done simply by making the replacements of eqs. (3.10) and (3.14) into the product

of three tree amplitudes in eq. (3.9) and then determining the maximum power of t in the

limit that t becomes large. From eq. (3.10), each power of t corresponds to a power of l

in the numerator. This gives us the maximum tensor triangle integral that can occur had

we carried out a Passarino-Veltman integral reduction on the one-loop Feynman diagrams

down to triangles.

Any terms that scale as t−m with m > 0 as t → ∞ in the cut will not contribute to the

triangle integrals. For example, a scalar box integral present in the triple cut will scale as

1/t and will drop out in the large t limit. If the entire triple cut scales as an inverse power

of t, then there is no triangle contribution at all.

Next consider bubble integrals. The behavior of the bubble integrals can be obtained from

the two-particle cuts, as shown in figure 3(c). Following ref. [24], the two-particle cuts leave

two unconstrained parameters, which we label y and t, allowing the cut loop momentum to

be parameterized as,

lµ0 = yK�,µ
1 +

S1

γ
(1 − y)χµ +

t

2
〈K�,−

1 |γµ|χ−〉 +
S1

2γ

y

t
(1 − y)〈χ−|γµ|K�,−

1 〉 , (3.15)

where l0 ≡ l. Here χ is an arbitrary null momentum and

K�,µ
1 = Kµ

1 − S1

γ
χµ, (3.16)

where γ± = 〈χ±| /K1|χ±〉.
The spinors depending on the loop momentum are,

〈l−0 | = t 〈K�,−
1 | + (1 − y)

S1

γ
〈χ−| , 〈l+0 | =

y

t
〈K�,+

1 | + 〈χ+| ,

〈l−1 | = 〈K�,−
1 | − y

t

S1

γ
〈χ−| , 〈l+1 | = (y − 1) 〈K�,+

1 | + t 〈χ+| , (3.17)
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so that the inner products involving these are,

〈l0 a〉 = t
〈
K�

1 a
〉

+ (1 − y)
S1

γ
〈χ a〉 , [l0 a] =

y

t

[
K�

1 a
]
+ [χ a] ,

〈l1 a〉 =
〈
K�

1 a
〉
− y

t

S1

γ
〈χ a〉 , [l1 a] = (y − 1)

[
K�

1 a
]
+ t [χ a] ,

〈l0 l1〉 =
S1

γ
〈K�

1χ〉 , [l0 l1] = [K�
1χ] . (3.18)

In ref. [24] these were used to develop a method to extract the value of any bubble integral

coefficient. Here we use it to determine the maximum number of powers of loop momenta

that can occur in any bubble integral, simply by taking y large and determining the maximum

power of y2. From eq. (3.15), we see that in the large y limit each power of y2/t corresponds

to an additional power l that can occur in the numerator of the bubble integrals. In the

formalism of ref. [24] the coefficients of bubble integrals also receive contributions from triple-

cut terms. However, the contributions of such terms do not alter our conclusions on the

general scaling behavior of the bubble terms. Therefore, as we can always infer the overall

scaling behavior of the bubble terms purely from the contributions of the two-particle cut

terms, we do not need to discuss these terms further. If a two-particle cut scales as (y2/t)−m,

with m > 0, then there is no bubble contribution at all. In a similar manner to that of the

triple-cut case there is an arbitrariness in the overall scaling of these spinor inner products

which cancels in the cuts.

IV. POWER COUNTING OF TRIANGLE AND BUBBLE INTEGRALS

In this section, we apply the formalism described in the previous section to perform power

counting on bubble and triangle integrals in one-loop pure gravity amplitudes. First we work

through some examples at six points, comparing to the earlier results obtained in N = 8

supergravity [6, 9]. Similarly we consider the other N -extended supergravities and observe

that theories with N ≥ 3 should be “cut-constructible”, if the observed cancellations are

universal. We then present results for an arbitrary number of legs but for limited classes of

contributions. We also numerically analyze the power counting for all helicity configurations

up to ten points in pure gravity. Some further results can be found in section V, where we

outline a proof of the scaling for the case when the two cut lines of each tree amplitude

appearing in the cuts are of opposite helicity.
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FIG. 4: Example bubble and triangle integrals appearing in the six-point amplitude.

A. A six-point bubble example

As an instructive example, consider the six-point one-loop amplitude

M1-loop
6 (1−, 2−, 3+, 4+, 5+, 6+) and the power counting of the bubble integral shown in

fig. 4(a). Using the Passarino-Veltman reduction, the worst behaved contribution to the

bubble integral comes from the hexagon Feynman diagram displayed in fig. 5. Because

of the two-derivative coupling, the hexagon Feynman diagram has 12 powers of loop

momentum in the numerator. Since each step of the reduction eliminates one power of loop

momentum in the numerator, as well as one propagator, after four steps we obtain bubble

integrals with 8 powers loop momentum in their numerators, prior to accounting for any

cancellations with other hexagon diagrams.

To obtain the maximum power of loop momentum in the bubble integral, including feed

down from higher-point integrals, we determine the scaling of the two-particle cut in fig. 3(c)

with K1 = k2 + k3 + k4 + k5 and K2 = k1 + k6, selecting the desired integral. In this case,

FIG. 5: An example of a Feynman diagram giving the worst behaved contribution to the bubble

integral in fig. 4(a). Under a Passarino-Veltman reduction a hexagon integral in gravity gives

bubble integrals with up to eight powers of loop momentum in the numerator. The dashed line

represents the channel used to evaluate the contribution of this diagram to the bubble integral in

fig. 4(a) via the unitarity cuts.
5

1

6

2

3

4
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only two helicity configurations of the cut legs contribute — for the other configuration one

of the tree amplitudes in the cut vanishes. Thus, the product of tree amplitudes in the cut

is,

C gravity
61 = M tree

4 (l−0 , 6+, 1−,−l+1 ) × M6(−l+0 , 2−, 3+, 4+, 5+, l−1 )

+ M tree
4 (l+0 , 6+, 1−,−l−1 ) × M6(−l−0 , 2−, 3+, 4+, 5+, l+1 ) . (4.1)

First consider the behavior of the individual Feynman diagrams that compose the tree

amplitudes in the cut. With the cut conditions used to determine the integrals, the large y

scaling is similar to that of Feynman diagrams under large z scaling, described in section II.

From eq. (3.15), each power of loop momentum in the numerator generically counts as one

power of y2. Since l2 = 0, each propagator, 1/(l − Ki)
2 ∼ 1/(2 l · Ki), counts as a power of

1/y2. The worst behaved contribution then comes from diagrams with the maximal number

of propagators and vertices on each side of the cut, an example of which is the hexagon

shown in fig. 5. Diagrams with higher-point vertices or with trees attached to the loop are

subdominant in the scaling. Since at six points there are a maximum of six vertices and four

propagators (not counting the cut ones) this gives us a large y scaling of (y2)12/(y2)4 = (y2)8.

(The product of polarization tensors of the cut legs have a canceling scaling in y.) This

corresponds to a bubble integral with up to eight powers of the loop momentum lµ in the

numerator, matching the above counting from Passarino-Veltman integral reductions. Of

course, neither of these power counts account for any cancellation between the diagrams. In

order to see any such cancellations we need to use the explicit form of the tree amplitudes

in the cuts.

As a warm-up prior to evaluating the gravity cut (4.1), it is useful to consider the cut

analysis in Yang-Mills theory. The corresponding unitarity cut with the external legs color

ordered is given by,

CYM
61 = Atree

4 (l−0 , 6+, 1−,−l+1 ) × Atree
6 (−l+0 , 2−, 3+, 4+, 5+, l−1 )

+ Atree
4 (l+0 , 6+, 1−,−l−1 ) × Atree

6 (−l−0 , 2−, 3+, 4+, 5+, l+1 ) . (4.2)

The first of these terms is given by,

i 〈1 l0〉4
〈l1 l0〉 〈l0 6〉 〈6 1〉 〈1 l1〉 ×

i 〈l1 2〉4
〈l1 l0〉 〈l0 2〉 〈2 3〉 〈3 4〉 〈4 5〉 〈5 l1〉 ∼ y2 t × y2/t3 ∼ (lµ)2 , (4.3)
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where we used the explicit forms of the MHV gluon amplitudes [36, 46]. To obtain the large-

y scaling we use eq. (3.18). Thus, we have a maximum of two powers of loop momentum in

the bubble integrals from the first term. The second term in eq. (4.2) is similar,

i 〈1 l1〉4
〈l1 l0〉 〈l0 6〉 〈6 1〉 〈1 l1〉 ×

i 〈l0 2〉4
〈l1 l0〉 〈l0 2〉 〈2 3〉 〈3 4〉 〈4 5〉 〈5 l1〉 ∼ y2

t3
× y2 t ∼ (lµ)2 . (4.4)

Thus, we reproduce the well know result that bubble integrals in gauge theory can have up

to two powers of loop momentum in their numerators, including the contribution from the

reduction of higher-point tensor integrals.

The KLT relations (2.6) and (2.8) give us a simple way to compare the gravity bubble

integral power counting directly to one for gauge theory and to identify cancellations. Using

the labels appearing in the gravity cut (4.1). From the KLT relations we have,

M tree
4 (l0, 6, 1,−l1) = −is61 Atree

4 (l0, 6, 1,−l1)A
tree
4 (l0, 1, 6,−l1) , (4.5)

M tree
6 (−l0, 2, 3, 4, 5, l1) = −isl02s45 Atree

6 (−l0, 2, 3, 4, 5, l1)
(
sl03A

tree
6 (2, 3,−l0, 5, 4, l1)

+ (sl03 − s23) Atree
6 (3, 2,−l0, 5, 4, l1)

)
+ P(2, 3, 4) , (4.6)

where the six-point expression is obtained from eq. (2.8), by first relabeling (1, 2, 3, 4, 5, 6) →
(5, 4, 3, 2,−l0, l1), then using the invariance of the color-ordered gauge-theory tree amplitudes

under cyclic permutations and reversal of leg labels.

Using these expressions it is straightforward to evaluate the large y scaling in the gravity

cut in eq. (4.1). For the four-point amplitudes appearing in the cut we have,

M tree
4 (l−0 , 6+, 1−,−l+1 ) = −is61

i 〈1 l0〉4
〈l1 l0〉 〈l0 6〉 〈6 1〉 〈1 l1〉

i 〈1 l0〉4
〈l1 l0〉 〈l0 1〉 〈1 6〉 〈6 l1〉 ∼ y4 t2 ,

M tree
4 (l+0 , 6+, 1−,−l−1 ) = −is61

i 〈1 l1〉4
〈l1 l0〉 〈l0 6〉 〈6 1〉 〈1 l1〉

i 〈1 l1〉4
〈l1 l0〉 〈l0 1〉 〈1 6〉 〈6 l1〉 ∼ y4 t−6 . (4.7)

On the other side of the cut, for the six-point tree amplitudes, some terms appear to be worse

behaved because of the explicit kinematic invariants carrying loop momentum appearing in

the KLT expression (4.6). However, there is a non-trivial cancellation in such terms. In

particular, consider the following terms in the six-point amplitude in eq. (4.6) with helicity

configuration M tree
6 (−l+0 , 2−, 3+, 4+, 5+, l−1 ):

sl02sl03A
tree
6 (−l+0 , 2−, 3+, 4+, 5+, l−1 )

×
(
Atree

6 (2−, 3+,−l+0 , 5+, 4+, l−1 ) + Atree
6 (3+, 2−,−l+0 , 5+, 4+, l−1 )

)
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= sl02sl03
i 〈l1 2〉4

〈l1 l0〉 〈l0 2〉 〈2 3〉 〈3 4〉 〈4 5〉 〈5 l1〉
i 〈l1 2〉4

〈l0 5〉 〈5 4〉 〈4 l1〉 〈2 3〉
(

1

〈l1 2〉 〈3 l0〉 −
1

〈l1 3〉 〈2 l0〉
)

= sl02sl03
i 〈l1 2〉4

〈l1 l0〉 〈l0 2〉 〈2 3〉 〈3 4〉 〈4 5〉 〈5 l1〉
i 〈l1 2〉4

〈l0 5〉 〈5 4〉 〈4 l1〉
〈l1 l0〉

〈l1 2〉 〈3 l0〉 〈l1 3〉 〈2 l0〉
∼ y4 t−6 , (4.8)

where we made use of the Schouten identity (2.2). Note the explicit factor of sl02sl03 in

front of these terms, which makes the expression appear badly behaved. However, there

are compensating reductions in the scaling. One reduction comes from l1 and l0 being

non-adjacent in the color ordering of one of the Yang-Mills factors. In addition, there is a

non-trivial cancellation between the terms again reducing the scaling by another power of

y2, giving the overall scaling of y4. It is not difficult to check that all the remaining terms in

eq. (4.6) scale the same way. The net effect is that the six-point tree amplitudes appearing

in the cut (4.1) scale as,

M tree
6 (−l+0 , 2−, 3+, 4+, 5+, l−1 ) ∼ y4 t−6 , (4.9)

M tree
6 (−l−0 , 2−, 3+, 4+, 5+, l+1 ) ∼ y4 t2 . (4.10)

Combining this scaling with that of eq. (4.7) gives us that the two particle cut (4.1) scales

as,

C gravity
61 ∼ y8t−4 ∼ (lµ)4 . (4.11)

We thus conclude that the maximum number of powers of loop momentum that can

appear in the numerator of the gravity bubble integral shown in fig. 4(a) is (lµ)4. This

is significantly fewer powers than the (lµ)8 that is found from the integral reduction of an

individual hexagon gravity Feynman diagram down to bubble integrals. It is important to

note the non-trivial cancellation in eq. (4.8) required to obtain this result: only after the

terms are combined do we find the better scaling behavior.

At this point we may compare to the known N = 8 supergravity six-graviton MHV am-

plitude [6], in order to separate the cancellations due to supersymmetry from those inherent

to generic gravity theories. The supergravity case is quite similar to the pure gravity case,

except that we need to sum over the contributions of the super-multiplet in the loop. Thanks

to the MHV supersymmetry Ward identities (2.11) this task is straightforward. In N = 8

supergravity, we must sum over the contribution of the 256 different states of the theory.

These correspond to one graviton, 8 gravitinos, 28 vectors, 56 spin 1/2 fermions, and 70 real
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scalars. Using the supersymmetry Ward identity (2.11) and taking the contribution of the

super-multiplet into account by an overall factor ρ8, we have,

CN=8
61 =

∑
h∈N=8multiplet

M tree
4 (l−h

0 , 6+, 1−,−lh1 ) × M6(−lh0 , 2−, 3+, 4+, 5+, l−h
1 )

= ρ8 × M tree
4 (l−0 , 6+, 1−,−l+1 ) × M6(−l+0 , 2−, 3+, 4+, 5+, l−1 ) , (4.12)

where

ρ8 = (1 − 8x + 28x2 − 56x3 + 70x4 − 56x5 + 28x6 − 8x7 + x8) ,

= (1 − x)8 , x =
〈l1 1〉 〈l0 2〉
〈l0 1〉 〈l1 2〉 . (4.13)

The relative minus signs between the terms are due to the minus signs associated with

fermionic loops. Applying the Schouten identity (2.2) gives,

ρ8 =

(〈l1 l0〉 〈1 2〉
〈l0 1〉 〈l1 2〉

)8

∼ y−16 t8 ∼ (lµ)−8 . (4.14)

The scaling of ρ8 makes manifest the cancellations of eight powers of loop momentum l due

to supersymmetry. In total, the cut scales as y−8t4 implying the vanishing of the bubble

coefficient which confirms the known result [6]. Of the n − 6 powers of loop momentum

that cancel to eliminate the bubble integrals in the N = 8 n-graviton amplitude, only eight

are due to supersymmetry. Thus, to a large extent, the one-loop cancellations in the N = 8

theory originate from cancellations present in the non-supersymmetric pure gravity case.

Cases with fewer supersymmetries are similar. For example, the N = 1 gravity multiplet

consisting of a graviton and gravitino in the loop, has the corresponding factor of,

ρ1 = 1 − x − x7 + x8 ∼ y−4t2 ∼ (lµ)−2 , (4.15)

where x is given in eq. (4.13). Note that there is an additional cancellation in this expression,

besides the leading one, reducing the power of loop momentum by two. Similarly, for an

N = 2 gravity multiplet, the factor is,

ρ2 = 1 − 2x + x2 + x6 − 2x7 + x8 ∼ y−4t2 ∼ (lµ)−2 , (4.16)

so that the additional supersymmetry has not reduced the power count compared to the

N = 1 case. We have checked that this pattern generalizes to higher supersymmetry. De-

pending on whether the number of supersymmetries is even or odd we have,

ρNeven ∼ (lµ)−Neven , ρNodd
∼ (lµ)−(Nodd+1) . (4.17)
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It is interesting to note that, according to this pattern, theories with N ≥ 3 can have no

powers of loop momentum in the numerators of bubble integrals, and therefore no additional

rational terms [14]. Theories of this kind are “cut-constructible”, meaning that the ampli-

tudes of these theories may be calculated solely from the knowledge of their four-dimensional

cuts. A further interesting bound is N ≥ 5, where the above counting implies that bubble

integrals will not be present in the one-loop amplitudes (3.4).

B. A six-point triangle example

As a second example, consider the next-to-MHV (NMHV) amplitude

M1-loop
4 (1−, 2−, 3−, 4+, 5+, 6+) and the power counting of the triangle integral shown

in fig. 4(b). As described in the previous section, to analyze the power counting in triangle

functions, we consider triple cuts. Two helicity configurations of cut legs contribute,

C gravity
14,25,36 = M tree

4 (l−0 , 1−, 4+,−l+1 ) × M tree
4 (l−1 , 2−, 5+,−l+2 ) × M tree

4 (l−2 , 3−, 6+,−l+0 )

+ M tree
4 (l+0 , 1−, 4+,−l−1 ) × M tree

4 (l+1 , 2−, 5+,−l−2 ) × M tree
4 (l+2 , 3−, 6+,−l−0 ) . (4.18)

First consider the naive power counting of the individual Feynman diagrams contributing

to the tree amplitudes appearing in the cut. From eq. (3.10), we see that each numerator

loop momentum scales as t. In the denominator, any propagators in the tree amplitudes

1/(l − Ki)
2 scale as 1/t because of the on-shell condition l2 = 0. Using this scaling we

thus obtain the leading behavior from the two vertices and one propagator in each of the

four-point tree-amplitudes giving a total of

(t2 × t2/t)3 ∼ t9 ∼ (lµ)9 . (4.19)

This corresponds to the eight powers of loop momentum we obtained in the bubble integrals

starting from a hexagon Feynman diagram, because the bubble integrals require one more

step in the reduction compared to triangles.

Now consider power counting in the triangle integral of fig. 4(b), while accounting for

cancellations between diagrams. Using the explicit form of the tree amplitudes and spinor

products collected in (3.14), for the first term in eq. (4.18) we have,

M tree
4 (l−0 , 1−, 4+,−l+1 ) = i

[4 1] 〈l0 1〉7
〈l1 l0〉2 〈1 4〉 〈4 l1〉 〈l0 4〉 〈1 l1〉

∼ t2 . (4.20)
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The other factors of tree amplitudes in this term are similar, each also giving a factor of

t2. Thus, the first term in eq. (4.18) scales as t6, indicating six powers of loop momentum:

(lµ)6. Similarly, the second term in eq. (4.18) also scales the same way, giving us an overall

scaling of

C gravity
14,25,36 ∼ t6 ∼ (lµ)6 . (4.21)

The improved scaling is due to cancellations between Feynman diagrams in the tree ampli-

tudes.

We may compare this to the results of ref. [9] for the N = 8 theory. As for the bubble in-

tegral case, the sum over the N = 8 multiplet in the loop can be included by a multiplicative

factor,

C N=8
14,25,36 =

∑
h∈N=8 states

M tree
4 (l−h

0 , 1−, 4+,−lh1 ) × M tree
4 (l−h

1 , 2−, 5+,−lh2 ) (4.22)

× M tree
4 (l−h

2 , 3−, 6+,−lh0 )

= ρ8 × M tree
4 (l−0 , 1−, 4+,−l+1 ) × M tree

4 (l−1 , 2−, 5+,−l+2 ) × M tree
4 (l−2 , 3−, 6+,−l+0 ) ,

where,

ρ8 = (1 − x)8 , x =
〈l1 1〉 〈l2 2〉 〈l0 3〉
〈l0 1〉 〈l1 2〉 〈l2 3〉 . (4.23)

From eq. (3.14) we have that 〈li a〉 ∼ t
〈
K�

1 a
〉
, so that the leading t behavior cancels, giving

us,

ρ8 ∼ t−8 . (4.24)

Thus, as in the bubble case, the N = 8 supersymmetry reduces the degree of the loop

momentum polynomial by eight.

In total, combining eqs. (4.21) and (4.24) shows the triple-cut integral scales to zero, like

t−2, for N = 8 supergravity so that the triangle integral is not present in the amplitude.

However, only because of the cancellations already present in pure gravity does the triangle

integral coefficient vanish. The vanishing of this triangle integral coefficient in the N = 8

theory has been shown numerically in ref. [9]. The analysis here provides a simple analytic

proof of the vanishing.

As for the bubble integral discussed above, the cases with less supersymmetry are similar.

Depending on whether the number of supersymmetries is odd or even, we have either N +1

or N powers of canceled loop momentum, respectively.
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(hl0 ,−hl1) (−,+) (+,−) (+,+) (−,−)

y-scaling of M tree
n y4t2 y4t−6 y−4t2 y−4t2

TABLE II: The large y scaling of tree-amplitudes appearing in the two-particle cuts of a one-loop

amplitude. The scaling depends on the helicities of the two legs carrying loop momentum, indicated

in the first row. The amplitudes are evaluated using the cut kinematics in eqs. (3.15) and (3.18).

C. All-n power counting

We now discuss power counting in the bubble and triangle integrals for an arbitrary

number of external legs. We will discuss the cancellations in the two cases, and close with

a summary of the checks that we have performed.

1. Bubble integrals

As described above, in order to perform all-n power counting for the bubble functions

shown in fig. 2(c), we determine the leading power of y2/t under the large-y scaling properties

of the tree amplitudes contributing to the two-particle cuts of fig. 3(c). There are two possible

helicity configurations crossing the two-particle cuts. Either the legs crossing the cuts are

of the same helicity or they are of opposite helicity. If they are of opposite helicity, then the

contribution to the cuts is,

C
(−,+)
2 = M tree

m+2(l
−
0 , i1, . . . im,−l+1 ) × M tree

n−m+2(l
−
1 , i

′
1, . . . i

′
n−m,−l+0 )

+ M tree
m+2(l

+
0 , i1, . . . im,−l−1 ) × M tree

n−m+2(l
+
1 , i

′
1, . . . i

′
n−m,−l−0 ) , (4.25)

where we identify l0 with the loop momentum l. If the two legs crossing the cut are of the

same helicity the contribution is,

C
(+,+)
2 = M tree

m+2(l
+
0 , i1, . . . im,−l+1 ) × M tree

n−m+2(l
−
1 , i

′
1, . . . i

′
n−m,−l−0 )

+ M tree
m+2(l

−
0 , i1, . . . im,−l−1 ) × M tree

n−m+2(l
+
1 , i

′
1, . . . i

′
n−m,−l+0 ) . (4.26)

For cases where the tree amplitudes in the cuts are either MHV or MHV, we can read off the

scaling in y, by choosing leg l0 and l1 to correspond to legs 1 and n in eqs. (2.9) and (2.10),

or their parity conjugates. With this choice, the scaling properties in y and t from eq. (3.18)
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are manifest in each term. Choosing the negative helicity legs in a and b, to match the tree

amplitude appearing in the cuts, we can easily evaluate all cases, collected in table II. For

more general helicities we do not have a complete proof, but we have numerically checked

that the scaling in table II is correct for all helicity configurations up to ten points. We

have also constructed an n-point proof for the cases where opposite helicities cross the cut,

outlined in section V.

Assuming that table II holds for all tree amplitudes, we can then read off the maximum

scaling of the cuts (4.25) and (4.25) at large y,

C
(−,+)
2 ∼ y4t2 × y4t−6 ∼ (lµ)4 ,

C
(+,+)
2 ∼ y−4t2 × y−4t2 ∼ (lµ)−4 . (4.27)

Thus, for the case where opposite helicities cross the cut, up to four powers of loop momen-

tum appear in the numerator of the bubble integral. For the case where like helicities cross

the cut, the bubble contributions cancel completely, as indicated by the negative power of

y. Both cases exhibit non-trivial cancellations compared to individual Feynman diagrams.

We may compare these results to the corresponding ones for an N -extended supergravity.

The case with identical helicities crossing the cut is the same in the two theories and there are

no contributing bubble integrals. For the case of opposite helicities crossing the cut, we need

to sum over the contributions of the entire super-multiplet. For the case of MHV or MHV

amplitudes, it is simple to carry out the sum over the multiplet, using the supersymmetry

Ward identify (2.11). As for the six-point case, with opposite helicity legs crossing the cuts,

the net effect from the super-multiplet sum is the additional overall factor of ρN given in

eq. (4.17).

Specializing to N = 8, the bubble contributions all scale as y−4t2, so there are no bub-

ble integrals present in the MHV amplitudes, as already discussed in refs. [6, 9]. As for

the six-point example above, we find that the supersymmetry only reduces the number of

loop momenta by eight powers when opposite helicities cross the cut, with the remaining

cancellations present even in pure gravity. When like helicities cross the cut, the N = 8

cancellations are identical to those of pure gravity.
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(hli ,−hli+1
) (−,+) (+,−) (+,+) (−,−)

t-scaling of M tree
n t2 t2 t−6 t2

TABLE III: The leading t-scaling of tree amplitudes appearing in the triple-cuts. The tree ampli-

tudes are evaluated using the spinor inner products in eq. (3.14). The first row corresponds to the

helicities of the cut legs carrying loop momentum.

2. Triangle integrals

The power counting of the triangle integral of fig. 2(b) is determined by the large-t

scaling of the three tree amplitudes composing the triple cut of fig. 3(b). For example, the

contribution, where each tree amplitude has opposite helicity cut legs, is given by,

C3 = M tree
m+2

(l+0 , i1 , . . . im ,−l−1 ) × M tree
m′+2

(l+1 , i
′
1
, . . . i

′
m′ ,−l−2 ) × M tree

m′′+2
(l+2 , i

′′
1
, . . . i

′′
m′′ ,−l−0 )

+ M tree
m+2

(l−0 , i1 , . . . im ,−l+1 ) × M tree
m′+2

(l−1 , i
′
1
, . . . i

′
m′ ,−l+2 ) × M tree

m′′+2
(l−2 , i

′′
1
, . . . i

′′
m′′ ,−l+0 ) , (4.28)

where m + m′ + m′′ = n for an n-point amplitude.

Again, with MHV or MHV tree amplitudes appearing in the triple cuts, it is a simple

matter to obtain the scaling pattern in table III from eqs. (2.9) and (2.10) and their parity

conjugates, by choosing the legs carrying loop momentum to be legs 1 and n. For all helicity

configurations, we have numerically checked that the table is correct up to ten points,

using the kinematics of eqs. (3.10) and (3.14). An all-n proof for the particular helicity

configurations (±,∓) crossing the cut will be outlined in section V.

Given the scalings in table III we see that no product of the three tree amplitudes in a

triple cut can have worse scaling than,

C3 ∼ t2 × t2 × t2 ∼ (lµ)6 , (4.29)

including contributions from integral reductions from higher-point integrals. Again, this is

significantly better than the behavior obtained from an n-gon Feynman diagram which can

generate triangles integrals with up to n+3 powers of loop momentum in their numerators.

For the cases where the cuts are composed of purely MHV and MHV amplitudes, we can

easily compare to the results of N = 8 supergravity, by making use of the supersymmetry

identity (2.11). In all cases, we obtain an overall scaling of t−2 ∼ (lµ)−2, including any
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additional cancellations from supersymmetry, which means that triangle integrals are not

present. As in our previous examples, the key n-dependent cancellations are already present

in the non-supersymmetric case.

3. Summary of checks

In summary our checks confirm the cancellations for pure Einstein gravity for all triangle

and bubble contributions, when the tree amplitudes appearing the cuts used to determine

the integrals are from among the following:

1. An m-point MHV amplitude.

2. An m-point MHV amplitude.

3. Any helicity configuration with up to ten gravitons.

4. An m-point amplitude with loop-momentum helicities (±,∓).3

This demonstrates that the one-loop cancellations hold through ten points in pure gravity

for all helicity configurations and argues strongly that it continues to hold beyond this. One

might be concerned that the results for the MHV and MHV amplitudes were derived using

the BGK formula, which has been tested only up to 11 points. This is not a real restriction

here, as the information we extract from the BGK formula is its scaling properties, which

will be shown to hold for all m by an independent line of reasoning in section V.

For cases with only MHV or MHV amplitudes in the cuts we analyzed the additional can-

cellations in N -extended supergravity theories by summing over the super-multiplet. When

opposite helicities cross the cut, depending on whether N is even or odd we have additional

cancellations of N or (N + 1) powers of loop momentum, respectively. In particular, for

N = 8 supergravity, the no-triangle hypothesis follows from a combination of cancellations,

with at most eight powers of loop momentum in the numerator canceled by supersymmetry

and the remaining cancellations already present in pure gravity.

3 This check will be discussed below in section V.
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V. RELATIONS BETWEEN DIFFERENT CANCELLATIONS

We now outline a proof, which will be presented in more detail elsewhere, that the one-

loop cancellations described above are simply related to the tree-level large-z cancellations

under the shift (2.13). We also present a heuristic argument using factorization to explain the

pure gravity cancellations, similar to the one used to propose the “no-triangle hypothesis”

for N = 8 supergravity in ref. [7].

A. Relations between tree and triangle-bubble scaling properties

Consider a generic tree amplitude,

M tree
n (lh0

0 ,−lh1
1 , i1, . . . , in−2) , (5.1)

where h0 and h1 denote the helicities — for gravitons these take on the values of ± 2. We now

observe some simple relations between the different scalings. Suppose that after a [l0,−l1〉
shift (2.12), and after accounting for all cancellations, we find that the tree amplitude scales

in the large-z limit as,

[l0,−l1〉 : M tree
n (z) ∼ zm , (5.2)

where the value of m depends upon the helicities. Using table I, we see that the scaling of

the flipped [−l1, l0〉 shift, at large z, is related to the above by,

[−l1, l0〉 : M tree
n (z) ∼ zm+2(h1−h0) . (5.3)

Similarly, consulting tables (I) and (II), we find that the large-y scaling of the two-particle

cut momentum parameterization (3.15) is given by,

y-scaling: M tree
n (y, t) ∼ (y2/t)m y2(h1−h0) . (5.4)

From tables (I) and (III), we observe that under the loop-momentum parametrization for

the triple cut (3.10),

t-scaling: M tree
n (t) ∼ tm t−2h0 . (5.5)

This indicates that all the scalings are related up to universal helicity dependent factors.

Were these observed relations to hold on very general grounds, the non-trivial cancellations in
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the Feynman diagrams in one of the scalings would necessarily imply non-trivial cancellations

in the other scalings. In fact, this turns out to be the case, as we now argue.

To establish the above scaling relations, we write the scattering amplitude (5.1) in an

abstract form making the helicity weights manifest. The tree-level scattering amplitudes

are rational functions in all spinor variables. Using momentum conservation, l1 = l + ki1 +

. . . + kin−2 , we trade momentum l1 for l0, absorbing the spinor weight of the leg carrying

momentum l1 into factors of 〈l0 l1〉. This allows us to write an amplitude with the legs

carrying the momentum l0 and l1 with the corresponding helicities h0 and h1 as

M tree
n (lh0

0 ,−lh1
1 , i1, . . . , in−2) = 〈l0 l1〉−2h1

Ns′(λ, λ̃)

Ds′′(λ, λ̃)
, (5.6)

where Ns′(λ, λ̃) and Ds′′(λ, λ̃) are polynomials in spinors λ and λ̃, satisfying (l0)aȧ = λaλ̃ȧ

and we have suppressed the dependence on external momenta. The polynomials Ns′(λ, λ̃)

and Ds′′(λ, λ̃) have definite helicity weight — the number of λs minus the number of λ̃s —

denoted by subscripts s′ and s′′. For the total amplitude to have proper helicity weight with

respect to the λ and λ̃, the weights s′ and s′′ must be related to the helicities by,

s′ − s′′ = 2(h1 − h0) . (5.7)

In the scaling limits considered above, the polynomials are dominated by the highest degree

monomials in the λ and λ̃ variables,

Ns′(λ, λ̃) ∼ λ̃ȧ1 · · · λ̃ȧr′ λb1 · · · λbr′+s′ N
ȧ1...ȧr′ b1...br′+s′ ,

Ds′′(λ, λ̃) ∼ λ̃ȧ1 · · · λ̃ȧr′′ λb1 · · · λbr′′+s′′ D
ȧ1...ȧr′′ b1...br′′+s′′ . (5.8)

A priori, the values of r′ and r′′ can be functions of the number of external legs and their

helicities.

This general form of the amplitude may now be probed in the various scaling limits. For

the shift [l0,−l1〉 of the amplitude eq. (5.1) we have the scaling,

[l0,−l1〉 : M tree
n (z) ∼ zr′−r′′ ≡ zm, (5.9)

where we introduced the variable m = r′ − r′′ to match eq. (5.2). Applying the t and y

scalings to eqs. (5.6) and (5.8) immediately gives us eqs. (5.5) and (5.4). Similarly we obtain

the flipped z-shift result (5.3). Notice that the value of m does not follow from this analysis

and has to be derived by other means.
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The relations between the various scalings thus hold on very general grounds and are

applicable to a wide variety of cases including amplitudes with general matter content. In

our analysis we assumed that the monomials in eq. (5.8) do not vanish in the scaling limits.

As will be discussed elsewhere, this always holds for the scaling limits discussed here.

The z-scaling for the shift [−, +〉 in table I has been proven rigorously for all n in ref. [32].

Direct comparison with this then allows for an easy proof of the corresponding (−, +) case of

the y and t scaling. Because the shift [+,−〉 is the flipped version of the shift [−, +〉, the two

are related by the constraints of spinor weight. This then gives a proof of the large-z scaling

of the shift [+,−〉 in table I for all n. In turn this can be used to prove the (+,−) cases

in table II and table III, as well. The [±,±〉 and (±,±) cases, however, remain unproven

beyond ten points for non-MHV amplitudes. For MHV amplitudes, the supersymmetry

identity (2.11) allows us to apply the [−, +〉 proof to these cases as well [32].

These results demonstrate that the bubble-triangle cancellations occur whenever all tree

amplitudes composing a cut have loop-momentum helicity configurations (±,∓). It also

shows that if the [+, +〉 and [−,−〉 entries in table I are valid for any number of legs,

the bubble-triangle cancellations also hold for any number of legs for the other helicity

configurations of the cut legs.

B. Heuristic relation between cancellations and factorization properties

In addition, the bubble-triangle cancellations may be understood heuristically as a conse-

quence of the stringent factorization properties of one-loop amplitudes. As any intermediate

momentum Kµ ≡ kµ
i + . . . + kµ

i+r+1 goes on-shell (K2 → 0), a one-loop amplitude factorizes

into lower-point amplitudes (along with a universal “factorization function” for infrared sin-

gular amplitudes [47]). As we demonstrated through ten points, for all helicities, no graviton

amplitudes can have tensor triangle or bubble integrals with more than six or four powers

of loop momentum in the numerators, respectively. Therefore, in all factorization limits of

higher-point amplitudes we cannot encounter these integral functions or the results of reduc-

ing them to scalar integrals. Moreover, the same type of argument holds for factorizations

where two of the external momenta become collinear4 or where one of the external momenta

4 Although there is no kinematic pole for collinear limits with real momenta, there is a universal phase
singularity [6] or equivalently universal behavior under factorization with complex momenta.
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becomes soft. Although this does not constitute a proof5 that the unwanted tensor triangle

and bubble integrals cannot appear, we know of no counterexample, in either gravity or

non-abelian gauge theory where this type of factorization bootstrap argument has failed to

produce the correct result.

Indeed, this argument is similar to the one used in ref. [7] to propose the no-triangle

hypothesis for the N = 8 theory. In that case, there were no bubble or triangle integrals at

all at lower points, predicting that bubble or triangle integrals should not appear at higher

points as well.

VI. CONCLUSIONS

In this paper we studied cancellations in pure gravity one-loop amplitudes, pointing to the

existence of novel ultraviolet cancellations in generic gravity theories at higher loops. At one

loop, without the novel cancellations, the two-derivative coupling of gravity would imply that

under integral reductions of n-point amplitudes we naively would obtain bubble integrals

with up to n + 2 powers of loop momentum in their numerators. Similarly, we would obtain

triangle integrals with up to n + 3 powers of loop momentum in their numerators. Instead,

under more careful scrutiny, we found that the triangle and bubble integrals resulting from

integral reductions have no more than six or four powers of loop momentum, respectively.

By comparing the pure gravity case to N -extended supergravity in various examples,

we disentangled the supersymmetric cancellations in these theories from the ones which are

generic to gravity. Assuming the universality of the gravity cancellations, one-loop N≥3 -

extended supergravity amplitudes are cut-constructible [14] using only four-dimensional mo-

menta in the cuts. That is, they are completely determined by their absorptive parts.

Similarly, the “no-triangle hypothesis” of the N = 8 theory [7, 9] may be thought of as a

consequence of the combination of the pure gravity cancellations and supersymmetric can-

cellations. It is interesting to note that conventional superspace power counting is sensitive

to only the latter types of cancellations.

The unitarity method, together with a new spinor-based integration method [24], allows

us to link directly cancellations occurring in one-loop amplitudes to cancellations in tree-level

5 In principle, functions can be present which have no poles in any channel. An example of such a function
which may occur in abelian gauge theories, may be found in eq. (14) of ref. [48].
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amplitudes. This follows an early version of scaling arguments, used to imply that bubble

integrals should not appear in N = 8 supergravity amplitudes [9]. Our approach allows us

to determine straightforwardly the maximum powers of loop momentum that appear in the

triangle and bubble integrals, including all feed downs from integral reductions. Although

we have not constructed a complete proof of one-loop cancellations for all possible gravity

amplitudes, we numerically demonstrated their existence up to ten points for all pure gravity

helicity amplitudes, and analytically for special helicity configurations for all n. We have

also outlined a proof for all contributions to triangle and bubble integrals whose cuts are

composed of tree amplitudes with opposite graviton helicities on the legs carrying loop

momentum.

The cancellations discussed here are connected to recently identified properties of gravity

tree amplitudes. In the usual Lagrangian formulation an infinite set of vertices are needed

to construct the scattering amplitudes. This may be contrasted with on-shell recursion

relations [31] which remarkably construct all gravity tree amplitudes in D = 4, starting only

from three vertices. This property has been recently proposed as a means of classifying

theories [34]. For the recursion relations to hold cancellations under certain large complex

deformations of the amplitudes are necessary. The existence of these cancellations are rather

obscure in Feynman diagrams. A proof of the cancellations required to have valid on-

shell recursion relations has recently been given in ref. [32]. Here we showed that related

cancellations exist at one loop.

Unitarity implies lower-loop cancellations necessarily induce higher-loop cancellations. In

particular, as shown in fig. 6(a), the cancellations in the (L + 2)-point one-loop amplitude

appearing in the L-particle cut of the L-loop amplitude, necessarily imply the existence

of cancellations in the L-loop amplitude. Moreover, as indicated in fig. 6(b) any one-loop

sub-amplitude isolated by cuts necessarily must have the cancellations found in our one-

loop investigations. In ref. [2], these cuts, together with the one-loop no-triangle hypothesis,

were used to suggest that N = 8 supergravity may be ultraviolet finite. These cancella-

tions, as well as others not implied by the no-triangle hypothesis, were then confirmed by

explicit calculation at three loops [3]. Similarly, the results of this paper suggest that novel

cancellations at higher loops should exist even in non-supersymmetric theories, though the

cancellations will not be as strong as for N = 8 supergravity.

In order to check this, it would be rather useful to carry out explicit higher-loop studies
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FIG. 6: From the unitarity cuts, cancellations in one-loop subamplitudes imply higher-loop cancel-

lations. The cut (a) is an L-particle cut of an L-loop amplitude, isolating a one-loop amplitude on

the left side of the cut. Diagram (b) denotes a generalized cut that isolates a particular one-loop

subamplitude. If a leg is external to the entire amplitude, it should not be cut. In ref. [2], these

cuts were used to argue that in N = 8 supergravity the one-loop no-triangle hypothesis implies the

existence of non-trivial cancellation at higher-loop orders.

of gravity theories. Of course, in pure gravity a two-loop divergence does exist [16], but an

open question is to determine the critical dimension in which the divergences first appear,

with and without matter, as the loop order increases. It would also be helpful to translate

any higher-loop cancellations into the language of effective actions. For example, for the

case of N = 8 supergravity, at three loops, 14 powers of external momenta can be extracted

from the numerators of all loop momentum integrals, giving a contribution to the effective

action of the generic form D6R4 multiplied by integrals, instead of the generic form D4R4,

which would have been obtained if additional cancellations had not been present [3]. Here

R4 denotes an N = 8 supersymmetric contraction of Riemann tensors [13], and D denotes

a generic space-time covariant derivative, with Lorentz indices contracted appropriately.

An important calculation that will help to answer the question of whether N = 8 super-

gravity is finite, and to further constrain possible superspace explanations, is to evaluate the

four-point four-loop N = 8 amplitude. This would tell us whether it has the same power

counting as N = 4 super-Yang-Mills theory, as already established at one [6, 7, 9, 49, 50],

two [19] and three loops [3]. The four-loop calculation should be feasible, though non-trivial,

following the same methods as used at three loops in ref. [3]. If N = 8 supergravity can

be shown to be finite, an obvious question is whether there are other such theories. The

absence of bubble integrals at one loop hints at theories with N ≥ 5 supersymmetries as

candidate ultraviolet finite theories. One may wonder whether finiteness in gravity theories
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is connected to the possible existence of topological string theory descriptions [26]. Recent

developments in constructing such a string for gravity may be found in ref. [51].

There are a number of other issues that would be interesting to explore. It would be

important to complete a proof that any one-loop amplitude in any theory based on the

Einstein-Hilbert action coupled to matter has no more than four powers of loop momentum

in the numerators of bubble integrals, and no more than six powers in triangle integrals,

including those generated via integral reductions. In this paper we studied only n-graviton

one-loop amplitudes. Moreover, we evaluated the cuts in D = 4 where we have powerful

spinor methods for generating amplitudes and for evaluating the resulting integrals. It would

be useful to carry out a power counting analysis in D = 4− 2ε dimensions. It would also be

helpful to have a general one-loop analysis of the relative power counting behavior between

supersymmetric and non-supersymmetric amplitudes. Finally, it would be important to

re-express the cancellations in terms of effective actions.

In summary, the results of this paper point to the existence of novel loop-level cancella-

tions in generic point-like theories of quantum gravity based on the Einstein-Hilbert action.

As we showed, these cancellation are related to previously identified tree-level cancellations

in gravity amplitudes under large complex deformations [31, 32, 34]. The cancellations sug-

gest that, in general, the perturbative ultraviolet properties of quantum gravity theories may

be tamer than anticipated, pointing to an improved ultraviolet behavior in the Wilsonian

effective action as the cutoff is varied, independent of supersymmetry. As already suggested

in refs. [2, 3] for N = 8 supergravity, the combination of these cancellations with super-

symmetric ones may be sufficient to render the theory ultraviolet finite to all loop orders.

Further work will be required to confirm these proposals.
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