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We describe BlackHat, an automated C++ program for calculating one-loop amplitudes, and the techniques
used in its construction. These include the unitarity method and on-shell recursion. The other ingredients
are compact analytic formulae for tree amplitudes for four-dimensional helicity states. The program computes
amplitudes numerically, using analytic formulæ only for the tree amplitudes, the starting point for the recursion,
and the loop integrals. We make use of recently developed on-shell methods for evaluating coefficients of loop
integrals, in particular a discrete Fourier projection as a means of improving numerical stability. We illustrate
the good numerical stability of this approach by computing six-, seven- and eight-gluon amplitudes in QCD and
comparing against known analytic results.

1. Introduction

Quantitatively reliable predictions for back-
ground processes will play an important role in
ferreting out signals of new physics in experi-
ments at the upcoming Large Hadron Collider
(LHC). New physics beyond the Standard Model
is expected to emerge in these TeV-scale exper-
iments. Known-physics backgrounds from elec-
troweak, QCD, and mixed processes will also con-
tribute events that may overwhelm or mimic new-
physics signals. Uncovering and understanding
the new-physics signals will require use of elabo-
rate kinematic requirements (such as several iden-
tified jets, cuts on missing transverse energy, etc.)
and reliable knowledge of background processes.

Leading-order calculations in QCD suffer from
large uncertainties and therefore do not suffice
to furnish the required quantitative knowledge of
backgrounds. Next-to-leading order calculations
are required [1]. Indeed, for a few signal, back-
ground, or calibration processes (Higgs-boson
production, top production, and distributions as-
sociated with production of single electroweak
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vector bosons), precision calculations at next-to-
next-to-leading order (NNLO) are needed. For
other processes, NLO will likely suffice until the
LHC enters its precision-measurement era. There
are a large number of processes that ought to be
computed, however, and these include many pro-
cesses with many final-state jets, corresponding
to large final-state parton multiplicity.

NLO predictions can be provided by parton-
level Monte Carlo programs, or by parton show-
ers such as MC@NLO [2]. Both types of pro-
gram require the computation of virtual and real-
emission amplitudes. The computation of the lat-
ter relies on well-understood technologies [3,4].
Parton-level programs also require the isolation
of infrared singularities in the integrated real-
emission contributions, and a means of can-
celing them systematically against the virtual-
correction singularities. These technologies [5,6]
are also well understood and recently authors
have begun to automate them [7]. The infrared-
divergent parts of the one-loop virtual correc-
tions are also well-understood [5,8]. The remain-
ing, infrared-finite parts of these one-loop am-
plitudes have been the difficult part of compu-
tations with three final-state objects, and have
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been the primary bottleneck to computations of
processes with four or more final-state objects.
BlackHat is one of a new generation of numeri-
cal approaches that aims to break this bottleneck.
Other numerical efforts along similar lines are de-
scribed in refs. [9–11].

The traditional approach to one-loop computa-
tions uses Feynman diagrams. With an increasing
number of external particles, however, the com-
putational complexity of such computations with
traditional methods grows factorially. This com-
plexity cannot be tamed by use of technologies
such as the spinor-helicity formalism [12] alone.
Recent years have witnessed a ferment of devel-
opment, based on the analytic properties of uni-
tarity and factorization that any amplitude must
satisfy, of new approaches to overcoming these
computational difficulties [13–18], including on-
shell methods [19–36]. These methods are effi-
cient, and feature only mild growth in required
computer time with increasing number of exter-
nal particles. They effectively reduce loop calcu-
lations to tree-like ones, simplifying them intrin-
sically and further allowing use of efficient algo-
rithms for the tree-amplitude ingredients.

2. The On-Shell Approach

BlackHat is built using an on-shell ap-
proach, the unitarity method [19,38] with multi-
ple cuts [20] (a.k.a. generalized unitarity), along
with significant refinements [22,30,33] exploiting
complex momenta. The cuts replace two or more
propagators by delta functions, thus putting the
corresponding momenta on shell. They thereby
isolate terms in the amplitude with distinct an-
alytic structure, allowing them to be computed
independently.

We employ a predominantly numerical ap-
proach in BlackHat. The loop integrals are
evaluated from analytic formulæ, likewise their
contributions to residues at spurious singulari-
ties (see section 4); and analytic formulæ may be
used to speed up evaluation of tree amplitudes.
Otherwise, the code is numerical, and in partic-
ular everything that corresponds to algebra in a
symbolic calculation is done numerically. This
makes it easier to design a general-purpose code,

as distinct from the bespoke analytic process-by-
process calculations that have been done to date.
It is also important, however, to obtain an effi-
cient code. As the example of the Berends–Giele
recursion relations shows [37], evaluating them re-
cursively with caching of intermediate currents, a
numerical approach can make it much more prac-
tical to eliminate repeated evaluation of common
subexpressions than an analytic approach. In-
deed, it seems likely that only a numerical ap-
proach can meet the goal of a polynomial-time
algorithm for the evaluation of each helicity am-
plitude at one loop.

We begin by separating the amplitude into cut-
containing and rational parts,

An = Cn + Rn , (1)

where the former contain all (poly)logarithms,
π2 terms, and the finite constant in the scalar
bubble. The cut-containing part of massless
dimensionally-regulated amplitudes with four-
dimensional external momenta may be written in
a basis of scalar integrals [39–43],

Cn =
∑

i

diI
i
4 +

∑

i

ciI
i
3 +

∑

i

biI
i
2 , (2)

The integrals I2,3,4 are respectively bubble, trian-
gle, and box integrals.

We compute the coefficients bi, ci, and di nu-
merically using the unitarity method, with four-
dimensional loop momenta. The tree amplitudes
that feed into the computation may be evaluated
efficiently using spinorial methods. We compute
the rational parts using loop-level on-shell recur-
sion.

3. Cut Parts

The most straightforward coefficients to obtain
are those of the box integrals. Imposing four cut
conditions on a one-loop integrand, and then set-
ting ǫ = 0, freezes it completely. Furthermore,
this isolates the coefficient of a single box inte-
gral uniquely. The coefficient is then given [22] in
terms of the product of four tree amplitudes at
the corners of the box,

di =
1

2

∑

σ=±

dσ
i
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dσ
i = Atree

(1) Atree
(2) Atree

(3) Atree
(4)

∣∣∣
li=l

(σ)
i

, (3)

where the cut loop momenta l
(±)
i are the two so-

lutions to the quadruple-cut on-shell conditions,
labeled by σ = ±.

In the case of triangle coefficients, we can im-
pose three cut conditions. Here, the cut condi-
tions no longer freeze the integrand completely;
one degree of freedom is left over. There are dif-
ferent ways to parametrize this degree of free-
dom [14,30]; we use the variant proposed by
Forde [33],

lµ(t) = K̃µ
1 +K̃µ

3 +
t

2
〈K̃1|γµ|K̃3〉+

〈K̃3|γµ|K̃1〉
2t

,(4)

where K1,3 are the two (possibly massive) exter-
nal momenta separated by the cut propagator l;
γ = γ± = −K1 · K3 ±

√
∆; Si = K2

i , and

K̃µ
1 = α̂

γKµ
1+S1K

µ
3

γ2 − S1S3
, K̃µ

3 =−α̂′ γKµ
3+S3K

µ
1

γ2 − S1S3
, (5)

α̂ =
γS3(S1 − γ)

S1S3 − γ2
, α̂′ =

γS1(S3 − γ)

S1S3 − γ2
. (6)

Once the remaining degree of freedom is
parametrized by t, the integrand has the following
form,

Atree
(1) Atree

(2) Atree
(3)

∣∣∣
li=li(t)

=

c−3

t3
+

c−2

t2
+

c−1

t
+ c0 + c1t + c2t

2 + c3t
3

+
∑

poles

dσ
i

ξσ
i (t − tσi )

. (7)

The sum over poles corresponds to the vari-
ous box contributions sharing the same triple
cuts. We follow Ossola, Papadopoulos, and Pit-
tau (OPP) [30] in subtracting these contributions
from the integrand, leaving behind seven indepen-
dent coefficients. Forde’s parametrization isolates
the desired coefficient c0 by virtue of its analytic
property — it is the constant as t → ∞, or equiv-
alently it can be extracted as the residue of the
integrand divided by t,

c0 =
1

2πi

∮
dt

t
T3(t) . (8)

We evaluate this contour integral using a discrete
Fourier projection,

c0 =
1

2p + 1

p∑

j=−p

T3

(
t0e

2πij/(2p+1)
)

, (9)

where t0 is an arbitrary complex number. The
projection avoids the potentially-unstable matrix
inversion that could arise from simply inverting
a system of equations to solve for the seven co-
efficients c−3, . . . , c3. (The other coefficients are
needed in order to subtract triangle coefficients
when computing in their turn the bubble ones,
and can also be obtained by a Fourier projection.)
The subtraction of the box coefficients makes the
discrete Fourier projection exact and also allows
for the flexibility in the choice of t0. It thereby
improves the numerical stability of the calcula-
tion.

The bubble coefficients can be computed fol-
lowing the same approach, subtracting both box
and triangle contributions, and using a two-
dimensional discrete projection. We refer the
reader to ref. [44] for more details.

4. Rational Parts

On-shell recursion relations for the rational
terms may be derived by considering deforma-
tions of the amplitude, parametrized by a com-
plex parameter z [24]. These deformations shift
two external momenta by ±z ·q where q is a com-
plex null four-vector, so as to preserve overall mo-
mentum conservation and leave all external mo-
menta on shell. The recursion relation follows
from evaluating the contour integral

Rlarge z
n =

1

2πi

∮

C

dz
Rn(z)

z
, (10)

where C is a circle at infinity. If Rlarge z
n does

not vanish for a given choice of deformation, it
can be computed using an auxiliary recursion re-
lation [27]. The rational terms may be computed
using Cauchy’s theorem,

Rn(0) = Rlarge z
n −

∑

poles α

Res
z=zα

Rn(z)

z
. (11)

The sum over the poles in the last term can be de-
composed into two sets, the physical or spurious
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Figure 1. The distribution of the logarithm of the relative error over 100,000 phase-
space points for the MHV amplitudes A6(1

−, 2−, 3+, 4+, 5+, 6+), A7(1
−, 2−, 3+, 4+, 5+, 6+, 7+) and

A8(1
−, 2−, 3+, 4+, 5+, 6+, 7+, 8+). The dashed (black) curve in each histogram gives the relative er-

ror for the 1/ǫ2 part, the solid (red) curve gives the 1/ǫ singularity, and the shaded (blue) distribution
gives the finite ǫ0 component of the corresponding helicity amplitude.

poles, depending on whether the pole is or is not
present in the full deformed one-loop amplitude,

Rn = RD
n + RS

n + Rlarge z
n . (12)

The contributions RD
n from the physical poles

can be computed using on-shell recursive dia-
grams [26].

In BlackHat, the residues at the spurious
poles are computed using the cut parts. Because
the spurious poles must cancel in the amplitude
as a whole, we have

RS
n = −

∑

spur.
poles β

Res
zβ

Rn(z)

z
=

∑

spur.
poles β

Res
zβ

Cn(z)

z
, (13)

where Cn(z) is the cut part from eq. (1), as de-
formed by the on-shell deformation parametrized
by z.

The spurious singularities arise from zeros of
Gram determinants implicitly appearing in the
denominators of the integral coefficients bi, ci,
and di of eq. (2). We evaluate the residues of these
singularities by making a discrete approximation
to a contour integral on a small circle around the

pole. At each complex value on the circle, we
evaluate the coefficients bi, ci, and di numerically
as described in the previous section. Since the
residues are of course rational, and can only arise
from expanding the dilogarithms or logarithms
in the integral functions, we do not directly eval-
uate the loop integrals numerically; rather, we
first expand them analytically in the appropriate
neighborhood of the Gram-determinant singular-
ity, and then evaluate the rational expansion co-
efficients numerically.

We can control the approximation by choosing
the size of the circles around the spurious sin-
gularity and the number of points on the circle.
(The current code evaluates the integrand at ten
points around the circle.) This risks numerical
instabilities if the circle becomes too small.

In order to handle possible numerical insta-
bilities, we test for them dynamically, that is
event by event and spurious pole by spurious
pole. We test to see that the coefficient of the
non-logarithmic 1/ǫ singularity is reproduced cor-
rectly. It is sufficient to test the bubble coeffi-
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cients, because they produce this singular term.
Box and triangle coefficients are tested indirectly,
because they are subtracted in order to compute
the bubble coefficients. We also test to see that
the spurious singularities cancel in the sum over
bubble coefficients. If either of these tests fail,
we recompute the numerically unstable terms of
the amplitude at higher precision. Because the
fraction of points failing the tests is small, this
does not impose a significant time penalty on our
code.

5. Results

As an example, we used BlackHat to com-
pute the one-loop 2 → 4-, 2 → 5-, and 2 → 6-
gluon maximally helicity-violating (MHV) ampli-
tudes for nf = 0 at 100,000 phase-space points,
generated using a flat distribution. (We impose
the following cuts: ET > 0.01

√
s, η < 3, and

∆R > 0.4.) We compared the numerical results
against those computed using known analytic re-
sults. The histogram in fig. 1 shows the results.
The horizontal axis gives the logarithmic relative
error,

log10

( |Anum
n − Atarget

n |
|Atarget

n |

)
, (14)

for each of the 1/ǫ2, 1/ǫ, and ǫ0 parts of the one-
loop amplitude. The vertical axis in these plots
shows the number of phase-space points in a bin
that agree with the target to a specified relative
precision. The vertical scale is logarithmic, which
enhances the visibility of the tail of the distribu-
tion, and thereby illustrates the good numerical
stability of the computation.
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