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Abstract

In this letter we continue the calculation of master integrals for massless three-loop form
factors by giving analytical results for those diagrams which are relevant for the fermionic
contributions proportional toN2

F , NF ·N , andNF /N . Working in dimensional regularisation,
we express one of the diagrams in a closed form which is exact to all orders in ε, containing
Γ-functions and hypergeometric functions of unit argument. In all other cases we derive
multiple Mellin-Barnes representations from which the coefficients of the Laurent expansion
in ε are extracted in an analytical form. To obtain the finite part of the three-loop quark and
gluon form factors, all coefficients through transcendentality six in the Riemann ζ-function
have to be included.
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1 Introduction

The quark form factor γ∗ → qq̄ and gluon form factor H → gg (effective coupling) are the
simplest processes containing infrared divergences at higher orders in massless quantum field
theory, and therefore appear in a large variety of physical applications. They can for instance
be used to predict the infrared pole structure of multi-leg amplitudes at a given order [1,2] and
to extract resummation coefficients [3], and they are needed for the purely virtual corrections
to a number of collider reactions (Drell-Yan process, Higgs production and decay, DIS).

At the two-loop level, corrections to the massless quark [4] and gluon [5,6] form factors were
computed in dimensional regularisation with D = 4− 2ε to order ε0 and subsequently extended
to all orders in ε in Ref. [7]. Two-loop corrections to this order were also obtained for massive
quarks [8]. The three-loop form factors to order ε−1 (and ε0 for fermion loop contributions) were
computed in [3, 9]. One of the main motivations for obtaining analytical results for the form
factors is the search for a deeper underlying structure of the coefficients, as proposed in Ref. [10]
for planar box amplitudes.

In order to calculate the quark and gluon form factors at higher orders in perturbation theory,
the amplitudes are reduced, by means of algebraic reduction procedures [12–15], to a small set
of master integrals. At the three-loop level, the master integrals for massless form factors were
identified in Ref. [16] and results for certain subsets are available in the literature [12, 16–18].
Among the three-loop master integrals, the genuine three-loop vertex functions are the most
challenging ones from a computational point of view. They correspond to two-particle cuts of
the master integrals for massless four-loop off-shell propagator integrals [19], which have been
used in the calculation of the scalar R-ratio [20]. The derivation of the three-loop vertex integrals
is of comparable complexity to the four-loop propagator integrals.

Working in dimensional regularisation and expanding the master integrals in a Laurent series
in ε, the finite part of the three-loop form factors requires the extraction of all coefficients through
transcendentality six, i.e. coefficients containing terms up to π6 or ζ2

3 . Note that the power of
ε coming with coefficients of transcendentality six in the Laurent expansion is not always the
same in the different master integrals: Transcendentality six can appear in the coefficients of
the ε0-, ε- or ε2-terms in the Laurent series. If it appears in the εk-term, this indicates that a
prefactor ∼ 1/εk will come from the reduction to master integrals, such that an expansion up
to transcendentality six of the master integrals will always be required.

Those genuine three-loop vertex functions which contain one-loop or two-loop propagator
insertions were already given in Ref. [16]. The purpose of the present letter is to extend this
calculation to all three-loop master integrals which have less than nine propagators. Each
topology contains only one master integral, which is chosen to be the scalar integral, with no
loop momenta in the numerator and with all propagators raised to unit power. It turns out
that this subset of three-loop master integrals is sufficient in order to obtain the aforementioned
fermion loop contributions within a Feynman diagrammatic approach [21]. At this point we
would like to point out an error in Ref. [16], namely the basis of three-loop master integrals
given there is too large, since certain two-particle cuts of four-loop propagator topologies [19]
yield topologically identical three-loop vertex topologies. Consequently A8,1 = A8,2 ≡ A8 and
A9,2 = A9,3. The corrected set of three-loop vertex integrals is given in Fig. 1.

This letter is organised as follows. Computational methods to obtain analytical and nu-
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merical results of the three-loop vertex integrals with up to eight propagators are described in
Section 2, and the analytical results for them are listed in Section 3. Section 4 contains our
conclusions and an outlook.

2 Master integrals: Classification and computational methods

Vertex integrals with one off-shell and two on-shell legs and massless propagators depend only
on one kinematic scale: the mass q2 of the off-shell leg. The dependence on this scale is given
by the mass dimension of the integral, such that the coefficients of the Laurent expansion in
the dimensional regularisation parameter ε are real constants which are in general of increasing
transcendentality in the Riemann ζ-function, where the degree of transcendentality (DT ) is
defined by

DT (r) = 0 for rational r
DT (πk) = DT (ζ(k)) = k

DT (x · y) = DT (x) +DT (y) . (1)

At the three-loop level the quark form factor depends – like the process e+e− → 3 jets at NNLO
– on the following seven colour structures [21,22]

N2 , N0 , 1/N2 , NF ·N , NF /N , N2
F , NF,γ , (2)

where the last colour factor stems from topologies in which the external gauge boson couples
to a closed fermion loop. The three terms containing NF are referred to as fermionic correc-
tions. They have been derived in Refs. [3,9] from the behaviour of the three-loop deep inelastic
coefficient functions [11]. In the more conventional approach of computing multi-loop Feynman
amplitudes the form factors are – after an algebraic reduction procedure [12–15] – expressed in
terms of a small set of master integrals. It turns out [21] that the master integrals in Fig. 1 with
at most eight propagators are sufficient in order to obtain the fermionic corrections to the form
factor. The purpose of this letter is therefore to evaluate these master integrals. Those master
integrals in Fig. 1 that contain single or multiple bubble insertions have already been computed
in Ref. [16], the remaining ones with up to eight propagators – i.e. diagrams A6,2, A7,3, A7,4,
A7,5, and A8 – are subject of the present work. Working in dimensional regularisation with
D = 4 − 2ε, we give one of the diagrams (A7,4) in a closed form which is exact to all orders
in ε, containing Γ-functions and hypergeometric functions of unit argument. In all other cases
we derive multiple – twofold to fourfold – Mellin-Barnes representations [23–26] from which the
coefficients of the Laurent expansion in ε are obtained in an analytic form. As explained above,
all coefficients through transcendentality six in the Riemann ζ-function have to be included to
obtain the finite part of the three-loop form factor.

For many practical applications, and to verify the analytical results, it is sufficient to know
the numerical values of the coefficients in the Laurent expansion of the master integrals to some
finite order. There are several techniques to obtain numerical values for the coefficients, one
of them being the sector decomposition method, which is described in detail in Refs. [27, 28].
Using this technique, the Laurent expansions of all master integrals relevant to the three-loop
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form factors can be computed to, in principle, any desired order. In practice there are of course
limitations, from CPU time for the numerical evaluation and from memory for the algebraic part
of the sector decomposition procedure. The eight propagator graph A8 is the most complex one
from the sector decomposition point of view, not only due to the high number of propagators,
but also because it exhibits spurious linear divergences at intermediate stages, which render the
subtractions and thus the functions to be integrated more complicated. The computing time for
A8 up to order ε for a numerical precision of 0.1% is of the order of 4 hours on a 3.0 GHz PC.
For a precision of 1% the evaluation is more than 10 times faster.

Other methods of doing numerical cross checks, based on the numerical evaluation of Mellin-
Barnes integrals, are provided by the packages in Refs. [29,30], by means of which we were able
to check most of the coefficients at the sub-permille level.

3 Results

In this section we list the results we obtained for the three-loop master integrals necessary for
the fermionic corrections to the three-loop quark form factor, which are the diagrams A6,2, A7,3,
A7,4, A7,5 and A8 in Figure 1. All other diagrams with up to eight propagators possess so-called
bubble insertions and have already been given in Ref. [16].

Diagram A6,2

The first diagram to be considered is A6,2. In Ref. [31] a representation of this diagram in
terms of a one-dimensional integral over hypergeometric functions was given. Here we pursue
a different strategy and derive a twofold Mellin-Barnes representation [24–26] from which the
coefficients of the Laurent series expansion about ε = 0 can be computed. We start with

A6,2 =
∫
dDk

(2π)D

∫
dDl

(2π)D

∫
dDr

(2π)D
1

(k + p1)
2 (k + l − p2)

2 l 2 r 2 (r − k)2 (r − k − l)2
, (3)

and assume here and in the following that all propagators contain an infinitesimal +iη. We then
derive the following expression that contains a triple integral over a Meijer-G function [32,33],

A6,2 = −i S3
Γ

[
− q 2 − i η

]−3 ε Γ3(1 − ε) Γ(3 ε)
Γ(1 − 2 ε) Γ(2 − 4 ε)

×
1∫

0

dx dy dz x−ε (1 − x)−3 ε y−ε (1 − y)−3 ε z−2 ε (1 − z)−2 ε

×G32
33

(
x z + y (1 − z)

∣∣∣∣∣ {−1 + 4 ε,−1 + 4 ε} , {3 ε}
{−1 + 3 ε,−1 + 2 ε, 0} , {}

)
, (4)

where q2 = (p1 + p2)2 and SΓ =
1

(4π)D/2 Γ(1 − ε)
. (5)

We now make use of the contour integral representation of the Meijer-G function [32, 33], and
subsequently decompose the argument by means of a second Mellin-Barnes representation. The
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Figure 1: Three-loop master integrals with massless propagators. The incoming momentum is
q = p1 + p2. Outgoing lines are considered on-shell and massless, i.e. p2

1 = p2
2 = 0.
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integrals over x, y, and z can then be done in terms of Γ-functions. This leads to the following
twofold Mellin-Barnes representation for A6,2,

A6,2 = −i S3
Γ

[
− q 2 − i η

]−3 ε Γ3(1 − ε) Γ(3 ε) Γ2(1 − 3 ε)
Γ(1 − 2 ε) Γ(2 − 4 ε)

c1+i ∞∫
c1−i ∞

dw1

2πi

c2+i∞∫
c2−i∞

dw2

2πi

× Γ(−1 + 3 ε− w1) Γ(−1 + 2 ε− w1) Γ(2 − 4 ε+ w1) Γ(−w2) Γ(w2 −w1)
Γ(3 ε− w1) Γ(2 − 4 ε+ w2) Γ(2 − 4 ε+ w1 − w2)

×Γ(1 − ε+ w2) Γ(1 − ε+ w1 − w2) Γ(1 − 2 ε+ w2) Γ(1 − 2 ε+ w1 − w2) . (6)

In the above equation (6) the contour integrals in the complex plane are along curves which
separate left poles of Γ-functions from right ones, where “left poles” are poles stemming from a
Γ(. . . + w) dependence, while “right poles” stem from a Γ(. . . − w) dependence [26]. The most
convenient choice for these contours are straight lines parallel to the imaginary axis, i.e. the real
parts along the curves are constant. According to Refs. [24,25], these real parts, together with
the parameter ε, must be chosen in such a way as to have positive arguments in all occurring
Γ-functions in order to separate left and right poles in the desired way. One verifies easily that

c1 = −6
5
, c2 = −1

2
, − 1

15
< ε <

3
20

(7)

is an appropriate choice in Eq. (6). From the fact that the origin lies within the allowed region
for ε, we conclude that the Mellin-Barnes integration does not produce any poles in ε in addition
to the UV pole that is already present in the prefactor. Therefore the expansion in ε commutes
with the contour integrations. Proceeding in this way, the Mellin-Barnes integrations can be
done order by order in ε. During this procedure, the contours can be closed at infinity to either
side of the complex plane, and the corresponding residues are then summed with the appropriate
global sign. To this end, the formulas in the Appendix of Ref. [26] prove extremely useful. The
final result for A6,2 is

A6,2 = i S3
Γ

[
− q 2 − i η

]−3 ε

×
[
−2 ζ3

ε
− 18 ζ3 − 7π4

180
+

(
−122 ζ3 − 7π4

20
+

2π2

3
ζ3 − 10 ζ5

)
ε

+

(
−738 ζ3 − 427π4

180
+ 6π2 ζ3 − 90 ζ5 +

163π6

7560
+ 76 ζ2

3

)
ε2 + O(ε3)

]
. (8)

In Ref. [31], two more orders of the ε-expansion can be found.

Diagram A7,3

We now turn our attention to the integral A7,3. This integral will be represented, similarly
to the integral A6,2, as a multiple Mellin-Barnes integral:

A7,3 =
∫
dDk

(2π)D

∫
dDl

(2π)D

∫
dDr

(2π)D

1
k 2 (k + q)2 (l − k − p2)

2 (l − p2)
2 (r + l)2 r 2 (r − p1)

2

5



= i S3
Γ

[
− q 2 − i η

]−1−3 ε Γ4(1 − ε) Γ(−ε)
Γ(1 − 2 ε) Γ(1 − 3 ε)

c1+i ∞∫
c1−i ∞

dw1

2πi

c2+i∞∫
c2−i ∞

dw2

2πi

c3+i∞∫
c3−i ∞

dw3

2πi
Γ(−w1)

Γ(1 − w1)

× Γ(−3 ε− w3) Γ(1 + 2 ε+ w1 + w2) Γ(1 + w1 + w2) Γ(−2 ε− w2) Γ(−ε−w1)
Γ(1 − 3 ε−w3) Γ(2 − 2 ε+ w1 +w2)

×Γ(−w3) Γ(ε− w1 − w2 + w3) Γ(1 − ε+ w2) Γ(1 + w3) Γ(−ε+ w1 − w3) . (9)

The contour integrals are again along straight lines in the complex plane parallel to the imaginary
axis, and as before we must choose the real parts of the integration variables such as to have
positive arguments in all occurring Γ-functions. This is achieved by choosing

c1 = − 3
20

, c2 = −3
5
, c3 = −1

2
, −1

8
< ε <

3
20
. (10)

As it was the case for A6,2, we have the origin within the allowed region for ε and therefore the
Mellin-Barnes integration does not give rise to any additional poles in ε, the only pole of the
integral being the infrared pole that is already present in the prefactor in Eq. (9). We can thus
again perform the contour integrations order by order in ε. Since the leading coefficient turns
out to have already transcendentality five, we only need to compute the first two terms in the
expansion. They are given by

A7,3 = i S3
Γ

[
− q 2 − i η

]−1−3 ε
[(

−π
2 ζ3
6

− 10 ζ5

)
1
ε
− 119π6

2160
− 31

2
ζ2
3 + O(ε)

]
. (11)

During the evaluation of this integral we could not proceed until the end by merely applying
Barnes Lemmata and corollaries thereof, but had to apply auxiliary integral representations of
hypergeometric functions at intermediate steps. The benefit of this procedure is that it enables
us to perform all Mellin-Barnes integrations, at the cost of introducing additional parameters
over which we subsequently have to integrate. However, the integrations over these auxiliary
parameters can be done in terms of logarithms and (harmonic) polylogarithms. Furthermore,
we made extensive use of the package HPL [34,35] and of an algorithm based on the nested sums
approach [36,37].

Diagram A7,4

The next diagram we consider is A7,4. At first glance it looks quite difficult since it lacks
both a bubble insertion and a planar topology. However, it turns out to be simpler than the
planar diagram A7,3, and it can even be displayed in a closed form. The main reason for this is
the fact that at the outer vertices of both outgoing lines only three lines meet, and hence the
introduction of Feynman parameters allows for the combination of propagators that differ only
by a light-like momentum. This property is absent in both A6,2 and A7,3, both of which did not
reveal a closed form but only a multiple Mellin-Barnes representation. For A7,4, we find

A7,4 =
∫
dDk

(2π)D

∫
dDl

(2π)D

∫
dDr

(2π)D

1
k 2 (k − q)2 (r + l − k)2 l 2 (l − p1)

2 r 2 (r − p2)
2
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= i S3
Γ

[
− q 2 − i η

]−1−3 ε · 2 · Γ4(1 − ε) Γ2(−ε)

×
[

Γ(1 − ε) Γ(3 ε)
(1 − 3 ε)2 Γ(2 − 4 ε)

4F3(1, 1 − ε, 1 − 3 ε, 2 − 6 ε ; 2 − 3 ε, 2 − 3 ε, 2 − 4 ε ; 1)

−Γ(1 − 3 ε) Γ(2 − 3 ε) Γ(3 ε) Γ(1 + 2 ε)
Γ(2 − ε) Γ(2 − 6 ε)

× 4F3(1, 1, 1 + 2 ε, 2 − 3 ε ; 2, 2, 2 − ε ; 1)

+
Γ2(1 − 3 ε) Γ(1 + 2 ε) Γ(1 + 3 ε)

Γ(2 − ε) Γ(2 − 6 ε)

× 4F3(1, 1, 1 + 2 ε, 1 + 3 ε ; 2, 2, 2 − ε ; 1)
]

= i S3
Γ

[
− q 2 − i η

]−1−3 ε

×
[
6 ζ3
ε2

+

(
11π4

90
+ 36 ζ3

)
1
ε

+

(
11π4

15
+ 216 ζ3 − 2π2 ζ3 + 46 ζ5

)

+

(
22π4

5
− 19π6

270
+ 1296 ζ3 − 12π2 ζ3 − 282 ζ2

3 + 276 ζ5

)
ε+ O(ε2)

]
, (12)

where the expansion in ε was done by means of the Mathematica [38] package HypExp [31, 39].

Diagram A7,5

We now consider diagram A7,5 for which we derive the following fourfold Mellin-Barnes
representation.

A7,5 =
∫
dDk

(2π)D

∫
dDl

(2π)D

∫
dDr

(2π)D

1
k 2 (k + q)2 (k + r)2 (l − p2)

2 (r − l)2 r 2 (k + l + p1)
2

= i S3
Γ

[
− q 2 − i η

]−1−3 ε Γ3(1 − ε)
Γ(1 − 2 ε) Γ(1 − 4 ε)

c1+i ∞∫
c1−i ∞

dw1

2πi

c2+i∞∫
c2−i ∞

dw2

2πi

c3+i∞∫
c3−i ∞

dw3

2πi

c4+i ∞∫
c4−i ∞

dw4

2πi

Γ(w4 − w1) Γ(1 + w3) Γ(−3ε− w3) Γ(1 − 2ε+ w1 + w2 − w4) Γ(−w3) Γ(−w4)
Γ(1 − w1 +w3 + w4)

× Γ(1 + 3ε+ w3 + w4) Γ(1 + ε+ w1 + w2) Γ(1 + w1 + w2) Γ(−ε− w1) Γ(−ε− w2)
Γ(2 + ε+ w1 + w2) Γ(2 − 2ε+ w1 + w2)

× Γ(1 − ε+ w2) Γ(1 + w3) Γ(1 − ε+w1) Γ(ε− w1 − w2 + w3 + w4) Γ(w4 − w2)
Γ(1 −w2 + w3 + w4)

.
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(13)

Like in the previous cases, the Mellin-Barnes integral does not generate poles in ε, so we can
therefore interchange the expansion in ε with the contour integrations. We choose

c1 = −1
5
, c2 = −1

4
, c3 = −1

7
, c4 = − 1

11
. (14)

As before in the case of A7,3 we can not proceed until the end by merely applying Barnes
Lemmata and corollaries thereof, but again have to apply auxiliary integral and series represen-
tations at intermediate steps, this time even for a larger class of functions than before. Besides
hypergeometric functions, these are mainly logarithms and (harmonic) polylogarithms as well
as ψ-functions with

ψ(0)(z) =
d

dz
ln [Γ(z)] ,

ψ(k)(z) =
d

dz
ψ(k−1)(z) for k = 1, 2, . . . . (15)

The sums and integrals over the auxiliary parameters are then performed by means of the same
techniques as before. The final result for A7,5 reads

A7,5 = i S3
Γ

[
− q 2 − i η

]−1−3 ε
[
2π2 ζ3 + 10 ζ5 +

(
12π2 ζ3 + 60 ζ5 +

11π6

162
+ 18 ζ2

3

)
ε+ O(ε2)

]
.

(16)

Diagram A8

The last diagram we consider is A8 which can also be displayed as a fourfold Mellin-Barnes
integral.

A8 =
∫
dDk

(2π)D

∫
dDl

(2π)D

∫
dDr

(2π)D

1
(k + p1)

2 (k + r)2 (k + r + q)2 (l − k)2 (l + r)2 l 2 r 2 (l + p1)
2

= −i S3
Γ

[
− q 2 − i η

]−2−3 ε Γ3(1 − ε) Γ(−1 − 3ε)
Γ(−2 ε) Γ(−4 ε)

c1+i∞∫
c1−i ∞

dw1

2πi

c2+i ∞∫
c2−i∞

dw2

2πi

c3+i∞∫
c3−i ∞

dw3

2πi

c4+i∞∫
c4−i ∞

dw4

2πi

Γ(1 + w3) Γ(1 + w4) Γ(w4 − w2) Γ(w3 − w1) Γ(−w4) Γ(−w3) Γ(2 + w1 + w2)
Γ(2 + w3 + w4) Γ(1 + w4 − w2) Γ(1 + w3 − w1)

× Γ(2 + ε+ w1 + w2) Γ(1 − ε+ w1) Γ(1 − ε+ w2) Γ(−1 − ε− w1) Γ(−1 − ε− w2)
Γ(2 − 2ε+ w1 + w2) Γ(3 + ε+ w1 + w2)

×Γ(2 + 3ε+w3 + w4) Γ(1 − 2ε+ w1 + w2 − w3 − w4) Γ(ε− w1 − w2 + w3 + w4) .

(17)
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This time the Mellin-Barnes integral does indeed generate poles in ε. We choose

c1 = −7
8
, c2 = −19

24
, c3 = −13

24
, c4 = −25

48
, − 5

16
< ε < − 5

24
(18)

in order to separate left poles of Γ-functions from right ones, and subsequently perform the
analytic continuation to ε = 0 [29]. This generates four kernels, one four-dimensional one, two
three-dimensional ones, and one two-dimensional one. We arrive at the final result

A8 = i S3
Γ

[
− q 2 − i η

]−2−3 ε
[
8ζ3
3ε2

+

(
5π4

27
− 8ζ3

)
1
ε

+ 24ζ3 − 5π4

9
− 52

9
π2ζ3 +

352
3
ζ5

+

(
−72ζ3 +

5π4

3
+

52
3
π2ζ3 − 352 ζ5 +

1709π6

8505
− 332

3
ζ2
3

)
ε+ O(ε2)

]
. (19)

Despite the fact that this integral has one more propagator compared to A7,5 it was much simpler
to evaluate than the former one, and we did not have to introduce any auxiliary parameters in
integral or series representations. The reason is again that A8 – contrary to A7,5 – possesses an
outgoing line with an outer vertex where only three lines meet.

4 Conclusions and Outlook

In this letter we have evaluated those master integrals for massless three-loop form factors
which are necessary for the calculation of the fermionic corrections to the quark form factor.
We obtained analytical results for all coefficients through transcendentality six in the Riemann
ζ-function, as required to obtain the finite part of the form factor at the three-loop level. For
the integral A7,4 we could obtain a representation which is valid to all orders in ε, in terms
of hypergeometric functions of unit argument. For the other integrals, we derived multiple
Mellin-Barnes representations from which we extracted all necessary coefficients order by order
in ε.

The only missing pieces to complete the set of master integrals for massless three-loop form
factors are therefore the three diagrams in Figure 1 which have nine propagators. It turns
out that each of them can be expressed in terms of a sixfold Mellin-Barnes representation [40]
which gives rise to O(100) single terms upon performing the analytical continuation to ε = 0 by
means of the package MB [29]. Although the number of single integrals is quite large due to the
extraction of high poles in ε, and the evaluation is not completely automated at certain stages,
the analytical results for these integrals are within reach [40].
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