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SUMMARY 

 
Dissolved oxygen (DO) in rivers is a common environmental problem associated with 

hydropower projects.  Approximately 40% of all FERC-licensed projects have requirements to 

monitor and/or mitigate downstream DO conditions. Most forms of mitigation for increasing DO in 

dam tailwaters are fairly expensive. One area of research of the Department of Energy’s Hydropower 

Program is the development of advanced turbines that improve downstream water quality and have 

other environmental benefits. There is great interest in being able to predict the benefits of these 

modifications prior to committing to the cost of new equipment. In the case of turbine replacement or 

modification, there is a need for methods that allow us to accurately extrapolate the benefits derived 

from one or two turbines with better design to the replacement or modification of all turbines at a site.  

The main objective of our study was to demonstrate a modeling approach that integrates the 

effects of flow and water quality dynamics with fish bioenergetics to predict DO mitigation 

effectiveness over long river segments downstream of hydropower dams.  We were particularly 

interested in demonstrating the incremental value of including a fish growth model as a measure of 

biological response.  The models applied are a suite of tools (RMS4 modeling system) originally 

developed by the Tennessee Valley Authority for simulating hydrodynamics (ADYN model), water 

quality (RQUAL model), and fish growth (FISH model) as influenced by DO, temperature, and 

available food base.   

We parameterized a model for a 26-mile reach of the Caney Fork River (Tennessee) below 

Center Hill Dam to assess how improvements in DO at the dam discharge would affect water quality 

and fish growth throughout the river. We simulated different types of mitigation (i.e., at the turbine 

and in the reservoir forebay) and different levels of improvement. The model application successfully 

demonstrates how a modeling approach like this one can be used to assess whether a prescribed 

mitigation is likely to meet intended objectives from both a water quality and a biological resource 

perspective.  These techniques can be used to assess the tradeoffs between hydropower operations, 

power generation, and environmental quality.  
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1. INTRODUCTION 

1.1 BACKGROUND 

 

The release of water with low dissolved oxygen content in summer is one of the environmental 

changes often associated with hydropower dam (Sale et al. 1991, EPRI 1992). Dissolved oxygen is 

necessary for aquatic life, generally at concentrations above about 5 mg/L, which is a common state 

water quality standard for surface waters. This standard may not be met in dam tailwaters and for 

considerable distance downstream, with resulting regulatory pressures to meet standards. Dam 

discharges also can contain dissolved and suspended organic matter that exert a biological or 

chemical oxygen demand as it decomposes, causing further depletion of dissolved oxygen in 

downstream rivers.  

Dam tailwaters also can be cold in summer, even in warm climates. Cold reservoir releases often 

provide suitable thermal habitat for trout, which have more exacting requirements for dissolved 

oxygen than temperate riverine fauna in general. Thus, there is usually strong angler pressure through 

state fish and wildlife agencies for dam tailwaters to contain sufficient dissolved oxygen for a cold-

water trout fishery.  

In the 1980s, there was a well-publicized court case (National Wildlife Federation v. Gorsuch –  

D.C. Circuit Court of Appeals 1982) in which the plaintiff requested that a dam be classified as a 

point source discharger under the Clean Water Act, similar to a sewage outfall, and thus should be 

regulated accordingly. The main concern was low dissolved oxygen and oxygen-reducing organic 

loading. This classification would have required dam operators to apply for discharge permits under 

the National Pollutant Discharge Elimination System or its delegated state equivalent. Although this 

designation was denied, there was much attention drawn to the issue of low dissolved oxygen below 

hydropower dams.  

In a review of approximately 300 project records for hydropower dams regulated by the Federal 

Energy Regulatory Commission (FERC) since 1986, 40.2% have a specific requirement for dissolved 

oxygen in the tailwater (EPRI 1992). A common requirement (37.2%) was for monitoring of 

dissolved oxygen, while mitigation measures (38.2%) and/or changes in project operation (35.2%) 

were often required. Models are beginning to be used to provide additional insight into water quality 

dynamics, with 2% of the records requiring monitoring specifically to verify models.  

 

1.2 DISSOLVED OXYGEN DYNAMICS 

 
Dam discharges can have low dissolved oxygen because of the ecological dynamics of their 

reservoirs, not because of the dam itself. This was the crucial point in resolving the court case over 

the Clean Water Act in favor of dam operators. Nonetheless, the combined dam-reservoir system acts 

to create the low dissolved oxygen concentrations and then to release this low-oxygen water through 

turbines to the downstream river. To understand the origin of the depleted oxygen, one must 

understand the basic seasonal functioning of a lake or reservoir.  

Any lake or reservoir in the temperate zone responds to an annual cycle of heating and cooling. 

Solar radiation provides varying levels of direct heating to the water surface, inflowing streams tend 

to follow the annual pattern of air temperatures, and the lake or reservoir itself is influenced by the air 

temperature of winds blowing on it. The annual heat balance, which is capable of being modeled in 

some detail, results in the typical pattern of cold water in winter, spring heating, and autumn cooling.  

Because water of different temperature has different densities, static water bodies undergo an annual 

pattern of changing water density.  Water’s maximum density is 4°C. In winter, the water body is 

often uniformly mixed (Fig. 1.1 – top panel) (or with a layer of ice and very cold water at the  
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Fig. 1.1 Typical seasonal thermal mixing and stratification that leads to low dissolved oxygen in lakes 

and reservoirs. Top panel represents well-mixed conditions from fall to spring after fall turnover. Bottom panel 

represents thermally stratified conditions typical in summer and early fall with low dissolved oxygen in the deep 

hypolimnion. Vertical temperature profile is indicated at the left of each panel. 

 

surface). In spring, heating and river inflows warm the surface but this warmer, less dense water does 

not mix well with the deeper, cold, and more dense water. Gradually, there is sufficient density 

difference between the warm surface and the cold bottom that a stable thermal stratification develops 

(Fig. 1.1– bottom panel). The lake or reservoir essentially becomes two separate bodies of water, a 

surface layer of warm water well mixed by winds (termed the epilimnion) and a deep layer that is 

cold and generally isolated from further mixing (hypolimnion). The intermediate layer, or 

thermocline, is where the most rapid changes in temperature and density with depth occur (see graph 

at left of Fig. 1.1– bottom panel). Occasionally, a river enters a lake or reservoir at temperatures 

intermediate between the warm and cold masses, and this water spreads out at intermediate depths 

matching its temperature, called an interflow.  

Dissolved oxygen in the surface layer is maintained near saturation (the maximum amount that 

can be dissolved at the particular temperature) by several forces. Oxygen diffuses between the air and 

water in a process that is enhanced by wave action and the wind that constantly refreshes the exposed 

surface. Phytoplankton and other aquatic plants growing in the lighted surface waters produce oxygen 

in photosynthesis. Inflowing stream or river water is usually well oxygenated. The physical and 

biological oxygen replenishment usually is ample to counteract the oxygen demands of living animals 

and microbial decomposition of detritus in the surface waters.  
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The isolated, deep water has no such oxygen-replenishing capability.  It is usually deeper than 

light can penetrate, so no photosynthesis occurs. Organic matter rains down from above, adding an 

organic load that uses oxygen as it is decomposed by bacteria. As the season progresses from spring 

into summer, the initial oxygen content is progressively depleted. Even the occasional interflows 

often bring more decomposable organic matter than oxygen replenishment (in fact, they can bring in 

large quantities of aquatic or terrestrial plant material, especially during floods). In the near absence 

(hypoxia) or complete absence (anoxia) of oxygen, chemical reactions take place that reduce 

dissolved iron and manganese, increase the dissolution of phosphates from the sediments, and convert 

sulfates to hydrogen sulfide, all of which are detrimental to survival of higher aquatic life. Highly 

productive lakes and reservoirs, that is, those with high nutrient levels and much biological activity, 

develop the most severe hypoxia and anoxia.  

In a natural lake, the sequence of events in the deep-water hypolimnion is of little practical 

consequence for most human activities. Beyond swimmers or divers who enjoy sinking into the 

deeper, cooler water, people rarely notice the stratification.  Some water users capitalize on the cooler 

water, such as for thermoelectric power station cooling or municipal drinking water.  

In autumn, the surface waters cool. They eventually cool enough that the densities of the upper 

and lower layers are not sufficiently different to support a stable stratification. At that time, winds are 

capable of mixing the entire water column, and the lake becomes uniformly cool again (fall turnover; 

Fig. 1.1- top panel). If the hypolimnion had been large and very low in dissolved oxygen, the entire 

mixed lake or reservoir can become low in dissolved oxygen for the short period of fall turnover until 

re-aeration and mixing can replenish oxygen content.  

 In northern lakes and reservoirs, ice cover in winter can close off the water surface to oxygen 

exchange. In extreme cases dissolved oxygen in the whole water body can be depleted over a long 

period of ice cover in a manner similar to the hypolimnion in summer.  

 

1.3 DEEP RELEASES AT HYDROPOWER DAMS  

 

Turbine intakes are typically set deep on the upstream side of the dam primarily to minimize the 

potential for cavitation at the runner by avoiding excessive suction pressure below the runner. 

Because of the location of the turbine intake, tailwater oxygen concentrations usually reflect the deep-

water source in the reservoir. During autumn, winter and spring periods when the reservoir is well 

mixed or in early summer when oxygen levels in the hypolimnion are still fairly high, the tailwaters 

are cold and fairly well oxygenated. As summer advances and the hypolimnion becomes 

deoxygenated, the released water contains progressively less dissolved oxygen, to the point of having 

essentially no dissolved oxygen below dams with highly productive reservoirs. A conventional 

hydropower turbine exerts no influence on the dissolved oxygen concentration of the water that 

passes through it. That is, it neither adds nor removes oxygen, but transfers water from the reservoir 

to the river below the dam. Some re-aeration may occur in the turbulent zone of the immediate 

tailrace, but the low oxygen levels tend to prevail for many miles downstream.  

Oxygen irregularities may occur in the tailwaters in late summer and fall. As hydropower 

production continues to tap the deep, cold water and inflows replenish the upper, warm water, the 

deeper water mass becomes smaller and may become depleted. The thermocline drops in elevation 

during this process. Warm, oxygenated water may suddenly become withdrawn by turbine flows as 

the ever-larger epilimnion (upper water mass) comes to occupy the level of the intakes and above. 

This depletion of the hypolimnion explains why there may be sudden increases in dissolved oxygen 

and temperature in hydropower releases in late summer and early fall. Conversely, there may be 

temporary fall dips in dissolved oxygen reflecting the mixing of anoxic waters below the intakes 

during fall turnover.  
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1.4 EFFECTS OF LOW DISSOLVED OXYGEN ON AQUATIC LIFE 

 

Oxygen requirements of aquatic animals, especially fish, have been studied extensively and 

criteria documents have been prepared by the federal Environmental Protection Agency (EPA 1986) 

and the water quality control agencies of many states. Different levels of protection are often applied 

to different habitats—stream organisms accustomed to high dissolved oxygen levels usually require 

more oxygen than organisms adapted to more static (and often less-well-oxygenated) conditions. 

Also, dissolved oxygen extremes (minima) are often more important for survival of aquatic life than 

an average (such as daily) value. Most organisms can tolerate dissolved oxygen levels as low as 

2 mg/L for short periods. But repeated or prolonged exposure to such low levels has detrimental 

effects on activity, feeding, growth rates, and other normal biological functions. For example, the 

growth of young fish is slowed markedly if the oxygen concentration falls to 3 mg/L for part of the 

day, even if it rises to 100% saturation at other times.  

Because the solubility of oxygen in water changes with temperature (more soluble at low 

temperatures), assigning an absolute concentration as a standard is sometimes problematic. For this 

reason, some dissolved oxygen standards based on responses of aquatic organisms are stated in terms 

of percentage saturation. The ideal situation for most aquatic life would be to have the oxygen content 

match the saturation value at the prevailing temperature. Cold-water streams in summer typically 

have saturated values near 11-12 mg/L; warm-water streams or lakes have saturated values near 

8-9 mg/L, depending on the exact temperature. Nonetheless, most standards are in the 4-5 mg/L 

range, corresponding to 50-60 % saturation if the temperature is 25°C. Debate continues whether such 

limits are adequate for protection of all aquatic life. Some researchers believe that any diminution of 

dissolved oxygen below saturation for that temperature is incrementally detrimental. Others profess 

the existence of species-specific dissolved oxygen thresholds above which biological functions are 

normal and below which functions deteriorate markedly (Brett 1979).  

Despite these on-going debates, the oxygen concentrations downstream of hydroelectric dams are 

often clearly in the danger zone. Attaining minimum levels of 4-5 mg/L at the dam release when the 

water source in the reservoir is essentially zero is a challenge. That challenge has been met by a 

variety of engineering solutions.  

 

1.5 MITIGATION MEASURES 

 
Technologies and operational practices to improve dissolved oxygen in dam tailwaters are being 

pursued with vigor. Reviews by the U.S. Department of Energy (Sale et al. 1991) and EPRI (2002) 

identified several and provided summaries of the advantages and disadvantages of each. Examples of 

the performance of these mitigation measures are given in Tables 1 and 2. 

Tailrace weirs are low-head structures built in a zigzag or infuser fashion in tailwaters so that the 

dam discharge is subjected to a waterfall and plunge pool where dissolution of oxygen in the air is 

facilitated. They can be quite effective, but have a high capital cost. Side-stream aeration is another 

technique for aerating water after it has been discharged from the dam. Pumps are typically used to 

carry water to small pools from where the water cascades down specially designed waterfalls back to 

the river. 

Turbine venting increases DO concentrations in the discharge by entraining air into a turbine 

where internal turbulence mixes air bubbles into the water. This technique requires small design 

changes to existing turbines and is one of the less costly methods for increasing discharge DO. In 

some cases, blowers are used to increase the rate at which air is forced into the turbines. The resulting 

increase in DO depends on several factors such as the initial DO concentration, temperature, turbine 
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Table 1. Examples of oxygenation of dam tailwaters by several techniques. Results shown are 

about the best consistently attained; results varied seasonally and with plant 

operations. Adapted from EPRI 2002. 
 

DO Improvement (mg/L)  Case Study 

Technique Total From To  Dam Citation 

Forebay Mitigation 

Hypolimnion 

aeration 
4 to 5 1 6 

Richard B. Russell Dam, Savannah 

R., GA/SC (Corps of Engineers) 

Lemons et al. 

1998 

2.3 1.3 3.6 
Bagnell Dam, Lake of the Ozarks, 

MO (Union Electric Co.) 

Garton and 

Miller 1982 

1.3 2.7 4.0 
J. Percy Priest Dam, Stones R., TN 

(Corps of Engineers) 
Price 1988 

Surface water 

pump 

 

2.0 0.1 1.2 
Douglas Dam, Holston R., TN 

(TVA) 

Mobly et al. 

1995 

Turbine Vicinity Mitigation 

Penstock air 

injection 
Up to 5 1 4-6 Tim’s Ford Dam, Elk R., TN (TVA) 

Harshbarger 

et al. 1995 

Draft tube venting 0.5 to >3 4 6 
Logan Martin Dam, Coosa R., AL 

(Alabama Power Co.) 
EPRI 2002 

Turbine venting 

(vacuum breaker) 
Up to 3.5   

Deer Cr. Power Plant, Provo R., UT 

(Bureau of Reclamation) 

Wahl et al. 

1994 

2 to 3 

(single 

unit); 1-2 

(8 units) 

  
Bulls Shoals Dam, White R., AR 

(Southwestern Power Admin.) 

Harshbarger 

et al. 1998 

2 to 3   
Table Rock Dam, White R., AR 

(Southwestern Power Admin.) 

Harshbarger 

et al. 1998 

Turbine venting 

(baffles) 

 
2.5 to 3 

(one unit); 

0.5 (2 

units) 

  
Norfolk Dam, White R., AR 

(Southwestern Power Admin.) 

Harshbarger 

et al. 1998 

0.5 to 3   
Wylie Dam, Catawba R., SC (Duke 

Power Co.) 

Gaffney  

et al. 1999 Turbine venting 

 
4.5 0.5 5 

Osage Project/Bagnell Dam, Lake of 

the Ozarks, MO (Ameren UE) 

Jarvis et al. 

1998 

7 <0.5 5.5 to 7 Norris Dam, Clinch R., TN (TVA) 
Hopping et 

al. 1997 Turbine venting 

(aerating runners) 

 Up to 5.5   
Wateree Dam, Wateree R., NC 

(Duke Power Co.) 

Sigmon  

et al. 2000 
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Table 1 (continued) 

DO Improvement (mg/L)  Case Study 

Technique Total From to  Total From 

Tailwater Mitigation 

Infuser weir 6.6 1.0 7.6 
Chatuge Dam, Hiawassee R., NC 

(TVA) 

Hauser and 

Morris 1995; 

EPRI 1996 

2.4 3.0 5.4 
Lloyd Shoals Project, Okmulgee R., 

GA (Georgia Power Co.) 
Hendricks 1998 

4.2 3.0 7.2 
South Holston Dam, South Fork 

Holston R., TN (TVA) 

Hauser and 

Brock 1993; 

EPRI 1996 

Labyrinth weir 

 

3.0 3.5 6.5 
Canyon Dam, Guadelupe R., TX 

(Guadelupe-Blanco River Authority) 

Hauser and 

Morris 1995; 

EPRI 1996 

 

 

 
Table 2 Actual and anticipated improvement in tailwater dissolved oxygen (DO) at TVA  

hydropower plants using turbine-venting techniques. Actual uptake according  

to Carter 1995; expected improvements according to  

Hopping et al. 1997; both as given in EPRI 2002. 

 

Expected DO improvement 

by turbine aeration 

Project 

Actual DO 

uptake 

(mg/L) 

Target DO 

in reservoir 

release 

(mg/L) 

Median DO 

improvement 

required 

(mg/L) mg/L 

% of median 

required 

Appalachia -  

Unit 1 
1.5     

Appalachia -  

Unit 2 
1.7     

Appalachia -  

combined  
 6.0 0.8 2.0 100 

Blue Ridge  6.0 2.6 3.0 100 

Boone - Unit 1 1.1     

Boone - Unit 2 0.7     

Boone - Unit 3 0.3     

Boone - combined   4.0 0.0 2.0 100 

Chatuge  4.0 2.9 1.0 34 

Cherokee - Unit 4 2.0     

Cherokee - all 4 units  4.0 3.8 2.5 65 
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Table 2 (continued) 

Expected DO improvement 

by turbine aeration 

Project 

Actual DO 

uptake 

(mg/L) 

Target DO 

in reservoir 

release 

(mg/L) 

Median DO 

improvement 

required 

(mg/L) mg/L 

% of median 

required 

Douglas  4.0 3.3 2.0 60 

Fontana - Unit 1 1.1     

Fontana - Unit 2 0.9     

Fontana - Unit 3 1.3     

Fontana – all 3 units  6.0 1.5 2.5 100 

Hiwassee - Unit 1  6.0 2.1 1.0 47 

Norris - Unit 2 3.0 6.0 5.3 5.5 100 

Nottely  4.0 2.9 1.0 34 

South Holston  6.0 4.2 2.0 47 

Tims Ford  6.0 5.6 4.0 71 

Watauga - Units 1 & 2 

(each) 
1.5     

Watauga – 2 units  6.0 2.0 2.0 100 

 

 

design, amount of air entrained, etc. Increasing DO in the turbine becomes more difficult as DO 

concentration approaches saturation. For example, an auto-venting turbine that can increase DO from 

0 to 2 mg/L will not likely cause the same 2 mg/L increase if the intake DO starts at 3 mg/L. Table 2 

summarizes actual and anticipated improvement in tailwater DO at several Tennessee Valley 

Authority (TVA) hydropower plants using turbine-venting techniques (EPRI 2002). More advanced 

turbine venting designs from Voith that have been installed recently at Wateree, Thurmond, and 

Boone projects have an even greater capacity for improving DO. For turbine venting techniques to be 

most effective often requires a reduction in generation. Trials are currently underway at the Osage 

Hydroelectric Project (Missouri) to test turbines that have been retrofit with improved aeration 

systems. Two of eight units have been retrofitted with the potential to modify other units depending 

on the outcome of effectiveness testing. At projects with multiple turbines, the realized benefit per 

unit decreases as more units are brought online since higher tailwater elevation reduces the head 

available for inducing air. 

Air or pure oxygen can be injected at several points to facilitate dissolved oxygen increases. They 

can be injected as fine bubbles through diffusers in the tailrace, at the bottom or surface. They can be 

injected into the forebay upstream of the intake (intake aeration). They can also be injected into the 

turbine itself, where the negative pressure (Venturi effect) created by the flowing water immediately 

downstream of the blades and hub will draw in air or oxygen without pumping (aerating turbine or 

turbine venting). Where penstocks are present, air or oxygen can be injected into the penstocks. The 

particular method and location of air injection can have a significant effect on the DO increase and on 

the amount of performance degradation that occurs. 

Several methods strive to ensure that epilimnetic (surface) water enters the intakes, regardless of 

reservoir stratification and depth of intakes. The techniques are successful, but eliminate the cold 

tailwater trout fishery by release of warm water. One method uses propeller blades or pumps at the 
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surface to force warmer water to the level of the intakes, locally breaking stratification. Another 

creates an intake structure with variable-depth intakes for selective withdrawal (useful for controlling 

both temperature and dissolved oxygen). Flexible curtains in the forebay can also be sued to force 

selective withdrawal of surface waters. 

Some techniques seek to manage the oxygen resources of the larger reservoir. Hypolimnetic 

aeration uses diffusers to inject air or oxygen into the larger hypolimnion (not just at the intake) to 

reduce the rate of oxygen depletion. Other systems seek to prevent reservoir stratification by applying 

energy (mechanical pumping or air injection) to counteract the seasonal density differences and keep 

the reservoir well mixed all year.  

Spill flows or other turbine bypass systems can hydraulically use the reservoir’s head to create 

turbulence and facilitate oxygen increases. When reservoirs are full, normal spillways can be used. At 

other times, release gates can be opened. Where these options are not available, U-tube siphons have 

been installed over the dam to produce a bypass flow into which air or oxygen is introduced. Such 

techniques remove water from hydropower production. This type of solution is typically viewed as 

only a temporary one since in the long run it is more economic to employ some other fix (such as 

turbine venting) that does not result in as much lost generation. 

A long-term solution, but one difficult to attain, is management of the watershed and reservoir so 

that organic productivity is reduced in the reservoir and less oxygen is consumed in the hypolimnion 

of the stratified reservoir. Reduced fertilizer use, tertiary sewage treatment plants, buffer zones 

around the reservoir and tributaries to reduce direct runoff, reforestation, erosion control on the 

watershed, and like measures can sometimes reverse the nutrient enrichment and high biological 

productivity of hydropower reservoirs. However, hydropower operators often do not control the 

watershed sufficiently to mandate such landscape management actions. More direct technological 

means at the dams are usually more practical, especially in the short run.  
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2. STUDY AND APPROACH 

2.1  PURPOSE OF THIS STUDY 

 
The challenge for hydropower operators, resource managers, and environmental regulators is to 

select an appropriate mitigation that is effective at maintaining desirable water quality while at the 

same time is economically practical and maintains the project’s capabilities to effectively produce 

power. Because it is usually not practical to install and test several different types of mitigation, 

decision-makers often turn to computer models to predict potential mitigation effectiveness. 

The purpose of this study is to demonstrate how models that combine flow and water quality 

dynamics with fish energetics can be used to assess the effectiveness of mitigation to increase 

dissolved oxygen in dam tailwaters. The particular measures of effectiveness in which we are 

interested in this study include the temporal and spatial improvement in downstream DO and the 

resulting biological response of resident fish. 

 

2.2  STUDY SITE 

 
This report considers Center Hill Reservoir, Tennessee, as a case study to demonstrate the value 

of modeling dissolved oxygen and its effects on aquatic life as a tool for selecting among mitigation 

options. The U.S. Army Corps of Engineers (USACE), Nashville District is considering hydropower 

rehabilitation for the Center Hill power plant where low dissolved oxygen in summer and current 

minimum flow criteria for the tailwater are the two primary environmental issues being addressed. 

Loginetics, Inc. (2004) developed an information base for modeling this tailwater system, with 

emphasis on the minimum-flow issues. This work included calibration of hydrodynamic, water 

quality, and bioenergetic models for the Center Hill tailwater, and application of the models to 

quantifying downstream effects of a range of minimum-flow options. The research reported here 

extends the biological aspects of the dissolved oxygen modeling and analyses.  

Center Hill Dam was completed in 1948 and is a 250-ft-high gravity dam that impounds the 

Caney Fork River at River Mile (RM) 26.6, between Cookeville and Nashville, Tennessee. The 

drainage area is 2,174 square miles. At full flood-control pool, the reservoir is 64 miles long with a 

surface area of 23,060 acres and a volume of 2,092,000 acre-ft. At the top of the power pool, the 

reservoir area is 18,220 acres and a volume of 1,330,000 acre-ft. The reservoir has a mean annual 

inflow of 3,779 cfs, or a residence time at maximum power pool of 177 days.  Caney Fork joins the 

Cumberland River near the tailwater of Cordell Hull Dam (at the upper end of Old Hickory 

Reservoir).  

The powerhouse has three 45-MW turbines for a hydropower capacity of 135 MW. Peak 

hydraulic capacity of the powerhouse is approximately 15,000 cfs, which is exceeded about 5% of the 

time in the January-April period but only rarely at other times of year (flow-exceedence curves for the 

period 1985-2002 are provided by Loginetics, Inc. 2004). Hydropower releases are generally 

scheduled to meet peak electricity demands, which means that more water is released on weekdays 

than on weekends. The current minimum flow release requirement in the critical June 1-November 30  

period for aquatic life is one generating unit for one hour within any 48-hr period. In 2003, a 

provisional minimum-flow operation was started that provides a 1-hr pulse of 1 unit flow every 

12 hours.  

Dissolved oxygen concentrations in the tailwater of Center Hill Dam vary seasonally and show 

typical effects of summer deoxygenation in the reservoir (Loginetics 2004). Tennessee water quality 

standards for DO require 6 mg/L for trout waters, even for artificial tailwaters. In April 2003, 
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dissolved oxygen in the turbine releases were 10.5 mg/L and varied between that 10.2 and 11.2 mg/L 

in the river to RM 11, at temperatures that increased from 9.1 to 11.6 °C.  In contrast, a similar 

longitudinal survey in October 1997 (after summer stratification) revealed dam releases with 0.9 

mg/L dissolved oxygen, increasing to 3.2 mg/L at RM 11.  In October 2002, releases contained about 

1.5 mg/L increasing to 4.1 mg/L at RM 11. In an intermediate period of summer hypolimnetic 

deoxygenation (July 1997), releases were near 3.5 mg/L and increased to 5 mg/L by RM 16. 

Continuous monitoring at RM 18.2 for several days in August 1996 showed marked daily fluctuations 

in dissolved oxygen, reflecting the daily generation pattern. As flow from the dam increased in 

response to daily electricity demand, the dissolved oxygen at this point midway between the dam and 

the mouth dropped from near 8 mg/L to near 3 mg/L.  

USACE has tried a variety of measures to improve DO below Center Hill Dam including 

releasing water through the sluiceway, altering the loading on turbines, adding hub baffles, and 

turbine venting (TWRA 2003). Releasing well-oxygenated surface water through the sluiceway 

increased tailwater DO, but also increased temperature to the point that it was lethal to trout. 

Operating turbines at  and  load produced a slight increase in discharge DO. Adding hub baffles 

and turbine vents (completed in December 2001) to all three turbines increased DO during deficit 

periods, but only by 1.5 mg/L with one turbine operating and only 0.5 mg/L with three turbines 

operating. 

The Loginetics, Inc. study initiated the use of simulation models for evaluating instream issues, 

including dissolved oxygen regeneration and effects at Center Hill. The primary modeling objective 

was to quantify relative effects of various minimum flow options compared to the base case (no 

minimum flow) for Nashville District. The investigation considered continuous flows, pulsed flows, 

and reregulation weirs as potential means to provide a minimum flow at Center Hill. The primary 

effects of interest were how higher flows might affect water temperature and physical habitat with 

regard to trout requirements. Effects of these options were explored assuming critical low ambient 

flow conditions and within the context of typical historical operations. These results were compared 

to standard habitat suitability indices for trout spawning, juveniles, and adults, which illustrated the 

markedly degraded conditions for aquatic life.  As an aside, the study also considered possible effects 

of revised minimum flows on other water quality parameters, specifically dissolved oxygen. Clearly, 

however, there is much to be gained by further refinement of both physical and biological-effects 

models for dissolved oxygen in dam tailwaters.  

The Tennessee Wildlife Resources Agency stocks rainbow and brown trout into Caney Fork 

River below Center Hill Dam several times a year.  In April 2003 they stocked 20,000 brown trout 

which were tagged with coded-wire tags prior to stocking so that they could be identified and their 

growth tracked during subsequent sampling.  From April 2003 through April 2004, a Tennessee 

Technological University (TTU) graduate student measured the lengths and weights of recaptured 

fish on about a monthly basis. These data are reported in a recently completed Masters thesis 

(Meerbeek 2005) and were used for calibration of the fish growth model. Additional raw data were 

also provided for this analysis by P. Bettoli of TTU (personal communication). The observed weights 

suggest growth in late spring, followed by a period of little or no growth from July through 

September, and then growth throughout the fall and winter (Fig. 2.1). 

To investigate whether growth rates varied with distance from the dam, we calculated average 

weights of recaptured fish for three river reaches: Below Dam (RM 24.5-26.5), Upper (RM 

19.5-26.5), and Lower (RM 12.5-19.5). Note that the Upper reach includes the Below Dam reach.  
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Fig. 2.1. Weight of 286 individual brown trout captured in Caney Fork River from April 2003 

through April 2004. 

 

 

Although the small sample size prevents us from doing a rigorous statistical analysis, the data suggest 

a spatial variation in growth rates (Fig. 2.2). Growth at all reaches was similar through the first of 

October, but then it appears fish residing closer to the dam (Below Dam and Upper reaches) grew 

faster during fall and winter than fish further downstream (Lower reach). This advantage was 

maintained or increased during the early spring. Possible reasons for this differential growth among 

reaches are addressed later in this report. One assumption of this simple analysis is that fish did not 

move after establishing residency in a location and thus their growth represented the environmental 

conditions at that location.  

2.3 MODEL DESCRIPTION 

 
We used a combination hydrodynamic/water quality/fish growth model to evaluate the potential 

for effective mitigation of low dissolved oxygen in the tailwaters of Center Hill Dam. The particular 

model used here was developed by TVA hydraulic engineers and biologists and has been used for 

many years to assess the effects of hydropower dam operations on river water quality (Hauser and 

Bender 1987, Hauser 1990, Bevelhimer et al. 1997, Shiao and Yeager 1997). The model has been 

revised and enhanced over the past 10 years and now includes the capability to also assess effects on 

fish habitat and fish growth. 
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Fig. 2.2. Average brown trout weight for three river reaches: Below Dam (RM 24.5-26.5), Upper    

(RM 19.5-26.5), and Lower (RM 12.5-19.5). 

  

 

The hydrodynamic model ADYN solves one-dimensional equations for conservation of mass 

and momentum for irregularly shaped rivers and reservoirs using a four point implicit finite 

difference scheme with weighted spatial derivatives or a McCormack explicit scheme (Hauser 2003). 

Channel resistance is accounted for using an adaptation of the empirically-based Manning's roughness 

formulation that allows resistance to vary with flow depth. ADYN can be used to study unsteady river 

and reservoir hydraulics where the following are of interest: 

• water or wave travel times; 

• routing of natural flow waves or planned pulsed flows; 

• effects of hydropower dams, weirs, etc. at downstream or internal boundaries; 

• flow reversals; 

• interactions with dynamic tributaries at channel junctions; 

• multiple tributary systems with multiple internal boundary conditions; 

• effects of distributed or point lateral inflows; 

• flow and elevation hydrographs at locations between stream gauge sites; and 

• effects of channel geometry and roughness on flow and water surface elevation. 

 

  The water quality model RQUAL solves the mass transport equation with the same numerical 

scheme used in the ADYN hydrodynamic model and is used in conjunction with ADYN to compute 

water temperature, oxygen demand, and dissolved oxygen in rivers and reservoirs where the one 

dimensional longitudinal flow assumption is appropriate. The AYDN and RQUAL models are well-

suited for narrow confined tailwater reaches, such as that of the Center Hill Dam, in which the 

transverse and vertical gradients of flow velocity and water quality are negligible. The following can 

be studied with the combined models: 

• waste load allocation; 

• effects of location, magnitude, and timing of interventions seeking to improve water 

temperature and quality; 

• dilution and degradation of wastes; 

• effects of thermal loadings and atmospheric heat exchange on stream temperature; and 
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• effects of natural or artificial re-aeration, diurnal photosynthesis and respiration by 

macrophytes, waste loads, tributary inflows, and variable flow regimes on dissolved oxygen 

levels. 

 

The fish growth model FISH uses a bioenergetics approach that predicts growth by balancing an 

energy budget that includes energy intake through food consumption and energy loss via routine 

metabolism, activity, and food processing costs. Fish bioenergetics models are typically used to 

evaluate the effects of food abundance or water temperature on fish growth (Adams and Breck 1990). 

The particular model used here also includes the indirect effects of dissolved oxygen level on growth 

via direct effects on food consumption. This is a component that is not found in most bioenergetics 

models, and is the reason we are using this particular model package to evaluate the benefit of tools 

like this to assess mitigation to improve dissolved oxygen in dam tailwaters.  The fish growth model 

can be used to predict the effects of temperature and dissolved oxygen dynamics on: 

• weight gain through time of individuals or populations; 

• food consumption rates and resulting effects on prey abundance; 

• efficiency of conversion of food to body mass; and 

• seasonal patterns in prey abundance and the resulting limitations on predator growth. 

 

The ADYN and RQUAL modeling system can also be linked to a fish habitat model RHAB that 

characterizes change in available habitat under various operational scenarios. 

The spatial scale of the model includes 26.5 miles of the Caney Fork River from the Center Hill 

Dam downstream to the mouth of the river and its confluence with the Cumberland River.  Within 

this reach we were mostly interested in the 14 miles below the dam where the trout population is 

managed as a sport fishery. The temporal scale of this study was primarily from April 2003 when 

brown trout with identification tags were stocked throughout the river to April 2004 when a study to 

assess the growth of those stocked fish was concluded. 

 

2.4 INPUT DATA 

 
For the exercises reported in this study, we began with a calibrated model for the Center Hill 

tailwater and updated input files as needed to reflect the conditions during the period of interest 

(March 2003 through April 2004).  A brief description of model input data follows. 

2.4.1 Hydrodynamic Model Data Requirements 

 
ADYN requires three major types of information:  

• river geometry, 

• boundary conditions, and 

• numerical solution control. 

 

Reach geometry input includes information for each model “node” and the overall structure of the 

river system. ADYN models the flow in river and reservoir systems by establishing a set of 

computational nodes (specific locations) to represent the system.  The nodes are identified with 

numbers that increase in the downstream direction. Geometric input for each node may be provided 

by the user as cross-sectional information (e.g., elevations at specified distances along the cross 

section, Manning's n at specified sections of the cross-section, etc.) or may be interpolated by the 

model from neighboring nodes. River cross-section values were included for 122 nodes from the dam 

to the mouth of the Caney Fork River. 
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The model allows the river system to be constructed of one main channel, up to eight dynamic 

tributaries, and up to 20 lateral inflows. Along each reach, the user may specify the presence of 

internal boundaries (such as dams and weirs) or of lateral inflows (such as creeks, rivers, irrigation 

withdrawals, or a distributed flow along a channel).  We used 19 lateral inflows to represent small 

tributaries and areas of general runoff along the Caney Fork (Fig. 2.3). 

 

 

 

Fig. 2.3. Map of the Caney Fork River below Center Hill Dam. The dam is at the lower right and the 

confluence with the Cumberland River is at the upper left. (Source: Loginetics, Inc. 2004) 

 
Boundary condition input provides flow information for each type of boundary: upstream end of 

the main channel or tributary, downstream end of the main channel or tributary, internal boundary, 

and lateral inflow. 

Upstream boundary information may be provided as a discharge hydrograph (flow as a function 

of time) or as an elevation hydrograph (elevation as a function of time). Hourly dam discharge data 

were obtained from USACE for the upstream boundary condition (Fig. 2.4 and Fig. 2.5). These data 

indicate that the conditions during the period of interest display rapid and frequent fluctuations in 

flow which is typical for peaking operations like the Center Hill project. Flows from the dam 

fluctuate between zero when not generating around 10,500 cfs when all three turbines are running, 

with periods near 3,500 cfs (one turbine) and 7,000 cfs (two turbines). 
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Fig. 2.4. Hourly flow from Center Hill Dam, which shows periods when one (approx. 3,500 cfs), two 

(approx. 7,000 cfs), or three (approx. 10,500 cfs) turbines are operating intermittently between periods of 

no flow. Five periods are evident when natural flows either exceeded hydraulic capacity of the powerhouse or 

turbines were operated 24 hours per day. 
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Fig. 2.5. A finer temporal scale view of flow from the Center Hill Dam illustrating the daily peaking 

operation of the project. 

 
Downstream boundary information may be given in the form of an elevation vs. discharge rating 

curve (flow as a function of water elevation), a discharge hydrograph, or an elevation hydrograph. We 

used surface elevations collected from a gage at the mouth of the Caney Fork River. Internal 

boundary conditions are specified as an elevation vs. discharge rating curve or as an elevation 

hydrograph. Lateral inflows are expressed as inflows (or withdrawals) versus time. We used daily 

flow data from a USGS gage at Smith Fork Creek (Fig. 2.6), a tributary near RM 16, to estimate daily 

flow at the other 18 lateral inflows based on a direct relationship between daily flow and drainage 
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area as calculated for Smith Fork Creek. A comparison of flow duration curves for Smith Fork Creek 

and the Center Hill Dam release illustrates the difference between flows from the project and the 

natural hydrograph (Fig. 2.7). 
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Fig. 2.6. Daily flow at Smith Fork Creek, the largest tributary to the Caney Fork River downstream 

of the dam, illustrating the difference between natural flow dynamics for the region and those below the 

dam. 
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Fig. 2.7 Flow duration curves for Smith Fork Creek and Center Hill Dam release for the period 1 

March 2003 to 30 April 2004. 
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Numerical solution control information specifies the use of the implicit or explicit computational 

schemes, weighting factors, and convergence tolerances. These values were obtained from the 

existing model. A four-point implicit scheme was the type of numerical solution used with a 

weighting factor of 0.9. The computational time step for the model was hourly.  

 

2.4.2 Water Quality Model Data Requirements  

 

RQUAL requires four major types of input information: hydrodynamic updates, meteorology, 

boundary conditions, and miscellaneous coefficients and control input. 

The RQUAL model uses output from ADYN to update river hydrodynamics (flow, velocity, river 

depth, etc.). 

Meteorological parameters required by RQUAL include: 

• air (dry bulb) temperature, 

• dew point temperature, 

• cloud cover, 

• barometric pressure, 

• wind speed, and 

• solar radiation. 

 

Each of these parameters, except solar radiation, is normally measured on an hourly basis at 

major airports. Data for this model were obtained from hourly monitoring records at the Nashville 

airport. Solar radiation is computed from air temperature and cloud cover at desired locations (based 

on latitude and longitude). 

The RQUAL boundary conditions input file contains concentrations or mass loadings at an hourly 

interval for heat (i.e., water temperature), dissolved oxygen, biological oxygen demand, and/or 

nitrogenous biochemical oxygen demand at the upstream boundary condition and other lateral inflow 

sites. The model computes temperature at all other nodes, including internal boundaries. Because 

these data in particular are crucial to the predictions of the model, their derivation is discussed below 

in detail. 

 

Water Temperature – Specific records of dam discharge temperatures were not available, 

however, researchers at TTU collected temperature data with a continuous monitoring device located 

about 200 meters downstream of the dam during most of the period of interest. The temperatures at 

this location should be virtually the same as that at the discharge during periods of generation. When 

the plant is not generating the temperatures typically warm up rapidly because of the low flow. 

Therefore, we used the daily minimum at the monitoring site as the temperature of the dam release for 

that day (Fig. 2.8). These data correspond well with occasional grab samples collected by other 

investigators. No daily variation was incorporated as the water temperature at the location of the 

intake on the reservoir side of the dam likely undergoes insignificant within-day fluctuation. Some 

interpolation of temperatures was necessary for periods of missing records. This temperature was also 

used as the temperature of three lateral inflows that represent points of leakage from the dam into the 

tailwaters. 
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Fig. 2.8. Daily minimum temperature in the tailrace of Center Hill Dam which was used to represent 

the temperature of the dam discharge. Values for periods without data in March and late June to September 

were interpolated. 

 

 
Daily temperature data for the tributary streams were not available, but 12 years of periodic grab 

samples from Smith Fork were. We used these data to derive a relationship between day of the year 

(Julian day) and mean daily temperature (Fig. 2.9) which we used to estimate daily mean temperature 

for all the tributaries. Because small streams typically exhibit significant daily temperature variation, 

we included a daily variation of +/-10% of the mean that was distributed evenly across the 24-h day. 

 

Dissolved Oxygen – Continuous DO data are not available for the discharge from the dam. 

However, 12 years of periodic grab samples of water quality are available from which we derived a 

relationship between DO and Julian day (described by 3rd order polynomial equation; Fig. 2.10). 

Because we did not believe that the derived equation accurately reflected the period of lowest DO 

during the late summer (days 220-320), DO during this time was adjusted downward up to 1 mg/L 

reduction on day 270 (see Fig. 2.10). This correction more closely approximates a recorded value of 

1.7 mg/L in the upper reach on 3 Oct 2003 (day 276; Meerbeek 2005). The DO derived for the dam 

release was also used for two of the three leakage inflows (the third is discussed below).  

Absent any information on DO concentrations in the tributaries, we assumed that each was at 

100% saturation. The 100% saturation value was calculated as a function of temperature for each 

hourly value. We also assigned a 100% saturation value to the dam leakage at right abutment of the 

dam which is fully re-aerated as it cascades down a rock face into the tailwater. This leakage 

represents a constant input of about 75 cfs. 
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Fig. 2.9. Fitted relationship (5th order polynomial) between water temperature in Smith Fork Creek 

and Julian day for data collected since 1991. 
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Fig. 2.10. Polynomial relationship between day of year and dissolved oxygen derived from twelve 

years of grab samples below the Center Hill Dam. The curve was adjusted slightly to better capture periods 

when DO is lowest in late summer. 
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NBOD and CBOD – Nitrogenous biological oxygen demand (NBOD) and carbonaceous 

biological oxygen demand (CBOD) are important variables that control the removal of available 

dissolved oxygen from the water by various biological processes. In the absence of data for the period 

of interest we used the same values as used in the Loginetics model: NBOD = 0.43 mg/L for the dam 

release and dam leakage and 0.26 mg/L for the tributaries and other lateral inflows; and CBOD = 2.0 

mg/L for all locations. These values were based on averages of 1974-1976 water quality data 

measured at RM 26.5. 

 
NBOD and CBOD – Nitrogenous biological oxygen demand (NBOD) and carbonaceous 

biological oxygen demand (CBOD) are important variables that control the removal of available 

dissolved oxygen from the water by various biological processes. In the absence of data for the period 

of interest we used the same values as used in the Loginetics model: NBOD = 0.43 mg/L for the dam 

release and dam leakage and 0.26 mg/L for the tributaries and other lateral inflows; and CBOD = 2.0 

mg/L for all locations. These values were based on averages of 1974-1976 water quality data 

measured at RM 26.5. 

RQUAL also requires water quality coefficients and other miscellaneous site-specific input. 

These include: 

• latitude and longitude of the river, 

• time of morning fog lift (before which solar radiation is reduced by 80 percent), 

• azimuth of river at each node, 

• bank width, 

• tree height or effective barrier height at each node, 

• coefficients in a wind speed function used for evaporative cooling, 

• effective channel bed thickness (upper layer) for bed heat conduction, 

• effective channel bed thickness (deep layer), 

• thermal diffusivity of bed material, 

• bed heat storage capacity, 

• fraction of solar radiation absorbed in top 0.6 meter of water, 

• albedo of bed material, 

• fraction of solar radiation absorbed by shaded water, and 

• fraction of drybulb/dewpoint depression by which drybulb is cooler over shaded water. 

 

Miscellaneous input data not readily available at each site can be estimated from the literature and 

refined through the model calibration process. Once the model is calibrated, the coefficients and 

constants remain fixed for subsequent simulation runs. These values are normally consistent through 

time and we used the same values as those in the previously calibrated Center Hill model (Loginetics, 

Inc. 2004). 

 

2.4.3 Fish Growth Model Data Requirements 

 
The primary input data for the fish bioenergetics model are species-specific variables that 

describe the relationships between water quality parameters (temperature and DO) and various 

behavioral or physiological functions (feeding, metabolism, food processing, waste elimination, etc.). 

These values are established for many species based on laboratory experiments.  The values we used 

for brown trout have been used by others in similar bioenergetics models (Shiao et al. 1993) and are 

derived from laboratory studies by Elliot (1976). The values we used for brown trout result in key 

temperature relationships shown in Fig 2.11. At maximum consumption, these relationships would 

result in maximum growth at about 13°C. 
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Input variables also control the effect of DO on food consumption via an appetite multiplier that 

is a function of ambient DO.  Under the configuration used in our modeling food consumption begins 

to decline at DO less than 6 mg/L and is zero at DO less than 2 mg/L (Fig. 2.12). This relationship is 

similar to that described for the effects of DO on growth for another salmonid species by Herrmann et 

al. (1962)  

Additional information needed for the fish growth model is the date and size of trout at the 

beginning of the simulation (69 g on 3 April 2003) which we obtained from stocking records 

(Meerbeek 2005).  
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Fig. 2.11. Relationships between food consumption, growth, and respiration for brown trout in the 

fish growth model based on equations and parameters used in the model. 
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Fig. 2.12. Relationship between ambient DO and the appetite multiplier used to restrict food 

consumption at low DO. 



22 

 

2.5  MODEL EXPERIMENTS 

 
The first set of simulations was for model calibration which was accomplished by adjusting input 

parameters such that model predictions approximate observed measurements. The results of the final 

calibrated simulation established the baseline conditions to which other simulations were compared. 

The second set of simulations provided examples of how the model can be used to assess 

mitigation at the turbine or powerhouse outfall (as opposed to mitigative measures in the forebay or 

the tailwater). Examples of such mitigation include turbine venting, draft tube venting, and air 

injection. We simulated different levels of improvement by these methods by increasing the DO level 

of the water being released from the dam in the RQUAL boundary conditions input file. In four 

different simulations, we used the existing DO levels but with simulated elevated DO to 3, 4, 5, and 6 

mg/L, respectively (Fig. 2.13). This resulted in higher DO during the summer when DO levels are 

typically low. Mitigation of this sort typically has no significant effect on water temperature.  
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Fig. 2.13. Example of dam release DO levels for simulated improvement to 5 mg/L compared to the 

baseline. 

 
The third set of simulations was designed to simulate forebay mitigation, such as hypolimnetic 

aeration and forebay mixing. These methods usually result in a mixing of the water column which 

results in an increase in temperature of the water being passed through the turbine. For this simulation 

we combined a DO level increase to 5 mg/L for water released at the dam with an increase in 

temperature of 3°C on days when DO was increased.  
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3. RESULTS 

 

3.1 MODEL CALIBRATION AND BASELINE SIMULATION 

3.1.1 Water Quantity and Quality  

 

The water quality was applied as calibrated in the Loginetics Inc. (2004) study.  Fig 3.1 and Fig 

3.2 illustrate the difference among reaches in hourly tailwater temperature and DO, respectively.  The 

large amount of daily variation in both temperature and DO are largely a result of the peaking 

operation which varies dam releases; diurnal variation in air temperature and solar radiation also 

contributes to the diurnal variation in water quality.  As expected, as water moves downstream both 

temperature and DO increase slightly, however, the amount of improvement is not as great as might 

be expected in many other rivers that have a greater natural capacity for aeration. Figure 3.3 combines 

the temporal and spatial variation in DO in a different way.  Each panel shows a 10-day mean and 

range in DO from Center Hill Dam (RM 26.5) to the river mouth (RM 0). In addition to the 

downstream increase in DO, the figure also illustrates a decrease in the range of DO as water moves 

downstream, as a result of increasing minimum values, decreasing maximum values, or both. 
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Fig. 3.1. Model generated temporal profile of hourly temperature for three reaches below Center Hill 

Dam under baseline conditions. 
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Fig. 3.2. Model generated temporal profile of hourly dissolved oxygen for three reaches below Center 

Hill Dam under baseline conditions. 
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Fig. 3.3. Maximum, mean, and minimum dissolved oxygen concentration over the entire 26.5 mile 

tailwater during five 10-day periods.  
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3.1.2 Fish Growth 

 
The main objective in calibration of the fish growth model was to create a general match between 

predicted growth and observed growth throughout the first 14 miles below the dam, the portion of the 

river sampled in 2003-04. We simulated growth for three river reaches simultaneously. Our goal in 

calibration was to achieve simulated growth for the three reaches that fit as well as possible into the 

range of observed weights. The three reaches used for calibration and subsequent analyses were: 

1) immediately Below Dam – RM 26.5-25.5; 2) Upper half of managed reach – RM 26.5-19.5; and 

3) Lower half of managed reach – RM 19.5-12.5. The model computes growth in the reach based on 

spatial averaging of temperature and DO over the reach at each time step. Thus, the modeled growth 

for a reach more or less represents the midpoint of the defined reach. Midpoints for the three reaches 

are RM 26.0, RM 23.0, and RM 16.0. 

Starting with input parameters from the Loginetics study, we only had to make slight adjustments 

in the general food consumption rate to produce a general match to observed weights (Fig. 3.4). As 

with the observed data, the simulations indicate a slow growth period during summer months when 

water temperatures are highest and DO levels are lowest. 
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Fig. 3.4. Calibrated model predictions of brown trout weight during the course of the simulation for 

three river reaches (lines) compared to observed weights of individual trout (diamonds). 

 

Because the number of fish captured from April 2003 to April 2004 at each sampling location 

was not consistent (and often quite low), we did not calibrate to mean values for specific reaches of 

the river. However, we did evaluate whether model predictions followed the same general trends as 

seen in the field data for the Upper and Lower reaches. Without any additional calibration, 

simulations for both Upper and Lower reaches were compared to the observed weights from sampling 

sites that correspond to our definitions of Upper and Lower reaches (Fig. 3.5 and Fig. 3.6). In both 

cases, the simulated growth generally tracks the distribution of observed values.   
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Fig. 3.5. Model prediction of brown trout growth in the Upper reach compared to observed weights 

from fish captured from sample sites in the same reach. 
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Fig. 3.6. Model prediction of brown trout growth in the Lower reach compared to observed weights 

from fish captured from sample sites in the same reach. 
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An unexpected result of the baseline simulation was higher predicted growth at reaches nearer the 

dam (see Fig. 3.4). A similar outcome is suggested in the comparison of observed values (see 

Fig. 2.2). The only input variables that affect modeled fish growth that are not equal among reaches 

are temperature and DO. Because DO increases as one gets farther from the dam, we can conclude 

that the reason that the Lower reach has reduced growth is largely a function of higher temperatures 

downstream. 

To better understand the effect of low DO on growth under baseline conditions, we performed an 

additional simulation where the DO effect on food consumption (and therefore growth) was removed 

from the model. Because other factors are also constant, the resulting differences in growth are 

entirely a function of temperature (Fig. 3.7). With the DO effect removed, trout at the Below Dam site 

would be expected to exhibit the greatest growth rates. 
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Fig. 3.7. Model simulated growth of trout in three reaches below Center Hill Dam with DO effects 

turned off. 

 

3.2 SIMULATED BENEFITS OF TURBINE AERATION 

 
Mitigation to increase DO in the vicinity of the turbine can take place by a variety of methods as 

described earlier in this report. Some of these methods, such as nosecone venting, are permanent fixes 

that can not be turned on or off and would likely provide some benefit at all times – more so when the 

ambient DO is very low. Other methods, such as forced aeration of the turbine, would likely be 

implemented such that they could be turned on when needed and off when ambient DO was 

sufficiently high. The simulations we performed are more like the latter. For example, in the 

simulation where we simulated a minimum DO of 3 mg/L, the DO from the dam (i.e., turbine outfall) 

was set at 3 mg/L whenever the DO in our baseline input was less than 3 mg/L. When ambient DO 

exceeded 3 mg/L no change was made. In reality, most turbine aeration technologies are not this 

precise in their control, and would likely have more variable effect on the release DO. Although we 

did not simulate the case of a method that is continuously operational, such simulations would only 

require a slightly different algorithm for estimating improved DO levels 
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3.2.1  Water Quality  

 
Simulated improvements in DO at the dam result in increased DO levels throughout the river. 

Figure 3.8 shows the results of simulating DO improvement like that indicated in Fig. 2.13 on 

downstream DO (see Fig. 2.15 for comparison to the baseline simulation). Another way to view the 

effects of the simulated DO improvements on downstream DO is by looking at minimum-maximum 

envelopes that describe the range of DO over a short period of time across the entire length of the 

tailwater. Such envelopes are illustrated in Fig. 3.8 and Fig. 3.9 for improvements to 4 and 6 mg/L, 

respectively, for three time periods each. When the release DO is improved to 4 mg/L, there is a large 

increase in minimum DO for the September and October periods, a small increase in mean DO, and 

no increase in the maximum. The simulations of increasing release DO to 6 mg/L raised the minimum 

and mean throughout the river for all three periods; maximum values increased slightly. 
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Fig. 3.8. Model-simulated hourly DO at three locations in the Caney Fork River when dam release 

limited to a minimum DO of 5 mg/L. 
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Fig. 3.9. Maximum (dashed), mean (solid), and minimum (dotted) dissolved oxygen levels in the 

Caney Fork River for three periods during a simulated mitigation (red lines) that improved DO in dam 

releases to 4 mg/L. The baseline simulation (black lines) is included for comparison. (Note: in the top panel, 

the baseline and improved simulations are identical) 
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Fig. 3.10. Maximum (dashed), mean (solid), and minimum (dotted) dissolved oxygen levels in the 

Caney Fork River for three periods during a simulated mitigation (red lines) that improved DO in dam 

releases to 6 mg/L. The baseline simulation (black lines) is included for comparison. 

3.2.2 Fish Growth 

 

Fish growth improved throughout the river under simulated conditions with minimum DO levels 

of 3, 4, 5, or 6 mg/L relative to baseline conditions (Fig. 3.11). As expected final trout size increased 

with increasing DO. The greatest improvement in growth (nearly 50% increase) occurred at the 

Below Dam site and the least (about 25% increase) occurred at the Lower reach. The outcome of 

greater response to improved DO at the upstream sites was largely a function of the amount of 

increase in DO as a result of the simulated mitigation combined with the more favorable temperatures 

for growth near the dam. Because DO levels were generally lower just below the dam, the absolute 

increase in DO for those days when DO was increased was usually larger at the upstream sites. It is 

obvious by the difference in the amount of spread in the lines within each reach that the biological 

response per unit of DO improvement was greatest at the most upstream reach. 
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Fig. 3.11. Simulated trout growth under conditions of incremental improvements in DO at three 

reaches of the Caney Fork River below Center Hill Dam. In all cases the top line represents improvement to 

6 mg/L, the next line to 5 mg/L, and so on. 
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3.3 SIMULATED BENEFITS OF FOREBAY AERATION 

 
Several types of DO mitigation can be implemented in the forebay (i.e., in the reservoir before 

water enters the turbine), such as forebay mixing, surface water pumps, flexible curtains, forebay 

aeration/oxygenation, or multiple or variable intake locations. All of these measures except for 

forebay aeration/oxygenation with line diffusers (low upwelling) are likely to result in increased 

release temperatures as well as increased DO levels. Some mechanical methods (i.e., mixing fans or 

pumps) are designed to purposefully mix cooler oxygen-poor hypolimnetic (or bottom) waters with 

warmer oxygen-rich epilimnetic (or surface) waters. Variable depth intake structures would also draw 

in warmer oxygen-rich waters into the turbines. 

Aeration of the forebay by bubbling air or oxygen from the bottom can mix cooler and warmer 

water, but some have found that oxygen line diffusers often have no effect on forebay thermal profiles 

or release temperatures due to the low upwelling and high gas transfer efficiencies (G. Hauser, 

personal communication). Depending on the level of the intakes, bubbling air in the forebay aeration 

can cool or warm releases as cold water is upwelled. Air bubblers have sometimes been used to cool 

releases (by mixing cold hypolimnetic water to mid- or high-level intakes). 

To demonstrate how the model can be used to simulate these types of mitigation, we provide an 

example where minimum DO is set at 5 mg/L and temperature is increased by 3°C. This is a 

conservative estimate of the amount of temperature increase, as temperature increases would likely be 

greater than this for many cases. 

3.3.1 Water Quality 

Improvements in DO under the conditions simulated (i.e., dam release DO increased to 5 mg/L) 

produce results that are intermediate to those illustrated in Fig. 3.1.2 and Fig. 3.1.3 with 

improvements to 4 and 6 mg/L, respectively. Of greater interest is to what extent the 3°C increase in 

release temperature affects temperature throughout the rest of the river (Fig. 3.1.2). During the three 

periods shown in the figure, an increase of 3°C at the dam resulted in a mean increase in temperature 

throughout the river of 2.6-2.7°C. The average maximum values throughout the river increased by 

2.0-2.4°C.  The absolute maximum values occurred in the upper 5 miles of the tailwater and exceeded 

25 and 24°C in the late July and early September periods, respectively. 
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Fig. 3.12. Maximum (dashed), mean (solid), and minimum (dotted) temperatures in the Caney Fork 

River for three periods during a simulated mitigation (red lines) that improved DO in dam releases to 5 

mg/L, but also increased temperature by 3°C. The baseline simulation (black lines) is included for 

comparison. 

 

3.3.2 Fish Growth 

The effects of increased DO accompanied by increased temperature has an overall negative impact on 

fish growth at the levels modeled here (Fig. 3.13) For the Center Hill tailwaters, the negative effect of 

increased temperature far outweighs the positive effect of improved DO. Of course, every system is 

different and whether or not the combined effect is negative or positive depends on several factors 

including the degree of warming and the thermal requirements of the species present. Brown trout in 

the Caney Fork River are already at or above the optimum temperature for growth in the summer. Our 

model predicts that decreasing DO concentrations at the cost of further increasing summer water 

temperatures would have a detrimental effect on brown trout growth. 
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Fig. 3.13. Simulated trout growth under conditions of increased DO and increased temperature at 

three reaches of the Caney Fork River below Center Hill Dam as might be expected from mixing surface 

waters to increase DO. 
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4. DISCUSSION 

 
The main objective of this study was to evaluate a modeling approach that combines models of 

flow and water quality dynamics with fish bioenergetics for the assessment of the effectiveness of 

dissolved oxygen mitigation.  We were particularly interested in demonstrating the benefits of 

including the fish growth model as a measure of biological response. The usefulness of hydrodynamic 

and water quality models have been demonstrated many times by other investigators, but including a 

fish bioenergetics model to assess hydropower operations is still a developing technology. 

In our opinion, the model performed very well in simulating the existing system. After only 

limited calibration, the model predicted growth dynamics that were very similar to those observed, 

including differences in growth rates among reaches. Had more fish been collected during field 

sampling which would have provided a better understanding of the spatial and temporal dynamics of 

growth, the model could have been calibrated with even greater accuracy. 

The fish bioenergetics model contains more uncertainty than the hydrodynamic and water quality 

models and could still benefit from additional testing and revision. For example, fisheries biologists 

have known for many years that low DO levels often result in lower food consumption rates and 

lower growth rates, but the mechanisms are complex and difficult to model. Instead of the simple 

DO-to-appetite-suppression model used here (see Fig. 2.12), a more mechanistic approach to the 

effects of low DO would greatly improve the model. Another potential improvement to the current 

approach would be to provide a direct link in the model between environmental conditions and the 

abundance or quality of the food resource. The model does allow for seasonal adjustments in food 

consumption that could be used to simulate variable food availability, but including water quality 

effects on other components of the aquatic community could be useful for some situations.  

The model does not account for the possibility that where a fish is captured may not accurately 

reflect the conditions it has experienced during the simulation period. Several studies have 

documented how the movements of fish are often driven by DO, temperature, and food availability 

and how growth is then affected by habitat choice (Coutant 1985, Bettoli 2005). If the favorability of 

habitats varies longitudinally throughout the Caney Fork, then we might expect movements by trout 

that reflect that. These are both issues that can be explored by the model system used in this study.  

One aspect of hydropower operations that has not been adequately addressed is the effects of 

intermittent exposure to low DO or high temperature. Because of the peaking (or pulsing) nature of 

many hydropower operations, many aspects of water flow and quality fluctuate significantly over the 

course of a day. Too few experimental studies on how fish respond to such conditions have been done 

to develop a consensus on a standard response. Stewart et al. (1967) and Whitworth (1968) both 

found that fish exposed to intermittently low and high DO had lower growth rates than fish exposed 

to the mean DO concentration. A review of the subject by Brett (1979) concludes that exposure to 

sub-critical DO levels for only a portion of the day is enough to depress the growth rate to that 

comparable with the constant low DO concentration. For example, does a fish exposed to low DO for 

half the day and high DO for the other half respond 1) as if it were exposed to the mean level all day, 

2) as if it were exposed to the lowest level all day, or 3) to each half of the day differently? In our 

simulations, fish respond each hour to the conditions as encountered regardless of the prior thermal 

history or any possible negative effects of rapid change. Being able to include a more accurate 

response to fluctuating conditions in the model would greatly improve its capabilities. 

The simulations we performed in this study looked at the effects of changes in water quality 

released from the dam on downstream fish growth. This kind of analysis would be useful in 

formulating recommendations for possible mitigation. Tables 1 and 2 include examples of different 

types of DO mitigation and the levels of improvement that were realized at specific applications. 

Results from modeling can be used to determine what kind of and how much improvement must be 
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attained at the dam to meet specific mitigation targets (e.g., downstream DO levels or improvements 

in fish growth). The choice of mitigation techniques can then be narrowed based on the ability of 

various techniques to achieve the targeted dam improvement based on summaries like that in 

Tables 1 and 2.  

The model is particularly useful for evaluating how much improvement in water quality or 

biological response is attained with each subsequent unit of improvement at the dam. For example, 

being able to predict when returns on improvement begin to diminish is crucial to producing cost-

effective mitigation. Unfortunately, the point of diminishing return is site-specific and depends on a 

variety of factors, which is why the modeling approach is so attractive.  

Center Hill Dam was chosen as a demonstration project because we were able to build off of an 

existing model and not because we had specific objectives related to Center Hill operations. However, 

we can still provide observations based on model results that might aid future decisions to improve 

DO in the Center Hill tailwaters. Center Hill turbines have been modified once with the addition of 

turbine venting, but the amount of improvement is relatively small and does not prevent dam releases 

from being below 5 mg/L for several weeks each year. Other techniques or improvements to the 

venting will probably be necessary to make significant improvements in DO. Our modeling suggests 

that improvements in the forebay may be counterproductive toward the goal of increasing brown trout 

growth if they also result in elevated temperatures. Because conditions of low DO in the immediate 

tailwaters below the dam seem to persist throughout the river, techniques that would contribute to 

aeration in the river itself should be considered. Small weirs that contribute to aeration, but don’t 

create oxygen-depleting pools could improve DO throughout the river if placed in the right places. 

The impact of poor water quality in the Center Hill tailwaters may be a contributor to the low 

survival of stocked trout observed there (Meerbeek 2005). Our modeling suggests that high 

temperatures as well as low DO are significant contributors to low growth at certain times of the year, 

which could lead to greater susceptibility to disease and predation. Any DO mitigation that maintains 

or, even better, decreases release temperatures should be strongly considered. The modeling results 

also suggest that the conditions in Caney Fork probably push the thermal and DO limits for the 

coldwater species stocked there. Neither brown trout nor rainbow trout are native to the Caney Fork 

River and perhaps along with mitigation to improve water quality, resource managers should consider 

managing for other species that are not as sensitive to elevated temperature and low DO. 

The value of any model is often measured by its transferability to systems other than those where 

it was developed. The combination of models used in this exercise has been successfully used at a 

variety of sites throughout the country, particularly the hydrodynamic and water quality components. 

Each use of the model requires some significant setup time to incorporate site-specific information on 

the physical parameters of the river system, local environmental conditions, river hydrology, and 

water quality. Calibration requires additional time plus some expertise and fairly thorough knowledge 

of the models and their underlying equations. Almost anyone with some modeling acumen could 

learn (or more appropriately be trained) to use the model over several months time. The model system 

is too complicated for someone to just pick it up and start using it. However, after a calibrated model 

is obtained, making further changes to simulate different scenarios is fairly straightforward. Nearly 

anyone can use the included graphics manager to visualize results in a variety of ways. 

Although the inner workings of the model are quite complex, using it to evaluate DO mitigation 

is fairly straightforward. The three major types of DO mitigation as defined by where the effective 

action takes place (see Table 1) each can be evaluated in their own way with the model. 
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1) Turbine – Manipulations at the turbine (e.g., turbine venting, air injection, and draft tube 

venting) typically affect DO levels, with little change in temperature or other water quality 

parameters. Modeling these enhancements usually requires changing the hourly DO in a 

single input file to reflect higher levels being released from the dam. Comparisons of 

different levels of improvement like those described earlier in this report are easily simulated. 

For systems with multiple units, evaluating the relative gains of retrofitting one or several 

turbines is fairly straightforward if one knows the relative contribution in DO improvement of 

each additional turbine that is modified or replaced. 

 

2) Forebay – Manipulations in the forebay (e.g., recirculating pumps, flexible curtains, and 

variable depth intakes) typically result in a change in both DO and temperature in water 

passed through the turbines. These changes are easily simulated by changing the hourly 

temperature and DO values in the water quality boundary conditions for the node at the 

release point (i.e., the dam). It may be necessary to change NBOD and CBOD values as well. 

A simple first cut simulation might include a constant change in DO and temperature (like 

presented in this report), whereas a more detailed investigation might also include using the 

results of a reservoir water quality model to more accurately estimate changes in forebay DO 

and temperature over a long period.  

 

3) Downstream – Downstream changes are a little less straightforward depending on the type of 

mitigation. Any physical changes to the river (e.g., re-aeration weirs) would need to be 

captured as an internal boundary condition or in the river geometry information in the 

hydrodynamic model. The effects of these changes (e.g., re-aeration at a cascade or 

temperature changes in new pools) would automatically transfer to calculations in the water 

quality model. Other types of tailwater mitigation (such as air injection to the stream or a 

tributary) would require changing the DO at a lateral inflow. The existing modeling system 

used in this investigation is capable of these kinds of simulations. 

 

In all cases, the accuracy of a model depends on the accuracy of the model mechanisms, the 

accuracy of the input data, and the accuracy of those data used for calibration. The hydrodynamic and 

water quality models are based on physical laws and properties that are well-understood. These 

models have been successfully tested and applied several times. The underlying mechanisms and 

principles of the fish growth model have been applied to answer a variety of questions, but still 

require further development, especially with regard to the fluctuating conditions that are present in 

many hydropower systems. At the current stage of development, the fish growth model still can 

provide valuable insight into the effectiveness of DO mitigation as long as the user understands and 

communicates underlying assumptions and uncertainties. 
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