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Abstract 

The wetting of Sn3Ag-based alloys on Al2O3 has been studied using the sessile-drop 

configuration. Small additions of Ti decrease the contact angle of Sn3Ag alloys on alumina 

from 115 to 23 degrees. Adsorption of Ti-species at the solid-liquid interface prior to reaction 

is the driving force for the observed decrease in contact angle, and the spreading kinetics is 

controlled by the kinetics of Ti dissolution into the molten alloy. The addition of Ti increases 

the transport rates at the solid-liquid interface, resulting in the formation of triple-line ridges 

that pin the liquid front and promote a wide variability in the final contact angles. 

 

Introduction 

New low-temperature brazing alloys are required in many applications to integrate 

components that decompose or degrade above threshold temperatures.  Traditionally, a key 

component in the design of brazing alloys for ceramic joining is the addition of reactive 

elements such as Ti, Cr, Zr, etc., in order to enhance spreading.  The improved wetting 

resulting from the addition of reactive elements is usually associated with the formation of 

new compounds at the solid-liquid interface.  However, it is unproven whether compound 

formation is actually necessary for enhanced wetting, or mechanistically, how the potential 

for compound formation translates into the capillary forces that specifically drive spreading of 

the fluid.  Recently, an alternative reactive wetting mechanism that focuses on the adsorption 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNT Digital Library

https://core.ac.uk/display/71323656?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2

of the reactive element at the solid-liquid interface before the nucleation of the reaction phase 

has been proposed as a critical step to reduce interfacial energy and drive spreading.1  

 

Tin-silver-based alloys have emerged as a lead-free alternative to the traditional solders used 

in the microelectronics industry.2–3 Sn-Ag-Ti alloys are also of theoretical interest.  It has 

been observed that the wetting of Sn-based alloys on ceramics can be greatly enhanced by the 

addition of titanium, but in our work, no continuous reaction products could be detected at the 

metal–ceramic interface as is commonly observed in other systems.1 These observations 

indicate that spreading to low contact angles can be driven by adsorption at the interface 

either without a reaction phase, or before one is formed.  In situ neutron reflectometry studies 

of Sn-Ti/alumina interfaces have shown segregation of titanium at the ceramic-metal interface 

without formation of reaction products at the experimental temperature.4 Derby et al.4 have 

shown that interfacial oxides of Ti appear at the Ag-Cu-Ti/sapphire interface only after 

solidification. 

 

The present work focuses on the study of the wetting behavior of Sn-Ag-Ti alloys on 

sapphire. The spreading of molten metals at different temperatures has been analyzed, and the 

interfacial transport phenomena are investigated via grain boundary grooving experiments. 

Evidence for an adsorption-driven spreading is presented. 

 

 

Experimental 

The wetting of Sn3Ag (3 wt% – 3.2 mol% Ag) and Sn3Ag1Ti alloys (1 wt% – 2.3 mol% Ti) 

on Al2O3 was studied using the sessile-drop configuration.  The starting alloys had a typical 

tin-silver eutectic microstructure, with long Ag3Sn platelets (ε phase) immersed in a tin 

matrix.  In the titanium-containing alloys, Sn5Ti6 platelets (~ 15×35 µm) were dispersed 

throughout the metal. 



 3

Sessile drop experiments were conducted under vacuum (pressure ranging from 0.1 to 1 mPa) 

at temperatures ranging between 600 and 1000°C.  A metal piece was placed on a flat 

sapphire or polycrystalline alumina substrate (grain size ~16 µm measured by the linear 

intercept method, prepared from a 99.997% pure powder, Showa Denko, Japan) and the 

assembly heated to the test temperature at 50°C/min. After the experiment, the assembly was 

furnace-cooled (cooling rate between ~130°C/min at 1000°C and ~30°C/min at the melting 

point of the tin alloy, 221°C). The contact angles and drop radius were measured using a 

program developed in our group.5 Advancing drop experiments were performed starting from 

small cubes of metal (approximately 1 mm3), while receding drop experiments were 

conducted using ~1 cm diameter disks of same volume (thickness around 20 µm). 

In order to determine the operative transport mechanism at the metal-ceramic interface and 

the corresponding diffusivities or solution-precipitation rates, the time evolution of the 

interfacial grain boundary grooves was analyzed.  After experiments at 1000°C, the metallic 

drop was dissolved using aqua regia (1/3 nitric acid, 2/3 hydrochloric acid) in order to 

observe the surface of the alumina substrate under the alloy. On these samples, the profiles of 

the grooves at the solid-liquid and solid-vapor interfaces were measured using AFM line 

analysis in the constant-force mode (Park Scientific Instruments M5), and the microstructure 

was observed using Scanning Electron Microscopy associated with Energy Dispersive X-Ray 

Spectroscopy  (SEM-EDS, ISI-DS130C with an EDAX DX-4 spectroscope) and x-ray 

photoelectron spectroscopy (XPS, Physical Electronics PHI 5400 ESCA).   

Cross-sectional transmission electron microscopy (TEM) samples were cut with a low-speed 

diamond disk to a thickness of 0.5 mm, then thinned with planar tripod polishing on diamond 

lapping disks to a thickness of 20 µm, and finally thinned to electron transparency by using a 

focused ion beam (FIB, FEI-Xpert, NCEM). They were observed by conventional TEM at 

200 kV associated with EDS (JEOL 200CX with Kevex microanalysis), or high resolution 

energy filtered TEM (Phillips CM200 with Gatan Image Filter (GIF), and Link EDS 

detector). 
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RESULTS 

Spreading kinetics 

The melting point of the Sn-3 wt% Ag eutectic is 221°C. At temperatures below 550°C, a 

solid oxide layer encapsulates the liquid metal, impeding contact of the liquid with the 

alumina. Above 550°C, this layer disappears, leaving a shiny drop surface; the liquid then 

enters in contact with the substrate and spreading occurs. Thus, sessile-drop experiments were 

performed at temperatures between 600 and 1000°C.  The wetting kinetics at 600°C is 

summarized in Fig. 1(a).  The final contact angle is strongly influenced by the addition of 

titanium.  Indeed, an addition of 1 wt% titanium into a Sn3Ag alloy can lead to a decrease of 

the final contact angle from 115° to 23°.  It should also be pointed out that the final contact 

angles measured in receding drops can be larger than the lowest values measured for 

advancing fronts. Figure 1(b) shows that the drop diameter increases continuously until a 

stationary contact angle is reached. Image analysis show no measurable volume decrease of 

the metal drop after the stationary contact angle is reached, and the radius of the drop 

increases continuously during the experiment, indicating that the decrease of the contact angle 

is not due to the effect of evaporation combined with a pinned triple line, as has been 

observed in other systems.6 Figure 1(c) shows the stationary contact angles measured after 60 

minutes, at different temperatures.  The variability is wide. A clear dependence of contact 

angle with temperature does not emerge. The lowest-measured (stationary) contact angles are 

independent of the temperature. 

 
The variation of contact angles over time can be empirically described using an exponential 

decay function:  ( ( ) ⎟
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contact angles, and τ  is a characteristic spreading time that typically varies between 50 and 

800 seconds (Fig. 2(a)) and n ranges between 0.5 and 1. The drop radius variations follow a 

parallel exponential increase (with n and τ in the same range). Our measured spreading 

velocities are several orders of magnitude lower than those typically measured for low 
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temperature liquids of similar viscosity and for metal-metal systems using a drop transfer set-

up7,8 (Fig. 2(b)), but of the order of those frequently reported for small braze drops in sessile 

drop experiments.9  

Grain Boundary Grooving  

The presence of titanium dramatically enhances atomic transport close to the metal–ceramic 

interface at 1000°C.  Grain boundary grooves are clearly visible at the Sn3Ag1Ti/alumina 

interface, but can not be observed on the free alumina surfaces (Fig. 3(a)) or at the interface 

between alumina and Sn3Ag (without Ti).  Figure 3(b) shows the typical microstructure of the 

alumina surface under the Sn3Ag1Ti drop. Small islands of Ti-rich reaction product (cone-

shaped, ~1 µm in diameter) and facets on the alumina grains can be observed. The AFM 

profiles (Fig. 3(c)) show humps on each side of the groove, indicating that its evolution is 

controlled by interfacial or volume diffusion and not solution/precipitation.10–13 

 
Microstructure 

The starting alloy has a typical tin-silver eutectic microstructure that seems qualitatively the 

same after the wetting experiment: Sn5Ti6 platelets are dispersed in a matrix made of Ag3Sn 

dendrites surrounded by pure tin (Fig. 4). No continuous reaction layer could be observed on 

the alumina surface, although after experiments at the higher temperatures some isolated 

islands of reaction products were observed. No significant variation in the size of the Sn5Ti6 

platelets could be measured after the experiments.  

At temperatures of 700°C and below, SEM and cross sectional TEM observations show no 

evidence of substrate dissolution. On some samples, after cooling a discontinuous reaction 

layer at the Sn/Al2O3 interface is detected by TEM (Figs. 5(a) and 5(b)). The layer consists of 

isolated islands, several microns wide and 5–75 nm thick, formed by Ti-rich nanoparticles.  

No reaction phases can be observed at the interface between Ag3Sn grains and alumina.  

Experiments at temperatures above 800°C have provided clear evidence of substrate 

dissolution. Large islands of reaction product (around 10 µm in diameter and 1 µm thick) are 

seen by optical microscopy and SEM (Fig. 5(c)). They are found mainly on surface 
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heterogeneities (such as scratches or triple-line ridges) and in the center of the drop (where the 

metal and ceramic have been in contact for a longer time). Numerous, small reaction islands 

around 1 µm wide are observed by SEM (Fig. 5(d)). Cross-sectional TEM observations 

systematically show the presence of these discontinuous reaction islands partly buried in the 

alumina (5-50 nm thick, and 200 nm to 1 µm wide), much smaller but more numerous than 

those observed after experiments at lower temperatures (Figs. 5(e) and 6). EDS analyses show 

that the interfacial reaction phase is formed by titanium and oxygen. XPS experiments suggest 

that it is a titanium oxide, either TiO2 or Ti2O3 (Figure 5).14-20 In spite of their variability due 

to stresses, the inter-reticular distances measured on the HRTEM picture shown on Fig. 6 

make TiO2 more probable.   

A continuous reaction layer covering the interface is never observed at any temperature.  In 

some cases (independent of the temperature) 15 to 30 nm high triple-line ridges can be seen 

on the alumina surface of drop-free specimens (Fig. 7).  The ridge can act as a nucleation site 

for the creation of reaction products (Fig. 5(c)).  

 

DISCUSSION 

The equilibrium oxygen partial pressure p(O2) for the reaction Sn+O2→SnO2 ranges between    

~10–50 Pa at 250°C to ~10–16 Pa at 1000°C.21  Therefore, considering only the oxidation of tin, 

a tin oxide layer around the metallic drop should be always stable at the temperature range of 

our experiments.  The strong affinity of titanium for oxygen also contributes to the formation 

of an oxide layer encapsulating the metal.  The formation of resilient oxide layers on the 

surface of low-temperature-melting metals in vacuum is well documented.22-26 Typically, 

there is a critical temperature at which the oxide layer disappears (for Sn-3%Ag-1%Ti in our 

furnace, it was measured around 550°C in vacuum); three reasons for this have been 

proposed: (1) erosion through formation of volatile species;23–25 (2) cracking due to volume 

changes and thermal-expansion mismatch;23,24,26 and (3) dissolution of the oxide in the 

metal.22  Above the critical temperature at which the oxide layer disappears, the metal vapour 

should react with the oxygen in the atmosphere, leading to an oxygen activity around the drop 
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equal to or even lower than the equilibrium p(O2) for the oxidation of the metal.26 The 

metallic drop surface is then free of surface oxide layers, and spreading can occur. 

 

Spreading Kinetics 

Most models of reactive spreading assume that the reaction product and the liquid front 

advance simultaneously.27-29 The interfacial microstructures observed in our experiments 

contradict this assumption since no continuous reaction layer could ever be observed, 

indicating that the liquid and the reaction product did not advance simultaneously, and 

suggesting that the observed decrease in contact angle for the Sn3Ag1Ti alloy is driven by the 

adsorption of Ti-species prior to the nucleation of the reaction product.  This situation can be 

more general than commonly believed since there is evidence of discontinuous reaction layers 

in several other reactive systems.30,31 

The recorded spreading velocities are not consistent with fluid-flow or adsorption-controlled 

spreading1; in both cases, much faster spreading is expected. In the starting alloy there is an 

inhomogeneous distribution of Sn5Ti6 platelets that dissolve slowly in the molten metal, 

enriching the liquid in Ti.  The spreading velocities can be controlled either by the kinetics of 

Ti dissolution into the liquid or the transport of Ti to the triple junction. Depending on the 

transport distance, Ti transport can be controlled either by diffusion (on small distances) or by 

the convection movements in the liquid.32 Considering that the diffusion coefficient of Ti in 

the liquid is close to 10–9 m2·s–1, the diffusion speed of Ti in the drop is close to 4·10–5 m·s–1. 

This is larger than the maximum measured spreading velocity (Figure 3(b)). The transport by 

convection is even faster. Thus we can assume that spreading kinetics is not controlled by 

transport of titanium to the triple line but by the kinetics of Ti dissolution into the liquid. 

Adsorption of Ti-species at the interface can decrease all the interfacial energies (γsv, γsl, and 

γlv).  The microstructural analysis shows that the reaction product is not continuous, indicating 

that its nucleation is sufficiently slow for the liquid front to move on an unreacted substrate.  

The corresponding liquid-solid metastable interfaces will have well-defined properties, which 
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may include low interfacial energy owing to adsorption of Ti-species prior to reaction.  The 

velocity of the liquid front is one order of magnitude slower than diffusion velocities and also 

much slower than the maximum critical velocity above which adsorption at the triple line can 

not accompany spreading and influence the driving force.1 We can assume that, at a given 

time, the interfacial energies at the triple line are the metastable values that correspond to a 

liquid with a given Ti concentration on an unreacted surface.  In the simplest approximation, 

this relationship can be described using Langmuir adsorption isotherms than can be prolonged 

into the metastable regime to describe the expected decrease in interfacial energy (Fig. 8). 

Then the instantaneous contact angle can be related to the Ti concentration through the 

corresponding interfacial energies using the following well-known equation: 
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Let’s assume that the adsorption of titanium only occurs on the solid-liquid interface. In the 

simplest approximation, the effect of Ti on the interfacial energy can be described using the 

Langmuir adsorption isotherm:33 
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where γsl
0 is the solid-liquid surface energy without adsorbates, γsl(t) is the solid-liquid surface 

energy, σ0 is the Ti coverage at the metal/alumina interface, aTi(t) is the titanium activity 

(using an ideal solution approximation where the activity is equal to the Ti concentration 

CTi(t)) and ac is a critical titanium activity that marks the Ti concentration above which 

adsorption will occur at the metal-ceramic interface. If γlv
0 is the liquid-vapor surface energy 

and θ0 the equilibrium contact angle of a Sn3Ag drop without titanium on sapphire, equation 

(1) becomes: 
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A rough calculation of the Ti dissolution kinetics can be made, taking into account the 

repartition of titanium inside the tin alloy. To simplify, we will consider that for a given time, 

t, the liquid metal contains N Sn5Ti6 spheres of radius R(t) per unit of volume. Assuming that 

the number of Ti atoms leaving the particles per unit of time is proportional to (C(t) – Cs)) 

(where C(t) is the Ti concentration in the liquid at the time t, and Cs is the Ti saturation 

concentration in tin) and is also proportional to the total surface of the particles, it is possible 

to calculate the radius of the particles and thus the titanium concentration in the liquid metal 

versus time. Thus, replacing CTi(t) by its calculated value allows the calculation of the curves 

shown in Figure 2. In this calculation, we assume that σ0 corresponds to one adsorbed 

monolayer; that the critical activity ac of Ti is between 0.03% and 0.1%;1 that the initial 

dissolution rate of the platelets is between 1 and 5·10–6 cm·s–1; and that θ0 is 105 degrees (the 

lowest-measured value for pure tin on sapphire22).  All these approximate values are in 

agreement with literature1 and our experiments.  

Even with the simplifying assumptions (adsorption of one monolalyer of Ti only at the 

solid/liquid interface) and rough estimates of some of the parameters (in particular the 

dissolution rates of the Sn5Ti6) the predicted spreading times are of the order of those 
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recorded. A more accurate model will have to be developed to verify these assumptions more 

carefully.  

The experiments show a large degree of variability in the final contact angles. There are two 

possible and complementary explanations: occasional ridge formation at the triple line that 

can pin the drop front, and variability in the dissolution of the Sn5Ti6 platelets. It has been 

proposed that in high temperature systems the formation of triple line ridges can be the source 

of large wetting hysteresis.1   Triple-line ridges can form by local diffusion or solution-

precipitation in order to achieve full two-dimensional equilibrium of the interfacial forces at 

the triple junction. If the liquid front remains attached to the ridge, the spreading kinetics will 

be controlled by the ridge movement (Regime II or Regime III spreading).6 Ridge evolution 

depends on the diffusion or solution-precipitation rates, and ridge-controlled spreading is 

expected to be orders of magnitude slower than fluid flow or adsorption controlled wetting.  

Our results indicate that in some cases, ridges can nucleate at the triple line. The observed 

ridges are usually smaller than 20 nm. Above 800°C, the ridge can act also as a nucleation site 

for the formation of reaction product. The ridge angle is very wide (more than 170 degrees, as 

measured by AFM in Fig. 7).  

Provided that the diffusion at the solid-vapor interface is negligible compared to the diffusion 

at the solid-liquid interface (Dsv << Dsl), the steady state speed (which is also the maximum 

speed) of an advancing ridge moving through interfacial diffusion is given by equation (5a).34 

If Dsv≈Dsl then equation (5b) should apply.10,34 
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Where φs is the angle of the ridge (~170 deg measured by AFM), and h its height. ωDsv is the 

interfacial diffusivity at the solid-vapor interface (~10–27 m3·s–1 at 1000°C, extrapolated from 

Dynys et al.35) and γsv is the surface tension of alumina (~1.6 J·m–2 at 1000°C36). 
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Using equations (5a) or (5b), the speed of a 20 nm high advancing ridge should be around 10–

15 m·s–1. This is much slower than the measured spreading rates at the same temperature (Fig. 

2(b)). The recorded spreading velocities correspond to a ridge much smaller than 1 nm. In the 

range of temperatures used in this work, spreading kinetics is not controlled by ridge 

movement but rather by the dissolution kinetics of Ti in the molten alloy. However ridge 

formation can be initiated by defects on the alumina surface and will depend on the amount of 

Ti in the liquid since this amount affects the interfacial transport rates. According to equations 

(5a) and (5b), a ridge taller than 1 nm will move less than 1 µm during the experiment, thus 

pinning the triple line and effectively stopping spreading. Consequently, the observed ridges 

could account for the large variability of the final contact angles.   

The slow pumping of Ti from the Sn5Ti6 platelets can also result in an increased variability, 

the activity of titanium being then very sensitive to the microstructure of the drop, which is 

not easily controlled. This variability also accounts for the relatively wide range of values 

calculated for τ, in particular at lower temperature where dissolution is expected to be slower. 

 

Grain Boundary Grooving 

 The grain boundary groove profiles at the Sn3Ag1Ti/Al2O3 interface (Figure 4c) 

exhibit humps on either side of the roots, indicating that, in the time range investigated here, 

their growth is limited by diffusion, rather than the dissolution/precipitation rates. However, 

transport of the Al2O3 involves diffusion of both Al and O ions.  This could occur either 

through the liquid metal, along the interfaces, or through the oxide itself.  Volume diffusion 

through the Al2O3 is probably not important, based on rough calculations (the diffusion 

coefficients of Al and O in alumina are lower than 10-18 cm2·s-1 at 1000°C, more than 10 

orders of magnitude lower than in liquid metals37).  Although each species could move 

independently along either path, the dissolution and deposition must involve stoichiometric 

Al2O3, setting a requirement that the sum of the departure and arrival rates from both paths 

balance locally.  The transport of the slowest species through the fastest path will control 
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groove evolution. If interfacial diffusion is the fastest path, the time evolution of the groove 

width, w, can be approximated as: 

 

( ) 4/16.4 tBw i=  (6) 

Where Bi is the interfacial transport coefficients of the slowest species (at the solid-liquid 

interface): 
 

kT
D

B ii
i

Ω
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γω
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The corresponding interfacial diffusivities (10-20 m3·s-1) for the Sn3Ag1Ti system would be 

much larger than any surface diffusivity ever reported, even for the most impure aluminas 

(~10-27 m3·s-1).35 It is then logical to assume that groove evolution is controlled by volume 

transport through the liquid, as has already been observed in other metal/alumina systems.34 

For a groove growth controlled by volume diffusion:   

 

( ) 3/15 tBw v=  (8) 

Bv is the corresponding volume transport coefficient: 

kT
xD

B iv
v

Ω
=

γ
 (9) 

where x is the solubility of the controlling species and Dv the volume diffusion coefficient. 

Assuming that γi is γsl (~1.1 J·m-2
 calculated from Nikolopoulos38) and that Ω/2 is ~2·10-29 m3 

(volume per diffusing ion), the approximate volume diffusivities and corresponding solubility 

can be calculated (Table I). The large diffusivities measured in the SnAgTi/Al2O3 system are 

consistent with the lower oxygen activities expected in the presence of Sn5Ti6 platelets and 
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the reports of enhanced transport at liquid metal/alumina interfaces at very low oxygen 

activities.34  

The evolution of the grain boundary grooves will be controlled by the species with lowest 

diffusivity (xDV).  Because diffusion coefficients through liquid metals are very similar for 

different species, grooving will be controlled by the species with lower solubility. Due to the 

presence of the dispersed Sn5Ti6 platelets, the activity of oxygen in the liquid is expected to be 

very low; consequently, grooving is expected to be controlled by the transport of the oxygen-

rich species. Considering that Dv is close to 10–9 m2·s–1, a typical value for liquid metals,39 the 

estimated solubility of the slow species is ~10–5.  This large oxygen activity emphasizes the 

fact that the liquid Sn-Al-O does not form an ideal, which has also been observed for other 

metal-alumina systems.40 It has also been proposed that at very low oxygen activities, 

transport through both paths (volume and interface) can contribute to the evolution of the 

grooves, resulting in accelerated grooving rates.34 

Microstructure 

The experiments clearly show that the addition of Ti enhances the wetting of Sn3Ag alloys.  It 

has often been proposed that the effect of the reactive elements (such as Ti, Cr, and others) on 

the wetting behavior of liquid alloys on ceramics is related to the formation of interfacial 

reaction layers.31 Our results also indicate that the addition or a reactive element improves 

wetting even though no continuous reaction layer could be observed at any temperature. 

There is a finite barrier for the nucleation of the reaction phase, and the reaction product and 

the liquid do not extend together. This is confirmed by Fig. 5(c), which shows a clearly 

discontinuous reaction product. One difference between this system and other brazing alloys 

is that the dissolution of Ti into the liquid seems to occur at much slower rate (the size of the 

Sn5Ti6 platelets of the starting alloy and of the drop after cooling are similar).  The slower 

pumping rate of Ti into the liquid helps to better differentiate between the effects of 

adsorption and reaction. Comparison of the HRTEM, EDS and XPS analyses with published 

data14-19 at the interface between Al2O3 and Ti-containing brazing alloys suggests that the 

reaction phase is a Ti oxide.1 It is not clear whether the reaction product is TiO2 or Ti2O3, 
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although HRTEM and EDS-TEM analyses show that a distorted TiO2 is more probable, and it 

forms either at high temperature or during cooling. As the oxygen activities in the system are 

not measurable, no thermodynamical consideration can help distinguish between these two 

oxides. Figure 5(e) shows TEM micrographs of a SnAgTi/sapphire interface after a wetting 

experiment at 1000°C. The Ti oxide islands are partially buried in the alumina surface 

suggesting that they grown concurrently with alumina on the sapphire substrate, probably 

from to precipitation during cooling of dissolved Ti and Al oxide. 

 

We can summarize the formation of the microstructure at the interface as follows: 

1- During heating and at high temperature, partial dissolution of the Sn5Ti6 platelets 

occurs.  

2- The substrate is dissolved locally, leading to the Al enrichment of the metal and to the 

creation of surface defects. 

3 Ti oxides nucleate on defects at the interface. The reaction product is more abundant 

in the centre of the drop where the metal has been in contact with the sapphire for a 

longer time. 

4 Al and Ti oxides precipitate further during cooling. 

 

 
CONCLUSION 

 Small Ti additions can decrease the contact angle of Sn3Ag on alumina from 115º to 

23º, allowing the use of Sn3Ag-based lead-free solder to bond alumina at low temperature. 

The spreading kinetics are not compatible with any model developed for low temperature 

spreading. Our results underline the fact that a comprehensive analysis of reactive spreading 

should divide the process into its constituent steps (fluid flow, adsorption of reactive element, 

nucleation of the reaction product, and probably ridging) and determine their relative kinetics. 

In that way, the structure and composition of the triple junction for each stage can be analyzed 

in order to identify which step drives the decrease of contact angle as well as which process 

controls the spreading kinetics for a given system. In the case of Sn3Ag1Ti alloys spreading 
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on alumina, the spreading kinetics is controlled by the speed of dissolution of Ti into the 

liquid, but the addition of Ti enhances the atomic transport at the metal-ceramic interface, 

resulting in the formation of triple-line ridges that pin the liquid front and result in a wide 

variability of the final contact angles.  The results are consistent with the hypothesis that 

adsorption of Ti species previous to a reaction decreases the solid-liquid interfacial energy 

and promotes wetting.  This scenario may be more typical than what is usually believed. 
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System Temp. (K) x.Dv (m2.s-1) x 

SnAgTi/Al2O3 1273 1.7 10-14 1.7 10-5 

Al/Al2O3 
(34) 1373 5 10-14 5 10-5 

Ni/Al2O3 
(34) 1773 1.1 10-13 1.1 10-4 

Cu/Al2O3 (34) 1423 3.5 10-18 3.5 10-9 

Au/Al2O3 (34) 1373 7.8 10-16 7.8 10-7 

 
Table I: Calculated volume diffusivities.  The solubility, x, is calculated assuming a volume 
diffusion coefficient inside the liquid metal of ~10-9 m2.s-1. 
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FIGURE CAPTIONS: 
 
Figure 1: (a) Wetting kinetics for selected experiments performed at 600°C. : advancing 
Sn3Ag drop. : receding Sn3Ag1Ti drop. : advancing Sn3Ag1Ti drop. : advancing 
Sn3Ag1Ti drop pinned by triple line ridging, thus reaching higher stationary contact angle. 
(b) Diameter of the Sn3Ag1Ti advancing drop ( ) shown on Figure 1(a) versus time; the 
continuous increase of the diameter indicates that the decrease of contact angle is due to 
spreading, and not to evaporation of the drop coupled with a pinned triple line.  
(c) Evolution of final contact angle with temperature in the system Sn3Ag1Ti/Sapphire 
(advancing drop setup); note the wide variability of the results, especially at lower 
temperature. 
 
Figure 2: (a) Evolution of the time constant τ (a measure of the spreading time required to 
reach a stationary contact angle) versus experimental temperature. The variability in the 
concentration of Sn5Ti6 platelets will result in variability in the kinetics of Ti enrichment in 
the liquid and can justify the observed wide range of calculated τ, in particular at lower 
temperature where dissolution of Ti is slower. (b) Plot of the contact angle vs. spreading 
velocity values. The velocities reached in our system can be 105 times lower than the 
velocities ruled by fluid flow. The continuous black lines indicate the speeds calculated after 
the Ti dissolution model, calculated for 25µm-sized Sn5Ti6 particles, θ0 of 105 deg., σ0 
corresponding to 1 adsorbed monolayer, and with critical titanium activity and dissolution 
rates of the platelets of (1): 0.1mol% and 10-6 cm/s; (2): 0.06% and 3 10-6; (3) 0.04% and 
4 10-6; (4): 0.03% and 5 10-6. The gray bands indicate typical maximum spreading velocities 
expected with other models. 
 
Figure 3: (a) Optical microscope view of the limit between the drop-free surface and the 
metal-ceramic interface. (b) AFM view of a typical microstructure at the metal-alumina 
interface. (c) Typical AFM depth profiles across grain boundary grooves after 5 h at 1000°C. 
(d) Time evolution of the groove width (w), fitted with power laws: w α t1/3 corresponds to 
volume diffusion controlled grooving, whereas w α t1/4 corresponds to surface diffusion 
control.  
 
Figure 4: Microstructure of the tin alloy after wetting experiment, showing Sn5Ti6 platelets 
(top) and Ag3Sn dendrites (bottom) embedded in pure tin. 
 
Figure 5: (a) and (b): Conventional-TEM observation of the interface between sapphire and 
Sn-3Ag-1Ti after 2 experiments at 600°C; (a) shows a discontinuous reaction layer; the EDS 
analyses (not shown) indicate a strong Ti enrichment on this layer. (c) Optical microscope 
view of the interface after an experiment at 900°C, showing islands of Ti-rich reaction 
products on the surface below the drop and the nucleation of reaction product along the triple 
line. (d) SEM view of the interface after an experiment at 1000°C, showing small islands of 
reaction product (1 μm wide) surrounding a bigger one (upper-right-hand corner). (e) C-TEM 
observation of the interface after a wetting experiment at 1000°C. Discontinuous islands of 
titanium oxide can be seen. 
 
Figure 6: HR-TEM picture of the Sn3Ag1Ti/Sapphire interface, showing a layer of titanium 
oxide between the metal and the alumina. The inter-reticular distances are compatible with 
TiO2. 
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Figure 7: Atomic Force Microscopy image of the ridge at the triple line on a polycrystalline 
alumina, after a wetting experiment at 1000°C.  The depth profile along the white line shows 
an 18 nm high ridge. 
 
Figure 8: Schematic showing a possible sequence for the wetting of Sn3Ag1Ti on alumina, as 
Ti from the Sn5Ti6 platelets dissolves, it adsorbs at the solid-liquid interface decreasing the 
interfacial energy and promoting spreading.  If there is a finite nucleation barrier for the 
formation of the reaction product, extension of the adsorption isotherm into the metastable 
regime will result in a further decrease of the interfacial energy, even if some isolated islands 
of reaction product form at high temperature during spreading. 
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