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Abstract.
A general problem when fitting EXAFS data is determining whether particular parameters are statistically significant.

The F-test is an excellent way of determining relevancy in EXAFS because it only relies on the ratio of the fit residual of
two possible models, and therefore the data errors approximately cancel. Although this test is widely used in crystallography
(there, it is often called a “Hamilton test”) and has been properly applied to EXAFS data in the past, it is very rarely applied
in EXAFS analysis. We have implemented a variation of the F-test adapted for EXAFS data analysis in the RSXAP analysis
package, and demonstrate its applicability with a few examples, including determining whether a particular scattering shell is
warranted, and differentiating between two possible species or two possible structures in a given shell.
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1. INTRODUCTION

When fitting EXAFS data, one often must decide
whether adding parameters or otherwise changing the
fitting model significantly improves the fit beyond
simply comparing the goodness-of-fit parameters.
Hamilton[1] proposed a method based on the statistical
F-test which has been widely used by crystallographers
and has been extended by Bacchi et. al.[2]. Although
many authors[3–7] have previously utilized the F-test
with EXAFS data and have noted the importance of such
a statistical test, it is still rarely applied.

A number of possible scenarios can arise in EXAFS
analysis where the F-test should be applied. In fitting data
to theoretical standards, the parameters usually come
in groups associated with scattering shells; in general
there are at least three or more new parameters per shell,
though often some are constrained. A common question
when fitting EXAFS data is to ask whether adding an-
other shell (which often includes the addition of multiple
parameters) would significantly improve the fit. Alterna-
tively, one might ask whether one of the included shells
could be removed without significantly worsening the fit.
Other scenarios include using additional parameters for
a given scattering shell, such as a third cumulant[8], or
comparing different fitting models.

Here we begin by describing the F-test, focusing on
the methodology of Hamilton. We then give examples
of its application on (1) a system where one determines
the significance of an additional scattering shell, and (2)
where one questions the local structure of a given shell.

2. METHOD

The F-test is generally used in statistics to determine
if the standard deviations of two populations are equal.
Equivalently,

F =
χ2

1 /ν1

χ2
0 /ν0

(1)

(where χ2
0 represents the statistical χ2 of the better fit

(i.e. χ2
0 < χ2

1 and the νi represent the degrees of freedom
in each case). It can be shown[9] that F in Eqn. 1 follows
the F-distribution law. In other words, if the experimental
value of F is denoted as Fexp, then the probability that F
> Fexp gives the significance level at which the null hy-
pothesis (that the two fits are not significantly different)
can be rejected. A small value implies a very significant
rejection in turn implying high confidence in the hypoth-
esis that the fit that yields χ2

0 is significantly better fit than
the fit that yields χ2

1 . In this paper, we report α (Eqn. 6)
as the confidence level that the χ2

0 fit is the correct fit.
Equation 1 gives the general formula for the F-Test

in statistics. In EXAFS analysis, however, it is generally
preferable to test the variation of χ2 versus the best fit
(See Eqn. 2) in order to account for the possibility that
some of the parameters in the two fits may be the same.

F =
(χ2

1 −χ2
0 )/(ν1−ν0)
χ2

0 /ν0
. (2)

Though one can immediately see that this equation
cannot be applied when ν0 = ν1, i.e. when the number
of fit parameters are the same in the two fits. In that case,
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Michalowicz[5] suggests that one should use Eqn. 1 and
notes that when the number of fit parameters is changed,
the two equations produce the same qualitative answer
but the calculated probabilities are different.

Hamilton[1] avoided this problem by introducing the
dimension of the hypothesis, b, which is defined either as
the difference in the degrees of freedom in the two cases
(b = ν1 − ν0) or as the number of parameters that are
changed (see examples). Thus, in Hamilton’s variation,
the ratio of the crystallographic R-factors (ℜ = R1/R0,
where R0 and R1 are the R-factors for the original (best)
fit and the test fit, respectively,) are used in an F-test with
n independent data points, m fit parameters (thus, n−m
degrees of freedom) and dimension of the hypothesis, b,

F =
(R2

1−R2
0)/b

R2
0/(n−m)

=

[(
R1

R0

)2

−1

]
(n−m)

b
. (3)

The R-factor used by rsfit, the fitting program in
the EXAFS analysis package RSXAP[10] is given by

R =

√
∑i(∆(knχR(ri)))2 +∑i(∆(knχ I(ri)))2

∑i(knχR
D(ri))2 +∑i(knχ I

D(ri))2 ∗100 (4)

where ∆(knχ(r)) is the difference between the data and
the standard function (calculated by the FEFF code[11]),
and the R and I superscripts refer to the real and imagi-
nary parts of the Fourier transform. If two fitting models
use the same transform window, then the denominator
in Eqn. 4 will be equal and cancel when this R-factor is
used in the F-test as described by Hamilton (Eqn. 3). As-
suming the data errors are roughly constant as a function
of r, the ratio R1/R0 using this definition of the R-factor

(Eqn. 4) is nearly proportional to
√

χ2
1 /χ2

0 in Eqns. 1 and
2. It is worth pointing out that the R-factor calculated
by rsfit (Eqn. 4) compares the data and the fit in r-
space. This is equivalent to comparing them in k-space
(as other fitting routines do) as long as one compares
both the real and imaginary parts, independently, as is
the case in rsfit. Furthermore, Hamilton[1] noted that
the R-factor ratio R1/R0 is relatively insensitive to how
the R-factors are defined. Thus, R2

i can be used in place
of χ2

i in Eqns. 1 and 2, then Eqn. 3 is equivalent to Eqn.
2 where b is the difference in the number of parameters
and n−m is the degrees of freedom of the better fit.

From the hypothesis that there is no significant dif-
ference between two fits, Hamilton[1] tabulated a set of
significance points, ℜb,n−m,α defined by,

ℜb,n−m,α = (
b

n−m
Fb,n−m,α +1)1/2 (5)

where Fb,n−m,α denotes the F-test analysis for a b-
dimensional linear hypothesis with n−m degrees of free-
dom Bacchi[2], et. al. have shown that the confidence

level, α , that the fit that yields R0 is a better fit than the
fit that yields R1 can be calculated by,

α = P(ℜ > ℜb,n−m,α) =

P(F > Fb,n−m,α) = 1− Ix[
n−m

2
,

b
2
], (6)

where P represents the probability, Ix[ n−m
2 , b

2 ] is the in-
complete beta function, x = ( (n−m)

(n−m+bF) ) = (R0/R1)2, and
F is given by Eqn. 3. For the R0 fit to be considered a
significantly better fit, α needs to be greater than 67%
and preferably greater than 95%.

3. EXAMPLES

3.1. Adding an additional shell

The first example comes from a study of technetium
(Tc) speciation in a cementitious nuclear waste form[12].
The Tc species formed is known to be a Tc sulfide,
but the structure is not known with certainty. The data
in this study are from 4 different samples with slightly
different cement compositions, but all contain the same
Tc species, TcSx. The r-space data show a large peak at
1.9 Å with a shoulder at 2.1 Å, which correspond to 7
S and 2 Tc neighbors, at 2.38 and 2.77 Å, respectively.
These distances and coordination numbers are typical of
triangular cluster complexes of early transition elements
(See Fig. 1: left)[13]. From this information, the structure
of TcSx can be seen to consist of triangular Tc disulfide
clusters. The main question is whether the connectivity
of these clusters can be determined with any certainty.

In addition to the big peak, the Fourier transform
also contains three small features from 2.5 to 4.5 Å. It
is known from the structure of the triangular “building
block" that these features are due in part to scattering
from S atoms. However, the features can be fit accurately
using a combination of 6 S neighbors at 4.48 Å with
1
3 Tc at 3.8 Å and 2

3 Tc at 4.3 Å. These Tc distances
correspond to Tc atoms connected through two bridg-
ing sulfide ligands and through a symmetrically bridg-
ing disulfide ligand, respectively (See Fig.1: right) The k-
range for the Fourier transform was 2−13.3Å−1 and the
r-range for the fit was 1−4.5 Å; thus, the number of in-
dependent data points is 26.8 (given by Stern’s[14] rule).
The model containing only sulfide neighbors has 10 pa-
rameters and the model with both S and Tc neighbors
has 14 parameters. For this study, the fit was performed
using IFEFFIT[15]. The parameter “R-factor” in IFEF-
FIT is equivalent to R2 in Eqn. 4 and is also weighted by
an estimate of the noise in the spectrum. Therefore, the
square root of the IFEFFIT parameter “R-factor” is given
here as R.
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FIGURE 1. The core cluster (left), which corresponds to the
10 parameter model, and the connected structure (right), which
corresponds to the 14 parameter model. Tc atoms are shown as
solid circles and S atoms are shown as open circles.

When each data set is fit individually, the values for
R0 vary from 0.078 to 0.096 and the values for R1 vary
from 0.088 to 0.11. Using n−m = 12.8 and b = 4 in Eqn.
6 yields confidences of 35% to 82 % that the additional
Tc atoms are present. In no case is the confidence >95%,
and we cannot definitively conclude from this data that
the additional Tc atoms are present. However, when one
fits all four data sets simultaneously, there are 107.3 inde-
pendent points, and n−m = 93.3, b = 4, R0 = 0.102, and
R1 = 0.113. Due to the much larger number of degrees of
freedom, fitting the data in this way gives a 99.9% confi-
dence that the fit that includes the 2 additional Tc atoms
is a better fit than the fit without them.

3.2. Substituting a shell

The second example comes from a study of ZnS:Cu,Cl
and Zn:Cu,Mn,Cl devices which electroluminesces when
an AC voltage is applied. This luminescence is strongly
dependent on the Cu/Mn and Cl dopants, which has
prompted an EXAFS analysis of the Cu and Mn K-edges
on three different samples to understand their role.

The EXAFS analysis indicate that Mn substitutes for
Zn in the ZnS lattice, i.e. the Mn K-edge data is fit very
well with a ZnS structure. Cu, on the otherhand, appears

FIGURE 2. The structures of ZnS (left) and CuS (right). The
S atoms are shown as white circles, Zn (left) or Cu (right) atoms
are shaded. Note the two distinct Cu sites in the CuS structure
(3-fold and 4-fold coordinated).

to fit better with a CuS local structure for the nearest
neighbor. The Hamilton test was applied to determine if
the CuS structure gives a significantly better fit than ZnS
structure (for comparison, see Fig. 2).

The fit to the CuS standard with four parameters yields
an R-factor of 2.95. The fit to the ZnS standard, also with
four fit parameters, yields an R-factor of 6.73. The k-
range for the Fourier transform was 3− 11.5 Å−1, and
the r-range for the fit was 1.6− 2.5 Å, which gives 2.87
degrees of freedom using Stern’s[14] rule. In this case,
the dimension, b, of the hypothesis is the number of fit
parameters. Thus, using R0 = 2.95, R1 = 6.73, n−m =
2.87 and b = 4 in Eqn. 6 yields an 80% confidence in
the CuS structure. However, if we take into account all
three samples simultaneously (similar to Example 1), it
increases to a 99.9% confidence that the CuS structure is
the correct environment for the Cu atoms.
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