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INTRODUCTION 

Magnetic resonance imaging (MRI) has developed into a powerful clinical tool for imaging the 

human body (1).  This technique is based on nuclear magnetic resonance (NMR) of protons (2, 

3) in a static magnetic field BB0.  An applied radiofrequency pulse causes the protons to precess 

about B0B  at their Larmor frequency ν0 = (γ/2π)BB0, where γ is the gyromagnetic ratio; γ/2π = 

42.58 MHz/tesla.  The precessing protons generate an oscillating magnetic field and hence a 

voltage in a nearby coil that is amplified and recorded.  The application of three-dimensional 

magnetic field gradients specifies a unique magnetic field and thus an NMR frequency in each 

voxel of the subject, so that with appropriate encoding of the signals one can acquire a 

complete image (4).  Most clinical MRI systems involve magnetic fields generated by 

superconducting magnets, and the current trend is to higher magnetic fields than the widely 

used 1.5-T systems (5).  Nonetheless, there is ongoing interest in the development of less 

expensive imagers operating at lower fields.  Commercially available 0.2-T systems based on 

permanent magnets offer both lower cost and a more open access than their higher-field 

counterparts, at the expense of signal-to-noise-ratio (SNR) and spatial resolution.  At the still 

lower field of 0.03 mT maintained by a conventional, room-temperature solenoid, Connolly 

and co-workers (6, 7) obtain good spatial resolution and signal-to-noise ratio (SNR) by 

prepolarizing the protons in a field BpB  of 0.3 T.  Prepolarization (8) enhances the magnetic 

moment of an ensemble of protons over that produced by the lower precession field; after the 

polarizing field is removed, the higher magnetic moment produces a correspondingly larger 

signal during its precession in  BB0.  Using the same method, Stepisnik et al. (9) obtained MR 

images in the Earth’s magnetic field (~ 50 μT). Alternatively, one can enhance the signal 

amplitude in MRI using laser polarized noble gases such as He or Xe (10-12).  3 129
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Hyperpolarized gases were used successfully to image the human lung in fields on the order of 

several mT (13-15).  

To overcome the sensitivity loss of Faraday detection at low frequencies, ultrasensitive 

magnetometers based on the Superconducting QUantum Interference Device (SQUID) (16) are 

used to detect NMR and MRI signals (17-24). Recently, SQUID-based MRI systems capable 

of acquiring in vivo images have appeared. For example, in the 10-mT system of Seton et al. 

(18) signals are coupled to a SQUID via a superconducting tuned circuit, while Clarke and 

coworkers (22, 25, 26) developed a system at 132 µT with an untuned input circuit coupled to 

a SQUID. In a quite different approach, atomic magnetometers have been used recently to 

detect the magnetization (27) and NMR signal (28) of hyperpolarized gases. This technique 

could potentially be used for low-field MRI in the future.  

 The goal of this review is to summarize the current state-of-the-art of MRI in 

microtesla fields detected with SQUIDs.  The principles of SQUIDs and NMR are briefly 

reviewed.  We show that very narrow NMR linewidths can be achieved in low magnetic fields 

that are quite inhomogeneous, with illustrative examples from spectroscopy.  After describing 

our ultralow-field MRI system, we present a variety of images.  We demonstrate that in 

microtesla fields the longitudinal relaxation T1 is much more material dependent than is the 

case in high fields; this results in a substantial improvement in “T1-weighted contrast imaging.”  

After outlining the first attempts to combine microtesla NMR with magnetoencephalography 

(MEG) (29), we conclude with a discussion of future directions. 
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BASIC PRINCIPLES 

The Superconducting QUantum Interference Device 

In the phenomenon of superconductivity (30), pairs of electrons – known as “Cooper pairs” – 

carry a supercurrent without dissipation.  The dc SQUID (16) combines two phenomena of the 

superconducting state:  Josephson tunneling and flux quantization (30).  In a Josephson 

junction, Cooper pairs of electrons tunnel coherently through a thin barrier, typically a metal 

oxide.  The junction remains in the zero voltage state for applied currents up to a critical value, 

above which a voltage is produced.  Flux quantization refers to the fact that the magnetic flux 

embraced by a closed superconducting loop is quantized in units of the flux quantum Φ0 = h/2e 

≈ 2.07 x 10-15 Tm2; h is Planck’s constant and e is the electron charge.  The SQUID consists of 

two Josephson junctions connected in parallel on a superconducting loop [Figure 1(a)].  When 

the magnetic flux Φ threading the loop is steadily changed, the current-voltage (I-V) 

characteristic oscillates back and forth between the two values shown in Figure 1(b) with a 

period Φ0.  In the presence of a constant bias current, the voltage across the SQUID oscillates 

as a function of Φ, as shown in Figure 1(c).  The SQUID is usually operated at a flux where a 

small change in magnetic flux δΦ produces the maximum change in voltage δV.  The voltage 

δV is amplified by conventional semiconductor electronics; in essence, the SQUID is a flux-to-

voltage transducer.  Design rules for optimizing the performance of the SQUID are well 

established (31). 

 SQUIDs are fabricated from thin films using the deposition and patterning techniques 

of the semiconductor industry.  An example is shown in Figure 2(a); typically 200-400 such 

devices are made on a 4-inch silicon wafer.  The SQUID is generally operated immersed in 

liquid helium at 4.2 K.  In practice, the SQUID is operated in a flux-locked loop (16) in which 
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the voltage δV is amplified and the resultant signal is coupled via a resistance into a coil 

inductively coupled to the SQUID.  This negative feedback maintains the flux in the SQUID at 

a constant value, and results in an output voltage from the electronics that scales linearly with 

the input flux signal.  Typical devices have a magnetic flux noise of about 1 μΦ0 Hz-1/2.  In 

many applications the sensitivity to magnetic field is enhanced by a superconducting flux 

transformer [Figure 2(b)], which consists of a loop of superconducting wire connected to a 

multiturn coil deposited on (but insulated from) the SQUID [Figure 2(a)].  When a magnetic 

field is applied to the pickup loop, flux quantization causes a supercurrent to flow around the 

closed superconducting circuit, coupling flux into the SQUID.  An optimized flux transformer 

can yield a magnetic field noise of 1 fT Hz-1/2 (10-15 T Hz-1/2).  Figure 3 depicts the scale of 

magnetic fields involved in SQUID magnetometers and MRI.  We emphasize that the 

responses of the SQUID and flux transformer are independent of the signal frequency.  

 

Nuclear Magnetic Resonance of Protons 

In the presence of a magnetic field BB0, a spin ½ particle – for example a proton – aligns itself 

parallel or antiparallel to the field with corresponding energies –γћB0B /2 and +γћBB0/2, 

respectively.  The angular frequency corresponding to transitions between the two levels is the 

Larmor frequency ω0 = γB0B .  For an ensemble of N noninteracting protons in thermal 

equilibrium in a field BB0 at a temperature T, the magnetic moment is M0 = Nμp
2B0B /kBT in the 

relevant limit μpBB0 << kBT; μp is the magnetic moment of the proton and kB is Boltzmann’s 

constant.  The fractional magnetization is generally very small:  at 300 K and 1T, M0/Nμp ≈ 3.4 

x 10 . -6
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 Virtually all NMR experiments involve the application of pulsed magnetic fields.  In 

the presence of a static magnetic field in the z-direction, one applies a “π/2 pulse” of oscillating 

magnetic field BB1 cosω0t in the y-direction with the appropriate amplitude and duration to tip 

M0 into the x-y plane.  Subsequently, M0 precesses about the z-axis at frequency ω0/2π.  

During the precession, M0 is subject to two relaxation processes.  The first is relaxation of its 

direction towards the z-axis, along which it will ultimately regain equilibrium, in the 

longitudinal or spin-lattice relaxation time T1.  The second process is the dephasing of each 

proton spin by the fluctuating local field produced at its site by neighboring spins in the 

transverse or spin-spin relaxation time T2.  In tissue, T1 and T2 range from 10’s of milliseconds 

to about 1 sec. The relaxation time T2 determines the observed NMR linewidth Δν = 1/πT2 

(“homogeneous broadening”).  An inhomogeneous precession field, however, can substantially 

broaden the linewidth since protons in different parts of the sample are exposed to different 

magnetic fields.  This inhomogeneous broadening, described by the inhomogenous lifetime T2
′, 

reduces the effective transverse relaxation time to T2
* = (1/T2 + 1/T2

′ ) . -1

 Most NMR spectra are obtained using Hahn’s spin echo technique (32).  At time τ after 

the π/2 pulse, a π pulse is applied along the y-axis, causing M0 to flip through 180°.  In their 

subsequent precession, the spins refocus to produce an “echo” at a time 2τ after the π/2 pulse.  

Only inhomogeneous broadening is reduced by the spin echo; homogeneous broadening, which 

is due to randomly fluctuating spins, is unaffected. 

 

Why Use a SQUID? 

In conventional NMR and MRI, the precessing magnetic moment induces a voltage in a nearby 

coil with a magnitude that, by Faraday’s law, scales as ω0M0; since M0 also scales as ω0, the 
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voltage scales as ω0
2 or BB0

2.  This scaling is a major incentive to increase the static field.  By 

the same token, as one reduces the field, the amplitude of the voltage falls off quadratically 

with B0B , making very low field Faraday-detected NMR or MRI unattractive.  There are two 

factors, however, that mitigate this loss of signal at low fields.  First, SQUIDs respond to the 

field itself rather than the rate of change of field; consequently, the output voltage scales as M0 

or ω0, rather than ω0
2 as for Faraday detection.  Second, if one prepolarizes  the sample in a 

field BBp greater than B0 B (8), the magnetic moment so induced is independent of and greater than 

its value in BB0.  As a result, one is free to choose B0B  – subject to other constraints – without 

sacrificing signal amplitude.  The combination of SQUID-detection and prepolarization 

enables microtesla NMR and MRI. 

 An additional benefit is immediately apparent.  The inhomogeneous linewidth Δν′ is 

given by (γ /2π)ΔBB0 = (γ/2π)(ΔB0B /B0)BB0, where ΔB0B  is the net change in BB0 over the sample.  

Consequently, for the given fractional inhomogeneity ΔB0B /BB0 of a particular set of coils, the 

linewidth scales as B0B .  As an example, to achieve a linewidth of 1 Hz in a field of 20 T (proton 

Larmor frequency 860 MHz), one requires a magnetic field homogeneity of about 1 part in 109, 

whereas to achieve the same linewidth in the Earth’s field, about 50 μT (proton Larmor 

frequency about 2 kHz), one requires a homogeneity of only 1 part in 2000.  Thus, lowering 

the magnetic field leads to much less stringent requirements on the magnetic field 

homogeneity.  By the same token, the effect of inhomogeneities introduced into the static 

magnetic field by variations in the magnetic susceptibility of the sample also scale as BB0, and 

are likely to be of no consequence at microtesla fields. 
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MICROTESLA NUCLEAR MAGNETIC RESONANCE 

In this section, we demonstrate the narrowing of NMR linewidths as the magnetic field 

produced by a given set of coils is reduced.  Experiments (21) were carried out on mineral oil 

maintained near room temperature in a double-walled glass tube immersed in liquid helium.  A 

relatively inhomogeneous precession field BB0 was supplied by a small Helmholtz pair, and an 

orthogonal polarizing field BpB  was pulsed on and off.  The signal produced by the precessing 

protons in the mineral oil in a direction perpendicular to BB0 was detected by a flux transformer 

coupled to a SQUID. 

 Figures 4(a) and (b) summarize the central result.  Figure 4(a) shows the NMR 

spectrum of mineral oil acquired in a field of 1.8 mT using a Hahn spin echo sequence.  The 

proton peak at about 77 kHz has a linewidth of about 1 kHz, indicating a magnetic field 

inhomogeneity ΔBB0/B0B  of about 1%.  In Figure 4(b), on the other hand, the static field BB0 was 

reduced by three orders of magnitude to 1.8 μT, and the protons were prepolarized in a 

magnetic field of 1.8 mT.  The polarizing field was removed before the data were acquired.  

We immediately observe the two consequence of reducing B0B .  First, the NMR frequency has 

been reduced by three orders of magnitude, to 77 Hz.  Second, the linewidth has been reduced, 

also by three orders of magnitude, to about 1 Hz, verifying its scaling with BB0.  Furthermore, 

while the spectrum in Figure 4(a) required 10,000 averages that in Figure 4(b) required only 

100 averages and has a much higher SNR.  Because the value of BpB  in (b) was identical to BB0 in 

(a), the energy under the two peaks is the same and the reduction of the linewidth in (b) results 

in an enhancement in the peak height by the same factor. 

 The enhanced spectral resolution achieved in microtesla fields was exploited to detect 

scalar coupling (“J-coupling”) in heteronuclear spin systems. (21,33).  Figure 5(a) shows the 
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spectrum of neat trimethyl phosphate in a field of 4.8 μT.  The doublet is formed by the 

interaction of the nine equivalent protons with the single phosphorus 31P nucleus.  The splitting 

of 10.4 ±0.6 Hz arises from the tiny difference in energy depending on whether the proton 

spins are parallel or antiparallel to the phosphorus spin.  The linewidth was limited by the 

inhomogeneity in the residual magnetic field in the apparatus in which the data were acquired. 

 A further reduction in linewidth was achieved (P)(24, 34) in the magnetically shielded 

room at the Physikalisch Technische Bundesanstalt (PTB) in Berlin (35) by subtracting the 

output of two SQUID magnetometers electrically to form a first-derivative gradiometer; the 

very low (< 10 nT) residual field enabled Burghoff et al. (24) to achieve a linewidth of 0.17 Hz 

in distilled water in a field of 450 nT corresponding to a Larmor frequency of about 19 Hz.  

Subsequently, using the same system Bernarding et al. (34) obtained the J-coupling spectrum 

of 2, 2, 2-trifluoroethanol shown in Figure 5(b).  The spectra have been fitted with a T2 of 1 

sec, corresponding to a linewidth of 0.32 Hz. 

 These very narrow linewidths achieved in microtesla magnetic fields that are grossly 

inhomogeneous by the standards of high field NMR and MRI show that simple and 

inexpensive magnets are entirely adequate for microtesla spectroscopy and imaging.  High 

spectral resolution NMR leads immediately to high spatial resolution Δz in MRI, since Δz = 

2πΔν/γ Gz where Gz ≡ ∂BBz/∂z is an applied gradient   The determination of J-coupling spectra 

by direct detection of the NMR spectrum could be used as a “bond detector,” for example, to 

monitor chemical reactions or to identify specific chemical compounds in blood samples. 
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MAGNETIC RESONANCE IMAGING IN MICROTESLA MAGNETIC FIELDS 

Experimental Configuration and Techniques 

The essential requirements of conventional MRI are a magnet to produce a precession field BB0, 

three sets of gradient coils, a transmitter coil to supply the necessary pulse sequences and a 

receiver.  Microtesla MRI involves the same set of coils, albeit with greatly reduced 

requirements on the static field and gradient coils and a low-frequency receiver; in addition, a 

polarizing field coil and coils to cancel the Earth’s magnetic field are required.  As an example, 

Figure 6 shows the arrangement of coils in the Berkeley microtesla MRI system. The coils are 

wound on wooden forms assembled on a wooden frame.  Two pairs of square coils 1.8 m on a 

side cancel the x- and y-components of the Earth’s magnetic field.  A 1.37-m-diameter 

Helmholtz pair, augmented by a pair of concentric 0.36-m-diameter coils in the same planes to 

increase the field homogeneity, supplements the Earth’s field in the z-direction to provide the 

precession field B0B .  The NMR frequency is usually 5.6 kHz, corresponding to BB0 = 131.5 μT.  

This frequency lies between two harmonics of 60 Hz and is in a range where the background 

noise in our laboratory is low, typically 1 pT Hz .  A Maxwell pair of coils,1.2 m in diameter, 

provides the diagonal field gradient ∂Bz

-1/2

B /∂z, and two sets of biplanar coils (0.9 x 1.28 m and 

1.45 x 1.02 m)  provide the off-diagonal gradients ∂BBz/∂x and ∂BzB /∂y.  Typical field gradients 

range from 100 to 400 μT m-1.  The excitation coil consists of a 0.155-m-diameter Helmholtz 

pair that produces field pulses along the y-direction.  The polarizing coil produces pulsed fields 

of up to150 mT in the x-direction. The polarizing coil involves a substantial mass of copper 

wire; if this wire were solid, Nyquist noise currents flowing across the wire would induce 

significant levels of magnetic field noise at the nearby detector.  Fortunately, these fields can 

be reduced to a negligible level by using multistranded wire – we use 30-strand, 28 gauge Litz 
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wire – since the noise amplitude scales as the square of the wire diameter (36).  The polarizing 

coil currently installed in our system consists of  700 turns of  Litz wire and has an inner 

diameter of 32 mm, an outer diameter of 230 mm and a height of 50 mm.  To increase the 

number of coil pulses this coil is precooled with liquid nitrogen. Samples are placed on top of 

the polarizing coil, below the detector. 

 The NMR signals from the sample are detected by a flux transformer, configured as a 

second-derivative axial gradiometer and coupled to a dc SQUID as shown schematically in 

Figure 7.  Ideally, the gradiometer rejects ambient fluctuations in uniform magnetic fields and 

its first derivatives, and responds only to the diagonal gradient ∂2BBz/∂z .  Because the field and 

its first and second derivatives fall off with distance r from a magnetic dipole as 1/r , 1/r  and 

1/r , respectively, the use of a second-derivative gradiometer greatly reduces the magnitude of 

magnetic noise from distant sources.  As fabricated, the gradiometer attenuates uniform 

magnetic field fluctuations by a factor of about 1,000.  The sample to be imaged is placed close 

to the lowest loop of the gradiometer, which thus detects the magnetic field from the sample, 

rather than the second-derivative gradient.  The magnetic field noise of the detector referred to 

the lower loop is 0.8 fT Hz .  An important feature is the array of 20 Josephson junctions in 

series with the gradiometer coils.  The magnetic fields applied with the various coils 

(especially the polarizing coil) would otherwise induce enormous currents (up to 1 A) in the 

gradiometer.  The Josephson junctions switch to the normal state, however, when the induced 

current exceeds their critical current, typically 10 μA, thus preventing any further build-up of 

current.  Once the magnetic field becomes stable, the junctions revert to their superconducting 

state.  The SQUID and the array are contained in a superconducting niobium shield to protect 

them from external magnetic noise and the switched fields of the MRI procedure.   

2

3 4

5

-1/2
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 The flux transformer and SQUID are immersed in liquid helium contained in a custom-

made fiberglass dewar based on a design by Seton et al. (37).  In essence, the dewar consists of 

an inner vessel, containing the helium, surrounded by an outer vessel with a vacuum space 

between them.  To prevent the blackbody radiation from the outer vessel imposing an 

unacceptable heat load on the helium, it is conventional to fill the vacuum space with many 

layers of aluminized Mylar that reflect the radiation.  The sensitivity of the detector is 

sufficiently high, however, that magnetic field noise originating in Nyquist noise currents in 

the thin aluminum layers would seriously degrade its performance.  Seton and co-workers 

overcame this problem by replacing the aluminized Mylar with aluminized polyester fabric.  

The weave of the fabric breaks up continuous conducting paths, thus preventing the flow of 

noise currents over large areas and reducing the magnetic field noise by as much as two orders 

of magnitude compared with a continuous aluminum film with the same thickness.   

 The entire system is enclosed in a cube, 2.4 m on a side, constructed of 6-mm-thick 

aluminum sheet.  Eddy currents in the sheet reduce external electromagnetic fields to l/e of 

their surface value in a skin depth δ = (πμ0μσf )-1/2; μ0 is the permeability of the vacuum, and μ 

and σ are the relative permeability and electrical conductivity of the material.  For aluminum at 

5.6 kHz, δ ≈ 1.5 mm, so that the shield attenuates external noise by a factor of about e4 ≈ 55.  

The combination of the aluminum shield and the second-derivative gradiometer attenuates 

ambient magnetic field fluctuations by a factor of about 5 x 104, so that ambient noise does not 

affect the measurements. 

 A typical pulse sequence for three-dimensional (3-D) imaging is shown in Figure 8.  

The static field BB0 is applied continuously.  First, the polarizing field BpB  is turned on along the 

x-axis for a time typically on the order of T1, and removed in 15 ms.  A π/2 pulse of 5.6 kHz 

 12



magnetic field is applied along the y-direction, and is followed by a π pulse a time τ later.  

Shortly after the π/2 pulse, three gradient pulses are applied.  The gradient Gx ≡ ∂Gz/∂x is 

applied during the whole measurement and encodes voxels in frequency space as 

 ω(x) = γ(BB0 + xGx) . (1) 

The gradients Gy ≡ ∂BBz/∂y and Gz ≡ ∂BzB /∂z, on the other hand, are applied only between the π/2 

and π pulses and provide phase encoding according to  

 Δφ(z) = γzGyτ ,    Δφ(y) = γyGzτ . (2) 

The last line in Figure 6 shows the free induction decay induced by the π/2 pulse and the echo 

resulting from the subsequent π pulse.  The spatial information is frequency- and phase-

encoded in the echoes, which are digitized and stored for subsequent processing.  Two-

dimensional images are acquired by omitting one of the phase encoding sequences. 

 

Images 

We present a series of 2-D and 3-D images to illustrate the capabilities of the 132-μT imager.  

Figure 9 shows a 2-D image of a phantom consisting of a plastic multiwell plate with 0.85 mm 

walls immersed in 10 mm of water in a plastic tray.  The image was acquired at 132 µT (proton 

Larmor frequency 5.6 kHz)  using a polarizing field of 85 mT.  The frequency encoding 

gradient was  240 μT m-1 and there were 128  phase encoding steps with a maximum gradient 

of 140 μT m-1.  The 2-D resolution is 0.7 mm x 0.7 mm and the total imaging time was ~5 min.  

To illustrate 3-D imaging, Figure 9 shows 6 MRI slices of an intact red pepper.  In contrast to 

the multi-slice echo-planar imaging technique of high-field MRI (4), because of the time 

required to polarize the spins it is more efficient to acquire the entire 3-D image and to slice the 

image subsequently.  The image involved a frequency encoding gradient of 150 µT/m, 52 
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phase encoding steps in the plane of the slices and 7 phase encoding steps perpendicular to the 

slices.  The polarizing field was 60 mT and  the precession field was 132 μT. The resolution of 

the image is 1.9 mm x 1.6 mm. 

 Figure 10 shows four  MR slices of a forearm, each 20-mm-thick.  This in vivo image 

was acquired at 5.6 kHz with gradients of 150 µT/m and an average polarizing field of 40 mT. 

The in-plane resolution is 2 mm x 2 mm and the SNR is 10.  

 The images presented in Figures 9 and 10 illustrate the current state-of-the-art of 

microtesla MRI.  In the images of the phantom, a 2-D resolution of about 1 mm x 1 mm is 

relatively straightforward.  The spatial resolution of the arm, about 2 mm x 2 mm, is lower 

largely because the configuration of our current polarizing coil results in a rapid fall-off in the 

polarizing field across the arm; this problem could be ameliorated by replacing the single-sided 

coil with a Helmholtz pair.  In all cases, by the standards of high-field MRI, the imaging 

process is relatively slow, with acquisition times ranging from 1 min for the phantom to 5 min 

for the three slices of the forearm.  These times are dictated primarily by the time required to 

polarize the protons for a given number of phase encoding steps. 

 

Imaging in the Presence of Metals 

In high-field MRI, images acquired in the presence of a piece of metal, for example, an 

orthopedic screw or a biopsy needle, are often severely distorted (38-40).  The distortion has 

two possible origins.  The first is the susceptibility difference between the metal and the 

surrounding tissue which causes a local magnetic field inhomogeneity proportional to BB0, and 

is therefore negligible at microtesla fields.  In turn, this inhomogeneity both shortens T2
* and 

produces image distortion along the frequency encoding direction.  The second mechanism is 
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the interaction of the metal object with the excitation pulses, which induce eddy currents in its 

skin depth.  These eddy currents can affect the amplitude and phase of the pulse near the metal, 

giving rise to distortion.  Since the skin depth δ scales as f0
-1/2, this problem is substantially 

reduced at low frequencies. 

 To illustrate these issues, in Figure 11 we show images of a 1.5 mm x 10 mm x 15 mm 

titanium bar placed in one of a series of grooves cut in a plastic block to form a grid; the grid is 

immersed in water (41).  Figure 11(a) shows a photograph of the phantom used at 7 T, and 

Figures 11(b) and (c) show the resulting images acquired using a gradient of 40 mT m-1 with 

the bar oriented perpendicular and parallel to the frequency-encoding direction.  In both cases, 

the images are severely distorted.  In contrast, Figure 11(e) is the image of the phantom shown 

in Figure 11(d) acquired at 2.8 kHz with a gradient of 110 μT m-1.  There is no evident 

distortion.  These results suggest that microtesla MRI could be used to obtain undistorted 

images in the presence of metallic implants or biopsy needles. 

 In related experiments at 2.8 kHz, images were obtained of a pepper enclosed in an 

aluminum can with a wall thickness of 200 μm (41).  Because the wall thickness was much less 

than the 1.5-mm skin depth, the quality of the image was unaffected by the presence of the can.  

In contrast, attempts to obtain images at 179 MHz failed because the 6-μm skin depth screened 

out the radiofrequency pulses and the signal. 

 

RELAXATION-TIME-WEIGHTED CONTRAST IMAGES 

T1-weighted contrast imaging is widely used in high-field MRI to obtain image contrast 

between tissues with different longitudinal relaxation times T1 (4).  In practice, however, not all 

tissue types show T1-contrast in high fields; for example, breast tumors are not readily 
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distinguished from healthy breast tissue (42).  This difficulty can be overcome by injecting a 

contrast agent – typically a gadolinium salt – into the bloodstream which tends to flow 

preferentially to the tumor (43, 44).  The contrast agent reduces T1, resulting in clear images of 

the tumor.  For most tissues T1 depends strongly on the magnetic field strength, and the T1-

contrast between different tissue types can be enhanced at low magnetic fields.  Prepolarized 

SQUID-detected MRI enables the magnetization to evolve at very low fields, and could 

therefore be used for T1-contrast imaging without the need for a contrast agent. To elucidate 

the issues involved, we briefly discuss the underlying mechanisms that determine the value of 

T1. 

 The magnitude of T1 is determined by the spectral density of the local magnetic field 

fluctuations at the NMR frequency (2).  Random fluctuations caused by molecular motion and 

chemical exchange occurring at the correlation time τc have strong spectral components up to a 

frequency fc = 1/2πτc.  Although in pure water τc ~ 1 ps for protons, in tissue and 

macromolecular solutions τc is very much longer, 1 μs to 1 ms.  Consequently, at frequencies 

below 1/τc the value of T1 is sensitive to the molecular environment – and hence to the type of 

tissue – while at frequencies above 1/τc the values of T1 in different tissues tend to converge 

because the proton spins decouple from the relaxation mechanisms that are specific to the 

environment. 

 To investigate the T1 relaxation over a large range of magnetic fields we used dilute 

solutions of agarose gel as a model system. In this case one can express the overall proton 

relaxation rate as the sum of the two terms, one for free water and other for water molecules 

bound to the gel (45), as 

  1/T1 = (1 – b)/T1f + b/T1b . (3) 
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Here, b is the fraction of bound water (typically <1%) and Tlf and T1b are the relaxation times 

of free and bound water molecules.  The relaxation rate 1/Tlf is independent of frequency up to 

very high frequencies, but 1/T1b increases sharply at frequencies below 1/τcb; τcb is the 

correlation time for bound water molecules.  Consequently, the bound fraction of the water 

dominates the observed relaxation rate 1/T1 at frequencies below 1/τcb.  Thus, one expects that 

low-frequency T1-contrast should be substantially enhanced compared with high-field MRI. 

 This behavior was explored using the MRI system described above (46).  The ability to 

cycle the magnetic field over a wide range of values made it straightforward to measure T1 

over the range 1μT to 300 mT.  The pulse sequence is shown in Figure 12(a).  The samples are 

first polarized in a magnetic field BBp1 of 300 mT.  To measure T1 in fields greater than 132 μT, 

the polarizing field is reduced adiabatically to Bp2B  thus producing an intermediate field BBint = 

Bp2B  + BB0 in which the spins relax for time tint.  Subsequently, Bp2B  is switched off adiabatically, 

causing the spins to align along BB0 with a magnetization 

 M1 = Mint + (Mp1 – Mint) exp(–tint/T1 int) . (4) 

Here, Mint and Mp1 are the magnetic moments in Bint and BBp1, respectively, and T1 int is the 

longitudinal relaxation time in BintB .  The value of M1, which determines the intensity of the 

image, is measured with a conventional spin-echo sequence.  If BBint = B0B , the pulse sequence 

measures T1 in the field BB0 during the time tint.  To measure T1 in fields BintB  < BB0, the value of 

B0B  is reduced for the time tint by applying an opposing field from the pair of Earth’s field 

cancellation coils aligned along the z-axis.  At a given intermediate field, T1 is obtained by 

measuring the signal amplitude for increasing values of tint. 
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 The resulting values of 1/T1 versus magnetic field and Larmor frequency are plotted in 

Figure 12(b) for 0.25% and 0.5% concentrations by weight of agarose gel in water.  The solid 

curves are fits to the Cole-Cole expression (47) 

  1/T1(f) = A·Re{1/[1 + (if/fc)β/2]} + B , (5) 

where A, B, fc and β are fitting parameters.  The fits yield τcb of 3 μs and 2 μs for the 0.25% 

and 0.5% gels, respectively.  At frequencies below 1/τcb, the relaxation rates differ by a factor 

of about 2, while at higher frequencies the two curves converge to the rate for free water.  

These results dramatically illustrate the greatly enhanced T1-contrast obtainable at low fields. 

 To demonstrate the impact of these results on an image, we prepared a sample 

consisting of 9 plastic drinking straws, each filled with water, arranged in a plastic tube 

containing 0.5% agarose gel [Figure 12(c)].  The inner diameters of the straws ranged from 

1 mm to 6 mm.  To obtain images, the prepolarization and relaxation sequence of Figure 12(a) 

was followed by a 2-D imaging sequence.  The lower left image shows an image taken with an 

intermediate magnetic field value of 100 mT, and shows virtually no contrast; the 6-mm water 

column is just discernible.  At 132 μT, on the other hand, all the water columns are clearly 

visible.  These two images dramatically demonstrate the benefit of T1-contrast imaging at low 

magnetic fields. 

 High-field MRI often uses “inversion recovery” to highlight T1-weighted contrast (4).  

A related technique, originally called “magnetization subtraction” (48), can be used to enhance 

the low-field contrast.  Figure 13(a) shows the magnetization preparation for a method dubbed 

“field-cycling inversion recovery” (46).  As before, the spins are first polarized in a strong field 

BBp1.  This field is removed adiabatically to allow the spins to align along B0B , in which they 

relax for a time tint.  For two spin populations with different values of T1, the magnetic 
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moments differ after this interval.  Subsequently, a π pulse inverts the populations and 

immediately afterwards a second polarization field BBp2 is switched on adiabatically.  The 

inverted populations recover towards thermal equilibrium in Bp2B ; in so doing, they pass through 

zero magnetization at different times.  Finally, the field is switched adiabatically to BB0 and the 

imaging sequence is implemented.  The magnitude of the NMR signal depends critically on the 

time at which Bp2B  is removed and the imaging sequence is initiated.  If the sequence begins 

when the magnetic moment of a given population is precisely zero, the resulting image will 

appear black.  Thus, by choosing the onset of imaging appropriately, one can make one or 

other of the populations “vanish” in the image.  Field-cycling inversion recovery is thus a 

powerful tool to enhance T1-weighted contrast compared to standard inversion recovery 

sequences at high magnetic fields.  

 Figure 13(b) shows images of three glass tubes filled with tap water, 0.25% agarose gel 

and 0.5% agarose gel, respectively, obtained with the field-cycling inversion image sequence 

of Figure 13(a) followed by a 2D imaging sequence.  Whereas all three samples have almost 

the same relaxation time, 1.8 ± 0.1 sec in BBp1 = Bp2B  = 300 mT, at 132 μT the values of T1 are 

1.6 sec, 0.48 sec and 0.21 sec for water, 0.25% gel and 0.5% gel, respectively.  For each image, 

the length of the second polarizing pulse, tp2, has been chosen so that the polarization of one of 

the images vanishes at the end of the inversion-recovery sequence.  As tp2 is increased, each 

sample appears dark in succession, from shorter to longer T1.  Furthermore, in each image there 

is sufficient T1-contrast to discriminate between the two non-vanishing columns. 
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SIMULTANEOUS MEG AND MRI 

Magnetoencephalography (MEG) is a noninvasive technique that measures tiny magnetic 

fields – typically 10-13 T to 10-11 T – generated by neural activity in the brain (29).  These 

signals are detected by a large array of SQUID magnetometers or gradiometers, about 300 in 

state-of-the-art systems, arranged in a helmet containing liquid helium that is placed around the 

subject’s head.  Roughly 100 such systems are in use for both research and clinical 

applications, which include pre-surgical mapping of brain tumors and localization of the source 

of focal epilepsy.  Although the temporal resolution of the SQUIDs – typically 1 ms – is much 

better than that of functional MRI (49), localization of the source requires solving the inverse 

problem, which generally has no unique solution.  Maps of neural activity obtained from MEG 

are almost invariably combined with conventional MR images to correlate the magnetic 

sources with anatomical features or with functional MR images. 

 Combining MEG with direct imaging of the neural currents using low-field MRI would 

be a major step forward.  Imaging neural currents requires the associated magnetic fields to 

cause some change in the NMR signal, for example, a change in frequency, phase or T2
*.  Since 

these effects will undoubtedly be tiny, their observation presents a formidable challenge (50).  

A first step in this direction was the simultaneous measurement of an MEG signal and NMR 

free induction decay (FID) (51).  The NMR measurement involved prepolarizing the subject’s 

head in a field BBp ≈ 5 mT for 1.5 sec and observing the NMR signal at 6.3 μT (268 Hz) using a 

SQUID gradiometer.  For the MEG measurement, a somatosensory response was evoked by 

applying an electrical current to the median nerve.  During the prepolarization period, the 

SQUID was turned off.  The SQUID feedback electronics was activated 10 ms after BpB  was 

removed, and data acquisition began 5 ms later.  The stimulus was applied from 0 to 100 ms 
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after BBp was turned off.  The FID and MEG signals were separated by means of 150-450 Hz 

and 3-100 Hz software filters, respectively. 

 Figure 14 shows the NMR signal and somatosensory response measured 

simultaneously.  The stimulus was applied 100 ms after BBp was turned off, introducing an 

artifact into the FID.  The NMR signal arises from some relatively broad region of the cortex; 

no claim is made that this signal is correlated with the somatosensory response.  Nonetheless, 

this experiment demonstrates the feasibility of combining MEG with microtesla NMR in a 

simultaneous measurement; extending this methodology to a 300-channel system should be 

possible. 

 

FUTURE OUTLOOK 

The system in this review has a system noise level of about 1 fT Hz-1/2.  Implementing known 

improvements to the SQUID and gradiometer should reduce the noise to about 0.4 fT Hz-1/2 

and perhaps to 0.2 fT H-1/2.  The polarizing field is currently produced by a liquid nitrogen-

cooled coil, which will shortly be replaced by a water-cooled coil that will enable longer 

averaging times.  The combination of these two upgrades should lead to an improvement in the 

in-plane resolution of 2 mm x 2 mm achieved on the forearm to perhaps 1 mm x 1 mm.  It 

should be possible to achieve this resolution on limbs, so that microtesla MRI might be of 

interest in the imaging of joints of the arm, hand, leg and foot.  A major advantage of this 

system is that it could undoubtedly be marketed for a substantially lower price than 

conventional MRI, thereby potentially lowering the cost of imaging significantly.  

Furthermore, the much lower weight and relatively small footprint imply that installation costs 

should be much lower than for high-field MRI.  The open structure of the microtesla system – 
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not to mention the low magnetic fields involved – should enable it to be used to monitor 

medical procedures. 

 Another potentially important imaging technique would be the use of a 300-SQUID 

helmet to image the brain just before or just after MEG.  In principle, it would be relatively 

straightforward to add the necessary coils to an MEG system to perform microtesla MRI.  

Since magnetic source images are always superimposed on an MR image, the combined 

system could offer substantial cost savings.  Furthermore, since the two kinds of images would 

be obtained with the same system in successive measurements, co-registering them would be 

particularly straightforward. 

 The unique strength of microtesla MRI, however, is the substantially higher T1-

weighted contrast achievable in microtesla fields.  Although similar contrast has yet to be 

demonstrated in vivo, earlier ex vivo studies on healthy and cancerous breast tissue (47) 

suggest a substantial T1-differentiation without the need for a contrast agent.  Thus, a 

significant application might well be imaging of, for example, breast and prostate tumors.  

Breast tumors are well resolved in high-field MRI with the aid of a contrast agent, but the 

relatively high cost makes this technique too expensive for serial imaging to monitor the 

effects of therapy.  Prostate tumors are not resolved in high-field T1-weighted contrast images; 

T2-weighted images (52) and spectroscopy (53) offer useful resolution, but are too expensive 

for routine use.  Thus, if a relatively inexpensive microtesla MRI system can indeed image 

breast and prostate tumors, it could have significant impact on the monitoring of tumors for 

their response to therapy or during “watchful waiting” in the case of prostate cancer.  The 

ability of this method to image in the presence of a metal tube suggests it could be used as a 

real-time monitor during biopsy.  Another potential application is to monitor the insertion of 
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radioactive “seeds” in prostate tumors (brachytherapy) (54).  Cryosurgery involves the freezing 

of a tumor (55, 56).  Microtesla MRI could monitor the insertion of the cryogenic tube and 

detect the onset of freezing:  when the tissue solidifies, its T1 drops dramatically, leading to the 

disappearance of the image.  Since T1 is temperature dependent, one might well be able to use 

microtesla MRI to monitor the temperature of tissue before it freezes; similarly, one could 

measure the temperature of a tumor and the surrounding tissue during radiotherapy (57). 

 Finally, there is the prospect of using microtesla MRI to image neural processes in real 

time.  Such imaging presents enormous challenges, and indeed, it is not yet clear what 

modality – if any – could be used.  Nonetheless, if such imaging could be achieved, it would 

offer new insights into neural activity. 
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Abstract 

The use of very low noise magnetometers based on Superconducting QUantum Inteference 

Devices (SQUIDs) enables nuclear magnetic resonance (NMR) and magnetic resonance 

imaging (MRI) in microtesla magnetic fields.  An untuned superconducting flux transformer 

coupled to a SQUID achieves a magnetic field noise of 10-15 THz-1/2.  The frequency-

independent response of this magnetometer combined with prepolarization of the nuclear spins 

yields an NMR signal that is independent of the Larmor frequency ω0.  An MRI system 

operating in a field of 132 μT, corresponding to a proton frequency of 5.6 kHz, achieves an in-

plane resolution of 0.7 x 0.7 mm2 in phantoms.  Measurements of the longitudinal relaxation 

time T1 in different concentrations of agarose gel over five decades of frequency reveal much 

greater T1-differentiation at fields below a few millitesla.  Microtesla MRI has the potential to 

image tumors with substantially greater T1-weighted contrast than is achievable in high fields 

in the absence of a contrast agent. 
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List of definitions and acronyms  

MRI:  magnetic resonance imaging 

NMR:  nuclear magnetic resonance 

BB0 :  precession field, the magnetic field in which nuclear spins precess at their Larmor 

frequency during data acquisition. 

γ :  gyromagnetic ratio 

SNR:  signal-to-noise ratio 

BBp:  prepolarizing magnetic field 

SQUID:  Superconducting QUantum Interference Device – an ultrasensitive detector of 

magnetic flux 

T1:  longitudinal relaxation time – the characteristic time with which nuclear spins in a 

magnetic field relax to thermal equilibrium after being perturbed  

T2:  transverse relaxation time – the characteristic time with which precessing nuclear spins 

dephase due to spin-spin interactions 

T2
':  the characteristic time with which precessing nuclear spins dephase due to 

inhomogeneities in the precession field 

T2
*= ( 1/T2 + 1/ T2

' )-1  
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T1-weighted contrast image:  MR image in which each voxel is weighted according to its value 

of T1.  This technique is widely used in MRI to differentiate different tissue types. 

MEG:  magnetoencephalography – the detection of spontaneous or stimulated magnetic fields 

from the human brain by means of arrays of SQUIDs (as many as 300) arranged around the 

head in a “helmet” containing liquid helium. 

Φ0:  flux quantum h/2e ≈ 2.07 x 10-15 Tm2. 
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SUMMARY POINTS 

1. The SQUID is an ultrasensitive detector of magnetic flux.  Coupled to a superconducting 

flux transformer, it has a typical sensitivity of 1 fTHz-1/2.  The response of a SQUID 

coupled to an untuned flux transformer is independent of frequency. 

2. In conventional NMR and MRI with a Faraday detector, the amplitude of the signal scales 

as BB0
2, where B0B  is the Larmor field.  In contrast, for a SQUID, the amplitude scales as BB0; 

if the spins are prepolarized at a field higher than B0, the amplitude is independent of B0. 

3. For a given relative magnetic field inhomogeneity ΔBB0/B0B , the NMR inhomogeneous 

linewidth decreases as BB0 is reduced until it becomes limited by the homogeneous 

linewidth. 

4. The response of a flux transformer configured as a second-derivative gradiometer scales as 

1/r5, where r is the distance to a fluctuating magnetic dipole.  The use of such gradiometers 

greatly attenuates spurious magnetic field noise. 

5. At an imaging field of 132 μT, 2-D images of a water phantom and 3-D images of a pepper 

and a forearm demonstrate in-plane resolution of 0.7 x 0.7 mm2, 2 x 2 mm2 and 2 x 2 mm2, 

respectively. 

6. Compared with high fields, imaging in low magnetic fields greatly reduces the image 

distortion introduced by the presence of nonmagnetic metals. 

7. At magnetic fields below a few millitesla, the T1-contrast of phantoms containing different 

concentrations of agarose gel is substantially enhanced over that at higher fields.  Images of 

agarose gel phantoms acquired with T1-weighted contrast at low fields correspondingly 

showed much higher differentiation of these different concentrations compared with those 

in high fields. 
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8. A promising clinical application of microtesla MRI is to image tumors, for example, breast 

and prostate tumors, with greater T1-contrast than is possible with high-field MRI in the 

absence of a contrast agent. 
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ANNOTATED REFERENCES 

(1) Comprehensive review of the current state-of-the-art of clinical MRI 

(2, 3) Two classic references on all aspects of nuclear magnetic resonance 

(4) Comprehensive review of the physical principles underlying MRI, with extensive 

discussion of pulse sequences used in a wide variety of imaging modalities. 

(16) Comprehensive overview of the principles of SQUIDs, with 7 chapters by different 

authors describing the principles, theory, design, fabrication and operation of SQUIDs. 

(17) Comprehensive review of SQUID-based NMR and MRI through 1997, discussing 

approximately 100 such experiments. 

(18) Paper describing the use of SQUIDs with a superconducting tuned input circuit to 

perform MRI at 425 kHz. 

(21) First paper on microtesla NMR performed with a SQUID with a superconducting untuned 

input circuit.  This paper demonstrates the narrowing of the NMR linewidth achieved by 

reducing the magnitude of an inhomogeneous magnetic field, and shows spectra of J-

coupled nuclei. 

(22) First paper on MRI in microtesla fields, showing 2-D images of peppers. 

(46) Paper showing variation in T1-contrast in two concentrations of agarose gel over five 

decades of frequency.  Presents T1-contrast images of gel samples and water, including 

those obtained with inversion recovery. 
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FIGURE CAPTIONS 

Figure 1  Principle of the SQUID.  (a) Schematic showing two Josephson junctions 

(marked “x”) connected in parallel on a superconducting loop.  Above a threshold 

value, the current I induces a voltage V across the SQUID.  (b) Current-voltage 

characteristic for integer (n) and half-integer (n + ½) values of applied flux Φ threading 

the SQUID loop.  (c) Voltage V across the SQUID versus applied flux (in units of the 

flux quantum) for fixed bias current through the SQUID.  A small change in applied flux 

δΦ produces a voltage change δV. 

Figure 2  Practical devices.  (a) Photograph of a thin-film SQUID fabricated at 

Berkeley (right) and a close up of the Josephson junction area (left)  (b) Configuration 

of a flux transformer coupled to a SQUID to form a magnetometer. 

Figure 3  Representative magnitudes of magnetic fields on a logarithmic scale. 

Figure 4  NMR spectra of mineral oil.  (a) Spectrum averaged over 10,000 

acquisitions with BB0 = 1.8 mT.  (b) Spectrum averaged over 100 acquisitions with  Bp B = 

1.8 mT, BB0 = 1.8 µT. 

Figure 5  NMR spectra of J-coupled nuclei in microtesla fields.  (a) Spectrum of 

trimethyl phosphate acquired with BB0 = 4.8 µT.  (b) Spectrum of 2, 2, 2-trifluorethanol 

acquired with B0B  = 993 nT.  [Reprinted with permission from (34). Copyright 2006 

American Chemical Society] 

Figure 6  Configuration of SQUID MRI system.  (a) Schematic of magnetic field coils, 

gradient coils (Gy omitted for clarity) sample, and dewar containing detector assembly.  

(b) Photograph of magnetic field and field gradient coil assembly. 
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Figure 7  Schematic of SQUID and second-derivative gradiometer showing series 

array of Josephson junctions. 

Figure 8  Pulse sequence for three-dimensional imaging. 

Figure 9  Two- and three-dimensional MR images.  (a) Two-dimensional image of 

water in a multi-well plate, acquired with BB0 = 132 µT, field gradient = 240 μT/m and BpB  

= 85 mT.  The in-plane resolution is 0.7 mm x 0.7mm.  (b) Three-dimensional image of 

a whole bell pepper, acquired with BB0 = 132 µT, field gradient = 120 μT/m and BpB  = 60 

mT.  The in-plane resolution is 1.9 mm x 1.6 mm, slice thickness is 10 mm. 

Figure 10  Three-dimensional in vivo image of a human forearm.  Image was acquired 

with BB0 = 132 µT, field gradient = 150 µT/m and BpB = 40 mT.  The in-plane resolution is 

2 mm x 2 mm, slice thickness is 20 mm.  Slices (a)-(d) progress from the wrist to the 

elbow. 

Figure 11  Images of water phantoms containing a 1.5 mm x 10 mm x 15 mm bar of 

titanium.  (a) Photograph of high field phantom.  (b) and (c) Images of high field 

phantom with the long axis of the titanium bar parallel and perpendicular to the 

frequency encoding gradient.  The images were acquired with BB0 = 7 T and  Gfreq = 40 

mT/m. (d) Photograph of low field phantom.  (e) Image of low field phantom, acquired 

with B0 B = 66 µT, Gfreq = 110 µT/m and Gp = 85 mT. 

Figure 12  Low-field T1 contrast of agarose gel and water.  (a) Pulse sequence used 

for T1-weighted imaging and acquisition of T1-dispersion curves.  (b) T1-dispersion 

curves for water and two different concentrations of agarose gel.  (c) Images of a 

phantom consisting of 0.5% agarose gel and 1 to 6 mm-diameter columns of water 

with T1-contrast weighted at 100 mT (A) and 132 μT (B). 
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Figure 13  T1-weighted contrast imaging with inversion recovery.  (a) Pulse sequence 

showing inversion recovery technique.  (b) Schematic of a phantom containing two 

concentrations of agarose gel and pure water.  (c) Images of the phantom with 

constant tp1 = 2s and tint = 200ms, and variable tp2 of 200 ms, 700 ms, and 900 ms, 

respectively, demonstrating selective nulling of each of the agarose gel concentrations 

and water.  

Figure 14  Simultaneous 1H NMR FID (blue trace) and MEG somatosensory response 

(red trace) acquired from a region of the human head including the somatosensory 

cortex.  [Reprinted with permission from (51)] 
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