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Abstract

Measurement of the Hadronic Mass Spectrum in B → Xu�ν Decays

and Determination of the b-Quark Mass at the BABAR Experiment

by

Kerstin Tackmann

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Marco Battaglia, Chair

I present preliminary results of the measurement of the hadronic mass spectrum and its first

three spectral moments in inclusive charmless semileptonic B-meson decays. The truncated

hadronic mass moments are used for the first determination of the b-quark mass and the

nonperturbative parameters μ2
π and ρ3

D in this B-meson decay channel. The study is based

on 383 × 106 BB̄ decays collected with the BABAR experiment at the PEP-II e+e− storage

rings, located at the Stanford Linear Accelerator Center. The first, second central, and

third central hadronic mass moment with a cut on the hadronic mass m2
X < 6.4GeV2 and

the lepton momentum p∗ > 1GeV are measured to be

M1 =(1.96 ± 0.34stat ± 0.53syst)GeV2

U2 =(1.92 ± 0.59stat ± 0.87syst)GeV4

U3 =(1.79 ± 0.62stat ± 0.78syst)GeV6,

with correlation coefficients ρ12 = 0.99, ρ23 = 0.94, and ρ13 = 0.88, respectively. Using
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Heavy Quark Effective Theory-based predictions in the kinetic scheme we extract

mb =(4.60 ± 0.13stat ± 0.19syst ± 0.10theo)GeV

μ2
π =(0.40 ± 0.14stat ± 0.20syst ± 0.04theo)GeV2

ρ3
D =(0.10 ± 0.02stat ± 0.02syst ± 0.07theo)GeV3,

at μ = 1GeV, with correlation coefficients ρmbμ2
π

= −0.99, ρμ2
πρ3

D
= 0.57, and ρmbρ3

D
=

−0.59. The results are in good agreement with earlier determinations in inclusive charmed

semileptonic and radiative penguin B-meson decays and have a similar accuracy. Through

the comparison of this result to those obtained in other channels, this provides a test of

the Heavy Quark Effective Theory predictions that are used for the determination of |Vub|.
In addition, the measured dependence of the hadronic mass moments on the hadronic

mass cut is compared to the dependence predicted by Heavy Quark Effective Theory.

Professor Marco Battaglia
Dissertation Committee Chair
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Chapter 1

Introduction

The Standard Model (SM) of particle physics describes the known elementary particles

as well as their interactions through the electromagnetic, weak, and strong forces. The set

of known elementary particles contains three generations of fermions, leptons, and quarks,

along with 12 vector bosons, which mediate the forces. A scalar boson, the Higgs boson,

thought to be responsible for the generation of mass, has not yet been discovered.

Hadrons are systems of quarks and antiquarks, bound by the strong interaction in the

low-energy regime below 1GeV. This introduces effects that cannot be treated perturba-

tively. The quark masses, which are fundamental parameters of the Standard Model (SM),

exhibit a strong hierarchy: While u, d, and s quarks have masses of the order of a few MeV

and around 100MeV, where the strong interaction is nonperturbative, c and b quarks have

masses of a few GeV and the t quark mass is around 175GeV. For B mesons, which con-

tain a heavy b and a light ū or d̄ quark, predictions can be made by Heavy Quark Effective

Theory (HQET), which exploits the large b-quark mass mb to expand Quantum Chromo-

dynamics (QCD) in powers of 1/mb. Nonperturbative effects at O(1/m2
b ) and O(1/m3

b )

are encoded in the parameters μ2
π, μ2

G and ρ3
D, ρ3

LS (see Sec. 2.3), which cannot be com-

puted from first principles and have to be either determined experimentally or taken from

theoretical models.

The b-quark mass along with the nonperturbative parameters can be extracted from
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differential decay distributions in inclusive semileptonic B meson decays, B → X�ν and

radiative B meson decays, B → Xsγ. Current determinations of mb in B meson decays

have an uncertainty of 0.6−1.16% [1, 2, 3, 4] and are among the most precise determinations

of the b-quark mass. Apart from updates of these results with data from the BABAR and

Belle experiments, these measurements may not be repeated in the coming years. The LHC

experiments will not be able to perform the inclusive reconstruction of B meson decays with

sufficient accuracy. Precise measurements of the b-quark mass will, however, be important

for the study of the Higgs sector at future experiments.

The BABAR experiment, located at the PEP-II e+e− storage rings at the Stanford Linear

Accelerator Center (SLAC), is designed to study the mixing and decays of B mesons. e+e−

collisions provide a clean experimental evironment: The initial state kinematics is fully

known and can be exploited to kinematically constrain the final state. In addition, there

are no underlying events from soft interactions that obscure the interesting physics events.

PEP-II delivers a high luminosity which provides the large datasets needed for precision

measurements and studies of rare B-meson decays.

In the SM, the quark mass eigenstates and the quark eigenstates of the weak interac-

tion are related through the Cabibbo-Kobayashi-Maskawa (CKM) matrix [5, 6], which gives

rise to flavor-changing charged currents and is the source of charge-parity (CP) violation

in the quark sector. Cabibbo introduced the weak quark-mixing angle θC in 1963 to ex-

plain the smallness of weak decay rates for particles with strangeness [5]. Kobayashi and

Maskawa showed in 1973 that a quark mixing matrix for three generations of quarks, of

which only two had been seen at that time, could also give rise to CP violation [6]. The

three-generation CKM-matrix accounts for a large variety of observations [7]. It not only

describes the CP violation observed in the K and B systems, but also explains the very

different mixing frequencies observed in different neutral meson systems and gives precise

predictions of rare K and B meson decays. One of the main goals of the BABAR experiment

is the measurement of the CKM-matrix parameters in the B meson system and provide

overconstraining measurements to test the CKM picture.

The determination of the different CKM matrix elements uses very different techniques,
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both experimentally and theoretically [8]. The matrix element |Vud|, which describes the

strength of the coupling between the u and the d quark, is most precisely measured in super-

allowed 0+ to 0+ nuclear β decays and is determined with a precision of 0.03%, dominated by

theoretical uncertainties. Other measurements of |Vud| are made from the neutron lifetime

and from π+ → π0eν decays. The element |Vus|, which determines the coupling between

the first-generation u and the second-generation s quark, has traditionally been extracted

from semileptonic K decays, K → π�ν. The uncertainty of about 1% is dominated by the

uncertainty on the decay form factor from lattice QCD. The most precise determination of

|Vcd| uses the difference of the ratio of double-muon to single-muon production by neutrino

and antineutrino beams, which is proportional to the charm cross section for scattering off

valence d quarks. The relative uncertainty on |Vcd| from this method is on the order of 5%.

The value of |Vcs| can be determined at the 10% level from semileptonic D → K�ν, the

form factors are predicted by lattice QCD. Semileptonic B-meson decays allow for a mea-

surement of the two matrix elements |Vcb| and |Vub|, which describe the relative strenths of

the couplings between transitions of the third-generation b quark into a second-generation c

quark and a first-generation u quark. Current uncertainties are of the order of 2% and 8%,

respectively. This class of decays is studied in this thesis. The determination of |Vtd| and

|Vts| relies on loop-mediated neutral B(s)B̄(s) oscillations and loop-mediated rare B and K

decays. Current uncertainties are around 10% and 7%, respectively. The ratio |Vtd|/|Vts|
can be determined more precisely, to about 3%, after the oscillations in the BsB̄s system

have recently been observed by the CDF experiment [9]. Finally, |Vtb| can be constrained

from the ratio of branching fractions from t → Wb to t → Wq (q = d, s, b) decays.

One class of measurements extracts |Vub| from the inclusive B → Xu�ν branching frac-

tion, where the lepton � is an electron or a muon and effectively all possible hadronic states

Xu are summed over. In general, semileptonic decays provide a good environment to study

the electroweak and strong interactions. Experimentally, electrons and muons can be iden-

tified with good accuracy. Theoretically, the computation of decays involving leptons is

in general less complicated than the computation of analoguous processes involving only

hadrons.
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The matrix element |Vub| is about 10 times smaller than |Vcb| [8]. Consequently, kine-

matic cuts are employed to reduce the dominant B → Xc�ν background. While the depen-

dence of |Vub| on the total B → Xu�ν branching fraction scales as m5
b , these kinematic cuts

amplify the dependence on mb by several powers. Hence, a good knowledge of mb is neces-

sary to reduce the uncertainties on |Vub|, and presently, the uncertainty on mb introduces

a sizable part of the total uncertainty on |Vub|. The b-quark mass as well as the nonpertur-

bative parameters can be extracted from differential decay distributions in B → Xc�ν and

B → Xsγ decays. Yet, the kinematic cuts employed in the analysis of B → Xu�ν decays not

only amplify the dependence of |Vub| on mb, but also lead to a break-down of the expansion

in 1/mb in the region of phase space that is used in the measurement, which requires the

use of a modified expansion. The validity of this modified expansion is, however, not tested

in B → Xc�ν decays.

In this thesis, we present a preliminary result for the first determination of mb and

of nonperturbative parameters in B → Xu�ν decays from the inclusive hadronic mass

distribution. Inclusive B → X�ν events are selected on the recoil of fully reconstructed

Breco meson decays into hadronic final states, Breco → D(∗)Y , and the invariant mass of the

hadronic system X, mX , is measured. The combinatorial and continuum background from

the Breco reconstruction is subtracted by a fit in each bin of mX and m2
X . To obtain the

measured inclusive B → Xu�ν mX and m2
X spectra, veto cuts are applied to suppress B →

Xc�ν backgrounds, and the remaining B → Xc�ν and other backgrounds are subtracted

by a fit to the mX spectrum. The measured mX and m2
X spectra are then corrected for

resolution and acceptance effects. We also determine the first, second central, and third

central moment of the unfolded spectrum for different cuts on m2
X . A fit is performed to

the moments of the m2
X spectrum in the framework of the Heavy Quark Expansion (HQE)

to extract the b-quark mass mb. This allows us to perform an important test of the HQET

framework by comparing the extracted value of mb to that obtained using spectral moments

in B → Xc�ν decays. As an extension of this, the breakdown of the unmodified HQE can be

tested by extracting m2
X moments with varying cuts on m2

X and comparing to the predicted
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cut dependence. In the future, the unfolded hadronic mass spectrum can also be used to

constrain the functional form of the shape function [10, 11, 12, 13].

This thesis is organized as follows: Chapter 2 gives an introduction to the physics

of the CKM matrix and to the description of semileptonic B meson decays in HQET. It

also gives a short historical overview about earlier determinations of the b-quark mass.

Chapter 3 is an overview of the BABAR experiment, including brief descriptions of the

different subdetectors, the reconstruction of charged particles at BABAR, along with the

recoil method used in this analysis. The measurement of the hadronic mass spectrum is

treated in Chapter 4, and Chapter 5 deals with the unfolding technique and the unfolding

and extraction of the spectral moments. Chapter 6 describes the fit to the mass moments

and discusses the results. Finally, Chapter 7 contains the conclusions.
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Chapter 2

The CKM-Matrix Element Vub

and the b-Quark Mass

This chapter gives an introduction to the determination of |Vub| and the b-quark mass

and the underlying theoretical concepts, generally following Refs. [14, 15].

Sec. 2.1 briefly introduces the Standard Model of Particle Physics, with an emphasis

on those aspects that are directly relevant to this thesis. Sec. 2.2 gives an overview over

common renormalization schemes in B physics and different determinations of the b-quark

mass. Finally, Sec. 2.3 provides an introduction to the theoretical framework that we use

to extract the b-quark mass from the measured moments.

2.1 The Standard Model of Particle Physics

The Standard Model (SM) of Particle Physics describes all known elementary particles

and their interactions. While matter is made up of spin-1
2 fermions, interactions are me-

diated by spin-1 bosons. We know of three generations of fermions: the charged e, μ, τ

along with the corresponding neutral neutrinos, νe, νμ, ντ in the leptonic sector, and three

up-type quarks, u, c, t, and down-type quarks, d, s, b, in the quark sector. Leptons only
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carry electroweak charge and hence participate only in electroweak interactions; quarks also

carry color charge and participate in electroweak and strong interactions.

The electroweak and strong forces are mediated by 12 gauge bosons. The W± and Z

bosons couple to the weak charge, the photon, γ, mediates the electromagnetic force, and

8 gluons couple to the color charge.

2.1.1 Electroweak Symmetry Breaking and Quark Masses

In the SM, the electroweak interactions are described by an SU(2) × U(1)Y gauge

group. Explicit mass terms for fermions and bosons are absent, since they would violate

gauge invariance. The Glashow-Weinberg-Salam theory introduces a scalar field which

spontaneously breaks the SU(2) × U(1)Y gauge symmetry in order to create mass terms

for the gauge bosons and fermions by the so-called Higgs mechanism. The SU(2) × U(1)Y

symmetry is broken to U(1)em.

The scalar Higgs field φ = (φ+, φ0) is in the fundamental representation of SU(2), and

is assigned a charge Y = 1/2 under the U(1)Y symmetry. The potential of φ is

V (φ) = −μ2φ†φ + λ2(φ†φ)2, (2.1)

so that φ acquires a vacuum expectation value 〈φ〉 = v/
√

2 with v = μ/λ. The gauge can

be fixed such that the ground state is φ = (0, v/
√

(2)). The gauge bosons are coupled to

the Higgs through the covariant derivative, Dew
μ φ. Their mass terms arise when Dew

μ φ is

evaluated at vacuum expectation value of φ,

LGM =
g2v2

8
(
W+μW+

μ + W−μW−
μ

)
+

v2

8
(
g′Bμ + gW μ

3

)(
g′Bμ + gW3μ

)
. (2.2)

Here, g and g′ are the SU(2) and U(1)Y coupling constants, respectively, W± the charged

SU(2) vector bosons, and W3 and B the neutral vector bosons of SU(2) and U(1)Y . The

generator of the electromagnetic U(1)em, which is a linear combination of generators of

SU(2) and U(1)Y , leaves 〈φ〉 invariant, and hence the photon, γ = sin(θW )W3 + cos(θW )B,

does not acquire a mass. The weak mixing angle θW is given by

sin(θW ) =
g′√

g′2 + g2
, cos(θW ) =

g√
g′2 + g2

. (2.3)
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The mass and charge eigenstates of the remaining gauge bosons are the W± and the neutral

Z. Their masses are MW = gv/2 and MZ = MW / cos(θW ). The Higgs’ mass is predicted

to be mH =
√

2μ at tree level, but receives non-negligible radiative corrections.

The fermions acquire masses via gauge invariant Yukawa couplings to the Higgs field,

LYuk = λij
u ūi

RφT εQj
L − λij

d d̄i
Rφ†Qj

L − λij
e ēi

Rφ†Lj
L + h.c., (2.4)

where h.c. denotes the hermitian conjugate, and the repeated generation indices i, j are

summed over. The ūi
R, d̄i

R, and ēi
R denote the conjugate right-handed fermion fields, which

transform as singlets under SU(2). The Qj
L and Lj

L denote the left-handed fermion SU(2)

doublets. The Yukawa couplings are given by λij
u,d,e, and ε is the antisymmetric matrix

ε =

⎛
⎜⎜⎝ 0 1

−1 0

⎞
⎟⎟⎠ . (2.5)

Since right-handed neutrinos do not exist in the SM, there is no Yukawa interaction for the

neutrino fields.

Evaluating (2.4) at the vacuum expectation value 〈φ〉 = v/
√

2 gives rise to 3 × 3 mass

matrices for the quarks and charged leptons,

Mu =
v√
2
λu, Md =

v√
2
λd, Me =

v√
2
λe, (2.6)

which are in general non-diagonal. They can be diagonalized by unitary transformations,

which transform the eigenstates of the weak interaction to the propagating mass eigenstates.

Hence, in the SM, the masses of quarks and charged leptons depend on the expectation value

of the Higgs field, as well as on the Yukawa couplings between the Higgs and the fermions.

Testing the Higgs Couplings

If a candidate for the Higgs boson will be found in future experiments, one requirement

for it to be identified as the SM Higgs will be that its couplings to fermions and gauge

bosons are indeed proportional to their masses. In extended models, the masses of the SM

particles can receive contributions from more than one source, e.g., from couplings to more
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than one Higgs doublet. Furthermore, the SM-like Higgs boson in extended models often is

an admixture of states from several scalar particles, so that additional mixing angles enter

the couplings to the SM particles. Precise measurements of the heavy quark, lepton, and

gauge boson masses are needed for a sensitive comparison of the predicted SM couplings

to the measured couplings. For example, at a (0.5 − 1)TeV e+e− collider, the current

uncertainty on mb will significantly reduce the volume of parameter space in which the SM

can be distinguished from a supersymmetric model [16].

Experimentally, the accessable final states f in Higgs decays H → f f̄ depend on the

mass of the Higgs boson [17]. For a smaller Higgs mass, the Higgs couplings to the heavier

fermions, the b and, with larger uncertainty, c quark and the τ can be measured. For a

larger Higgs mass, the couplings to the W and Z can be determined from Higgs decays to

gauge bosons, while Higgs production in Higgsstrahlung and vector boson fusion can also

be used for a smaller Higgs mass. For an intermediate Higgs mass, the Higgs coupling to

t quarks can be determined from the Higgsstrahlung process pp → tt̄H, where the Higgs

is radiated from the top quark. Yet, this measurement is difficult due to the small cross

section and the complex topology of the bb̄bb̄WW final state.

While the ATLAS and CMS experiments at the Large Hadron Collider (LHC) will only

be able to determine ratios of Higgs couplings from H → f f̄ decays with an interesting

accuracy due to uncertainties in the Higgs production cross sections, a future e+e− collider

would allow for an absolute determination of these Higgs couplings.

The Cabbibo-Kobayashi-Maskawa (CKM) Matrix

The diagonalization of the mass matrices is achieved by separate unitary transformations

on the left-handed and right-handed quark and lepton fields,

uL = Luu′
L, uR = Ruu′

R

dL = Ldd
′
L, dR = Rdd

′
R

eL = Lee
′
L, eR = Ree

′
R,

(2.7)
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to yield real, diagonal non-negative mass matrices. The primed fields represent the mass

eigenstates, as opposed to the unprimed flavor eigenstates, the eigenstates of the weak

interaction. In general, the transformation of the uL and dL fields will be different, and the

left-handed quark doublet QL can be rewritten as

⎛
⎜⎜⎝uL

dL

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝Luu′

L

Ldd
′
L

⎞
⎟⎟⎠ = Lu

⎛
⎜⎜⎝ u′

L

VCKMd′L

⎞
⎟⎟⎠ . (2.8)

The CKM matrix is given by VCKM = L†
uLd. It enters the left-handed quark couplings to

the charged gauge bosons,

W+ūLγμdL = W+ū′
LγμVCKMd′L, (2.9)

if they are written in terms of the mass eigenstates. Thus, a non-diagonal CKM matrix

introduces flavor-changing charged currents. The kinetic energy terms are invariant under

the transformations (2.7), and so are the couplings to the photon and Z field, as each

single term involves only fields of the same handedness. Hence, there are no flavor-changing

neutral currents at tree level in the SM.

Since the CKM matrix describes the tranformation between the weak eigenstates and the

mass eigenstates, it is a 3×3 unitary matrix with nine real parameters. Five parameters can

be eliminated by phase redefinitions of the quark fields, and the remaining four parameters

are three angles and one complex phase. The latter, if nonzero, gives rise to CP violating

interactions in the Standard Model. The CKM matrix can be written as a product of three

complex rotation matrices [18]

VCKM =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(2.10a)

with cij = cosθij and sij = sinθij for i, j = 1, 2, 3.

The hierarchy found among the matrix elements is exploited in the Wolfenstein
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parametrization of the CKM matrix, which uses the four parameters λ, A, ρ, and η,

VCKM =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 − λ2

2 λ Aλ3(ρ − iη)

−λ 1 − λ2

2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ O(λ4), (2.10b)

to expand the matrix in powers of λ ≈ 0.22 [19].

Rather than expanding, one can define to all orders [20]

s12 = λ

s23 = Aλ2

s13e
−iδ = Aλ3(ρ − iη).

(2.11)

The unitarity relations between rows and columns of the CKM matrix define triangles

in the complex ρ-η plane. The different triangles have identical area, the size of which is a

convention-independent measure for the size of CP violation in the SM [21]. The unitarity

relation between the first and third column, which describes the B meson sector, yields a

triangle with similarly-sized sides and hence predicts large observable CP violation effects

in this system. After rotation and rescaling of the triangle, the apex is given by

ρ̄ + iη̄ = −VudV
∗
ub

VcdV
∗
cb

. (2.12)

Independent measurements provide constraints on the parameters of the triangle, and a fit

can be used to test the consistency of the measured data with the CKM picture.

Fig. 2.1 shows a current fit in the ρ̄-η̄ plane. Shown are the constraints from semileptonic

B decays (|Vub| and |Vcb|), B0B̄0 mixing (Δmd), B0
s B̄0

s mixing (Δms), CP violation in the

neutral K system (εK), B → J/ΨK(∗)0 decays (sin(2β) and cos(2β)), B → ππ, ρρ, ρπ

decays (α), and B → D(∗)K(∗) decays (γ), but a larger number of measurements enters

the fit [22]. The different constraints are very consistent and the CKM picture is found to

work remarkably well. The current number and precision of measurements allow for cross

checks using only inputs dominated by New Physics-insensitive tree-level decays and New

Physics-sensitive loop processes, and good agreement is found between the two fits.
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Figure 2.1. Fit to constraints in the ρ̄-η̄ plane [22].

A more precise measurement of |Vub| can significantly improve the current constraint

on the apex of the triangle and is particularly sensitive to the consistency between the

measurements of sin(2β) and the constraints obtained from the fit to |Vub| and |Vcb|.

2.1.2 Strong Interactions

In the SM, the strong interactions are described by quantum chromodynamics (QCD),

which is an SU(3) gauge theory.

Renormalization, that is, the removal of formal divergences arising in higher-order loop

graphs, introduces a dependence on the renormalization scale μ into the renormalized cou-

pling constant g(μ). This scale dependence is such that the QCD fine structure constant

αs(μ) = g(μ)2/(4π) decreases with increasing energies,

αs(μ) =
12π

(33 − 2nf ) ln(μ2/Λ2
QCD)

. (2.13)

The number of quark flavors is given by nf . The small energy scale where αs(μ) formally

diverges defines the scale ΛQCD, which experimentally is of the order of a few hundred

MeV. The calculation of the scale dependence is itself carried out in perturbation theory

in αs. The divergence of αs at ΛQCD is thus merely formal, since perturbation theory is no

longer valid when αs is large. Nevertheless, ΛQCD can be viewed as the scale where αs gets

large, and nonperturbative effects become important. One consequence of QCD becoming

strongly coupled at low energies is the non-existence of free quarks. Their properties have to
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be inferred from hadronic properties with the help of effective theories or theoretical models.

In the case of the b-quark mass, this introduces non-negligible theoretical uncertainties.

2.2 The b-Quark Mass

A variety of methods has been used to determine the b-quark mass both from the

bb̄-system, as well as from B meson properties. This section gives a brief overview over

common renormalization schemes in B physics and some of the methods for determining

mb, following Refs. [23, 24, 25].

Each method involves its own approximations and uncertainties and in most cases,

uncertainties are introduced by neglected higher-order corrections and hence are difficult to

quantify. In some cases, determinations using the same method can arrive at substantially

different error estimates.

2.2.1 Mass Schemes

The mass of the b quark is a fundamental parameter of the SM. Yet, due to the confine-

ment of the b quark into hadrons, its mass is difficult to determine experimentally. Since

the mass cannot be measured directly, it has to be inferred from hadron masses or other

hadronic properties.

As a parameter in the Lagrangian, quark masses have to be renormalized, and the

renormalized quantities are scheme- and scale-dependent. In principle, any renormalization

condition can be used to define the renormalized mass, but some are better suited for B

physics than others.
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The Pole Scheme

The pole mass mpole
b is defined as the position of the pole in the quark propagator, i.e.,

as the solution to1

p/− m − Σ(p/,m)|
m=mpole

b
= 0, (2.14)

where Σ(p,m) is the self-energy of the b quark and m is the bare mass. As a property

of an unphysical on-shell quark, the pole mass is particularly sensitive to infrared physics:

It suffers from a renormalon ambiguity (an ambiguity of order ΛQCD), which arises from

the low-momentum region of loop-integrals where QCD is strongly coupled. This results in

ill-converging perturbative expansions when using the pole scheme.

The MS Scheme

The most commen short-distance mass is the MS mass, mb(μ). It is defined by regulating

QCD with dimensional regularization and subtracting the divergences in the MS (modified

minimal subtraction) scheme at the scale μ. One finds [24]

mpole
b

mb(mb)
= 1 +

4ᾱs

3π
+
( ᾱs

π

)2 (
13.44 − 1.04nf

)
+
( ᾱs

π

)3 (
190.8 − 26.7nf + 0.65n2

f

)
+ . . . ,

(2.15)

where nf is the number of lighter quark flavors and ᾱs = αs(mb(μ)). The scale μ is typically

chosen to be of the order of the characteristic energy scale Q of the process considered to

resum logarithms of the form ᾱm
s (μ) logm(Q/μ), which would otherwise be large.

The MS scheme arises naturally in processes at high energies, where the b quark is far

off-shell. It treats the b quark as a fully dynamical QCD field. This is less useful in low-

energy processes, where the b quark is nonrelativistic and the heavy degrees of freedom are

integrated out.

The Kinetic Scheme

The shortcomings of both the pole and the MS masses can be resolved by so-called

threshold masses, which have no renormalon ambiguity and have well-behaved perturbative
1For ease of notation, c = 1 will be used throughout this thesis.
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expansions in the treatment of nonrelativistic heavy quarks. One of the popular threshold

masses is the kinetic mass, mkin
b (μ). The kinetic scheme uses a Wilsonian hard cutoff at

the scale μ to separate short- and long-distance contributions to the renormalization group

running. Contributions from scales smaller than μ are absorbed into the definition of the

mass and for μ → 0, the pole mass is regained. The nonperturbative parameters also

acquire a μ dependence. The relationship between the kinetic mass and the pole mass is

given by [24]

mkin
b (μ) = mpole

b − [Λ̄(μ)
]
pert

−
[

μ2
π(μ)

2mkin
b (μ)

]
pert

+ . . . , (2.16)

where
[
Λ̄(μ)

]
pert

and
[ ¯μ2

π(μ)
]
pert

are perturbative evaluations of Heavy Quark Effective

Theory (HQET, see Sec. 2.3.1) matrix elements that describe the difference between the pole

and the B-meson mass. The factorization scale is commonly chosen to be μ = 1GeV. In the

following, we will drop the “kin” superscript, and all b-quark masses and nonperturbative

parameters are understood to be in the kinetic scheme, unless labeled otherwise.

The 1S Scheme

Another commonly used threshold mass is the 1S mass, which, in contrast to other

threshold masses, does not depend on an explicit subtraction scale. The 1S mass, m1S
b , is

defined as one half of the perturbative contribution to the mass of the Υ(1S) state in the

limit that mb � mbv � mbv
2 � ΛQCD, and is related to the pole mass by [24]

m1S
b

mpole
b

=1 − (CF αs(μ))2

8

{
1 +
(αs(μ)

π

)[
β0

(
L + 1

)
+

a1

2

]

+
(αs(μ)

π

)2
[

β2
0

(
3
4
L2 + L +

ζ3

2
+

π2

24
+

1
4

)
+ β0

a1

2

(
3
2

L + 1
)

+
β1

4

(
L + 1

)
+

a2
1

16
+

a2

8
+
(

CA − CF

48

)
CF π2

]}
,

(2.17)

where L ≡ ln(μ/(CF αs(μ)mpole
b )) and ζ3 = 1.20206. The expression for the 1S mass is

derived in the framework of a nonrelativistic expansion, where powers of v arise as powers

of αs. In order to achieve the renormalon cancellation in this scheme, the so-called upsilon

expansion is introduced, which formally treats terms of order αn+1
s in Eq. (2.17) as being

of order αn
s .
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2.2.2 Determination of the b-Quark Mass

Spectral Moments

Moments of e+e− → bb̄X distributions have served for a large number of mb measure-

ments. Their calculation starts from the correlator of two electromagnetc currents involving

b quarks,

(−gμνq2 + qμqν)Π(q2) ≡ i
∫

d4xeiq·x〈Tjb
μ(x)jb

ν(0)〉, (2.18)

with jb
μ(x) ≡ b̄(x)γμb(x). In the complex q2-plane, Π(q2) has poles at the locations of bb̄

bound states and a cut along the real axis, which corresponds to the continuum. Since

Π(q2) is an analytic function of q2, the integral along the cut is related to the nth derivative

of Π(q2) by
dn

d(q2)n
Π(q2)

∣∣∣∣
q2=0

=
π

n!

∫ ∞

0

Im Π(s)
sn+1

, (2.19)

and the optical theorem relates the imaginary part of Π(q2) to the total cross section for

e+e− → γ∗ → bb̄X,

Rb(s) = 12πQ2
b Im Π(q2 = s + iε), (2.20)

with

Rb(s) =
σ(e+e− → γ∗(s) → b̄ + X)

σpt
, σpt =

4πα2
QED(mb)
3s

, Qb = −1
3
e. (2.21)

The sum rules give a relationship between measurable moments of the total cross section

for e+e− → bb̄ pairs and derivatives of the vacuum polarization Π(q2) [23],

12π2Q2
b

n!
dn

d(q2)n
Π(q2)

∣∣∣∣
q2=0

=
∫ ∞

0
ds

Rb(s)
sn+1

. (2.22)

For dimensional reasons, the left-hand side is proportional to m−2n
b , which allows for a

determination of mb.

In practice, only a certain range of values of n can be used. Since the measurements

of Rb(s) have substantial uncertainties in the continuum region, n must be large enough

such that the moment is dominated by the better-measured first few Υ resonances. On the

other hand, nonperturbative effects become increasingly important for the calculation of
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the left-hand side at larger n, for which the sum rules are dominated by low-momentum

states near threshold.

Two regions can be distinguished: In the large-n region, 4 ≤ n ≤ 10, the bb̄ dynamics

is dominantly nonrelativistic, and in the small-n region, 1 ≤ n ≤ 4, the bb̄ dynamics

is dominantly relativistic. While the large-n region suffers from larger theoretical and

perturbative uncertainties, the small-n region is more sensitive to the poorly known parts

of the bb̄ cross section above the Υ resonances.

The Υ Mass Spectrum

Some of the earliest determinations of mb were based on the analysis of the Υ mass

spectrum. In the heavy-quark limit, the bb̄ pair forms a nonrelativistic Coulomb bound

state, which can be described by the Schrödinger equation. The difficulty arises in the

determination of the nonperturbative corrections, and the resulting uncertainties dominate

the total uncertainty on mb. Studies based on potential models suggest, however, that in

reality, the Υ system is not well described by a Coulomb bound state and recent analyses

only use the Υ(1S) state.

3-Jet Events at the Z Pole

In e+e− collisions at energies around the Z mass, exclusive observables, such as multi-

jet cross sections, exhibit a sizeable dependence on the quark masses. For the 3-jet rate,

calculations exist at next-to-leading order. The b-quark mass can be determined from the

normalized 3-jet rate of Z → bb̄ to Z → ��̄ (� = u, d, s) events, which is defined as [25]

Rb�
3 (yc) =

Rb
3(yc)

R�
3(yc)

=
Γb

3j(yc)/Γb

Γ�
3j(yc)/Γ�

, (2.23)

where Γq
3j(yc) and Γq are the 3-jet and total decay width of the Z into qq̄ for q = b or �,

and yc is the jet resolution variable.

Since these determinations are performed at a much higher energy scale than the others,

they also provide quantitative evidence for the running of mb as predicted by QCD.
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Lattice QCD

Lattice QCD calculations can be used to determine the masses of light and heavy quarks

from the known hadron masses, as well as from the bb̄ spectrum. They are based on a

discretization of spacetime. Since the b-quark mass is larger than the UV cutoff of the

calculations, which is given by the inverse lattice spacing, the b quark cannot be simulated

directly on the lattice. Rather, an effective theory, such as HQET or NRQCD (nonrela-

tivistic QCD), is used, in which the heavy degrees of freedom are integrated out. In this

framework, the mass of the B meson, mB, is given by [24]

mB = mpole
b + ε − δm, (2.24)

where ε is the binding energy and δm is a mass counterterm induced by radiative corrections.

The relation is valid up to order 1/m2
b corrections. The binding energy is obtained from

numerical simulations on the lattice. While δm depends on the underlying effective theory,

it is a short-distance quantity and can be calculated in peturbation theory.

Kinematic Moments

As explained in Sec. 2.3.2, mb, along with a number of nonperturbative parameters,

can be determined from moments of kinematic decay distributions in B → X�ν decays.

All previous measurements rely on B → Xc�ν decays. In addition, determination can be

obtained from photon energy moments in radiative penguin decays, B → Xsγ. Recently,

fits to data from several experiments have been carried out in the kinetic scheme [2] and

the 1S scheme [1].

In semileptonic B decays, B → Xc�ν, moments of the lepton energy E� as well as the

hadronic mass mX are used. They are measured as a function of the lower cut on E�. At

parton level, the hadronic mass is fixed at mc, so that nonzero results for moments beyond

first order provide a good probe of both nonperturbative and perturbative power corrections

to the leading order tree-level results.

As a two-body decay on parton level, the photon energy in B → Xsγ decays is very

sensitive to mb and nonperturbative parameters, which makes it an interesting observable
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despite the small branching fraction of this decay. At tree level, the first and second moments

are directly sensitive to mb and μ2
π, which describes the kinetic energy of the b quark in the

B meson.

2.3 Semileptonic B-Meson Decays

The B meson2, as the lightest particle containing a b quark, is forced to decay weakly.

We consider the semileptonic decay

B → Xq�ν, (2.25)

where the final state consists of a lepton-neutrino pair and a hadronic system Xq, with q

being either a c or a u quark. At parton level, the b (b̄) quark emits a W− (W+) gauge

boson and turns into a q (q̄) quark b → q�−ν̄� (b̄ → q̄�+ν�), introducing the dependence

of the decay amplitude on the CKM-matrix element Vqb. This decay is shown in the left

diagram in Fig. 2.2.

To good approximation, the second valence quark q′ (q̄′) inside the B (B̄) meson, which is

a d (d̄) quark in case of neutral B0 (B̄0) mesons and a u (ū) quark in case of charged B+ (B−)

mesons, acts as a spectator of the decay process, illustrated in the right diagram in Fig. 2.2.

Yet, if the dynamics of the decay is to be described appropriately, the nonperturbative

effects that take place inside the B meson and within the final state Xq need to be taken into

account. However, since there is no strong interaction between the hadronic system Xq and

the lepton-neutrino pair, semileptonic B meson decays allow both for a clean determination

of the CKM-matrix elements |Vqb| and the study of the nonperturbative effects.

2.3.1 Differential Decay Rates

The B meson, as a system containing a heavy quark b, mb = 4.5 to 5GeV � ΛQCD,

and a light antiquark u or d with masses much smaller than ΛQCD, can be dealt with in

the framework of Heavy Quark Effective Theory (HQET). The large b-quark mass has two
2For ease of notation, we will usually refer to “B mesons” without specifying the flavor or charge. Charge

and/or flavor will be specified only when necessary.
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Figure 2.2. Semileptonic B-meson decay. The left Feynman diagram displays the parton
level decay b → q�−ν̄�. The right diagram displays the decay B̄ → Xq�

−ν̄�, where the
“blobs” denote nonperturbative strong interactions.

important implications: Renormalizing QCD at a typical energy of mb yields αs(mb) ≈ 0.2,

and hence, perturbation theory in QCD is valid at this scale. Secondly, Λ = ΛQCD/mb ≈
0.13 can be taken as a reasonable expansion parameter for nonperturbative effects. This is

exploited by HQET, which performs a systematic expansion of QCD in powers of Λ and αs.

There are two complementary approaches to semileptonic B decays. One can either

be interested in exclusive decay channels, that is, in specific hadronic final states like in

B → D(∗)�ν or B → π�ν decays. Or one can be interested in inclusive semileptonic decays.

In the latter case, all possible hadronic states contribute. In particular, the Xq system

can be a multi-particle state. In either case, the decay is described by the effective weak

Hamiltonian density,

HW =
4GF√

2
Vqb(q̄γμPLb)(�̄γμPLν). (2.26)

Since the decay takes place at a typical scale of mb, the W boson can be integrated out of

the theory. The arising W propagator is dominated by the large W mass, mW = 80GeV,

and thus the interaction term can be replaced by the effective coupling 4GF Vbq/
√

2 and the

four-fermion operator (q̄γμPLb)(�̄γμPLν�) . The Fermi constant GF is given by GF /
√

2 =

g2/(8m2
W ), and PL = 1

2(1 − γ5) is the projector on the left-handed parts of the spinors. In

the following, the leptons are assumed to be massless, which is a good approximation for

electrons and muons.

To obtain the differential decay rate for inclusive semileptonic decays, all possible
3In HQET, ΛQCD is taken to be mB − mb ≈ 500 MeV.
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hadronic final states are summed over, which includes the integration over the Xq phase

space. The three independent kinematic variables can be taken to be the energies of the

lepton and the neutrino, E� and Eν , and the invariant mass of the lepton-neutrino system

q2 with q = p� + pν. The differential decay rate in the B rest frame is

dΓ
dq2dE�dEν

=
1

2mB

∫
d3�p�

(2π)32p0
�

∫
d3�pν

(2π)32p0
ν

δ(E� − p0
�)δ(Eν − p0

ν)δ
(
q2 − (p� + pν)2

)
∑
Xq

∑
s�,sν

|〈Xq�ν̄
∣∣HW

∣∣B̄〉|2(2π)4δ4(pB − p� − pν − pX),

(2.27a)

where s� (sν) denotes the spin of the lepton (neutrino). Four-momentum conservation is

encoded in the four-dimensional δ function, and the other three δ functions project out the

independent kinematic variables. The spins of the final state particles are summed over,

which in case of the hadronic system is implicitely contained in the summation over Xq.

Performing the phase space-integrations yields

dΓ
dq2dE�dEν

=
1

8mB

∑
Xq

∑
s�,sν

|〈Xq�ν̄|HW |B̄〉|2δ4(pB − p� − pν − pX)

=
2

(2π)3
G2

F |Vqb|2WαβLαβ.

(2.27b)

In the second step, the matrix element is factored into a leptonic and a hadronic tensor,

which is possible since no strong interactions occur between the two, while electroweak ra-

diative corrections are suppressed by powers of GF or the QED fine-structure constant αem.

This property makes semileptonic decays the preferred environment for the measurement

of |Vqb|. The leptonic tensor is

Lαβ =
∑
s�,sν

|〈�ν̄|�̄γμPLν|0〉|2 = 2(pα
� pβ

ν + pβ
� pα

ν − gαβp� · pν − iεαβ
κλ pκ

� pλ
ν). (2.28)

The hadronic tensor is given by

W αβ =
1

2mB

∑
Xq

(2π)3δ4(pB − q − pX)
〈
B̄(pB)

∣∣J†α
L

∣∣Xq(pX)
〉〈

Xq(pX)
∣∣Jβ

L

∣∣B̄(pB)
〉
, (2.29)

where Jα
L = q̄γαPLb is the left-handed quark current. The hadronic tensor contains all

strong interactions relevant for the inclusive semileptonic B decay. It can be related to

21



the imaginary part of a time-ordered product of currents describing the forward scattering

amplitude B → B via the optical theorem

− 1
π

ImTαβ = W αβ, (2.30a)

with

Tαβ =
−i

2mB

∫
d4xe−iq·x〈B̄∣∣T [J†α

L (x)Jβ
L(0)]

∣∣B̄〉. (2.30b)

2.3.2 Operator Product Expansion

The operator defined by Eq. (2.30b) is a non-local operator, that is, the fields in the

currents are not located at a single spacetime point. For a time-ordered product of two

local operatos, T [Oa(z)Ob(0)], an operator product expansion (OPE) can be performed

if the separation z is sufficiently small. The time-ordered product T [Oa(z)Ob(0)] can be

written as an expansion in local operators,

T [Oa(z)Ob(0)] =
∑

k

Cabk(z)Ok(0), (2.31a)

where the spacetime dependence is moved into the Wilson coefficients Cabk(z). In the com-

putation of matrix elements, T [Oa(z)Ob(0)] can be replaced by
∑

k Cabk(z)Ok(0), and the

Cabk(z) are independent of the matrix element computed, as long as the external momenta

are small compared to the inverse of the separation, 1/z. The momentum-space version of

the OPE looks like

∫
d4xeiQ·zT [Oa(z)Ob(0)] =

∑
k

Cabk(Q)Ok(0), (2.31b)

and is valid for momenta Q much larger than the external momenta in the matrix elements.

Since the Wilson coefficients Cabk(Q) depend on the large momentum Q, Q = mbv − q ≈
mb � ΛQCD in the case of a decaying b quark, they can be computed perturbatively in

QCD by taking matrix elements of both sides of Eq. (2.31b).

In the calculation of the differential decay rates, the OPE is applied to the operator in

Eq. (2.30b). The coefficients Cabk(Q) are computed by taking b quark and gluon matrix

elements 〈b|·|b〉 and 〈bg|·|b〉. The operators in the OPE involve b-quark fields, covariant
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derivatives Dμ, and the gluon field strength Gμν . The external b-quark momenta are written

as mbv + k, where the large b-quark mass is exploited to separate its momentum into two

parts: Thinking of the b quark as residing inside a B meson, where the typical scale for

momentum transfer among its components is of the order ΛQCD, the b-quark velocity will

only change by a small amount due to these nonperturbative interactions, Δv ≈ ΛQCD/mb.

Its momentum can thus be split up into the momentum mbv arising from the B meson’s

motion with four-velocity v, and a residual momentum k of order ΛQCD. Expanding the

resulting matrix elements of the operator in Eq. (2.30b) in k/mb thus yields an expansion in

powers of the dimensionless Λ = ΛQCD/mb. The expansion is carried out to a certain order

in Λ, which requires local operators up to a certain order in k to be taken into account.

To obtain a result for the differential decay rate up to order Λ2, the following local

operators enter the OPE,

b̄γαPLb,

b̄(iD − mbv)μγαPLb,

b̄(iD − mbv)μ(iD − mbv)νγαPLb, and

− gb̄GμνγαPLb.

(2.32)

From the 〈b|·|b〉 and 〈bg|·|b〉 matrix elements of the above local operators and of the

operator in Eq. (2.30b), the coefficients Cabk(Q) in the OPE can be inferred.

The next step in computing differential decay rates is to evaluate the local opterators in

the 〈B̄|·|B̄〉 matrix element, which, together with the coefficients, then yields Tαβ expanded

in Λ. The lowest order result reproduces the parton model result and the corrections at

order Λ vanish.

2.3.3 Nonperturbative Parameters

The hadronic B-matrix elements can be parametrized in terms of two nonperturbative

parameters at order Λ2, denoted by μ2
π and μ2

G, where

μ2
π ≡ 1

2mB
〈B̄|b̄(i �D)2b|B̄〉, μ2

G ≡ 1
2mB

〈B̄|b̄ i
2
σjkG

jkb|B̄〉, (2.33)
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at tree level, i.e., at leading order in αs, and σμν = i
2 [γμ, γν ,]. Here, μ2

π describes the kinetic

energy of the b quark from the residual motion inside the B meson, and μ2
G describes the

magnetic interactions of the b quark with the light degrees of freedom in the B meson, that

is, the light valence quark and possible quark-antiquark pairs as well as gluons. Both μ2
π

and μ2
G are expected to be of the order Λ2

QCD.

At order Λ3, two more nonperturbative parameters arise from dimension-six operators,

the expectation value of the Darwin operator ρ3
D and of the spin-orbit coupling ρ3

LS , at tree

level defined as

ρ3
D ≡ 1

2mB
〈B̄|b̄(−1

2
�D · �E)b|B̄〉, ρ3

LS ≡ 1
2mB

〈B̄|b̄(�σ · �E×i �D)b|B̄〉, (2.34)

where Ei = Gi0.

The measured decay rate of B → Xq�ν can be used to extract the CKM-matrix element

|Vqb|, assuming that mb and the nonperturbative parameters are known. It is the shape of

differential decay distributions that carries additional information about the b-quark mass

and the dynamics of the b quark in the B meson that can be used to determine mb and

the nonperturbative parameters. The shape information is usually obtained by measuring

normalized moments of the decay distributions as a function of cuts on kinematic variables.

In B → Xc�ν decays moments of the lepton energy and of the hadronic mass are determined

as a function of the lower cut on the lepton energy. Here, we determine the moments of the

hadronic mass in B → Xu�ν decays.

The best constraints on μ2
G are obtained from the mass difference between B and B∗

mesons and heavy quark sum rules can be used to estimate ρ3
LS . Ref. [26] finds μ2

G =

(0.35+0.03
−0.02)GeV2, and Ref. [27] suggests that typically, −0.05GeV3 < ρ3

LS < −0.25GeV3.

2.3.4 Hadronic Mass Moments

For the interpretation of the measured moments we use calculations performed in the

kinetic scheme with a cutoff at μ = 1GeV.

The normalized integer moments of the squared invariant hadronic mass m2
X are defined
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as [12]

〈m2n
X 〉 =

∫
dm2

X m2n
X dΓ/dm2

X∫
dm2

X dΓ/dm2
X

. (2.35)

The calculation of the moments is performed using the parton level quantities E0 = 1− v·q
mb

and s0 = (v − q/mb)2, where vμ is the four-velocity of the B meson. In terms of E0 and s0,

the hadronic mass can be expressed as

m2
X = Λ̄2 + 2mbΛ̄E0 + m2

bs0. (2.36)

The hadronic mass moments are computed from building blocks M(i,j),

M(i,j) =
1
Γ0

∫
dE0 ds0 dE� si

0 Ej
0

d3Γ
dE0 ds0 dE�

= M(i,j) +
αs

π
A

(1)
(i,j) +

α2
sβ0

π2
A

(2)
(i,j),

(2.37)

where Γ0 = G2
F m5

b/(192π
3) is the tree level decay width, β0 = 11 − 2/3nf and the number

of light flavors nf = 3. M(i,j) contains the tree level contributions and the nonperturbative

corrections up to order 1/m3
b . The values of A

(1,2)
(i,j) are obtained from calculations for B →

Xc�ν with a small value of mc.

The predicted moments are affected by several systematic uncertainties. Uncertain-

ties arise from higher-order uncalculated nonperturbative corrections, of order 1/m4
b and

beyond, and perturbative corrections, of order α2
s and αsΛ

(2,3)
QCD/m

(2,3)
b and beyond. Fur-

ther uncertainties are induced by four quark operators, which introduce additional 1/m3
b

corrections.

To reduce the experimental uncertainties for the determination of mb and nonperturba-

tive parameters from B → Xu�ν decays, the moments are defined with a (variable) upper

cut on the hadronic mass. However, if a tight cut is applied, too little phase space is inte-

grated over to be able to predict the moments because the 1/mb expansion breaks down.

This can be remedied by using a modified expansion, usually referred to as twist expan-

sion. Basically, the usual expansion is not justified any longer for a particular component

of k, the residual momentum of the b quark in the B meson, and this component is left

unexpanded. As a result, the place of the nonperturbative parameters is taken by nonper-

turbative functions, which, at tree level, describe the motion of the b quark in the B meson
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and are commonly referred to as shape functions. Ref. [12] does not include shape function

effects, which introduces an additional uncertainty on the predictions of the moments, and

hence the extracted b-quark mass and nonperturbative parameters, when a cut on m2
X is

applied. Alternatively, we can turn this argument around: By extracting mass moments

with different cuts on m2
X and comparing the measured cut dependence with that predicted

by Ref. [12], one can determine how low the cut on m2
X can be pushed before shape function

effects become important.

2.4 New Variables for the Inclusive Determination of |Vub|
at the B Factories

In inclusive measurements, the suppression of the dominant B → Xc�ν background

constitutes a major experimental challenge. Almost all extractions of |Vub| make use of

the size of the charm quark mass, mc � mu, to achieve a separation of signal decays

from charm backgrounds by using kinematic constraints on the reconstructed semileptonic

decays. However, both theoretical uncertainties on |Vub| and the sensitivity to the mass

of the b quark increase rapidly with tighter cuts on the available phase space for signal

events. The precise dependence varies for different kinematic variables, but in all cases the

theoretical and parametric uncertainties increase quickly when decreasing the fraction of

signal events

fu =
Bcut(B → Xu�ν)
Btotal(B → Xu�ν)

, (2.38)

where Bcut is the signal branching fraction in the presence of kinematic cuts and Btotal is

the total branching fraction.

Originally, |Vub| has been extracted using the endpoint of the lepton energy spectrum.

While the experimental resolution of the lepton energy, E�, is good, the small fraction of

signal decays beyond the endpoint of the lepton energy in b → c�ν decays gives rise to

substantial theoretical and parametric uncertainties. Lowering the cut on the lepton energy

to reduce these uncertainties yields larger experimental uncertainties related to the control

of the charm background. Recent analyses use E� > 2.2GeV [28], E� > 1.9GeV [29], and
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E� > 2.0GeV [30], resulting in a retained fraction of signal events between fu = 0.11 and

fu = 0.32.

The use of hadronic variables such as the mass of the hadronic system, mX , has al-

lowed for a much larger fraction of the signal to be retained when separating the charm

background. Ideally, a cut on mX < mD would remove all charm background while keeping

about 80% of the signal. However, to achieve a sufficiently good resolution on hadronic

variables, the analyses need to fully reconstruct the second B meson (the “tag B”) from the

Υ(4S) decay. In addition, these “tagged” analyses allow one to perform the measurement in

the rest frame of the signal B and open the possibility to separate charged and neutral Bs.

The analysis strategy of tagging by a fully reconstructed second B meson in the event has

become possible with the start of the B factories, where only two B mesons are produced for

each B event, without soft fragmentation products or similar backgrounds. While tagged

analyses allow for larger fu and smaller systematic uncertainties from charm backgrounds,

this comes at the cost of statistical uncertainty: The efficiency for fully reconstructing the

tag B is only about half a percent. Furthermore, the tagged analyses have additional sys-

tematic uncertainties from the subtraction of combinatoric backgrounds on the tag side,

which contribute substantially to the total systematic uncertainty [31].

An alternative method [32, 33] that retains the high efficiency of untagged analyses,

but allows a larger fraction of signal events to pass the charm rejection cuts, employs the

reconstructed neutrino momentum determined from the total missing momentum in the

Υ(4S) decay. This untagged neutrino reconstruction has an efficiency of about 10%. The

first measurement [33] using this technique achieves an overall uncertainty on |Vub| of similar

size as other determinations at that time.

The method of Refs. [32, 33] uses a combined q2–E� cut, where q2 is the total invariant

mass of the leptonic system, to discriminate against charm background. In theory, this cut

has larger fu than a pure lepton energy cut. However, the imperfect neutrino reconstruction

yields a poor resolution in q2, which again introduces uncertainties from charm background

subtraction. Limiting these still necessitates an additional cut on E� > 2.0GeV, decreasing

fu again.
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Given a specific reconstruction method, optimizing the overall uncertainty in |Vub| is

usually achieved by optimizing the phase-space cut that discriminates against charm back-

ground and is largely a trade-off between increasing fu, to reduce theoretical and parametric

uncertainties, versus increasing the uncertainties from charm background. So far, this opti-

mization happens by choosing one (or two) specific discriminating variable and optimizing

the value of the cut on this variable.

In this section we explore alternative combinations of leptonic variables that are suited

for untagged inclusive measurements. The variables we construct provide a more general

way to optimize the phase-space cut, which gives the experiments an additional continuous

degree of freedom in optimizing the total uncertainty on |Vub|.

2.4.1 Kinematics

The experimental resolution in the discriminating kinematic variables has substantial

impact on the systematic uncertainties from charm backgrounds, but is often not a part of

theoretical considerations. With poor resolution one is often led to cut further away from

the theoretical charm threshold, while with good resolution one can move closer to it. In

general, the resolution itself depends on the region of phase space. Ideally, one would like

to cut closer along the charm threshold in phase-space regions with good resolution and

stay further away from it in regions with poor resolution.

Our starting point is the simple observation that the lepton energy has by far the best

experimental resolution, which makes it very useful as a discriminating variable in this

respect. The combined q2–E� cut can be viewed as a q2-dependent E� cut, which is given

by the kinematic endpoint in E� for B → Xc�ν for a specific q2 value. In other words, this

cut provides a way to incorporate additional kinematic information from a second variable,

in this case q2. In principle, we can use any other kinematic variable instead of q2 as a

second variable, and choosing one with good experimental resolution will result in a better

charm background suppression. In the following, we will explore three different variables as

second variables: q2, the neutrino energy Eν , and the light cone variable q−, defined below.
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In the rest frame of the B meson, the inclusive decays B → X�ν can be described by

three independent kinematic variables, which we can choose to be the leptonic variables q2,

E�, and Eν or alternatively E� and q± = q0 ± |�q|, where q0 = E� + Eν and �q are the total

energy and three-momentum of the leptonic system. The leptonic phase space is then

0 ≤ q2 ≤ 4E�Eν or 0 ≤ q− ≤ 2E� ≤ q+ . (2.39)

The remaining hadronic phase-space limit comes from the restriction on the invariant mass

of the hadronic system, mX ≥ mD for B → Xc�ν and mX ≥ mπ for B → Xu�ν. Thus, as

is well known, to eliminate the charm background we need to ensure that mX < mD.

In terms of the above leptonic variables, we have

m2
X = m2

B + q2 − 2mB(E� + Eν) = (mB − q+)(mB − q−) . (2.40)

Thus, using Eq. (2.39) we can obtain an upper limit for m2
X given our two leptonic variables

of choice:

sν = (mB − 2E�)(mB − 2Eν) , (2.41a)

sq = (mB − 2E�)
(
mB − q2

2E�

)
, (2.41b)

s− = (mB − 2E�)(mB − q−) . (2.41c)

The variable sq is identical to the variable smax
h defined in Ref. [32]. From Eq. (2.39) one

can easily see that the si obey the hierarchy

m2
X ≤ sν ≤ sq ≤ s− . (2.42)

Assuming perfect resolution, requiring si < scut
i with scut

i = m2
D rejects all B → Xc�ν

background. Since sν (s−) yields a better (worse) approximation of m2
X than sq, it has a

higher (lower) signal efficiency than sq.

The two-dimensional phase space in E� and Eν , q2, or q−, respectively, together with

the corresponding cut on si, is shown in Fig. 2.3. We observe that for large E� close to

the endpoint, the cut on si becomes an almost pure E� cut and hence profits from the

excellent E� resolution. With decreasing E�, the si cut becomes more dependent on the
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Figure 2.3. Two-dimensional phase space in Eν–E�. The dark shaded area shows the
available phase space for B → Xc�ν in the B rest frame, the light shaded area shows the
smearing due to the Υ(4S) frame. The boundaries of the B → Xu�ν phase space coincide
with the plot boundaries. The thick line shows the cuts sν < m2

D and E� > 2.1GeV. The
thin lines show cuts sν(x) < m2

D for x = 1 to x = 0 (pure E� cut).
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second leptonic variable, which will result in a poorer resolution and cause more charm

background to leak into the theoretically clean phase-space region si < scut
i . To limit

this effect Ref. [33] imposes an additional cut E� > Ecut
� , which is also shown in Fig. 2.3.

Alternatively, one could also decrease the value of scut
i . Both possibilities reduce the charm

backgrounds but also reduce the fraction of signal events fu.

Naively, for each si, we have two degrees of freedom to optimize the experimental cuts:

The values of scut
i and Ecut

� . As mentioned before, ideally we would like the kinematic cut

to be close to the kinematic boundary for B → Xc�ν for large E�, taking advantage of the

good E� resolution, and smoothly depart from it for smaller E�, taking into account the

poorer resolution. This can be achieved by including an additional free parameter x in the

definition of the si that controls the shape of the cut:

sν(x) = (mB − 2E�)(mB − x 2Eν) , (2.43a)

sq(x) = (mB − 2E�)
(
mB − x

q2

2E�

)
, (2.43b)

s−(x) = (mB − 2E�)(mB − x q−) . (2.43c)

The value of 0 ≤ x ≤ 1 controls how much the second leptonic variable is used and thus

effectively determines the resolution of si(x). The phase space in Eν–E� with various cuts

is shown in Fig. 2.3. For x = 1 we recover the definitions in Eqs. (2.41), si(1) ≡ si, while

for x = 0, si(0) < scut
i is equivalent to a pure E� cut

E� >
m2

B − scut
i

2mB
. (2.44)

Therefore, by varying the value of x one gains an independent degree of freedom in opti-

mizing the phase space-cut, which smoothly interpolates between a pure E� cut and a given

si cut.

So far, our discussion was specific to the rest frame of the decaying B meson. However,

experimentally, untagged analyses can only be performed in the rest frame of the Υ(4S).

There are several strategies one might consider to take into account the boost of the B

meson in the Υ(4S) rest frame. Here, we assume that the experiments will correct for this

boost and quote their results in the B rest frame, which was also the approach taken in
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Ref. [33]. The reason is that the experimental reconstruction efficiencies depend on the

position in phase space and also on the boost, which should be dealt with on the same

footing.

Therefore, we will continue to work in the B rest frame and regard the values of the

kinematic variables measured in the Υ(4S) rest frame as a measurement of their true values

in the B rest frame. This is reasonable, since the boost essentielly causes an additional

(known) smearing on top of the experimental resolution. For the neutrino energy (or q−),

the effect of the boost is negligible compared to their experimental resolution, while for

the lepton energy, the smearing caused by the boost is the dominant effect. We stress

that (except at the very edge of phase space) this smearing is roughly symmetric, so a

measurement using an experimental cut f(EΥ
� , EΥ

ν ) ≤ f cut, where EΥ
i are the energies

measured in the Υ(4S) rest frame, should quote a result for f(E�, Eν) ≤ f cut, with the

same functions f and values f cut4.

The important effect of the boost is that it effectively increases the available phase space

for b → c transitions. To take this into account, we have to modify Eqs. (2.43),

sη
ν(x) = (mB − η− 2E�)(mB − x η+ 2Eν) , (2.45a)

sη
q(x) = (mB − η− 2E�)

(
mB − x η+

q2

2E�

)
, (2.45b)

sη
−(x) = (mB − η− 2E�)(mB − x η+ q−) , (2.45c)

where

η± =

√
1 ± β

1 ∓ β
, (2.46)

and β is the boost of the B in the Υ(4S) rest frame. As argued above, if sη
i (x) are used

for the measurement they should also be used to quote the final results. Strictly speaking

sη
i (x) ≤ m2

D only give the theoretical b → c phase-space boundary for E� ≥ 1
2(η+mB −mD)

for i = ν,− and E� ≥ 1
2η+(mB − mD) for i = q. For practical purposes this is irrelevant,

because the lepton energy cut will always be larger.
4This is in contrast to Ref. [33], where with a cut on EΥ

� > 2.1 GeV a result for E� > 2.0 GeV was quoted,
which implicitly extrapolates the measurement to a larger fraction of events than was actually measured. In
other words, theoretically both EΥ

� > 2.1GeV and E� > 2.1 GeV have very similar fu, whereas E� > 2.0 GeV
has a substantially larger fu.
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2.4.2 Results

We perform a study using Monte Carlo simulation (MC) to compare the expected

performance of different kinematic cuts.

Monte Carlo Setup

To produce samples of B → Xu�ν signal and B → Xc�ν backgrounds we use the EvtGen

event generator [34]. Branching fractions for B → Xc�ν decays are adjusted to recent

measurements [8]. B → Xu�ν decays are simulated according to [35] and the hadronization

of the hadronic state is performed by JetSet [36]. We use a pole mass of mb = 4.75GeV

and λ1 = −0.27GeV2.

We use estimates for resolutions in kinematic variables that can be achieved with present

analysis techniques for untagged neutrino reconstruction [37]. In particular, we take into

account non-Gaussian effects and correlations between E� and the respective second leptonic

variable.

Results

Taking into account experimental resolution, we obtain estimates for the ratio of signal

to background for different kinematic cuts. Since we are interested in comparing the different

cuts, we normalize our results to what we obtain for the cuts in Ref. [33], sq < 3.5GeV2

and E� > 2.1GeV. We also obtain the value of fu predicted by Ref. [35] for the same cuts.

The results as a function of the cut on si(1), si(1)cut, and x are displayed in Fig. 2.4. The

size of fu gives an indication of the theoretical uncertainties, provided that events from all

regions of the associated phase space contribute significantly to the result. This would need

to be tested in an actual analysis of experimental data.

We scan a wide range of values for si(x)cut, Ecut
� , and x, and compare the different

configurations in Fig. 2.5. Under the assumption that the uncertainty on |Vub| is dominated

by the systematic uncertainty from charm backgrounds and theoretical uncertainties, the

configuration that yields the smallest uncertainty on |Vub| will be found on the inner side of
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Figure 2.4. The normalized signal-to-background ratio (dashed, left axes) and fu (solid,
right axes) as a function of the cut on si(1) (left) and as a function of x for sν(x) in red,
sq(x) in orange, and s−(x) in blue.

the roughly hyperbolic plane. The yellow star indicates the configuration used in Ref. [33],

showing that a better optimum can be found.

As a naive attempt to perform an optimization in scut
i (x), Ecut

� , and x, we assume that

the uncertainty induced from uncertainties in the charm background is inversely propor-

tional to the normalized ratio of signal to background, and that the theoretical uncertainty

is inversely proportional to fu. We match the absolute size of the projected uncertainties

to that observed in Ref. [33].

Under these assumptions, the configuration that minimizes the total uncertainty on

|Vub| is sν(0.6)cut = 5GeV2, Ecut
� = 1.95GeV, for which fu exceeds 20%.

In practice, the cuts and x need to be determined taking into account details of the

data analysis that are impossible to implement into this study. Yet, our study suggests

strongly that a better optimum than the currently used configuration can be found and the

new variables allow for additional degrees of freedom in the optimization.
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Chapter 3

The BABAR Experiment

The BABAR experiment at the asymmetric PEP-II storage ring is located at the Stanford

Linear Accelerator Center (SLAC). BABAR’s primary goal is the study of charge-parity (CP)

asymmetries in B-meson decays. The large amount of recorded B-meson decays also allow

for high-precision determinations of CKM-matrix parameters and the measurement of rare

B decays. Other topics studied include the physics of bottom and charm mesons in general,

as well as τ leptons.

The following sections give a short overview of the PEP-II B factory and the BABAR

detector and follow the descriptions in Ref. [38] and [39]. They also give a brief overview

of the reconstruction of charged particles at BABAR, highlighting one contribution to recent

tracking improvements, and introduce the recoil method used in the analysis presented here.

3.1 The PEP-II B Factory

The PEP-II B factory is designed to deliver B mesons to the experiment and to pro-

vide a clean environment needed for the measurements. For the main physics program,

PEP-II runs at a center-of-mass energy corresponding to the mass of the Υ(4S) resonance,

mΥ(4S) = 10.58GeV. The Υ(4S) decays dominantly into BB̄ pairs. As an e−e+ collider, it

offers a cleaner environment than a hadron collider and a high signal-to-background ratio of
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Figure 3.1. The PEP-II storage rings and the linear collider.

σbb̄/σhad ≈ 0.28, where σhad is the total hadronic cross section. The absence of fragmenta-

tion products reduces the combinatorial background, and the knowledge of the Υ(4S) four

momentum and thus of the BB̄ system provides kinematic constraints, which permit a con-

siderable suppression of combinatorial and continuum backgrounds for the reconstruction

of B decays.

The B mesons are almost at rest in the center-of-mass system. Since the CP asymmetries

which occur in the interference between decays with and without mixing cancel in time

integrated measurements at e+e− colliders, the proper decay time of the B meson needs

to be measured. In order to resolve the decay length of the B mesons and infer the time

of their decays, which is needed for the measurement of CP violation in the B system,

PEP-II works asymmetrically, that is, with different energies for the e− and the e+ beam.

In this way, the B mesons receive significant momenta in the laboratory frame and have

measureable decay lengths.

Fig. 3.1 shows the PEP-II storage rings and the linear accelerator, which serves as

an injector. Electrons of 9GeV are stored in the High Energy Ring (HER) and collide

with positrons of 3.1GeV, which are held in the Low Energy Ring (LER). The asymmetric

beam energies result in a Lorentz boost of βγ = 0.56 of the B mesons in the laboratory

frame, which allows the measurement of their decay times and thus of time-dependent CP

asymmetries.

A high luminosity is needed in order to achieve enough statistics for processes with low

37



branching fractions. At the Υ(4S) resonance, the cross section for e−e+ → bb̄ is about

σ(e−e+ → bb̄) = 1.05 nb. PEP-II’s design luminosity of 3 ·1033 cm−2 s−1 has been surpassed

by a factor of 4. Between 1999 and April 2008, PEP-II delivered an integrated luminosity

of 553.48 fb−1, of which 531.43 fb−1 was recorded by BABAR. Data taking was divided into

seven time periods, usually denoted by Run1 through Run7. During Run1 through Run6,

data were taken mainly at the Υ(4S) resonance, with a small percentage of data taken

40MeV below the Υ(4S) mass to study non-BB̄ backgrounds. Run7 was devoted to data

taking at the Υ(3S) and Υ(2S) resonances for the study of possible low-energy New Physics

and spectroscopy. In addition, the Υ(5S) and Υ(6S) resonances were scanned. Fig. 3.2

shows the integrated luminosity delivered by PEP-II and recorded by BABAR between 1999

and 2008.

3.2 The BABAR Detector

The asymmetric design of the BABAR detector accounts for the asymmetric beam ener-

gies in the HER and the LER and hence garantees a large geometrical detector acceptance.

In order to achieve BABAR’s physics goals, an excellent decay vertex resolution of the

B mesons and a good particle identification over a wide kinematical range are needed. The

BABAR detector with its subsystems is shown in Fig. 3.3 and described in the following.

In the BABAR coordinate system, the direction of the B field defines the z-axis. The

x-axis is the horizontal axis, the y-axis the vertical axis and x, y and z form a right-handed

system. In the corresponding cylindrical coordinate system, φ measures the angle in the

x − y plane and θ measures the angle to the z-axis.

3.2.1 The Silicon Vertex Tracker (SVT)

The silicon vertex tracker (SVT) is the innermost detector component closest to the

beam pipe. It provides up to ten accurate measurements of the charged tracks immediately

outside the beam pipe. This allows one to precisely extrapolate charged particles to their
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Figure 3.2. Integrated luminosity delivered by PEP-II and recorded by BABAR.
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Figure 3.3. The BABAR detector and its subsystems: (1) Silicon Vertex Tracker (SVT), (2)
Drift Chamber (DCH), (3) Detector of Internally Reflected Cherenkov Light (DIRC), (4)
Electromagnetic Calorimeter (EMC), (5) Superconducting Coil, and (6) Instrumented Flux
Return (IFR).

production point. The SVT serves for the reconstruction of particle trajectories and decay

vertices.

Low momentum tracks with a transverse momentum below 100MeV do not reach the

drift chamber because of their curvature in the magnetic field and are measured by the SVT

alone. For higher momentum tracks the SVT provides one part of the tracking information.

It also yields up to ten measurements of dE/dx per track.

The SVT consists of five double-sided, concentric, cylindrical layers of silicon detectors.

The layers are composed of 6, 6, 6, 16, and 18 silicon strip detectors, respectively. The

inner sides of each layer are oriented perpendicular to the beam direction and allow one

to measure the z coordinate, whereas the outer sides are oriented in beam direction to

determine the angle φ. The three inner layers reach a resolution of (10 − 15)μm, the outer

layers of (30− 40)μm, which in both cases is dominated by the uncertainty due to multiple

scattering.
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3.2.2 The Drift Chamber (DCH)

The drift chamber (DCH) is BABAR’s main tracking device for charged particles with a

transverse momentum above 100MeV. It consists of 7104 hexagonal drift cells arranged in

10 superlayers of 4 layers each. The drift cells are composed of a 20μm gold-plated tungsten-

rhenium sense wire, surrounded by six 120μm or 80μm gold-plated aluminum field wires.

The gas mixture of 80% helium and 20% isobutane is chosen to provide good spatial and

dE/dx resolution, and a reasonably short drift time, while minimizing the material. Spatial

resolution along the z direction is achieved by stereo angles between the superlayers, ranging

between 40 and 76mrad from the innermost to the outermost superlayer.

The drift chamber operates in a magnetic field of 1.5T. The resolution for transverse

momenta pt (measured in GeV) follows a linear dependence,

σpt

pt
= (0.13 ± 0.01)% · pt + (0.45 ± 0.03)%.

Apart from precise measurements of the charged particles’ momenta and directions, the

drift chamber also provides particle identification by determination of the ionization loss

dE/dx. dE/dx is derived from the total charge deposited in each drift cell with an average

resolution of typically 7.5%. Pions and Kaons can be separated for momenta lower than

700MeV.

3.2.3 The Cherenkov Detector (DIRC)

The detector of internally reflected Cherenkov light (DIRC) is devoted to particle iden-

tification. It is designed to provide excellent kaon identification and to separate between

kaons and pions at large momenta up to 4GeV.

The DIRC consists of 144 fused silica bars with a refraction index close to n = 1.474 and

of 4.9m length. When a charged particle traverses the quartz bars with a velocity higher

than the speed of light in the material, it radiates photons under an angle of cos α = 1/(nβ),

so-called Cherenkov light. By total internal reflection and mirrors on the forward end, the

photons are transported to the end of the bars on the backward end of the detector. In this
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way, the light is directed into the connected Standoff Box filled with purified water. The

photons are detected by photomultiplier tubes operating in the water. The reconstructed

Cherenkov angle α together with the momentum measured by the tracking system provides

particle identification information.

3.2.4 The Electromagnetic Calorimeter (EMC)

The electromagnetic calorimeter is designed to measure electromagnetic showers with

high efficiency, and with high energy and angular resolution. It consists of a cylindrical

barrel and conical foward endcap and contains 6580 thallium-doped CsI crystals. They

are tilted with respect to their azimuthal direction to the interaction point to minimize

losses from photons traversing though the gaps between the crystals. The calorimeter

covers a solid angle of −0.775 < cos(θ) < 0.962 in the laboratory frame, corresponding to

−0.916 < cos(θ) < 0.895 in the center-of-mass frame. The usable region is reduced due to

shower leakage in the outmost crystals. The crystal are read out with silicon photodiodes

at their rear ends.

The CSi(Tl) crystals have a radiation length of 1.85 cm and a Molière radius of 3.8 cm,

compared to a typical crystal length of 30 cm and front and back face areas of 4.7× 4.7 cm2

and 6.1 × 6.0 cm2, respectively.

Due to varying light yields among the crystals and damage from beam-generated radi-

ation, frequent calibration of the individual crystals is necessary. In the low-energy region,

the calibration is carried out with photons of 6.13MeV from activated oxygen. The high-

energy calibration uses Bhabha events with energies of 3 to 9GeV.

The energy resolution is determined in several intervals of the energy range and is fitted

to be
σE

E
=

(2.32 ± 0.30)%
4
√

E/GeV
⊕ (1.85 ± 0.12)%,

where ⊕ denotes addition in quadrature. The angular resolution is determined based on
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decays of π0 and η into photons of approximately equal energy and is found to be

σθ = σφ =
(3.87 ± 0.07√

E/GeV
+ 0.00 ± 0.04

)
mrad.

The EMC serves for the detection of photons, for example from π0 and η decays. It is

a main device for the electron identification, which uses the shower energy and form and

the track momentum. Additionally, the dE/dx information from the drift chamber and the

DIRC Cherenkov angle are used.

3.2.5 The Instrumented Flux Return (IFR)

The instrumented flux return is outside the solenoid coil providing the magnetic field

for momentum measurements of charged particles. The steel serves as flux return for the

magnetic field, and as muon and hadron absorber. It is segmented into iron plates varying

in thickness between 2 and 10 cm, in between which resistive plate chambers (RPCs) were

placed. Originally, there were 19 layers of RPCs in the barrel and 18 layers in the endcaps,

covering a total active area of about 2000 cm2. Two layers of cylindrical RPCs are mounted

between the EMC and the magnet cryostat, and detect particles exiting the EMC. The

RPCs detect streamers from ionizing particles via capacitive readout strips. Their active

volume is filled with a mixture of Argon (57%), Freon 134a (37%), and Isobutane (about

5%).

However, the RPCs have lost detection efficiency much faster than expected due to

problems with the linseed oil used in their manufacturing [40]. The RPCs in the barrel

region have therefore been replaced by Limited Streamer Tubes (LSTs) before the start of

Run5 (two sextants) and Run6 (four sextants). LSTs consist of a resisitive tube, serving

as cathode, with an anode wire in the center, and are operated in limited streamer mode,

where a streamer discharge develops on one side of the wire.

Muon identification relies almost entirely on the IFR. Tracking information from the

SVT and the drift chamber is used to extrapolate the tracks to the IFR. All detected IFR

clusters within a predefined distance from the extrapolated track are associated with the

track.
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KL and other neutral hadrons interact with the IFR steel and can be identified as IFR

clusters not associated with a charged track. Additional information for neutral hadron

detection is provided by the cylindrical RPCs and the EMC.

3.3 Reconstruction of Charged Particles

In order to correctly reconstruct B-meson decays, charged and neutral particles need to

be reconstructed and their particle type needs to be identified. At BABAR, charged tracks

are reconstructed in the SVT and the DCH. Neutral particles are seen in the EMC and

identified as neutral if no charged track is found that could have caused the energy deposit

in the calorimeter.

Reconstruction of charged tracks is accomplished in two steps: Track finding (pattern

recognition) and track fitting.

Tracks are found independently in the SVT and the DCH. The pattern recognition

algorithms start on the outside of the detectors, where the occupancy is lowest, and extends

the track search inwards. Separately found tracks in the SVT and DCH are then merged

into single tracks, if the χ2 of the match between the two track pieces is good. Hit adding

algorithms attempt to extend unmerged SVT and DCH tracks into the DCH and SVT by

attaching unassociated DCH and SVT hits, respectively.

After the pattern recognition, the tracks are initially fit with a simple helix. Charged

particles in a B field along the z axis can ideally be described by a helix around the z axis

defined by the track parameters d0, φ0, ω, z0, and tan λ. The track parameters can be

interpreted in terms of the point of closest approach between the track and the origin in

the x − y plane. The distance of closest approach to the origin of the x − y plane is given

by d0, the sign of which is determined by the angular momentum of the track. The angle

of the track in the x − y plane at the point of closest approach is φ0. The z projection of

the distance of closest approach to the origin is given by z0. The curvature of the track in

the x − y plane is given by ω = 1
rt

, where rt is the radius of the track in the x − y plane,
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and the sign of ω is determined by the angular momentum of the track. Finally, tan λ is

the tangent of the angle between the z axis and the track.

The helix fit is followed by a Kalman filter fit, where tracks are modeled as piecewise

helices. The fit accounts for effects from interactions with the detector material as well

as from magnetic field inhomogeneities. The Kalman filter processes the effects such as

the measured hits, the expected scattering, and the deflection due to field imhomogeneities

sequentially according to their flight length on the track, and updates the estimated track

parameters at each step. The track fit yields the best linear unbiased estimate of the track

parameters.

3.3.1 Recent Tracking Improvements

BABAR has recently introduced a set of algorithms, collected in the TrkFixup software

package, that improve the quality of charged tracks used in physics analysis. TrkFixup relies

on the standard reconstruction of charged particles having been performed and provides a

second pass to identify and improve known tracking pathologies. The algorithms make

use of the detailed hit level tracking information that is available in the BABAR computing

model CM2.

TrkFixup consists of two parts. The first part deals with the reconstructed track objects,

the second part creates improved track-based candidate lists to be used for physics analysis.

The TrkFixup track algorithms can be classified as either rejecting background tracks, such

as tracks arising from pattern recognition errors (referred to as ghosts tracks), non-primary

branches of looping tracks, and tracks arising from material interactions or decays in flight,

or as improving the resolution of the fitted track parameters by removing a few inconsistent

hits or adding SVT hits to DCH-only tracks. These algorithms rely on the availability of

the full Kalman fit, while normal data analysis uses a much faster parametrized version of

the track fit. To make TrkFixup viable in terms of computing time, tracks are preselected

if they show characteristics of background or being poorly measured, and the full Kalman

is only restored for the preselected tracks.
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Hit Filtering

In the context of TrkFixup, hit filtering refers to the idea of removing a few inconsistent

hits from the track fit in order to improve the resolution of the fitted track parameters, and is

performed by the TrkHitFix module. Studies and the tuning of the algorithm use simulated

Monte Carlo (MC) data.

Tracks with a low track fit probability P can have a substantial number of misassociated

hits. For the purpose of hit filtering, we consider a hit to be misassociated if it was not

produced by the true track contributing the largest fraction of hits to the track studied,

as taken from MC truth information. Thus, these misassociated hits could be background

hits, i.e., not associated with any track, or could be produced by another true track. In

either case, these hits do not belong on the track that is studied and are likely to degrade

the track parameter resolution. The aim is to remove as many of these hits as possible from

the track fit, while keeping the correctly associated hits. To remove the impact of a hit

from the track fit, we disable the hit and refit the track.

TrkHitFix preselects tracks with a track fit probability lower than 10−5, which amounts

to 13% of all tracks.

In the following, we introduce the variables we use to separate misassociated and cor-

rectly associated hits. For hits in both the SVT and in the DCH, we use χhit, defined as

χhit = r/σr, where the residual r is the distance of closest approach between the hit and

the fitted track and σr its error, measuring how consistent (spatially) this hit is with the

track. The sign of r is determined by the angular momentum of the track with respect to

the wire in the DCH or the strip in the SVT, respectively. In order to have an unbiased

estimate of the residual, the effect of the respective hit is removed from the track fit. As

can be seen in Fig. 3.4, χhit provides statistical separation between correctly associated and

misassociated hits. Fig. 3.4 also shows that χhit for misassociated hits is peaking around

0, indicating a selection bias when hits are assigned to a track. Furthermore, we see that

there is a substantially higher fraction of misassociated hits among the SVT hits than there

is among the DCH hits. But, χhit of course does not provide unambiguous information
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Figure 3.4. χhit, the spatial residual divided by its uncertainty, for SVT hits (left) and DCH
hits (right) that are assigned to tracks. No cuts are applied to the hits or to the tracks.

whether a certain hit was produced by a given track – the track fit might be suffering from

other problems and misassociated hits themselves bias the whole fit. We therefore include

other quantities when deciding which hits to remove.

The second variable we consider for SVT hits is the time information from the SVT,

which is independent of the spatial information from the SVT. Fig. 3.5 shows a much

broader distribution in the time residual divided by its uncertainty, χt = rt/σrt , defined

analogously to the spatial χhit, for misassociated hits than for correctly associated hits. For

DCH hits, we instead consider the doca of the hit, that is the distance of closest approach

between the fitted track and the sense wire in the cell that was hit. As can be seen in

Fig. 3.5, the distribution for correctly associated hits has a sharp drop-off at around 1 cm,

which roughly corresponds to an average size of the hexagonal DCH cells. The distribution

of correctly associated hits also shows a long tail, which we attribute to badly reconstructed

hits or tracks. These could, for example, be hits where the wrong TDC hit out of several in

that cell has been chosen and thus does not represent the hit produced by the track. These

hits have been studied in more detail in [41]. Effects like this could also be due to hard

scattering in the beam pipe with a poor track fit. Yet, as can be seen, a large fraction of

the misassociated hits is in the tail of the doca distribution and thus can be removed by a

cut, which improves the ratio of correctly associated to misassociated hits.
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Figure 3.5. The time pull for SVT hits (left) and the doca distribution for DCH hits (right)
that are assigned to tracks. No cuts are applied to the hits or to the tracks.

The hit filtering is designed to improve tracks with a few hits that should not have been

added to the track. We disable up to 3 hits per track, but keep at least a 1C fit.

We combine the information from the different variables into an effective χ2 and label

hits with χ2 > χ2
max as “bad”. This allows us to define an absolute ranking in the quality

of the hits and thus to decide which of the hits to remove in case we find more “bad” hits

than we can or want to remove. Specifically, this allows us to have a common ranking and

χ2 cut for SVT and DCH hits.

For SVT hits, the χ2 is defined as

χ2 =
a2χ2

hit + w2χ2
t

a2 + w2
, (3.1a)

where w is the relative weight between the spatial and the time information and a = (0) 1

to (not) use the spatial information in the χ2. For DCH hits, χ2 is defined as

χ2 =

⎧⎪⎪⎨
⎪⎪⎩
∞ if doca > docacut

s2χ2
hit otherwise,

(3.1b)

where s2 is the relative scaling between the χ2 of DCH hits with respect to SVT hits.

Several parameters need to be tuned: the weight w, the scaling s, the parameter a,

the cut on χ2, χ2
max, and the cut on doca, docacut. This is done using MC hit level truth

information, which we use to maximize
√

εp, where ε and p are the efficiency and purity,
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Figure 3.6. Efficiency vs. purity for SVT hits scanning χmax, the weight w, and the use of
the spatial information.

respectively. The efficiency is defined as the probability for a hit to be classified as good hit

(i.e., a hit that passes the χ2 cut) if it was produced by (only) that track, ε = N cassoc
good /N cassoc.

The purity is defined as the probability for a hit to have been produced by (only) that track,

given that it passes the χ2 cut, p = N cassoc
good /Ngood. For the tuning of the hit filtering we use

a sample of tracks antiselected by the other TrkFixup modules to minimize the amount of

tracks suspected to suffer from other problems.

Fig. 3.6 shows efficiency vs. purity for SVT hits, scanning χmax =
√

χ2
max and the

weight w, where points of the same marker color share the same weight w and points of the

same marker style share the same cut χmax.
√

εp is maximized for χmax = 3 and w = 2.

Fig. 3.7 shows efficiency vs. purity for DCH hits, scanning χmax and the cut on doca,

docacut. For this scan, s is set to 1.
√

εp is maximized by docacut = 1.05 cm, but the scan

does not give any reasonable value for χ2
max, which we attribute to badly reconstructed

hits which are associated to the track according to MC truth information. Lacking better

information, we pick χmax = 9 in order to not be sensitive to possible data and MC dis-

agreements in the near tails of the χhit distribution. This corresponds to s = 0.33 if we

choose to have a common χmax for SVT and DCH hits.

Using MC truth information, we can test if the track fit of a given track improved
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after disabling “bad” hits and refitting the track. For this purpose, we define the pull in

a parameter p as the difference between the fitted parameter, pfit, and the true parameter,

ptrue, divided by the uncertainty given by the fit, σp, pfit−ptrue

σp
. A track fit is considered to

have improved if the pull in the curvature, ω, or the impact parameter in the beam direction,

z0, improves by at least one unit. Fig. 3.8 shows the distribution of the change in the track

fit χ2 before and after the refit over the number of “bad” hits disabled before the refit,

Δχ2/nbadhits. The blue distribution corresponds to those track fits where we re-enable the

“bad” hits and refit since the fit did not converge after disabling those hits. Disregarding

these tracks, TrkHitFix improves 40.5% of the track fits it changes. Statistically, we expect

the track fit χ2 to reduce by one unit when removing a random hit from the track. In

order to reduce the number of tracks where we change the track fit without improving it

significantly, we impose an additional cut. If the track fit does not improve by at least 10

units of χ2 for each hit we disable, we reset the fit, that is, we re-enable the “bad” hits and

refit the track. This ensures that tracks that TrkHitFix leaves tracks where the change

is not beneficial in their original state. TrkHitFix then improves 44% of all track fits it

changes. “Bad” hits are found on about 6% of all tracks, so TrkHitFix improves about

2.5% of all tracks.
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Figure 3.8. The difference in χ2 per disabled hit before and after refitting for tracks that do
improve (red) and tracks that do not improve (black) by hit filtering (see text for definition
of improved). The blue distribution comes from track fits that are reset; see text for details.
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In following, we only consider tracks with impact parameter transverse to the beam

|d0| < 2 cm which are true π, have a successful refit after disabling hits, and have not been

reset because of too little improvement in the χ2 of the track fit.

Fig. 3.9 shows the ω pull distribution before and after the refit on the left. As can be

seen, tracks from the tails of the distribution are pulled into the core. On the right, we show

the fraction of good tracks before and after the refit as a function of momentum. For this

purpose, a track is defined as good if |(ωfit − ωtrue)/σω| < 5, where ωfit is the fitted value of

ω, ωtrue is the true value of ω, and σω is the uncertainty on ω as determined by the track fit.

Depending on the momentum range, the fraction of good tracks improves between a couple

to more than 25%; the largest relative improvement is observed for tracks of 300MeV to

500MeV. The pull distributions for the other track parameters have been checked and as

expected show only marginal improvement.

3.4 The Recoil Method

As described in Sec. 3.1, the BB̄ mesons originate from Υ(4S) → BB̄ decays. Since the

mass of the Υ(4S) is only about 20MeV above the BB̄ threshold, the momentum of the B

mesons in the Υ(4S) frame is only of the order of 300MeV and the two B mesons overlap

completely in the detector. Inclusive analyses, i.e., analyses which do not study one or more

B-meson decay channels with specific final state particle content, but rather a whole class

of final states, cannot rely on spatial separation between the decay products of the two B

mesons in the event.

In the case of inclusive semileptonic B → X�ν decays, one commonly applies one of

two strategies. First, one can measure purely leptonic quantities based on the lepton and

neutrino momenta, where the neutrino momentum is inferred from the missing momentum

in the event. Second, one can fully reconstruct the non-signal B meson (“tag B”) decay in

the event, a technique which is sometimes referred to as the recoil method and is widely used

at BABAR. After fully reconstructing the tag B, all remaining tracks and neutral energy

depositions in the event can be assigned to the signal B meson decay. The flavor, charge,
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and momentum of the tag B meson are measured and thus the corresponding properties for

the semileptonically decaying B meson can be inferred, since the momentum of the Υ(4S)

in the laboratory frame is known. In the case of inclusive semileptonic analyses, the recoil

method allows for a measurement of kinematic quantities related to the hadronic system X

with good resolution.

The tag B, or Breco, meson is reconstructed in decays of the type Breco → D(∗)Y . Here,

the charmed meson D(∗) serves as a seed for the Breco reconstruction. Four different seeds

are used, D+ and D∗+ candidates for the reconstruction of B0
reco mesons and D0 and D∗0

candidates for B+
reco mesons. The Y system consists of a number of charged and neutral

K and π mesons with an overall charge of ±1: Y = n1π + n2K + n3KS + n4π
0, where

n1 + n2 ≤ 5, n3 ≤ 2 and n4 ≤ 2. In events with multiple Breco candidates, the candidate

with the highest a priori purity, i.e., the purity as determined on simulated events, is chosen.

The reconstruction of Breco candidates and the choice of the best Breco candidate is provided

by the centrally produced BSemiExcl skim.

Two types of background occur: combinatorial background, that is, where a Breco can-

didate is assembled from daughters of both B mesons in a BB̄ events, and continuum

background, where a Breco candidate is assembled from particles in qq̄ (q = u, d, s, c) events.

Typically, two (mostly uncorrelated) kinematic variables are used for the separation of

correctly reconstructed Breco candidates and background: ΔE = EBreco −Eb, the difference

of the measured energy of the Breco candidate EBreco and the center-of-mass beam energy

Eb, and mES, defined as the invariant mass of the Breco meson, with the measured Breco

energy replaced by the center-of-momentum beam energy Eb to improve the resolution.

The shortcoming of the recoil method is the low efficiency of the Breco reconstruction,

which is approximately 0.5% (0.3%) for charged (neutral) BB̄ events, due to the large

number of available B-meson decay channels.
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Chapter 4

Measurement of the B → Xu�ν

Hadronic Mass Spectrum

This section details the analysis technique for the measurement of the hadronic mass

spectrum in B → Xu�ν decays. We describe the data and Monte Carlo (MC) samples

used in the analysis and give details of the event selection and background subtraction.

We furthermore give an overview over the estimation of the systematic uncertainties. The

measurement of the hadronic mass spectrum and the estimation of its uncertainties are

very similar to the inclusive recoil method |Vub| analysis at BABAR [31], with which we

collaborate closely.

4.1 Analysis

4.1.1 Data and Simulation Samples

The analysis is based on a total integrated luminosity of 347 fb−1, recorded from Run1

through Run5, at a center-of-mass energy of mΥ(4S) = 10.58GeV. This corresponds to

approximately 383 Million BB̄ pairs.

In addition, the analysis uses two types of simulated MC datasets. The simulation

of B-meson decays is performed by the EvtGen event generator [34]. Final state radia-
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tion is simulated by PHOTOS [42] and the detector simulation is performed by GEANT4 [43].

Corrections and reweightings applied to the MC events are described below.

The data and the MC samples have been reprocessed and analyzed within the BABAR

software release series 18.

Backgrounds have been estimated on a sample of 1142 × 106 fully simulated and re-

constructed BB̄ events. In this sample both B mesons decay generically, i.e., without any

preselection on their decay modes.

Properties of signal events have been studied on dedicated signal MC samples, where

one B meson decays as B → Xu�ν and the other one decays according to the best known B

meson branching fractions. We mix a nonresonant and a resonant description of B → Xu�ν

decays, as both types of decays are known to be present in the data.

The nonresonant signal sample is generated according to an inclusive model based on the

triple differential decay rate and the shape function parametrization of [35], using mpole
b =

4.8GeV. In this sample, final state hadrons are produced with a continuous invariant

hadronic mass spectrum. The hadronization of the final state is performed by JETSET’s [36]

parton shower algorithm, which introduces a lower bound of 2mπ on the hadronic mass.

The resonant signal sample contains charmless semileptonic decays to exclusive final

states B → Xu�ν , where Xu = π, ρ, η, η′, ω. The decays are simulated according to the

ISGW2 model [44].

The two complementary samples are mixed to produce the signal sample used in the

analysis. Nonresonant B → Xu�ν events are reweighted according to the generated values

of the hadronic mass (mX), lepton energy (E�), and momentum transfer (q2) such that the

three-dimensional differential branching fractions correspond as closely as possible to those

obtained from the purely nonresonant sample.

MC Simulation Reweighting and Corrections

The MC samples are reweighted in order to achieve a good modeling of our data.

Reweightings are motivated by known differences in particle identification, by updated
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knowledge about branching fractions and by observed disagreements between data and MC

simulation.

Run-by-Run weights: Running conditions, such as background levels, the DCH voltage,

the muon detectors, can change from Run to Run, or even within a given Run period. This

is taken into account in the production of the MC datasets. The amount of available MC

data roughly reflects the amount of the available data for each Run, up to an overall factor.

We use Run-dependent luminosity weights for the generic MC and the signal MC events to

improve the relative MC luminosities available per Run.

Particle identification (PID): To correct data-MC differences in particle identification,

we apply the PID-tweaking algorithms provided from BABAR’s PID group for all particle

species. PID-tweaking accepts or rejects additional tracks as a particle of a given species in

order to improve the model of particle identification in the MC simulation [45]. The BABAR

PID group obtains the corrections (in bins of p, θ and φ, i.e. the particle’s momentum

vector) from the study of control samples on data and MC simulation.

KL: We correct the MC simulation for KL detection efficiencies, energy deposition and

production rate following results obtained in other BABAR analyses.

For each reconstructed calorimeter cluster that is matched to a simulated KL, the energy

deposition is corrected by a factor computed by the BABAR package K0LTools [46]. The

KL detection efficiency is corrected by rejecting reconstructed neutral clusters matched to

simulated KL with a probability calculated as function of the true KL momentum using the

same package. In addition, a correction due to the differences between data and simulation

for the KL production rate was applied, which is based on a study of the KS production at

BABAR [47]. Given that such a correction cannot be accomplished by eliminating neutral

clusters, a different approach [48] has been employed. We randomly transform some recon-

structed clusters matched to simulated KL into “pseudo-photons” and in this way restore

the energy and momentum balance in the event. This is achieved by rescaling the measured

energy and momentum of the KL cluster to the true KL momentum assuming zero mass.
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The probability for a KL cluster to be transformed into a “pseudo-photon” depends on the

KL momentum, it is 22% for momenta between 0 and 0.4GeV, 1% for momenta between

0.4 and 1.4GeV, and 9% for momenta larger than 1.4GeV.

B → Xc�ν and D branching fractions and B → D∗�ν form factors: A good

knowledge of the m
(2)
X spectrum of the remaining charm background and thus of the exclusive

semileptonic branching fractions for B → Xc�ν decays is needed for the background subtrac-

tion. The braching fractions of B → Xc�ν and D-meson decays are scaled to agree with the

latest branching fraction measurements. For the B → Xc�ν branching fractions, we follow

the recommendation of the Semileptonic B Decays Analysis Working Group [49]. How-

ever, the reweighting for the decays to broad D∗∗ resonances (D0 and D′
1) and nonresonant

charmed hadronic states (D(∗)π) are such that their relative ratios are the same as in the MC

simulation and that the total charmed semileptonic rate (B(B+ → Xc�ν) = (10.89±0.16)%

and B(B0 → Xc�ν) = (10.15±0.16)%) is saturated. D-decay branching fractions are scaled

to the most recent measurements [8]. In addition, we reweight B → D∗�ν events according

to the form factor parametrization of Caprini, Lellouch, and Neubert [50] with form factor

ratios R1(1) = 1.417 ± 0.061 ± 0.044 and R2(1) = 0.836 ± 0.037 ± 0.022 and form factor

slope ρ2 = 1.179 ± 0.048 ± 0.028 [51].

B → Xu�ν branching fractions and nonresonant model parameters: The branch-

ing fractions of exclusive B → Xu�ν are scaled according to recent measurements [8]. In

addition, the nonresonant events are reweighted to correspond to a nonresonant signal model

with input parameters from a global fit to kinematic moments in B → Xc�ν and B → Xsγ

decays, mpole
b = (4.66 ± 0.041)GeV and μ2pole

π = (0.497+0.086
−0.072)GeV2 [2].

m2
miss in B → Xceν: We find disagreements between the data and MC simulation which

we attribute to the modeling of B → Xceν decays (see App. A). We reweight simulated

B → Xceν events according to their missing mass squared (m2
miss) and lepton momentum

in the B rest frame to correct for the observed differences.
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4.1.2 Event Selection

Events are selected to increase the purity of the resulting signal sample and the resolu-

tion in the hadronic mass.

We use the recoil method, described in Sec. 3.4, to reconstruct the non-signal Breco me-

son. The BSemiExcl skim provides the selection of the best Breco candidate. Reconstructing

signal decays on the recoil of fully reconstructed hadronic decays yields a good resolution

of the hadronic mass and allows for a more efficient discrimination against cascade decays,

where the lepton originates from a secondary decay of a charmed meson. We require the

Breco candidate to have |ΔE| consistent with 0 within three standard deviations, where

the |ΔE| resolution is determined separately for the different modes, and we only use Breco

decay modes such that the integrated a priori purity of the total sample exceeds 0.2.

Track and Neutral Selections

After the reconstruction of the Breco candidate, the remaining tracks and neutral energy

depositions in the event are assumed to be daughters of the other B meson in the event. We

select events with an electron or muon candidate and reconstruct the hadronic system X

from the remaining particles. We use a set of cuts to reject background, fake and duplicate

charged tracks and neutral depositions, which have been optimized by members of the

BABAR collaboration to achieve good agreement between data and the MC simulation for

a number of variables [52]. As the data processed in software release 18 do not yet profit

from the TrkFixup tracking improvements (see Sec. 3.3.1), fake particles as well as duplicate

candidates such as ghost tracks and nonprimary looper branches have to be removed by

dedicated sets of cuts.

The track selection is based on the track’s distance of closest approach (doca) of the

track to the interaction point in the x−y plane (|dxy|) and the z direction (|dz|), the track’s

momentum (plab) and its component transverse to the beam axis (pt,lab), the number of hits

in the SVT and DCH (NSVT and NDCH) and the track’s polar angle (θ). For pairs of tracks,

the selection also relies on the difference of the two tracks’ transverse momenta (Δpt,lab)
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Select tracks with Cut
doca in x − y plane |dxy| < 1.5 cm

doca in z |dz| < 5 cm
Max. momentum plab < 10GeV

Min. transverse momentum pt,lab > 0.06GeV
Max. momentum for SVT-only tracks plab < 0.2GeV if NDCH = 0

Geometrical acceptance 0.410 < θlab < 2.54 rad

Reject tracks if Δpt,lab < 0.12GeV (loopers),
Δpt,lab < 0.15GeV (ghosts)

to other tracks and
Loopers (pt,lab < 0.25GeV) Same sign: |Δφ| < 0.18 & |Δθ| < 0.2
(|cosθ| < 0.2, NSVT > 1) Opp. sign: |Δφ| < 0.16 & |π − |Δθ| < 0.18

Ghosts (pt,lab < 0.35GeV) |Δφ| < 0.3 & |Δθ| < 0.3
(NDCH > 1)

Select neutral energy deposits with Cut
Raw energy Eraw > 50MeV

Min. number of crystals Ncrys > 2
LAT shape LAT < 0.6

Geometrical acceptance 0.32 < θlab < 2.44
Min. 3-d angle distance to tracks Δα > 0.08

without associated clusters

List for track-neutral matching ChargedTracks

Electron list for bremsstrahlung recovery PidLHElectrons

Table 4.1. The selection criteria for tracks and neutral energy depositions. The BABAR

coordinates are defined in Sec. 3.2 and variables are defined in the text.

and angles (Δθ and Δφ). The selection of neutral energy deposits uses the measured energy

(Eraw), the number of EMC crystals (Ncrys), the lateral shower shape in the EMC (LAT),

the energy deposit’s polar angle (θ) and the angular distance to tracks with no associated

clusters (Δα).

The selection criteria for charged and neutral particles are given in Tab. 4.1. The

BABAR ChargedTracks and CalorNeutral lists, which are lists of loosely selected charged

and neutral particle candidates, serve as input lists.
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Particle Identification

The BABAR PID group provides standard selectors for the different particles species [53].

The performance of a PID selector for a given particle species s is characterized by its

efficiency to correctly identify particles of species s and by its misidentification rate for

particles of other species. In this analysis, we rely on the identification of leptons to identify

signal events and the identification of Kaons to reject the dominant B → Xc�ν background.

Electrons We use the PidLHElectrons selector to identify electrons. The selector com-

bines information from the DCH, the EMC, and the DIRC into a global likelihood. It relies

on the measured energy loss in the DCH, dE/dx, the shower shape and the number of

crystals in which energy was deposited in the EMC, as well as the ratio of the energy de-

posited in the EMC to the track momentum. Furthermore, it uses the number of Cherenkov

photons and the Cherenkov angle measured in the DIRC.

Muons Muons are identified with the muMicroTight selector. It uses the energy deposited

in the EMC along with information from the IFR, such as the number of interaction lenghts

traversed, the match of the extrapolated track and the IFR cluster, and the number of IFR

strips hit, and is based on cuts.

Kaons The selection of Kaons uses the TightKaonMicro selector. The selector is based

on cuts on the measured energy loss in the DCH and the number of Cherenkov photons and

the Cherenkov angle in the DIRC.

Event Selection

The semileptonic decay of the signal B meson is detected by the presence of a tagged

electron or muon, identified by the PidLHElectrons and muMicroTight selector, respec-

tively. The lepton momentum is required to exceed 0.5GeV in the lab frame and to be

contained in the fiducial region 0.36 < θ < 2.37 to ensure good-quality particle iden-

tification. The lepton momentum p∗ in the B rest frame is required to be larger than
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Figure 4.1. Emiss − pmiss distribution for B → Xu�ν signal MC simulation. The red
distribution is obtained with m2

miss < 0.5GeV2 (see text).

1GeV. Events with secondary leptons, i.e. leptons originating from the cascade decay

chain b → c�ν, c → s�ν, are suppressed by rejecting events with any additional tagged lep-

ton with p∗ > 1GeV. This increases the signal purity as secondary leptons from b → u�ν

decays are rare.

Further, the presence of missing energy (Emiss = EΥ(4S) − EBreco − EX − E�) and

momentum (pmiss = |�pΥ(4S) − �pBreco − �pX − �p�|) is evidence for a neutrino in the decay.

To ensure a good recontruction of this neutrino, we require Emiss − pmiss > −0.3GeV (see

Fig. 4.1), where the cut value has been optimized to ensure a good resolution in the hadronic

mass reconstruction, while having a high signal selection efficiency.

Semileptonic decays to charm states with unreconstructed daughters, which lead to low

reconstructed values of the hadronic mass, can be reduced by cutting on the measured

missing mass squared, m2
miss = E2

miss − p2
miss. Fig. 4.2 shows the m2

miss distribution and its

correlation with mX for B → Xu�ν and B → Xc�ν decays. We require m2
miss < 0.5GeV2,

which improves the signal-to-background ratio in the region 0 < mX < 1.55 GeV from 0.49

to 0.90.

To suppress events with missing or fake charged particles and improve the hadronic

mass resolution, we require the total charge of the reconstructed event to be zero. Finally,

the charge correlation between the lepton and the charge of the Breco is checked. Events
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with wrong sign correlation are rejected from the charged B sample, while we keep both

the right and wrong sign events for the neutral B sample to correct for B meson mixing

(see Sec. 4.1.5).

Events with tagged K± and reconstructed KS in the hadronic system are also removed

from the sample, since Kaons on the signal side mostly originate from B → Xc�ν, D →
KYs, with Ys consisting of leptons and/or pions. Charged Kaons are identified by the

TightKaonMicro selector and KS are reconstructed as KS → π+π−. Furthermore, we

apply a partial D∗± reconstruction based on the tag of a soft π±. Making use of the small

energy release in D∗± → D0π± decays the D∗± kinematics is inferred from the soft π±. The

missing mass squared of the event is computed with the assumption that the signal side

decay is B → D∗�ν. Neutral B events in which this missing mass squared is larger than

−3GeV2 are rejected from the sample. This sample, to which the background-suppression

cuts are applied, is referred to as the signal-enriched sample. The cumulative efficiencies of

the different selection cuts are summarized in Tab. 4.2.

Events with an identified Kaon, a reconstructed KS , or a partially reconstructed D∗± in

the hadronic system which pass all other selection cuts are used as the the signal-depleted

sample, which is used for controlling the shape of the hadronic mass spectrum in background

events and the background normalization (see Sec. 4.1.5).

While the reconstruction of the hadronic final state is performed inclusively, it is impor-

tant to ensure that known exclusive final states are reconstructed with reasonable accuracy.

In particular, B → π±�ν events where additional particles are mistakenly added result in

a single-sidedly distorted resolution function. We consider events where the X system is

accompanied by a soft neutral particle. In order to recover genuine B → π±�ν and other

decays with low hadronic mass in the final state, we test whether the softest neutral particle

is compatible with being a Breco daughter if the neutral’s energy is less than 250MeV. This

is performed by adding the neutral particle to the Breco system and testing whether the

invariant Breco mass moves closer to the nominal B meson mass. If this is the case, we

remove the neutral particle from the X system. The energy distribution of the excluded
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Figure 4.2. m2
miss in the analysis: distribution for B → Xu�ν (top left) and and B → Xc�ν

(top right), correlation of m2
miss with mX for B → Xu�ν (bottom left) and B → Xc�ν

(bottom right).

Cut B → Xu�ν MC εsig B → Xc�ν + other MC εbkgd

Sl + Breco 52334 1.000 500283 1.000
|Qtot| = 0 31275 0.598 263641 0.527
Exactly one lepton 31010 0.593 259438 0.519
Kaon Veto 25943 0.496 138881 0.278
D∗ Veto 24943 0.477 123634 0.247
m2

miss 16270 0.311 26634 0.053
Emiss − pmissCut 13997 0.267 26634 0.053

Table 4.2. Cut efficiencies: given are the numbers of events (normalization given by the size
of the MC sample used in this study) for B → Xu�ν and generic MC events passing various
cuts and the efficiencies of these cuts on the two samples. The cuts are applied consecutively.
The semileptonic selection consists of the cuts on lepton momentum in the B rest frame and
the lab frame, the angular acceptance cuts, and the charge-flavor correlation requirement.
Charge and mixing correction (see Sec. 4.1.5) have not been applied.
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Figure 4.3. Soft neutral filtering: the energy spectrum of neutrals removed with the soft
neutral filtering procedure discussed in the text (left). mX spectrum for true B → π±�ν
decays before (blue) and after (red) the soft neutral filtering (right).

neutral particles and the effect of this procedure on the hadronic mass spectrum in true

B → π±�ν events is shown in Fig. 4.3.

4.1.3 Subtraction of Combinatorial Breco and Continuum Background

After applying the selection on the signal side of the event, the combinatorial background

on the tag side is subtracted in bins of mX and m2
X spearately for the charged B sample

and the right- and wrong-sign neutral B samples. This background mostly originates from

Breco candidates built from daughters of both B mesons, and from continuum events. The

background subtraction is performed by a fit to the distribution of the energy-substituted

mass mES, defined as the invariant mass of the B meson, where the measured B energy is

replaced by the center-of-momentum beam energy Eb, which is known more precisely,

mES =
√

E2
b − (∑

i

�pi

)2
. (4.1)

The �pi denote the three-momenta of the particles forming the Breco candidate in the center-

of-momentum system. For the fit, the mES distribution is modeled by the sum of two

functions which describe the background contribution and the signal component. The back-

ground is described by an ARGUS function [54], which provides a good parametrization of

the shapes of the combinatorial and continuum background. It depends on two parameters:
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an upper cutoff value mmax and a shape parameter ξ,

dN(mES)
dmES

= NmES

√
1 − x2e−ξ(1−x2), (4.2)

with x = mES/mmax. The value of mmax is kept fixed at mmax = 5.2785GeV, for which

we observe good convergence of the fit. The Breco signal is parametrized by a CRYSTAL

BALL function (CB) [55], which has four parameters,

dN(mES)
dmES

=

⎧⎪⎪⎨
⎪⎪⎩

Ne−
1
2

(mES−m)2

σ2 if mES > m − aσ

N
(

n
a

)n
e−

1
2
a2 1(

−mES−m

σ
+ n

a
−a
)n if mES < m − aσ,

(4.3)

where m is the peak position, σ the width of the Gaussian distribution, a determines the

transition point from the main Gaussian distribution to the tail, and n describes the shape

of the tail. Smaller values of n generate a longer tail, which accounts for energy loss in the

EMC showers from photons used in the π0 reconstruction.

Due to significant correlations between the fit parameters and limited statistics in the

bins at large hadronic mass, the analysis uses a three-step approach for the fits to the mES

distributions. The CB shape parameters are independently determined by binned χ2 fits to

the mES distribution integrated over all hadronic mass bins and B charges, and fixed for

the subsequent fits (see Fig. 4.4). The procedure is performed independently for data, the

B → Xu�ν MC sample, the B → Xc�ν MC sample, and the non-semileptonic background

MC sample. In step (A), the ARGUS shape parameter ξ and the overall normalization of

the ARGUS function are obtained from a fit restricted to the range 5.22GeV < mES <

5.255GeV, which does not contain any Breco signal. In step (B), the peak position m and

width σ of the CB peak are determined by fitting the sum of a Gaussian and an ARGUS

function in the range 5.274GeV < mES < 5.2791GeV, with the ARGUS function fixed to

the parameters determined in step (A). Finally, the fit is repeated in step (C) on the full

mES range to the sum of a CB and an ARGUS function, where the a and n parameters and

the normalization of the signal function are floated, while the peak position and width are

taken from step (B) and the ARGUS shape and normalization are taken from step (A).

In the rest of the analysis, the CB shape parameters are fixed to the values extracted
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Figure 4.4. Extraction of CB shape parameters: mES spectrum with the various fit com-
ponents. Step (A): the dotted yellow curve shows the ARGUS function in its fit interval
(5.22GeV < mES < 5.255GeV). Step (B): the dash-dotted orange curve shows the sum of
Gaussian and ARGUS function used to determine the mean and width of the signal peak
(the signal contribution is shown by the blue dashed Gaussian and the background by the
red ARGUS function) in its fit interval (5.274GeV < mES < 5.2791GeV). Step (C): the
black curve which runs below the other functions shows the result of the fit to the sum of
the CB and ARGUS function, where the CB normalization and the a and n parameters are
floated. The solid red and green curves show the ARGUS and CB components of the fit to
the full mES spectrum.
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here, while the ARGUS and CB normalizations, as well as the ARGUS shape parameter1

are floated.

To understand which Breco candidates contribute to the peak in mES, we develop a

truth matching procedure on MC simulation as discussed in Sec. 4.1.4. The binned χ2 fits

to the mES distributions for the four samples integrated over hadronic mass and B charge,

which we use for this purpose and which demonstrate the quality of the fits we use for the

determination of the CB shape parameters, are shown in Fig. 4.5.

The final fits to the mES distributions are performed as unbinned extended maximum

likelihood fits in bins of mX and m2
X , respectively, and yield spectra corrected for combi-

natorial and continuum background. These fits are performed for three classes of events:

charged B, right- and wrong-sign neutral B candidates. As a cross-check, we perform the

identical fits as binned χ2 fits and find good agreement between the extracted mass spectra.

The number of Breco signal events can be extracted from this fit with two different

procedures: One can use the area of the fitted CB function in the mES signal region,

5.27GeV < mES < 5.2785GeV, or, alternatively, the number of signal events can be ob-

tained by subtracting the area under the fitted background ARGUS function in the mES

signal region from the total number of events in the mES signal region. In principle, both

methods have some advantages and we study the statistical properties of the results from

both procedures. We perform pseudo-MC experiments, which evaluate the expected com-

bined statistical and systematic uncertainty on the yields for a high-signal-to-background

sample and a low-signal-to-background sample, as well as the goodness of the error estimate.

We find very similar results for the two procedures on both samples. For the subsequent

analysis we use the second procedure, where we subtract the area of the ARGUS function

from the total number of events in the signal region, to be less sensitive to our modeling of

the Breco signal component.
1The shape of the ARGUS function is correlated with the hadronic mass on the signal side, since the

chances of building a Breco candidate from daughters of both B mesons is larger and the average energy per
signal B daughter is smaller in events with larger multiplicity (i.e., larger hadronic mass) on the signal side.
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Figure 4.5. Result of the mES fits for data (top left), signal B → Xu�ν (top right), back-
ground B → Xc�ν (bottom left), and other backgrounds (bottom right). The green dashed
and red solid curves show the CB and ARGUS functions, respectively.
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4.1.4 Breco Truth Matching

In inclusive analyses that use the recoil method, there is often no clear-cut definition

of “signal” and “background”. Misreconstructed Breco decays affect the reconstruction of

the hadronic system X when one or more daughters of one B are assigned as daughters of

the other B, or when daughters of one or both B are lost during the reconstruction. The

mES distribution of those events with “almost correctly” reconstructed Breco candidates

exhibits a broad component peaking at the B mass. These Breco candidates make up what

is usually referred to as “peaking background”. A study on simulated B → Xu�ν events

shows that there is a class of events for which not all particles are correctly associated to

their parent B meson, but which still provide good resolution of the reconstructed hadronic

mass. Rejecting these peaking background events introduces a significant bias in the high-

mass end of the spectrum, where the larger particle multiplicity makes it more probable for

particles to be swapped between the two B mesons by the reconstruction. This motivates

a loose definition of well-reconstructed Breco decays.

We define the Breco signal events based on the shape of their cumulative mES distri-

bution, i.e., as those events contributing to the peaking component in mES. We study

the properties of these events using B → Xu�ν MC events. We define the the following

quantities: the number of generated and reconstructed daughter particles of the Breco, ngen

and nreco, divided according to their charge (nchg
gen, nchg

reco, nneu
gen , nneu

reco), and the number of

the reconstructed charged and neutral daughters which are truth matched, nchg
tm and nneu

tm .

For the truth matching of the daughters, we use the standard BABAR definitions, where a

true particle is truth matched to a reconstructed particle if it contributed the majority of

the reconstructed hits in the detector. We use mchg = nchg
reco − nchg

tm , mneu = nneu
reco − nneu

tm ,

lchg = nchg
gen − nchg

tm , and lneu = nneu
gen − nneu

tm as measures of how well the Breco candidate was

reconstructed.

We only accept Breco candidates that were generated in one of the reconstructed modes

as potential signal candidates. We find that mneu < 3, lneu < 3, and mchg = lchg = 0 give the

best agreement of the resulting Breco signal mES distribution with the CB function obtained

69



from the fit to the full sample (see Fig. 4.5). The agreement is improved if we also accept

events in the mES-ΔE signal region, defined by mES > 5.27GeV and |ΔE| < 0.026 GeV,

independent of their values of mneu,chg and lneu,chg. The events that fail the cuts on mchg,neu

and lchg,neu, but lie in the mES-ΔE signal region, account for approximately 8.6% of the

selected Breco signal events. They show a slightly degraded hadronic mass resolution, but

their inclusion into the Breco signal sample ensures a better estimate of the hadronic mass

resolution function. Furthermore, the remaining Breco background events are free of peaking

components. The mES shape of the events classified as background is in good agreement

with the ARGUS function obtained from the fit to the full sample.

Fig. 4.6 shows the mES distribution for truth matched Breco signal events according to

our truth matching definition, with the CB function with the parameters obtained from the

fit to the full mES spectrum. The complementary Breco background sample is compared

to the ARGUS function from the same fit. The shape of the Breco signal and background

components is well reproduced by the CB and ARGUS functions.

The performance of our method (labeled as “0”) is compared to possible variations of

the truth-matching criteria (see Tab. 4.3). We consider the following alternative definitions:

1. mchg,neu = lchg,neu = 0, i.e., perfect daughter match.

2. Reconstructed Breco decay mode identical to generated Breco decay mode.

3. mneu < 3, lneu < 3 and mchg = lchg = 0, without additional events from the mES >

5.27GeV and |ΔE| < 0.026 GeV signal region.

The χ2 measure the agreement between the CB and ARGUS shapes obtained from the fits

shown in Fig. 4.5 and the truth matching method. While a large value of χ2 does inform

us about some mismatch in the mES shape obtained from the truth matching, the number

of signal events is reproduced very well.

In addition, we study the sensitivity of our truth matching to the choice of the ΔE cut.

We move the cut by ±3MeV and find that the χ2/ν (where ν is the number of degrees
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Method Signal Evts.−CB Integral
CB Integral

Bkgd Evts.−ARGUS Integral
ARGUS Integral Signal χ2/ν Bkg. χ2/ν

0 +0.004 −0.099 2.73 1.02
1 −0.195 +2.383 62.2 19.3
2 −0.139 +1.717 8.95 12.4
3 −0.082 +1.034 4.64 6.15

Table 4.3. Performance of different possible truth matching definitions for the Breco: we
compare how well the different algorithms perform in selecting the correct number of events
as Breco signal and background in the mES signal region. We also test how well the shapes
of the truth matched mES distributions match the shapes from the fit.

of freedom) for signal (background) changes from 109/40 (41/40) to 110/40 (46/40) and

110/40 (45/40).

The mX and m2
X resolution is studied for truth matched Breco signal events and com-

pared to that of the fully truth matched decays according to method 1, which could be

considered the standard defintion of truth matching. We first determine the width of the

core of the resolution function by computing a truncated root mean square (rms) within

−0.5GeV < mreco
X − mgen

X < 0.7GeV. The rms is 0.197GeV with our truth matching, to

be compared with 0.180GeV for the fully truth matched events. We also study the tails

by computing the fraction of events which are outside the window given above and find

4.8% and 4.3% of the events in the tails of the resolution function using our truth matching

and the full truth matching, respectively. In addition, we verify that our truth matching

definition provides a more stable scaling of the reconstruction efficiency as a function of

the generated value of mX . The detector response matrices extracted from B → Xu�ν MC

simulation that are used for the unfolding are shown in Fig. 4.7.

4.1.5 Signal-Side Background Subtraction

The measured mX and m2
X spectra obtained after applying the analysis cuts and the

mES fits are shown in Fig. 4.8 for the signal-enriched and the signal-depleted sample. Due

to the finite resolution and the large yield of B → Xc�ν decays, these still represent the
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Figure 4.6. Performance of the truth match algorithms on B → Xu�ν MC events: the
top histograms show signal (left) and background (right) for our definition. The lower
histograms show the signal and backgrounds for the methods 1 (left), 2 (center), and 3
(right) discussed in the text. The curves show the CB and ARGUS functions as obtained
from a fit to the full mES spectrum.

72



(reco) / GeVXm
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

(t
ru

e)
 / 

G
eV

X
m

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

2(reco) / GeV2
Xm

0 2 4 6 8 10 12 14

2
(t

ru
e)

 / 
G

eV
2 X

m

0

2

4

6

8

10

12

14

Figure 4.7. m
(2)
X resolution: The detector response matrices for B → Xu�ν events for mX

(left) and m2
X (right) as determined on signal MC simulation with the generated mass on

the ordinate and the reconstructed mass on the abscissa. The bin content is given by the
number of events in our B → Xu�ν MC sample.

dominant component of the signal-enriched spectra, even in the region mX < mD. This

remaining charm background, which survives the veto cuts, and the other backgrounds,

including misidentified leptons, B → Xτν → X ′lνν events, and secondary charm decays,

which survive the lepton charge and signal B flavor correlation requirement, needs to be

removed. This is achieved by a fit to the mX spectrum for which the mX shapes of the

signal, the charm background, and the other backgrounds are taken from the MC simulation.

First, the measured spectra are corrected for B0B̄0 mixing effects. The number of events

(NB) originating from direct B decays can be related to the number of right-sign (Nrs) and

wrong-sign (Nws) events, each taken after the mES fits, through

NB =
1 − χd

1 − 2χd
Nrs − χd

1 − 2χd
Nws, (4.4)

where χd = 0.188 is the Bd mixing parameter. This allows for the subtraction of background

cascade decays (b → c�ν, c → s�ν events) under the assumption that this is the only class

of background events in the wrong-sign sample. This correction is applied on a bin-by-

bin basis. We then correct the ratio of neutral-to-charged B events in MC simulation to

reproduce the ratio observed on data to account for possible differences in the composition

of the Breco sample in MC simulation and data. The correction is obtained by performing
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Figure 4.8. Hadronic mass spectra: mX (left) and m2
X (right) distributions of the signal-

enriched sample (top) and the signal-depleted sample (bottom) after analysis cuts and
subtraction of combinatorial and continuum background, with the contributions of signal
(green), B → Xc�ν background (yellow), and other sources of background (red).
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an additional mES fit to charged and neutral right-sign events for the full hadronic mass

range. Since the data at this stage are dominated by B → Xc�ν decays, the correction is

obtained from the ratio of neutral-to-charged events in data and B → Xc�ν MC events and

applied to all MC samples.

For the fit to the mX spectrum, we denote the content of bin i in the mX spectra by

Nmeas
i , NuMC

i , N cMC
i , and NoMC

i , for the data sample, the B → Xu�ν MC sample, the

B → Xc�ν MC sample, and the other backgrounds MC sample, respectively. The total

number of MC events in bin i is then given by

μi = CuNuMC
i + CcN

cMC
i + CoN

oMC
i , (4.5)

where the Cx, x = u, c, o, are the relative scalings between the different MC samples, which

depend on the composition of the data spectrum and the relative size of the different MC

samples. The Cx are determined by a binned χ2 fit with

χ2(Cu, Cc, Co) =
∑

i

(
Nmeas

i − μi√
(δNmeas

i )2 + (δμi)2

)2

. (4.6a)

The number of measured events, Nmeas
i , is obtained from the fits to the mES distributions

after applying the mixing and charge corrections per bin i, and δNmeas
i and δμi are the

propagated uncertainties from the mES fits for data and the MC samples, where

(δμi)2 = (CuδNuMC
i )2 + (CcδN

cMC
i )2 + (CoδN

oMC
i )2. (4.6b)

The fit is performed using a wide first bin in mX with mX < 1.55GeV, in order to

reduce the sensitivity of the fit to the modeling of the hadronic mass distribution in the

signal MC simulation. The fit result on the signal-enriched sample is shown in Fig. 4.9. We

also perform a fit to the signal-depleted sample and compare the extracted scaling factors

(see Tab. 4.4 and Fig. 4.9). We find acceptable agreement between the fits to the signal-

enriched and depleted samples. Since the fit to the depleted sample yields a more precise

determination of the background scaling factors, we combine the results for the subsequent

analysis. The uncertainties of the Cx are propagated to the background-subtracted spectra

as described in Sec. 4.2.2. In addition to the separately obtained and combined results for

the Cx, Tab. 4.4 also presents scaling factors C∗
x for the combined fits, which are corrected
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Figure 4.9. mX spectrum with large first bin: mX distributions of the signal-enriched (top)
and signal-depleted (bottom) sample after analysis cuts and subtraction of combinatorial
and continuum background (left) and all backgrounds (right).

signal-enriched signal-depleted Combined
sample sample

Cu 0.085 ± 0.007 0.197 ± 0.044 0.088 ± 0.007
Cc 0.372 ± 0.009 0.365 ± 0.004 0.368 ± 0.004
Co 0.156 ± 0.072 0.267 ± 0.052 0.228 ± 0.042
C∗

u 0.860 ± 0.068
C∗

c 1.056 ± 0.011
C∗

o 0.665 ± 0.121

Table 4.4. Fitted values for the Cx coefficients on the signal-enriched and -depleted mX

spectrum and their combinations. The C∗
x are rescaled by the relative luminosities between

the data and MC samples.
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Figure 4.10. Hadronic mass spectra: mX (left) and m2
X (right) distribution of the signal-

enriched sample after analysis cuts and background subtraction from data (points) and MC
simulation (green). The error bars show the statistical uncertainties from the mES fits.

for the luminosity ratios of the data and MC samples. The C∗
x are expected to be consistent

with 1 and are computed as a cross-check of our fit procedure. Given the assumptions that

need to be used to compute the C∗
x, such as equal efficiencies for the Breco reconstruction

in data and MC simulation, estimates of effective weights from all reweighting procedures

and approximations in taking into account the enrichement in signal events, the agreement

of the C∗
x with 1 is satisfactory.

The signal-side background subtraction of the equidistantly binned mX and m2
X spectra

uses the combined result for the Cx from the fits to the spectra with the large first bin.

After analysis cuts and mES fits we find 8454 (8421) events in the full data set when

binning in mX (m2
X). The sum of the backgrounds is estimated to be 7413 (7394), which

corresponds to 1041 (1027) candidate signal events. The background-subtracted spectrum

is in good agreement with that predicted for B → Xu�ν signal events from the simulation

and is shown in Fig. 4.10.

4.2 Systematic Uncertainties

Systematic uncertainties on the measured spectrum and the detector response matrix,

which is used in the unfolding of the spectrum (see Sec. 5), are introduced from uncertainties
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Figure 4.11. Hadronic mass spectra: mX (left) and m2
X (right) spectra. The outer error

bars give the total error including the systematic contribution. The statistical contribution
to the uncertainty is shown by the shorter error bar.

in our modeling of the track and neutral reconstruction and particle identification, the fits

used for background subtraction, the modeling of signal and backgounds, and observed

disagreements between data and MC simulation.

The systematic uncertainties on the measured spectrum are evaluated and its covariance

matrix C is computed as the sums of the individual covariance matrices arising from the

different systematic errors, C =
∑

k Ck. To evaluate the Ck, we vary the respective input

to the analysis and compute the covariance matrix from the default measured spectrum b

and the spectra obtained with the systematic variations bl as

Ck,ij =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

P
l(bl

i−bi)(bl
j−bj)

N−1 if N > 2

(b1i −bi)−(b2i−bi)
2

(b1j−bj)−(b2j−bj)
2 if N = 2

(b1
i − bi)(b1

j − bj) if N = 1

(4.7)

The systematic uncertainties considered in this analysis are listed in Tab. 4.5. The measured

spectra with full uncertainties are shown in Fig. 4.11 and their correlation matrices are

shown in Fig. 4.12.
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Systematic uncertainty Sec. Influence on Category
Tracking efficiency 4.2.1 b, A Detector
Neutral efficiency 4.2.1 b, A Detector
Lepton identification 4.2.1 b, A Detector
Charged Kaon identification 4.2.1 b, A Detector
KL reconstruction 4.2.1 b,A Detector
Fit to the mES distribution 4.2.2 b Fit
Breco truth matching 4.2.2 A Fit
mX fit uncertainty 4.2.2 b Fit
B → D(∗,∗∗)lν branching fractions 4.2.3 b Bkgd modeling
D branching fractions 4.2.3 b Bkgd modeling
KS veto 4.2.3 b, A Bkgd modeling
Nonresonant signal decay model 4.2.4 b, A Signal modeling
Resonant signal branching fractions 4.2.4 b, A Signal modeling
ss̄ popping 4.2.4 b, A Signal modeling
B → Xceν p∗ − m2

miss reweighting 4.2.5 b Data-MC
Neutral multiplicity 4.2.5 b,A Data-MC

Table 4.5. Systematic uncertainties on the measured m2
X spectrum and detector response

matrix. We note whether a particular uncertainty affects the measured spectrum (“b”) or
the detector response matrix (“A”), and group the uncertainties into categories.
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Figure 4.12. The correlation matrices for the mX (left) and m2
X (right) spectra.
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4.2.1 Detector-Related Uncertainties

Tracking Reconstruction Efficiency

Studies carried out on e+e− → τ+τ− events have shown that tracking efficiencies are well

reproduced by the simulation. The BABAR Charged Particles Reconstruction Group [56]

assigns a systematic uncertainty on the tracking efficiency as a function of the Run pe-

riod. We estimate the systematic uncertainty from the tracking efficiency modeling in MC

simulation by removing tracks2 in the simulation with a Run-dependent probability. The

corresponding covariance matrix is computed with N = 1.

Neutral Reconstruction Efficiency

The Neutral Reconstruction Group [57] studies the modeling of the neutral reconstruc-

tion using control samples. They recommend no corrections to be applied to single photons

in the MC simulation. We estimate the effect of the modeling uncertainty in the neu-

tral reconstruction efficiency on our spectrum by randomly killing neutral clusters in the

simulation with a probability of 1.8% and compute the covarianz matrix with N = 1.

Lepton and Charged Kaon Identification

To evaluate uncertainties from particle identification, we conservatively vary the elec-

tron and charged Kaon efficiencies in MC simulation by 2% and the muon efficiencies in

MC simulation by 3% based on earlier results with control samples. The variations are

implemented by randomly removing identified particles with the given probabilities. The

misidentification rates in MC simulation are varied by 15% for all three species. We have

N = 1 to compute the covariance matrix.
2Tracks can only be removed, not added. To compute the covariance matrix, we symmetrize the effect

we see from removing tracks. The analoguous is true for the estimation of systematics associated with the
neutral reconstruction efficiency and the charged particle identification.
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KL Reconstruction

We apply corrections to the modeling of the KL detection efficieny and energy deposition

in MC simulation as well as to the MC KL production rate as described in Sec. 4.1.1. We take

half the difference from turning all corrections off as estimate of the systematic uncertainty

and compute the covariance matrix with N = 1.

4.2.2 Background Subtraction Uncertainties

Fit to the mES Distribution

When performing the fits to the mES distribution in each single m2
X bin, the CB shape

parameters are fixed to the values obtained in the dedicated mES fits to the full m2
X range,

which are described in Sec. 4.1.3. To estimate the systematic error related to this choice

of the CB shape parameters we vary their values separately for the different parameters

and separately for the data and three MC samples (B → Xu�ν, B → Xc�ν, and other

backgrounds) within the uncertainty quoted by the dedicated fits to the entire m2
X region.

We have N = 2 for each shape parameter and sample to extract the separate covariance

matrices.

Breco Truth Matching

The truth matching strategy for the Breco, which is used for the determination of the

detector response matrix, is described in Sec. 4.1.4. We assess the uncertainty of the truth

matching procedure on the detector response matrix by varying the ΔE cut by ±10MeV,

which corresponds to about a third of the resolution in ΔE.

mX Fit Uncertainty

To propagate the uncertainty on scaling factors for the charm and other backgrounds

(Cc and Co) to the m2
X distribution, we vary Cc and Co according to their uncertainties

obtained from the fit to the mX spectrum (see Tab. 4.4). While these uncertainties are
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statistical, we propagate them like the systematic uncertainties to take the corresponding

bin-by-bin correlations into account (with N = 2).

4.2.3 Background Modeling Uncertainties

B → D(∗,∗∗)(π)�ν Branching Fractions and B → D∗�ν Form Factors

To estimate the uncertainty on the measured spectrum induced by the uncertainty

on B → Xc�ν branching fractions through the background subtraction, we perform N =

100 toy experiments in which we independently vary the different exclusive B → Xc�ν

branching fractions and the inclusive B → Xc�ν branching fraction randomly within their

uncertainties [49].

We find that that removing the B → D∗�ν form factor reweighting has a negligible

effect on the m2
X spectrum. We do not assign a systematic uncertainty associated with the

choice of the form factor model and parameters.

D Branching Fractions

The measured spectrum depends on the exclusive D branching fractions assumed in

the MC production through the background subtraction. To evaluate the uncertainties

originating from this source, we perform N = 200 toy experiments in which we randomly

and independently vary the D branching fractions within their respective uncertainties [8].

KS Reconstruction

We depend on the simulation of the KS reconstruction through the veto on reconstructed

KS . Effects due to the difference in KS production rate are estimated by randomly removing

KS candidates from the KS list with probability of 10% for KS momenta between 0 and

10GeV [47] (N = 1). We take this estimate to cover the uncertainties in the KS efficiency.
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4.2.4 Signal Modeling Uncertainties

Nonresonant Signal Decay Model

The input parameters to the nonresonant de Fazio-Neubert [35] model are mpole
b and

μ2pole
π . To assess the uncertainties introduced into the mass spectrum and detector response

matrix, we take those two points on the mpole
b − μ2pole

π ellipse (mpole
b = (4.66 ± 0.041)GeV

and μ2pole
π = (0.497+0.086

−0.072)GeV2 with ρ = 0.17 [2]) that yield the largest uncertainties on

the partial branching fraction in the |Vub| analysis using the recoil method [31].

We also use two alternative parametrizations of the shape function: instead of the

default exponential form, we use a Gaussian parametrization and the so-called Roman

parametrization, while keeping the moments of the shape function fixed.

We have N = 2 for the variation of each parameter and of the shape function

parametrization for the extraction of the separate covariance matrices.

Resonant Signal Branching Fractions

We vary the resonant signal branching fractions within their current uncertainties [8]

and use hence have N = 2 to obtain the corresponding covariance matrix. The B → π�ν

and B → ρ�ν branching fractions are treated as fully correlated and the B → η�ν and

B → η′�ν branching fractions are also treated as fully correlated.

ss̄ Popping

In signal event decays, a ss̄ pair can be created from the vacuum, a process which is

referred to as ss̄ popping in this context. Since we veto on events in which we identify a

charged Kaon or reconstruct a KS to suppress charm background, we introduce a systematic

uncertainty into our signal modeling due to the uncertainty in the ss̄ popping. To evaluate

this systematic uncertainty, signal events where a gluon splits into a ss̄ pair are varied by

±30% in nonresonant signal events (N = 2).
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4.2.5 Uncertainties from Data-MC Differences

B → Xceν p∗ − m2
miss Reweighting

As a conservative estimate of the systematic effect related to the disagreement we see

between data and MC simulation in the electron sample in m2
miss (see App. A), we take the

difference between the m2
X spectra with and without applying the p∗ − m2

miss reweighting

as systematic uncertainty (N = 1).

As a cross check, we open the m2
miss cut to m2

miss < 1GeV2 and take the difference to

the default cut (m2
miss < 0.5GeV2) as an estimate of the systematic uncertainty (correcting

for the different selection efficiency by only taking into account variations in the shape of

the measured spectrum). The systematic uncertainties on the moments of the unfolded

spectrum (see Sec. 5.4) we obtain from this test are comparable to the default method (6%

on M1, 16% on U2, 46% on U3).

Neutral Multiplicity

The neutral particle multiplicity distribution exhibits a slightly larger mean value com-

pared to the estimate from MC simulation (see Fig. A.2). We find χ2/ν = 2. As the shift

seems to be systematic, we estimate the associated uncertainty by rescaling the signal MC

events according to their neutral particle multiplicity to get χ2/ν = 1 and take the difference

in the result (N = 1).
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Chapter 5

Spectral Unfolding and

Measurement of Moments

5.1 The Unfolding Procedure

The measured spectrum of a physical observable, like the invariant mass or the lepton

energy, is usually distorted by detector effects, such as finite resolution and limited accep-

tance. A comparison of the measured spectrum with that predicted by theory requires

a removal of these effects to obtain the true, underlying physical spectrum. This can be

achieved by applying an unfolding procedure. There are several ways to achieve the un-

folding of detector effects on measured spectra, and examples can be found in [58] and [59]

and references therein. In this section we describe the unfolding method adopted in this

analysis, which largely follows the technique proposed in [58].

A physical quantity α, distributed according to its probability density function f(α),

cannot be measured perfectly. Apart from statistical uncertainties, there will be effects from

reconstruction efficiency and finite resolution of the detector. The reconstruction efficiency

εrec is the probability to measure an occurring event, and it is in general less than one,

εrec < 1. It may depend on the particle direction �p, if the detector does not cover the

full solid angle. This is usually referred to as geometrical acceptance. The reconstruction
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efficiency may also depend on the kinematical properties of the event, like the momentum

of a particles to be measured. Limited resolution means that α can only be measured

within some device-dependent accuracy. As a result, instead of the true, physical variable

α, a variable β, distributed according to some distribution g(β), is measured. The relation

between f(α) and g(β) can be expressed as a convolution of the true distribution f(α) with

a kernel Â(α, β) describing the detector effects,∫
f(α)Â(α, β)dα = g(β).

Since the spectrum we intend to unfold is given as an histogram, we use vectors and matrices

for the formulation of the convolution,

Âx = b, (5.1)

where the ith component of the nx-dimensional vector x and the nb-dimensional vector b

contain the number of entries in bin i of the true and the measured distributions, respec-

tively. Â is a (nb × nx)-dimensional matrix, and contains the detector effects. Here, Â

accounts for both effects. An event with a true value in bin j might be measured with a

value in bin i (i.e., finite resolution) or might not be measured at all (i.e., εrec < 1). The

matrix element Âij represents the probability for an event with a true value in bin xj to be

measured with a value in bin bi.

Assuming that the measurement process is well simulated, Â can be determined from

MC events by tracking the true and reconstructed values for each event. A well-defined

system of linear equations is obtained,

Âxini = bini. (5.2)

The index “ini” denotes the use of MC spectra xini, bini. Technically, the matrix element

Âij is determined by taking the number of events that fall into bin j of xini and at the

same time into bin i of bini, and by dividing this number by the number of events in bin j

of xini. Being now in the possession of Â and a measured spectrum b, one can try to solve

Eq. (5.1) for the true spectrum x. However, the apparently easiest way to determine x, i.e.,

applying x = Â−1b, is not adequate. Even when Â can be inverted, statistical fluctuations
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in the measured spectrum introduce spurious, nonphysical oscillations in the solution for x.

Therefore, a more efficient method needs to be applied, and in the following we discussion

the algorithm adopted here.

5.1.1 Singular Value Decomposition

One possible way to overcome these difficulties is provided by the method of Singular

Value Decomposition (SVD). Any real (nb × nx) matrix, Â, can be decomposed into a

diagonal (nb×nx) matrix S with non-negative elements and two orthogonal matrices U and

V , being (nb × nb) and (nx × nx)-dimensional, respectively,

Â = USV T , Â−1 = V S−1UT . (5.3)

The diagonal elements of S, si ≡ Sii ≥ 0, are called singular values of Â. The columns of U

and V are called left and right singular vectors. The rank of Â is equal to the number of its

nonzero singular values. The solution of Eq. (5.1) may be difficult, even if Â formally has

full rank, namely in the case when Â and/or b are only known with some level of precision,

and at the same time some singular values are significantly smaller than others. These

problems can be treated with the help of the SVD.

We assume that the singular values are non-increasing for increasing i. This can always

be achieved by swapping pairs of singular values and simultaneously swapping the corre-

sponding columns of U and V . Additionally, we presume that nb ≥ nx; if necessary, rows

of zeroes can be added to the inital matrix Â.

Since U is an orthogonal matrix, its columns form an orthonormal system of vectors,

which is a basis in the nb-dimensional space. Hence, the nb-dimensional vector b can be

represented as a linear combination of these basis vectors,

Ud = b, (5.4a)

and the coefficients of the decomposition are given by the vector d. Analogously, x is

decomposed into the orthonormal vectors given by the columns of V , and the coefficients
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of the decomposition form the vector z,

V z = x. (5.4b)

Together with Eqs. (5.1) and (5.3), this yields a diagonal system

z = V T x = V T Â−1Ud = S−1d, and thus zi =
di

si
(5.4c)

for the unknown vector z. The inverse S−1 is obtained by inverting the singular values si.

At this point, the reason for largely fluctuating solutions for x becomes obvious. In

most problems, Â is singular or almost singular: some singular values si are significantly

smaller than others. The non-invertability of a matrix effectively means that the induced

transformation leads to a loss of information. For the detector response matrix Â the two

physical sources for this loss of information are limited acceptance and finite resolution.

Structures in the physical distribution x cannot be resolved if they are smaller than the

detector resolution. Hence, small singular values si (i.e., large i) are related to these fine

structures, or in other words, to quickly oscillating terms in the orthogonal decompositions

of x and b if we draw on the analogy to a Fourier decomposition. This means that for

reasonably smooth measured distributions b we only anticipate the first k singular vectors

to have statistically significant coefficients di. Contributions from higher oscillating – again

in analogy to Fourier decomposition – basis vectors i > k are expected to be compatible

with zero within the statistical errors on di. Yet, the weight of just these di is enhanced by

the small si, as shown in Eq. (5.4c). Therefore, the spurious oscillations of the solution are

introduced by statistically insignificant coefficients di.

Rescaling

The exact solution of a well-behaved linear system does not change when the equations

are multiplied by a constant. However, if the detector response matrix is (almost) singular

and nb ≥ nx, the linear system is (almost) overdetermined and should be treated as a

least-squares problem, ∑
i

(
(Âx)i − bi

)2 → min.
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Any rescaling might change its solution. By choosing a suitable rescaling, we can ensure

that the significant information does not get suppressed, while insignificant information

does not get enhanced. Höcker and Kartvelishvili [58] propose to rescale Eq. (5.1) by xini
j ,

if the detector matrix Â is determined by MC simulation,

wj =
xj

xini
j

, Aij = Âijx
ini
j (5.5a)

(no summation over indices implied), leading to the new system

Aw = b. (5.5b)

The new vector w is a measure of how much the unknown vector x deviates from the

MC truth vector xini. The matrix element Aij contains the number of events that were

generated in bin j and reconstructed in bin i. We use A (i.e., not Â) for the unfolding of

the hadronic mass spectrum.

For an exact solution, Eqs. (5.1) and (5.5b) are equivalent, but for the type of problems

considered here, this rescaling will improve the behavior of the system. First, if the initially

generated MC distribution xini is reasonably close to the true distribution x, w will be

smooth and hence requires less terms in the orthogonal decomposition. A more accurate

unfolding should thus be possible, since fewer unknowns need to be determined for the

solution.

The second argument given in [58] is based on formal considerations using perturbation

theorems for the singular values. This is meant to account for intrinsic errors in the matrix.

If the detector response matrix A is determined on MC events, some of its elements will

contain only very few events. In the probability matrix Â the according elements can contain

very large values close to one and thus give a large weight to the respective equations,

not reflecting that they actually have a comparably large error because of low statistics.

Similarly, elements in Â that are statistically well-determined might be significantly smaller

than one. Thus, the number-of-events form of the detector response matrix A leads to

a better balanced system, which gives larger weights to equations with smaller errors as

far as the detector response is considered. It can be shown that if the initial MC sample

statistics are at least one or two orders of magnitude higher than the data statistics, and
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if the number-of-events form A of the detector matrix is used, the error on the unfolded

spectrum will be dominated by the error on b.

Since in general the errors for the bi are unequal, different equations have different

significance for the solution of the problem. Hence, we should rather consider a weighted

least-squares problem, ∑
i

(
(Aw)i − bi

Δbi

)2

→ min, (5.6)

with Δbi being the error on bi, and no correlations between different bi are assumed. To

obtain a balanced system with respect to the errors on b, according to Eq. (5.6), each

equation is divided by the error of bi (b̃i = bi/Δbi, Ãij = Aij/Δbi), leading to

Ãw = b̃. (5.7)

The covariance matrix of b̃ is by construction identical to the unit matrix I.

5.1.2 Regularization

With these rescalings, the problem of spurious oscillations is not solved yet, though their

amplitudes might decrease. To suppress them further, we employ a priori knowledge about

the solution. Technically, this is achieved by adding a regularization term to the expression

being minimized, (
Ãw − b̃

)T (
Ãw − b̃

)
+ τ (Cw)T (Cw) → min, (5.8)

where C is a matrix reflecting the a priori condition on w. The Lagrange multiplier τ de-

termines the weight given to this condition in the minimization. Effectively, this expression

favors solutions w that solve the linear system (5.7), and also fulfill the additional condition

to have Cw small. By choosing C adequately, the small si causing the oscillations will be

regularized. Under the assumption that the solution x does not differ too much from the

simulated true distribution xini, w should be reasonably smooth, that is, w should have

only small bin-to-bin variations. Spurious fluctuations, however, will introduce sharp peaks

in w, since they do not exist in the initial generated distribution xini. They can thus be

suppressed by requiring the solution for w to be smooth.
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The “second derivative” of a discrete distribution w can be defined somewhat analo-

gously to an ordinary second derivative,

w′′
j =

w′
j+1 − w′

j

Δwj
=

1
(Δwj)

(
wj+2 − wj+1

Δwj+1
− wj+1 − wj

Δwj

)
=

1
(Δwj)2

(wj+2 − 2wj+1 + wj),

where equal binning Δwj is assumed, and in contrast to a usual derivative, Δwj does not

approach zero.

Defining the curvature c of a discrete distribution as the sum of the squares of its second

derivatives (equidistant binning assumed and the overall factor of (Δwj)2 omitted),

c =
∑

j

(wj+1 − 2wj + wj−1)
2 ,

the corresponding matrix C that effectively minimizes the curvature of w is

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 + ξ 1 0 0 · · ·

1 −2 + ξ 1 0 · · ·

0 1 −2 + ξ 1

...
. . . . . . . . .

1 −2 + ξ 1

0 1 −1 + ξ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.9)

The minimization (5.8) corresponds to the modified linear system,

⎛
⎜⎜⎝ Ã

√
τC

⎞
⎟⎟⎠w =

⎛
⎜⎜⎝ÃC−1

√
τI

⎞
⎟⎟⎠Cw =

⎛
⎜⎜⎝b̃

0

⎞
⎟⎟⎠ , (5.10)

which is equivalent to Eq. (5.7) for τ = 0. For the inversion of C to be possible, a small

diagonal component has been added in Eq. (5.9): Cij → Cij + ξδij . A value between 10−3

and 10−4 for ξ is large enough to make C invertable, but does not change the condition of

minimum curvature significantly.

The following describes the formalism that is implemented and used for the unfolding.
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In analogy to the treatment of the unregularized linear system, the SVD could be applied

to the new system for each value of τ . Nevertheless, it turns out that it suffices to decompose

ÃC−1 and solve the system for τ = 0. According to Eq. (5.3) the SVD yields

ÃC−1 = USV T .

As before, U and V T are orthogonal and S is a diagonal matrix with non-negative elements

si ordered non-increasingly. Both Cw and b̃ can be written in terms of the orthogonal

vectors forming the columns of U and V ,

Ud = b̃, V z = Cw, (5.11a)

to obtain the diagonal system

zi =
di

si
, w = C−1V z. (5.11b)

The solution of the regularized system with τ �= 0 can then be obtained from Eqs. (5.11)

by changing di [58],

d
(τ)
i = di

s2
i

s2
i + τ

, (5.12a)

leading to the regularized solution

z
(τ)
i =

disi

s2
i + τ

=
di

si + τ
si

, w(τ) = C−1V z(τ). (5.12b)

As can be seen in these equations, introducing a τ �= 0 leads to a damping of those terms

with small si. Since small si (that is, large i) correspond to quickly oscillating terms, this

regularization serves for the required damping of the spurious oscillations originating from

statistical fluctuations. This acts as a low-pass filter with a smooth cutoff. It prevents the

artificial introduction of quasi-periodic fluctuations, known as Gibbs phenomenon, which

can be introduced by sharp cutoffs.

The unfolded solution x(τ) is finally obtained from the regularized weights w(τ),

x
(τ)
i = xini

i w
(τ)
i . (5.13)
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5.1.3 Determination of τ

The determination of the regularization parameter is of crucial importance in the un-

folding process. Choosing a strong damping will bias the result toward the simulation input.

As shown in Eq. (5.5a), we unfold the quotient of the end result and the true simulated

spectrum. On the other hand, an insufficient damping will lead to a result substantially

influenced by statistical fluctuations in the measured spectrum.

Here we choose to optimize the value of τ from a set of toy tests that are discussed

in Sec. 5.2. The obtained “measured” test distribution is unfolded and the result x(τ)

is compared to the original distribution xtru = xtest for a range of a priori reasonable

parameters τ = s2
k. We use the test value S2,

S2 =
∑

i

(
x

(τ)
i − xtru

i

σ(xtru
i )

)2

, (5.14)

to describe the level of agreement between the result of the unfolding x(τ) and xtru. An

analoguous quantity is formed for the moments,

S2
M =

(
M (τ) − M tru

σ(M tru)

)2

, (5.15)

where the moments M are the first (M1) and the second central moment (U2) defined in

App. B. While this quantity can of course also be obtained for the third central moment,

we expect quite large errors on this moment and optimize τ for the spectrum and the two

first moments.

We consider several criteria for the determination of τ . The τ for which x(τ) and xtru, and

M (τ) and M tru, respectively, agree best, is indicated by S2 being minimal: While S2 does

not take bin-by-bin correlations in the unfolded spectrum into account, it is independent of

τ and minimizes the absolute deviation of the unfolding result and the original distribution.

This is a desirable property, since the uncertainties on the unfolded spectrum themselves will

depend on τ . Another quantity to be taken into account is the size of the bias introduced

by the unfolding relative to the statistical uncertainty – it is desirable to keep the bias,

which is harder to quantify than the statistical uncertainty, small. Also, the projected bias
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should not depend strongly on the true value mb, so that it can be reliably quantified from

the toy tests.

Another possibility is to use information about the di, which are the coefficients of the

orthogonal decomposition of the rescaled measured spectrum b̃ (see Eq. (5.11a)). Since

the covariance matrix on b̃ is by construction equal to the unit matrix, d also has a unit

covariance matrix because of orthogonality of U in Eq. (5.11a). Hence, the di are expected to

show some typical behavior: The first k elements di, which give rise to the slower oscillating

terms, should be statistically significant, and have a unit error. The statistically insignificant

di for i > k should follow a standard distribution, that is, have a mean value of zero and

unit variance. The average of the absolute values of the statistically insignificant di should

thus be close to
√

2/π ≈ 0.81. Hence, the effective rank of the system can be determined

by identifying the critical k marking the last statistically significant di. The regularization

parameter τ should then be set to the square of the kth singular value,

τ = s2
k. (5.16)

We use S2, S2
M , and the size of the projected bias on the moments to determine τ .

5.2 Tests of the Unfolding Procedure

As basis for the unfolding of the m2
X spectrum we use the RooUnfHistoSvd package.

Several tests of the unfolding code, based on toy experiments, are performed. Although

the method should in principle work independently of the specific distribution to be un-

folded, in case of the mX and m2
X spectra problems might arise because of sharp resonances

in the hadronic mass. The regularization is meant to damp oscillations originating from

statistical uncertainties in the measured distribution b. As can be seen in Eq. (5.8), this is

achieved by adding a regularization term to the expression to be minimized. In our case

this term is chosen to minimize the bin-to-bin variation of the unfolded vector. Since we

actually unfold the bin-by-bin ratio w of the result x(τ) and the initially generated distribu-
1This result differs from that of [58], which states that the average of the absolute values of the statistically

insignificant di should be close to 1/2
√

π ≈ 0.28.
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tion xini from the MC simulation (see Eqs. (5.5)), the regularization suppresses sharp peaks

in w. Statistical fluctuations in the measured spectrum are not the only possible source

for such peaks; they could also arise when sharp resonances are very different in data and

MC simulation. In general, measurements of exclusive semileptonic B → Xu�ν branching

fractions have sizable errors or do not exist yet, and thus the existence of differences in data

and MC simulation cannot be excluded2. A thorough test is necessary to investigate how

large the differences between data and MC simulation can be for the unfolding procedure

to be successful.

The toy experiments are performed using statistically independent toy MC samples

for the initialization and for the distributions to be unfolded. For each toy experiment,

the first MC sample serves to determine the detector response matrix A and the initial

generated MC distribution xini. For b, instead of a truly measured distribution from data,

the reconstructed distribution is taken from a second, statistically independent, MC sample

with different values of mb, while keeping μ2
π fixed. This allows us to test the performance

of the unfolding dependent on the difference of the value for mb assumed in the simulation

and the actual value of mb. Note that the appearance of the resonance structure depends

on mb, since the form of the nonresonant part of the spectrum determines how high the

resonances are in comparison to the nonresonant part. For the sample serving as MC data

for the unfolding, we adopt the values of mb and μ2
π as determined in [60]. In the following

plots, Δmb is defined as Δmb = mdata
b − mMC

b , where the labels “data” and “MC” refer to

the role the respective toy sample takes in the toy experiments.

For the toy experiments, we apply the same cuts to the reconstructed samples that are

applied in the analysis.

The unfolding result x(τ) can be compared with the true MC distribution xtru, associated

with the reconstructed distribution b that is unfolded. We compare the first, second central,

and third central moment of x(τ) and xtru. For each value of Δmb, we use 500 statistically
2For the final unfolding we use a bin width of 0.31 GeV and 0.8 GeV2, respectively, which dilutes the

resonant structure of the mass spectrum and hence reduces the sensitivity on different resonant structures
in data and MC simulation.
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independent samples to serve as “data” and we assume the resolution observed on signal

MC samples.

The statistics of the second MC sample that serves as “data” for the purpose of the

tests is chosen to be comparable to the data statistics in the recoil analysis, i.e., b contains

roughly 750 to 800 reconstructed signal events. The statistics in the sample that serves as

MC data is roughly ten times larger.

The regularization parameter τ is scanned in order to choose the optimal value for τ

by comparing the different results. While by definition k can only take integer values (see

Eq. (5.16)), we have defined k = 2.5 to denote τ = s2s3.

We use three different upper cuts on the hadronic mass, m2
X < 6.4GeV2, m2

X <

7.2GeV2, and no cut on m2
X and we study the following quantities for the moments of

the m2
X distribution:

• The bias, Mtrue − M̂ (τ),

• The relative bias, (Mtrue − M̂ (τ))/Mtrue,

• The bias relative to the statistical uncertainty, (Mtrue − M̂ (τ))/σ̂M (τ) ,

• The relative statistical uncertainty, σ̂M (τ)/M̂ (τ),

• The relative uncertainty including the bias,
√

σ̂2
M (τ) + (Mtrue − M̂ (τ))2/M̂ (τ), and

• S2 and S2
M as defined in Eqs. (5.14) and (5.15).

as obtained using the mean of 500 toys. The moments M are the first moment (M1),

the second central moment (U2), and the third central moment (U3). The mean value of

Mtrue − M̂ (τ) is obtained from a Gaussian fit to the distribution of Mtrue − M (τ)3.

The color and markerstyle coding is

3In particular, (Mtrue − M̂ (τ))/σ̂M(τ) is not obtained on a toy-by-toy basis and averaged, but rather from
the averages of Mtrue − M (τ) and σM(τ) .
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k = 2,

k = 2.5,

k = 3,

k = 4, and

k = 5.

In the case of the S2
M plots, the bin entry for Δmb = 0GeV is the mean value of the

other bin entries.

The studies are based on the MC production version SP5/6. Changes that occured in

the analysis when moving to MC production version SP8, which is used for the remainder

of the analysis, are as follows:

• Increased statistics for Run1-5 (≈ 1000 signal events),

• Changes in resolution due to new reconstruction, selection, and cuts, and

• Realistic estimates of statistical uncertainties on the measured spectrum (these were

substantially underestimated in the SP5/6-based toys).

However, the changes in resolution and numbers of events are not very large between

SP5/6 and SP8. Since we underestimated the uncertainties in the toy experiments shown

here, the regularization parameter from more realistic toy studies would be smaller, if

different at all, so that using the regularization parameter extracted here is conservative.

Since the statistical uncertainty will be larger than predicted by the toys, the bias from the

unfolding will be less significant in comparison.

We use the results of the toy studies to determine the regularization to be used in

the unfolding of the measured m2
X spectrum. The aim is to choose k such that the bias

introduced by the unfolding procedure is small compared to the statistical uncertainty, while

minimizing the overall uncertainty on the moments. To use a more realistic estimate of the

statistical error, however, we use the statistical error from the actual moments we obtain

(see Sec. 5.4) and compare this to the bias seen in the toys, given in Fig. 5.1. The values

for S2
M for the first and second moments are shown in Fig. 5.2. From the toy study based
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Figure 5.1. The relative bias for the first (left) and second central (right) moments from
toy experiments for different values of Δmb and τ . This toy uses the mass distribution from
signal MC samples, resolution from signal MC samples, and upper cut on the hadronic mass
m2

X < 6.4GeV2.
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Figure 5.2. S2
M for the first (left) and second central (right) moments from toy experiments

for different values of Δmb and τ . This toy uses the mass distribution from signal MC
samples, resolution from signal MC samples, and upper cut on the hadronic mass m2

X <
6.4GeV2.
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on SP5/6 we choose k = 2.5 for the unfolding of the m2
X spectrum. The value k = 2.5 has

to be understood in that we use s2s3 instead of s2
k in Eq. (5.16). For the unfolding of the

mX spectrum, we use k = 4 as determined in an earlier analysis [61].

Rather then correcting for the bias, we use an estimate of the bias as an additional

systematic uncertainty. In most cases, the bias shows a linear dependence on mb, and we

linearize and symmetrize the biases we observe at ±60MeV away from the mean value

assumed in the toy experiments, which corresponds to 1.5σ of the uncertainty on mb in

the global fits in the kinetic scheme [2]. To summarize, we observe relative biases of 0.028

and −0.000 on M1, 0.030 and 0.012 on U2, and −0.165 and 0.063 on U3, for ±60MeV,

respectively.

5.3 Unfolding the mX and m2
X Spectra

This section presents the unfolded mX and m2
X spectra obtained from the measured

spectra. We will discuss how the initially generated spectra xini are obtained before showing

the results of the unfolding.

A breakdown of the uncertainties on the moments of the unfolded m2
X spectrum is given

in Sec. 5.4.

5.3.1 Full Signal Sample

For the initial generated spectrum xini, which enters the unfolding through Eq. (5.13),

to contain the full physical information, the signal MC sample needs to contain all events,

whether or not they pass any analysis cuts. In particular, this includes events for which the

tag B is not correctly reconstructed. Note that for the SVD-based unfolding, which uses the

number-of-events matrix A rather than the probability matrix Â, the matrix determination

only needs the events that pass the analysis cuts.

Taking only events with a reconstructed Breco tag would introduce a bias on the xini

spectrum, since the efficiency of reconstructing the tag Breco varies as a function of the
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hadronic mass. Events with large hadronic mass have in general more particles in the X

system than events with low mX . Hence, it is easier for the reconstruction to find an

acceptable Breco candidate in high-mX events, since there is a larger pool of particles from

which the reconstruction can draw for building a candidate. Even if one of the actual

particles from the Breco candidate is lost, there is some chance that it can be replaced by

one of the X system particles. Note that this Breco candidate is not necessarily the correct

one. After all analysis cuts are applied and the tag side background is subtracted, events

with low mX have a larger reconstruction efficiency.

As described in Sec. 4.1.2, our data samples are based on the BSemiExcl skim. In

order to obtain unbiased initially generated spectra xini, we produced dedicated signal MC

samples containing only generator level information, which uses the same input parameters

and reweightings as used for the default signal MC production.

5.3.2 Final State Radiation

The unfolding can also serve to correct the mX and m2
X spectra for final state radiation,

assuming it is simulated well in the MC data. On the technical level, we need to guarantee

that final state radiation does not introduce any bias on the generated hadronic mass in

signal MC simulation. Bremsstrahlung does not need any specific attention, as it does

not enter generator-level information. Provided it is simulated well in the MC data, the

unfolded mX and m2
X spectra will automatically be corrected for bremsstrahlung.

We define a generated hadronic mass at truth level that excludes photons likely to be

radiated from the signal lepton. Photons making an angle θ < π/2 with the signal lepton

in the Υ(4S) rest frame are assumed to originate from final state radiation and are not

included in the true X system. We find that with this procedure the generated hadronic

mass mX is not biased by final state radiation4, and the detector matrices correct for the

bias in the recontructed hadronic mass.
4This is tested by generating signal events with and without the simulation of final state radiation and

comparing the moments of the hadronic mass spectrum between the two samples. The final state radiation
veto is applied to the sample for which final state radiation is included in the simulation.
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5.3.3 Determination of the Regularization Parameters

The determination of the regularization parameter τ for the unfolding of the measured

spectrum is described in Sec. 5.1.3. From the results of toy experiments (Sec. 5.2), we

choose τ = s2
2.5 for the unfolding of the m2

X spectrum and τ = s2
4 for the unfolding of the

mX spectrum.

5.3.4 The Unfolded Spectra and Moments

The measured mX and m2
X spectra are shown in Fig. 4.10. The detector response

matrices in their number-of-events form are given in Fig. 4.7. We unfold the effects of

detector resolution, and of acceptance and efficiency effects, at the same time. In order

to not induce an additional dependence on the modeling of the signal decays, we do not

unfold the lepton momentum cut in the B rest frame. Our unfolded spectra and moments

are hence determined with a cut p∗ > 1GeV.

Since the measured spectrum by construction contains signal events (i.e., B → Xu�ν

events), negative entries are not physical. Yet for the unfolding we use the spectrum as it

is measured, i.e., with negative bin entries. Setting the negative bin entries to zero (while

keeping the measurement error on these bins) would distort the measured spectra b and

thus the unfolded spectra x(τ). For the errors on the measured distributions b we take the

square root of the respective diagonal element of the covariance matrices C.

The unfolded spectra x(τ), taking only statistical uncertainties into account, are shown

in Fig. 5.3. They are normalized to unit area. The relative statistical uncertainties on the

truncated moments are given in Tab. 5.3.4 and the correlation matrices are shown in Fig. 5.4.

Statistical uncertainties arise from the mES fits and the statistical uncertainties on the

detector response matrix. The latter are evaluated by performing 1000 toy experiments, in

which we fluctuate the detector response matrix within its statistical uncertainties according

to a Poisson distributions. The covariance matrix is obtained from the spread of the results

following Eq. (5.17b). The large bin-by-bin correlations are due to the bin size being very

close to our resolution in the hadronic mass.
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Figure 5.3. The unfolded mX (left) and m2
X (right) distributions with statistical uncertain-

ties only.
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Figure 5.4. Statistical correlation matrices for the unfolded mX (left) and m2
X (right)

spectra.

mX m2
X

σ(M8
1 ) 0.11 0.16

σ(U8
2 ) 0.14 0.26

σ(U8
3 ) 0.54 0.24

ρ12 0.71 0.98
ρ23 −0.67 0.91
ρ13 −0.94 0.82

Table 5.1. Relative statistical uncertainties on the moments of the unfolded spectra and
their correlations. The moments are truncated to mX < 2.48GeV and m2

X < 6.4GeV2,
respectively.
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Note that both the mean values of the spectrum and moments and their statistical un-

certainties are expected to change when including the effect of systematic uncertainties. The

bin-by-bin rescaling of the measured spectra according to their uncertainties (see Eq. (5.7))

also takes into account systematic uncertainties for the main result, which accounts for the

changes between the results presented here and the final results.

5.4 Moments and Spectra Results Including Systematic Un-

certainties

The systematic uncertainties on the measured spectrum are included in the rescaling

of the spectrum during the unfolding (according to Eq. (5.7)). They also are propagated

through the unfolding procedure, along with systematic uncertainties on the detector re-

sponse and the initially generated spectrum, to yield systematic uncertainties on the un-

folded spectrum. We use two different methods for the propagation: If a given systematic

uncertainty affects the detector response and/or the initially generated spectrum, they are

propagated through the unfolding procedure by systematically changing all inputs to the

unfolding and evaluating the systematic change in the result of the unfolding. We compute

the covariance matrix from

C
(τ)
k,ij =

⎧⎪⎪⎨
⎪⎪⎩

“
x
1(τ)
i −x

(τ)
i

”
−

“
x
2(τ)
i −x

(τ)
i

”

2

“
x
1(τ)
j −x

(τ)
j

”
−

“
x
2(τ)
j −x

(τ)
j

”

2 if N = 2

(x1(τ)
i − x

(τ)
i )(x1(τ)

j − x
(τ)
j ) if N = 1,

(5.17a)

where N = 1 or 2 depending on the nature of the systematic uncertainty.

If a given systematic uncertainty only affects the measured spectrum, we obtain the

associated covariance matrix on the unfolded spectrum from toy Monte Carlo studies, in

which we fluctuate the measured spectrum according to its covariance matrix (taking into

account bin-by-bin correlations) and unfold those toy spectra. The covariance matrices on

the unfolded spectrum associated with the different sources of systematic uncertainties C
(τ)
k

are computed from the spread of the results,

C
(τ)
k,ij =

∑
l

(
x

l(τ)
i − x

(τ)
i

)(
x

l(τ)
j − x

(τ)
j

)
N − 1

, (5.17b)
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Figure 5.5. Unfolded mX (left) and m2
X (right) spectra. The outer error bars give the total

error including the systematic contribution. The statistical contribution to the uncertainty
is shown by the shorter error bar.
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Figure 5.6. The correlation matrices for the unfolded mX (left) and m2
X (right) spectra.

where l labels the unfolded, systematically varied spectrum, and N = 1000 is the number of

toy spectra. The covariance matrices on the unfolded spectra C(τ) are obtained by adding

the C
(τ)
k .

Fig. 5.5 shows the unfolded mX and m2
X spectra, where the outer error bars include

systematic uncertainties. The inner error bars give the statistical uncertainties. The corre-

lation matrices for the unfolded spectra are shown in Fig. 5.6. Tab. 5.2 gives a breakdown

of the uncertainties on the moments of the m2
X spectrum with an upper cut on the hadronic

mass, m2
X < 6.4GeV2.

We measure the first three moments of the unfolded m2
X spectrum shown in Fig. 5.5
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Source Range σk(M1)/M1 σk(U2)/U2 σk(U3)/U3

Total Statistical 0.17 0.30 0.34
Tracking efficiency 0.2 − 0.7% / track 0.04 0.06 0.03
Neutral efficiency 1.8% / photon 0.04 0.07 0.11
e efficiency 2% 0.02 0.03 0.02
μ efficiency 3% 0.05 0.07 0.05
e misid 15% 0.03 0.05 0.02
μ misid 15% 0.03 0.04 0.01
K± efficiency 2% 0.16 0.26 0.21
K± misid 15% 0.05 0.08 0.05
KL reconstruction Sec. 4.2.1 0.05 0.08 0.07
Detector Subtotal 0.20 0.32 0.27
mES fits Sec. 4.2.2 0.06 0.12 0.13
Breco truth matching ΔE ± 10MeV 0.01 0.01 0.00
mX fit uncertainty Tab. 4.4 0.08 0.14 0.15
Fit Subtotal 0.10 0.18 0.20
B → D(∗,∗∗)(π)�ν BFs [49] 0.10 0.18 0.19
D BFs [8] 0.06 0.09 0.07
KS veto 10% 0.07 0.11 0.08
Bkg Subtotal 0.13 0.23 0.23
Nonresonant signal decays [2] 0.02 0.04 0.07
Resonant signal BFs [8] 0.01 0.02 0.01
ss̄ popping ±30% 0.01 0.01 0.01
Signal Subtotal 0.03 0.05 0.07
B → Xceν m2

miss rew. turn off 0.06 0.11 0.12
Neutral multiplicity Sec. 4.2.5 0.06 0.06 0.03
Data-MC Subtotal 0.08 0.12 0.12
Systematics Subtotal 0.27 0.45 0.43
Unfolding bias Sec. 5.2 0.01 0.02 0.05

Table 5.2. Relative statistical and systematic uncertainties on the measured m2
X moments.
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m2cut
X /GeV2 M1/GeV2 U2/GeV4 U3/GeV6

7.2 1.98 ± 0.41 ± 0.63 2.00 ± 0.90 ± 1.29 2.11 ± 1.74 ± 2.27
ρ12 = 0.99 ρ23 = 0.99 ρ13 = 0.96

6.4 1.96 ± 0.34 ± 0.53 1.92 ± 0.59 ± 0.87 1.79 ± 0.62 ± 0.78
ρ12 = 0.99 ρ23 = 0.94 ρ13 = 0.88

5.6 1.92 ± 0.28 ± 0.44 1.78 ± 0.36 ± 0.32 1.37 ± 0.16 ± 0.19
ρ12 = 0.99 ρ23 = 0.08 ρ13 = −0.08

4.8 1.83 ± 0.21 ± 0.34 1.53 ± 0.20 ± 0.31 0.88 ± 0.19 ± 0.32
ρ12 = 0.98 ρ23 = −0.86 ρ13 = −0.94

4.0 1.66 ± 0.14 ± 0.22 1.18 ± 0.08 ± 0.14 0.42 ± 0.16 ± 0.27
ρ12 = 0.97 ρ23 = −0.94 ρ13 = −0.99

3.2 1.43 ± 0.08 ± 0.14 0.81 ± 0.03 ± 0.05 0.18 ± 0.07 ± 0.13
ρ12 = 0.94 ρ23 = −0.93 ρ13 = −1.00

2.4 1.09 ± 0.04 ± 0.06 0.44 ± 0.01 ± 0.02 0.07 ± 0.03 ± 0.03
ρ12 = 0.87 ρ23 = −0.84 ρ13 = −1.00

Table 5.3. Moments and their correlations for p∗ > 1GeV and different cuts on m2
X . The

first uncertainty is statistical, the second systematic.

according to the definitions in App. B. Using an upper cut at m2
X = 6.4GeV2 and p∗ >

1GeV, we obtain

M1 =(1.96 ± 0.34stat ± 0.53syst)GeV2

U2 =(1.92 ± 0.59stat ± 0.87syst)GeV4

U3 =(1.79 ± 0.62stat ± 0.78syst)GeV6,

where the correlations between the moments are ρ12 = 0.99, ρ23 = 0.94, and ρ13 = 0.88,

respectively.

Moments with different upper cuts on m2
X are given in Tab. 5.3. Even though we

are only adding (subtracting) a small fraction of phase space when moving the m2
X cut

by 0.8GeV2, the uncertainties get substantially larger (smaller), which can be attributed

to the large bin-by-bin correlations introduced by the unfolding. In addition, systematics

related to the B → Xc�ν background decrease for a decreasing cut on m2
X .
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Chapter 6

Determination of mb and

Nonperturbative Parameters

In this Chapter, we present the determination of the b-quark mass and the nonpertur-

bative parameters μ2
π and ρ3

D from the first three moments of the unfolded m2
X spectrum.

The values of mb and the nonperturbative parameters are usually determined from

moments on the lepton energy distribution and the hadronic mass distribution in B → Xc�ν

decays and the photon energy distribution in B → Xsγ decays [1, 2], which achieve a

combined uncertainty of (30 − 39)MeV on mb from fits to data from several experiments.

A recent analysis of BABAR data finds a combined uncertainty of 55MeV. The branching

fraction of B → Xc�ν decays is about a factor of 50 larger than the branching fraction of

B → Xu�ν. Yet, B → Xc�ν decays are primarily sensitive to the difference of the b- and

c-quark masses, while B → Xu�ν decays are directly sensitive to the b-quark mass, which

offsets the difference in the available statistics. The branching fraction of B → Xsγ, on the

other hand, is about a factor of 5 smaller than our signal branching fraction, but the parton-

level two-body decay b → sγ is much more sensitive to mb than the parton-level three-body

decay b → u�ν. While the precision of our determination of mb and the nonperturbative

parameters cannot be competitive with that from B → Xc�ν and B → Xsγ, our results

offer a test of the underlying theory, which is relied on for the determination of |Vub|.
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Our experimental inputs are the hadronic mass moments with an upper cut at m2
X =

6.4GeV2, given in Sec. 5.4. The theoretical input [12] is described in Sec. 2.3.4. The

hadronic mass moments in B → Xu�ν are predicted with nonperturbative and perturbative

corrections up to O(1/m3
b) and O(α2

sβ0), respectively, as a function of mb and the nonper-

turbative parameters. They allow for a loose lower cut on the lepton energy (E�) and an

upper cut on m2
X .

The cut of m2
X chosen is a compromise between experimental and theoretical consid-

erations. Experimentally, increasing the m2
X cut increases the uncertainties related to the

B → Xc�ν background, which dominates the high m2
X region of the spectrum. The large

m2
X region is poorly known and the bin-by-bin correlations are large. Theoretically, a tight

cut on m2
X introduces large uncertainties due to shape function effects (see Sec. 2.3.4).

We choose m2
X < 6.4GeV2 as the tighest cut where theoretical uncertainties on the first

moment are still thought to be under control.

The fit performs a χ2 minimization and is based on Minuit [62]. The fit code uses an

implementation of the moment calculation by the authors of Ref. [12]. The necessary numer-

ical integrations can be performed by two different procedures, by a full Vegas integration

or by using an interpolation for the O(α2
sβ0) corrections. The fit uses the interpolation of

the BLM corrections since the full Vegas integration is too slow to be used for a fit.

The values of μ2
G and ρ3

LS are fixed in our fits, since our sensitivity to these parameters

is small. The best constraints on μ2
G are obtained from the mass difference between B and

B∗ mesons, and heavy quark sum rules can be used to estimate ρ3
LS . Ref. [26] finds μ2

G =

(0.35+0.03
−0.02)GeV2, and Ref. [27] suggests that typically, −0.05GeV3 < ρ3

LS < −0.25GeV3.

We use αs = 0.22 ± 0.10, where the large uncertainty is used to account for uncertain-

ties from uncalculated higher-order perturbative corrections in addition to the parametric

uncertainties in αs.
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Figure 6.1. Fitted vs. generated mb values. The fitted line has a slope consistent with unity.

6.1 Fit Validation

We validate the fitting code to verify that we obtain unbiased results and proper uncer-

tainty estimates.

To test the fit for potential biases, we choose sets of input values for mb, μ2
π, and ρ3

D, and

compute the corresponding three hadronic mass moments with the full Vegas integration.

The computed mass moments are used as input to the fit, and the fit results for mb, μ2
π,

and ρ3
D are compared to the input parameters. We find that the parameters agree to better

than 0.1% and hence no bias is observed. Fig. 6.1 shows the fitted values of mb as a function

of the generated values. This test validates both the fit procedure and the interpolation

approximation for the BLM corrections that we use in the fit.

The uncertainties obtained from the fit are validated using a toy experiments. We choose

values for mb, μ2
π, and ρ3

D that are consistent with current determinations from B → Xc�ν

and B → Xsγ decays [2]. The moments are computed with the full Vegas integration and

are then randomly varied within the statistical uncertainties we obtain for the moments

of the unfolded m2
X spectrum. The smeared moments serve as input for the fit, and we
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Parameter Gaussian Gaussian
mean width

mb 0.015 ± 0.020 0.971 ± 0.015
μ2

π 0.034 ± 0.020 0.993 ± 0.015
ρ3

D 0.037 ± 0.020 0.987 ± 0.014

Table 6.1. Parameters of the Gaussian fits to the pull distributions from the toy experiments.

compute the pull r for the fit parameter p as

r =
pfit − ptrue

σp
, (6.1)

where σp is the uncertainty on pfit as returned by the fit. Fig. 6.2 shows the observed

pull distributions for mb, μ2
π, and ρ3

D. All are consistent with normal distributions, as is

expected for an unbiased fit with correctly estimated uncertainties. We fit a Gaussian to

the pull distributions and find the mean values and width given in Tab. 6.1, which agree

with the expected values within 2σ.

6.2 Fit Results

From the hadronic moments with m2
X < 6.4GeV2 and p∗ > 1GeV, we determine

mb =(4.604 ± 0.125stat ± 0.193syst)GeV

μ2
π =(0.398 ± 0.135stat ± 0.195syst)GeV2

ρ3
D =(0.102 ± 0.017stat ± 0.021syst)GeV3,

where the statistical and systematic uncertainties are obtained from propagating the uncer-

tainties on the mass moments, and the correlations are ρmbμ2
π

= −0.99, ρμ2
πρ3

D
= 0.57, and

ρmbρ3
D

= −0.59. The large correlations on the fit results are due to the large correlations

between the mass moments.

The Δχ2 = 1 contour in the mb-μ2
π plane is shown in Fig. 6.3, along with the constraints

from the different mass moments. While M1 gives the strongest constraint on mb, U2

constrains mostly μ2
π, and U3 constrains mostly ρ3

D. Due to the strong correlation, we
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Figure 6.2. Pull distributions from 2500 toy experiments for mb = 4.59GeV (top), μ2
π =

0.4GeV2 (center) and ρ3
D = 0.10GeV3 (bottom).
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Figure 6.3. Δχ2 = 1 contour in the mb-μ2
π plane with the constraints from the different

moments: the constraint from M1 is shown in red, the constraint from U2 in green and the
constraint from U3 in blue.

determine a particular combination of mb and μ2
π much better than the two parameters

individually.

Finally, we assess the uncertainties associated with the fit itself. We vary μ2
G and ρ3

LS ,

which have been fixed in the fit within the ranges given above, and estimate a systematic

uncertainty from the variation of the fit results. To estimate the uncertainty due to un-

calculated higher-order perturbative corrections together with the parametric uncertainty

on αs, we vary αs by ±0.1 and take the observed variation in the fitted parameters as the

associated uncertainty. A breakdown of these uncertainties is shown in Tab. 6.2. We will

label these uncertainties as theoretical uncertainties since their main contribution comes

from uncalculated perturbative higher-order corrections.

To assess the stability of our results, we repeat the fit using moments with different cuts

on m2
X . We observe very stable results as shown in Tab. 6.3. It should, however, be noted

that the uncertainties between results with different m2
X cuts are highly correlated.

Our final result from the fits to the hadronic mass moments with m2
X < 6.4GeV2 and
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Source Range σk(mb)/GeV σk(μ2
π/GeV2 σk(ρ3

D)/GeV3

μ2
G (+0.03

−0.02)GeV2 0.008 0.003 0.002
ρ3

LS ±0.1GeV3 0.002 0.002 0.005
αs ±0.1 0.097 0.036 0.065
Subtotal 0.097 0.036 0.066

Table 6.2. Breakdown of the uncertainties on mb, μ2
π, and ρ3

D associated with the fit to the
mass moments.

Parameter m2cut
X = 5.6GeV2 m2cut

X = 6.4GeV2 m2cut
X = 7.2GeV2 No m2cut

X

mb/GeV 4.603 ± 0.099 4.604 ± 0.125 4.608 ± 0.157 4.637 ± 0.177
μ2

π/GeV2 0.399 ± 0.071 0.398 ± 0.135 0.385 ± 0.241 0.230 ± 0.339
ρ3

D/GeV3 0.104 ± 0.011 0.102 ± 0.017 0.097 ± 0.054 0.017 ± 0.107

Table 6.3. Results of the OPE fits for several upper cuts on m2
X with statistical uncertainties

only.

p∗ > 1GeV is

mb =(4.60 ± 0.13stat ± 0.19syst ± 0.10theo)GeV

μ2
π =(0.40 ± 0.14stat ± 0.20syst ± 0.04theo)GeV2

ρ3
D =(0.10 ± 0.02stat ± 0.02syst ± 0.07theo)GeV3,

in the kinetic scheme at μ = 1GeV, with correlation coefficients ρmbμ2
π

= −0.99, ρμ2
πρ3

D
=

0.57, and ρmbρ3
D

= −0.59. While the systematic uncertainties constitute the largest part of

the uncertainties in mb and μ2
π, the uncertainty in ρ3

D is dominated by theoretical uncer-

tainties.

We show a comparison of our result with recent BABAR results in B → Xc�ν and

B → Xsγ decays in Fig. 6.4. Our results are very consistent with the parameters deter-

mined from hadronic mass moments and lepton energy moments in B → Xc�ν decays.

While the agreement with the results obtained in B → Xsγ decays is good within present

uncertainties, it might be seen as curious that the small offset observed between the results

from semileptonic decays and the radiative decays is also present in an earlier result from

fully inclusive B → Xsγ decays [63].

Our measurement is the first measurement of mb and nonperturbative parameters in
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Figure 6.4. Results from recent BABAR analyses presented in the mb-μ2
π plane in the kinetic

scheme (μ = 1GeV). The dotted ellipse shows the result of a B → Xsγ analysis using the
recoil method [64], the dashed ellipse the result from B → Xc�ν decays [4, 65], the black
solid ellipse the result from its combination with earlier B → Xsγ measurements [66, 63],
and the solid gray ellipse the result from B → Xu�ν decays. The ellipses show Δχ2 = 1
contours.

B → Xu�ν decays. With 30 times less statistics due to the small B → Xu�ν branching

fraction, our uncertainty in mb is within a factor of 2 of the uncertainty from B → Xc�ν

decays (see Fig. 6.4) due to the much better sensitivity to the b-quark mass.

In light of the different HQEs in semileptonic and radiative penguin B decays, it would

be especially interesting to combine the results from semileptonic B decays alone.

Fig. 6.5 compares the m2cut
X dependence of the measured and predicted dependence of

the hadronic mass moments, assuming the values of mb, μ2
π, and ρ3

D extracted in the fit to

the moments with m2
X < 6.4GeV2 and p∗ > 1GeV. We find that the m2cut

X dependence is

well described down to m2cut
X = 4.8GeV2, with potentially a hint of a deviation starting at

m2cut
X = 4GeV2. While the deviation is within the experimental error bars and theoretical

uncertainties have not been considered, the uncertainties between moments with different

cuts are highly correlated, which makes observed deviations more significant. It would be
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Figure 6.5. Hadronic mass moments as a function of m2cut
X . The inner error bars show the

statistical uncertainties, the outer error bars the full uncertainties. The predictions for the
moments [12] using our fitted values of mb, μ2

π, and ρ3
D are given by the overlaid markers.

desirable to obtain predictions with lower m2cut
X , which are not provided by the current

version of the code.
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Chapter 7

Conclusions

The CKM-matrix element |Vub| and the mass of the b quark are fundamental parameters

of the SM. The precise determination of |Vub| is essential for testing the CKM picture, and

relies on good measurements of mb and the nonperturbative parameters, which describe the

kinematics of the b quark in the B meson.

With the large datasets collected over the last nine years at the B factories, new precision

measurements of |Vcb|, |Vub|, and mb have become possible. The e+e− → Υ(4S) → BB̄

decays offer a clean experimental environment with low non-B backgrounds and well-known

final state kinematics.

In this thesis, we present preliminary results for the measurement of the hadronic mass

spectrum in inclusive B → Xu�ν decays, based on 383 × 106 BB̄ events collected by the

BABAR experiment between 2000 and 2007. The measured spectrum is corrected for res-

olution, acceptance, and efficiency effects by an unfolding procedure. We also present

preliminary results for the first determination of the b-quark mass and the nonperturbative

parameters μ2
π and ρ3

D in B → Xu�ν decays using the first three moments of the unfolded

hadronic mass spectrum.
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The truncated moments for m2
X < 6.4GeV2 and p∗ > 1GeV are measured to be

M1 =(1.96 ± 0.34stat ± 0.53syst)GeV2

U2 =(1.92 ± 0.59stat ± 0.87syst)GeV4

U3 =(1.79 ± 0.62stat ± 0.78syst)GeV6,

where the correlations between the moments are ρ12 = 0.99, ρ23 = 0.94, and ρ13 = 0.88,

respectively. The systematic uncertainties are somewhat larger than the statistical un-

certainties and are dominated by uncertainties related to B → Xc�ν background. Using

HQET-based predictions in the kinetic scheme, we extract

mb =(4.60 ± 0.13stat ± 0.19syst ± 0.10theo)GeV

μ2
π =(0.40 ± 0.14stat ± 0.20syst ± 0.04theo)GeV2

ρ3
D =(0.10 ± 0.02stat ± 0.02syst ± 0.07theo)GeV3,

at μ = 1GeV, with correlation coefficients ρmbμ2
π

= −0.99, ρμ2
πρ3

D
= 0.57, and ρmbρ3

D
=

−0.59.

Our results for mb, μ2
π, and ρ3

D have a similar precision to the results in the B → Xc�ν

and B → Xsγ decay modes and are compatible with these within the present uncertainties.

The measurement of mb and nonperturbative parameters in B → Xu�ν decays provides an

independent determination of these quantities, which can be combined with results obtained

in B → Xc�ν and B → Xsγ decays.

As the precision of |Vub| is pushed below the 10% level, it is important to test the HQET-

based predictions that are used for the extraction of |Vub|. The HQE has been extensively

tested in B → Xc�ν decays with measurements by the DELPHI, CLEO, BABAR, Belle,

and CDF experiments. The uncertainty on |Vcb| from these measurements has reached 2%

and is by now dominated by theoretical uncertainties [1, 2, 3, 4, 67, 68]. Similar tests in

B → Xu�ν decays are much more difficult due to the smaller B → Xu�ν branching fraction

and the dominant B → Xc�ν background. So far, the only test of the theoretical description

of B → Xu�ν including shape function effects has been performed indirectly by extracting

|Vub| with cuts on several different kinematic variables and comparing those results. The

values obtained by different analyses generally agree, but a recent BABAR analysis [69]
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found a 2.5σ difference between using kinematic cuts based on the hadronic mass and the

light-cone variable P+ = EX − |�pX |.

The observed consistency of our results for mb, μ2
π, and ρ3

D with determinations in

B → Xc�ν confirms the applicability of the HQE for the prediction of hadronic mass

moments with moderate mass cuts within the uncertainties of our measurement. In addition

to testing the consistency with earlier measurements for a fixed hadronic mass cut, we

compare the measured dependence of the hadronic mass moments on the hadronic mass

cut with the predicted dependence by the HQE. Within our uncertainties, we find good

agreement for the mass cut dependence down to m2cut
X = 4.8GeV2. The small deviation at

m2cut
X = 4GeV2 may or may not be a sign of the presence of shape function effects when

lowering the mass cut.

Our result confirms that the measurement of the hadronic mass spectrum and its mo-

ments is feasible even in the charm-background dominated high-mass region, which is in

agreement with previous analyses [70, 69]. It also demonstrates the feasibility of deter-

mining mb and nonperturbative parameters using moments in B → Xu�ν decays. The

measurement would benefit from being repeated on a substantially larger dataset. With

more statistics available, one could limit the analysis to clean Breco modes and apply tighter

selection criteria to improve the experimental resolution. It could also be improved by bet-

ter determinations of the B → Xc�ν branching fractions and of the charged K efficiency. In

addition, a better hadronic mass resolution would introduce smaller correlations between

the measured moments and thus between mb and the nonperturbative parameters.

The LHC experiments will not be able to perform the inclusive reconstruction of B-

meson decays with sufficient accuracy. Presently, there are proposals to build “SuperB”

factories, which would operate at the much higher luminosities of 1035 cm−2s−1 and

1036 cm−2s−1 at KEK and Frascati, respectively. Provided that the experiments achieve a

reconstruction quality comparable to that of BABAR and Belle despite larger backgrounds

due to the high luminosity, their much larger datasets will provide an ideal basis for a

repetition of our measurement.
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For the time being, the determination of the b-quark mass in semileptonic and radiative

B decays at the B factories is among the most precise measurements of mb. As we enter

the era of physics at the LHC experiments, precise measurements of the b-quark mass are

an important ingredient for further studies of the SM as well as the Higgs sector.
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[7] A. Höcker and Z. Ligeti, Ann. Rev. Nucl. Part. Sci. 56, 501 (2006), [hep-ph/0605217].

[8] Particle Data Group Collaboration, W. M. Yao et al., J. Phys. G33, 1 (2006 and
electronic update).

[9] CDF Collaboration, A. Abulencia et al., Phys. Rev. Lett. 97, 242003 (2006), [hep-
ex/0609040].

[10] C. N. Burrell, M. E. Luke, and A. R. Williamson, Phys. Rev. D 69, 074015 (2004),
[hep-ph/0312366].

[11] F. J. Tackmann, Phys. Rev. D 72, 034036 (2005), [hep-ph/0503095].

[12] P. Gambino, G. Ossola, and N. Uraltsev, JHEP 09, 010 (2005), [hep-ph/0505091].

[13] F. J. Tackmann, Talk at the Joint Workshop on |Vub| and |Vcb| at the B factories.

[14] A. V. Manohar and M. B. Wise, Heavy Quark Physics, Cambridge monographs on
particle physics, nuclear physics, and cosmology No. 10 (Cambridge University Press,
2000).

[15] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory (Perseus
Books, 1995).

[16] A. Droll and H. E. Logan, Phys. Rev. D76, 015001 (2007), [hep-ph/0612317].

[17] M. Spira and P. M. Zerwas, hep-ph/9803257.

[18] L.-L. Chau and W.-Y. Keung, Phys. Rev. Lett. 53, 1802 (1984).

120



[19] L. Wolfenstein, Phys. Rev. Lett. 51, 1945 (1983).

[20] A. J. Buras, M. E. Lautenbacher, and G. Ostermaier, Phys. Rev. D50, 3433 (1994),
[hep-ph/9403384].

[21] C. Jarlskog, Phys. Rev. Lett. 55, 1039 (1985).

[22] CKMfitter Group Collaboration, J. Charles et al., Eur. Phys. J. C41, 1 (2005), [hep-
ph/0406184], updated results and plots at: http://ckmfitter.in2p3.fr.

[23] A. X. El-Khadra and M. Luke, Ann. Rev. Nucl. Part. Sci. 52, 201 (2002), [hep-
ph/0208114].

[24] M. Battaglia et al., hep-ph/0304132.

[25] DELPHI Collaboration, J. Abdallah et al., Eur. Phys. J. C46, 569 (2006), [hep-
ex/0603046].

[26] N. Uraltsev, Phys. Lett. B545, 337 (2002), [hep-ph/0111166].

[27] P. Gambino and N. Uraltsev, Eur. Phys. J. C34, 181 (2004), [hep-ph/0401063].

[28] CLEO Collaboration, A. Bornheim et al., Phys. Rev. Lett. 88, 231803 (2002), [hep-
ex/0202019].

[29] Belle Collaboration, A. Limosani et al., Phys. Lett. B621, 28 (2005), [hep-ex/0504046].

[30] BABAR Collaboration, B. Aubert et al., Phys. Rev. D73, 012006 (2006), [hep-
ex/0509040].

[31] BABAR Collaboration, B. Aubert et al., 0708.3702.

[32] R. V. Kowalewski and S. Menke, Phys. Lett. B541, 29 (2002), [hep-ex/0205038].

[33] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 95, 111801 (2005), [hep-
ex/0506036].

[34] D. J. Lange, Nucl. Instrum. Meth. A462, 152 (2001).

[35] F. De Fazio and M. Neubert, JHEP 06, 017 (1999), [hep-ph/9905351].
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Appendix A

Data-MC Comparisons

The analysis relies on several observables for selecting signal events as well as ensuring
that the events used in the analysis have a well reconstructed hadronic system. In this
section we study the agreement between the data and MC simulation for the main variables
used in the event selection.

These variables are as follows:

• Number of charged particles in the X system + �, (nchg);

• Number of neutral particles in the X system, (nneu);

• Number of K± in the X system, (nkp);

• Number of KS in the X system, (nks);

• Energy of the X system, (EX);

• Momentum of the lepton in the B rest frame, (pcms);

• Total charge of the event, (Qtot);

• Emiss − pmiss, (Emiss - pmiss);

• Missing mass square, (mm2); and

• Partially reconstructed D∗ tagging variable, (wdeltam).

To obtain the distributions on the various variables, we use the same procedure as for
the equidistantly binned mX and m2

X spectra (see Secs. 4.1.2 through 4.1.5) and apply all
analysis cuts except the cuts on the variable under study.

We generally find good agreement between data and MC simulation. Differences are
seen in the neutrino-related distributions (Emiss − pmiss and m2

miss). These are addressed
below. The differences in qtot are attributed to a statistical fluctuation, while the difference
in the number of neutral daughters (nneu) is accounted for in the systematic uncertainties.
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Figure A.1. Number of charged particles on the signal side: (top left) B → Xu�ν-enriched,
(top right) B → Xu�ν-depleted, (bottom left) B → Xu�ν-enriched after subtraction of
B → Xc�ν and other backgrounds, (bottom right) B → Xu�ν-depleted after subtraction of
B → Xc�ν and other backgrounds.
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Figure A.2. Number of neutral particles on the signal side: (top left) B → Xu�ν-enriched,
(top right) B → Xu�ν-depleted, (bottom left) B → Xu�ν-enriched after subtraction of
B → Xc�ν and other backgrounds, (bottom right) B → Xu�ν-depleted after subtraction of
B → Xc�ν and other backgrounds.

Figure A.3. Number of charged kaons on the signal side: (left) before and (right) after
subtraction of B → Xc�ν and other backgrounds.
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Figure A.4. Number of KS on the signal side: (left) before and (right) after subtraction of
B → Xc�ν and other backgrounds.

Figure A.5. Hadronic energy on the signal side: (top left) B → Xu�ν-enriched, (top right)
B → Xu�ν-depleted, (bottom left) B → Xu�ν-enriched after subtraction of B → Xc�ν and
other backgrounds, (bottom right) B → Xu�ν-depleted after subtraction of B → Xc�ν and
other backgrounds.
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Figure A.6. Momentum of the charged lepton in the B rest frame: (top left) B → Xu�ν-
enriched, (top right) B → Xu�ν-depleted, (bottom left) B → Xu�ν-enriched after sub-
traction of B → Xc�ν and other backgrounds, (bottom right) B → Xu�ν-depleted after
subtraction of B → Xc�ν and other backgrounds.
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Figure A.7. Total charge of the event: (top left) B → Xu�ν-enriched, (top right) B → Xu�ν-
depleted, (bottom left) B → Xu�ν-enriched after subtraction of B → Xc�ν and other
backgrounds, (bottom right) B → Xu�ν-depleted after subtraction of B → Xc�ν and other
backgrounds.
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Figure A.8. Emiss − pmiss: (top left) B → Xu�ν-enriched, (top right) B → Xu�ν-depleted,
(bottom left) B → Xu�ν-enriched after subtraction of B → Xc�ν and other backgrounds,
(bottom right) B → Xu�ν-depleted after subtraction of B → Xc�ν and other backgrounds.
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Figure A.9. m2
miss: (top left) B → Xu�ν-enriched, (top right) B → Xu�ν-depleted, (bottom

left) B → Xu�ν-enriched after subtraction of B → Xc�ν and other backgrounds, (bottom
right) B → Xu�ν-depleted after subtraction of B → Xc�ν and other backgrounds.
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Figure A.10. Partially reconstructed D∗ tagging variable: (top left) B → Xu�ν-enriched,
(top right) B → Xu�ν-depleted, (bottom left) B → Xu�ν-enriched after subtraction of
B → Xc�ν and other backgrounds, (bottom right) B → Xu�ν-depleted after subtraction of
B → Xc�ν and other backgrounds. Enrichment and depletion is done only using kaons.
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Figure A.11. Emiss − pmiss with electrons as signal lepton after p∗ − m2
miss reweighting for

the signal-enriched sample: before (left) and after (right) subtraction of B → Xceν and
other backgrounds.

Investigation of the Neutrino Variables

As presented in Figs. A.9 and A.8, the level of agreement between data and MC sim-
ulation in the ν variables is rather poor in the signal-enriched sample, while it is fair in
the signal-depleted sample. Generally, disagreements could stem from an inadequate MC
simulation of the physics processes (signal and/or background), the detector response, or a
combination of both.

We investigated several possible sources for the observed discrepancy: We perform com-
parisons in restricted regions of phase space to enrich the sample in non-charm background
(mX > 2.5GeV and p∗ < 1.5GeV) and signal (mX < 1.8GeV and p∗ > 2.2GeV), and
conclude that the MC simulation for non-charm backgrounds and the signal are adequate.
We find no correlation of the discrepancy with the charge of the decaying B meson. Fur-
thermore, we split the sample by lepton flavor. We find that the agreement between data
and MC simulation for m2

miss is good in the muon sample, while the discrepancy observed
on the full sample is visible in the electron sample. We find that the disagreement is not
located in any range of lepton momentum in the B rest frame p∗ or laboratory frame plab,
but takes a different shape as a function of p∗.

Reweighting the Electron Sample

Given that we observe the disagreement in the electron sample and that it takes different
shapes in different lepton momentum regions, we introduce a two-dimensional binning in p∗

(1.0, 1.3, 1.6, 1.9, 2.7 GeV) and m2
miss (40 equidistant bins between −5GeV2 and 15GeV2).

In these bins, we compute weights for the B → Xc�ν events in MC simulation to correct for
the observed differences. By construction, the m2

miss distributions agree well after applying
the reweighting. We observe that the agreement for Emiss−pmiss is also good (Fig. A.11) and
at the same level as for the muon sample (Fig. A.12), for which no additional reweighting
is applied.
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Figure A.12. Emiss − pmiss with muons as signal lepton after p∗ −m2
miss reweighting for the

signal-enriched sample: before (left) and after (right) subtraction of B → Xcμν and other
backgrounds.
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Appendix B

Definition of the Moments

This section introduces the moments we will compute from the unfolded spectrum.

For a probability density function with
∫

f(x)dx = 1, the nth moment Mn is defined as

Mn =
∫

xnf(x)dx, (B.1a)

and the nth central moment Un as

Un =
∫

(x −M1)nf(x)dx. (B.1b)

For a subrange of x, 0 < x < x2, Mx2
n and Ux2

n are defined as

Mx2
n =

∫ x2 xnf(x)dx∫ x2 f(x)dx
and Ux2

n =
∫ x2(x − Mx2

1 )nf(x)dx∫ x2 f(x)dx
. (B.1c)

For a discrete spectrum, given as a histogram with N bins, normalized to unit area, the
above definitions turn into

Mn =
N∑

i=1

mn
i hi and Un =

N∑
i=1

(mi − M1)nhi (B.2a)

and

MK
n =

∑K
i=0 mn

i hi∑K
i=0 hi

and UK
n =

∑K
i=0(mi − MK

1 )nhi∑K
i=0 hi

, (B.2b)

respectively, where the bin centers are denoted by mi and the content of the ith bin is
denoted by hi.

The use of a finite bin width will in general bias the discretely computed moments Mn

and Un with respect to the moments Mn and Un, respectively, obtained from the respective
continuous function. At this point we make no attempt to correct for this but give the
moments M1 and Un (n = 2, 3), which we obtain from the unfolded m2

X spectrum, with a
bin width of 0.8GeV2.
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