PNNL-18081

US Army Corps of Engineers . Portland District

Prepared for the U.S. Army Corps of Engineers, Portland District, under a Government Order with the U.S. Department of Energy Contract DE-AC05-76RL01830

Total Dissolved Gas Effects on Incubating Chum Salmon Below Bonneville Dam

FINAL REPORT

EV Arntzen KD Hand KM Carter DR Geist KJ Murray EM Dawley VI Cullinan RA Elston J Vavrinec III

January 2009

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes **any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights**. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161 ph: (800) 553-6847 fax: (703) 605-6900 email: orders@ntis.fedworld.gov online ordering: http://www.ntis.gov/ordering.htm

Total Dissolved Gas Effects on Incubating Chum Salmon Below Bonneville Dam

Final Report

EV Arntzen	EM Dawley
KD Hand	VI Cullinan
KM Carter	RA Elston
DR Geist	J Vavrinec III
KJ Murray	

January 2009

Prepared for the U.S. Army Corps of Engineers, Portland District, under a Government Order with the U.S. Department of Energy Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory Richland, Washington 99352

Summary

At the request of the U.S. Army Corps of Engineers (USACE), Portland District, the Pacific Northwest National Laboratory (PNNL) conducted research to measure the concentration of total dissolved gas (TDG) in chum salmon (*Oncorhynchus keta*) spawning areas downstream of Bonneville Dam and to assess the impact of elevated dissolved gas on chum salmon survival. Spring spill at the dam occurs when chum salmon sac fry are still in the gravel. Prior to this study, no data existed on the concentration of TDG within the incubation habitat of riverbed gravels. Further, little research has been conducted recently on the effects of gas supersaturation on incubating and larval stages of salmonids. A literature review early in this study suggested that impacts to chum salmon sac fry could occur at gas levels as low as 103% TDG, but this had not been studied previously on this species. The overall goal of the study was to evaluate potential impacts on chum salmon survival and development from elevated TDG that occurs during spring spill operations at Bonneville Dam. Specifically, we were interested in learning whether chum salmon were impacted by TDG under a range of hydraulic conditions created downstream from Bonneville Dam and also in determining physiological response to a range of TDG levels.

The study was conducted over a three-year period from 2006 through 2008 and included both a field and laboratory component. The field component consisted of measuring total dissolved gas levels in the riverbed at egg pocket depth as well as in the river at chum salmon spawning sites below Bonneville Dam in the Ives Island and Multnomah Falls areas. In addition, chum salmon sac fry were sampled from natural redds in 2007 and from artificial egg tubes in 2008 to determine if there was a physiological response to TDG that resulted from operations at Bonneville Dam. The laboratory component consisted of a two-year study (2007 and 2008) using toxicity tests on hatchery chum salmon fry at several static gas levels ranging up to 113% TDG; an additional incremental exposure to TDG levels up to 129% was conducted in 2008.

Results from the field and laboratory components of this study conducted in 2006 and 2007 were submitted previously in annual reports to the USACE and, with the exception of occasional references to those results, will not be repeated here. This report covers the field and laboratory components of this study that were conducted in 2008. The 2008 research activities resulted in six key findings:

- Chum salmon sac fry in the Ives Island area were exposed to depth-compensated TDG greater than 103% for up to 200 hours and greater than 105% for up to 100 hours. These exposure times represent up to 8% and 4%, respectively, of the total estimated 2008 incubation time.
- Most exposure occurred prior to spring spill during 2008 when the Bonneville Dam corner collector was operating. This finding contrasts with previous years' monitoring when exposure to elevated TDG was distributed before and after the onset of spring spill.
- Chum salmon sac fry in the Multnomah Falls area were not exposed to depth-compensated TDG greater than 103%.
- In the laboratory, static levels of dissolved gas ranging up to 113% TDG did not influence survival, growth, or development of chum salmon sac fry. There was no relationship between TDG concentration and histological lesions; control samples exhibited lesions. This was not observed in 2007 and is an unexplainable finding from this year's work.

- In the laboratory, incremental exposures to gas levels ranging up to 129% TDG found symptoms of gas bubble disease beginning at 121% TDG; mortality began at 124.6% TDG.
- Quantitative assessments of sac fry sampled from an artificial redd in the Ives Island area found that survival in March and April ranged from 0% to 89%. External signs of gas were found following periods when depth-compensated TDG was elevated above 103% TDG. It was not clear whether these signs were related to elevated dissolved gas levels.

The U.S. Environmental Protection Agency has adopted a nationwide water-quality criterion maximum of 110% TDG for the protection of aquatic life. Previous research in the Columbia River basin showed that this level of protection was overly conservative, and as such, state management agencies have issued waivers to the federal standards that allow gas levels to increase up to 115% TDG in the forebay of hydroelectric dams and up to 120% TDG in dam tailwaters. Guidance that managers have used to provide protection for pre-emergent chum salmon fry has been to limit TDG in the Bonneville Dam tailwater to 105% TDG after allowing for depth compensation. The results from this study would support this guidance; that is, 105% TDG appears to provide a conservative level of protection to chum salmon sac fry incubating in the gravel downstream of Bonneville Dam. We based this conclusion on the fact that our laboratory results from 2007 and 2008 did not reveal significant differences in survival, growth, or development at concentrations up to 113% TDG. The only exception to this conclusion is from the histological results in 2007, although this finding may have been confounded by temperature and not due exclusively to dissolved gas levels as previously reported. Having said that, we have no explanation why control fish in the 2008 laboratory study exhibited tissue lesions, and this may warrant further study. Although we noted unusual bubbles in the pupils of fish that were sampled in artificial redds during a period when dissolved gas levels were between 105% and 110%, the significance of these bubbles is unclear because the sample sizes were quite small. Further investigation into this may be warranted.

Our monitoring of dissolved gas in the field showed that depth-compensated TDG levels in the Ives Island chum salmon spawning area exceeded the 105% TDG management guideline when water levels were low (up to 4% of the incubation period in 2008). The relative risk to the chum salmon population in the Ives Island area can be determined through knowledge of the redd elevations, the hyporheic TDG concentrations, and the river surface elevation. We have shown that the elevation of redds within the Ives Island area can be variable, and that shallow redds are not always protected from elevated TDG because water depths cannot compensate for the elevated gas level. Further, due to groundwater interactions within the hyporheic zone, the surface water concentrations of TDG are not representative of the concentration of TDG experienced by the sac fry incubating in the gravel. These findings suggest that redd location, surface water depth within the spawning areas, and dissolved gas at the depth of an egg pocket should be monitored during the period before chum salmon emergence in order to more fully understand the impacts of dissolved gas to chum salmon sac fry incubating in the gravel downstream of Bonneville Dam.

Contents

Summary	iii
Abbreviations and Acronyms	ix
Overview	O.1
Chapter 1 – Assessment of Total Dissolved Gas Within Chum Salmon Spawning Areas in the Columbia River Downstream of Bonneville Dam	1.1
Introduction	1.1
Study Sites	1.2
Methods	1.4
Water Quality Monitoring at Ives Island and Multnomah Falls Spawning Locations Estimated Exposure of Chum Salmon Redds to Total Dissolved Gas	1.4 1.7
Results	1.7
Comparison of PNNL Surface Water Total Dissolved Gas Monitoring to Other Columbia River Monitoring Locations	1.7
Water Quality Monitoring at Ives Island and Multnomah Falls Spawning Locations	1.9
Estimated Exposure of Chum Salmon Redds to Total Dissolved Gas	1.19
Discussion	1.25
Chapter 2 – Bioassays on the Formation of Gas Bubble Disease in Chum Salmon Fry at Total Dissolved Gas Levels Ranging up to 129% Saturation	2.1
Introduction	2.1
Methods	2.2
Static Exposure to Supersaturated Total Dissolved Gas Levels up to 113%	2.2
Incremental Exposure to Supersaturated Total Dissolved Gas Levels up to 129%	2.7
Results	2.8
Static Exposure to Supersaturated Total Dissolved Gas Levels up to 113%	2.8
Incremental Exposure to Supersaturated Total Dissolved Gas Levels up to 129%	2.22
Discussion	2.26
Chapter 3 – Field Analysis of Incubating Chum Salmon Sac Fry Exposed to In-River Total Dissolved Gas Levels Downstream of Bonneville Dam	3.1
Introduction	3.1
Study Site	3.1
Methods	3.2
Artificial Redd	3.2
Sampling	3.3
Results	3.6
Discussion	3.9
Chapter 4 – Literature Cited	4.1
Appendixes	CD

Figures

1.1	Ives Island and Multnomah Falls study sites	1.2
1.2	Piezometer stations (black and white circles) near Ives Island. Red circles represent chum salmon redds marked from spawning years 2000 through 2007	1.3
1.3	Piezometer stations (black and white circles) near Multnomah Falls. Red circles represent chum salmon redds marked from spawning years 2003 through 2007	1.4
1.4	Total dissolved gas monitoring stations downstream of Bonneville Dam	1.8
1.5	Comparison of 2008 total dissolved gas values obtained at PNNL monitoring stations and USGS surface water monitoring stations	1.9
1.6	Deployment periods for water quality sensors in Ives Island and Multnomah Falls area monitoring locations	1.10
1.7	Ives Island uncompensated TDG values	1.11
1.8	Ives Island area depth-compensated TDG values measured in surface water and the hyporheic zone	1.12
1.9	Ives Island area dissolved oxygen values	1.13
1.10	Ives Island site temperature values	1.14
1.11	Ives Island site hyporheic temperatures, March 22–April 14, 2008	1.14
1.12	Ives Island site specific conductance values.	1.15
1.13	Multnomah Falls total dissolved gas values	1.16
1.14	Multnomah Falls depth-compensated total dissolved gas	1.17
1.15	Multnomah Falls dissolved oxygen	1.18
1.16	Multnomah Falls temperature values	1.18
1.17	Multnomah Falls specific conductance values	1.19
1.18	Water surface elevations during chum emergence for the Ives Island area, 2003–2008	1.20
1.19	Estimated TDG exposure to chum salmon sac fry	1.22
1.20	Estimated hours of TDG exposure and dewatering to chum salmon sac fry based on hyporheic results from incubation year 2008	1.23
1.21	Estimated hours of TDG exposure and dewatering to chum salmon sac fry based on surface water results from incubation year 2008	1.24
1.22	Temporal distribution of chum salmon sac fry exposure to elevated TDG during 2007 and 2008	1.25
2.1	Total dissolved gas experimental system	2.3
2.2	Alevin retained large yolk sacs when placed in the exposure cups	2.7
2.3	Daily mean total dissolved gas levels for the exposure period	2.9
2.4	Daily mean temperatures for the study period	2.10
2.5	Number of days to 50% and 100% emergence for each treatment group	2.11
2.6	Number of days post-fertilization at 50% emergence for each exposure period and treatment	2.12
2.7	Average daily weight gain from 50% hatch to 50% emergence	2.15

2.8	Average daily length gain from 50% hatch to 50% emergence	2.15
2.9	Epithelial hypertrophy appears as a thickening of the outer layer, or epithelium of the secondary lamellae	2.17
2.10	Percentage occurrence of moderate severity or greater gill lesions in the overall pre- emergence and emergence samples from the long and short exposures	2.17
2.11	Proportions of fish sampled by exposure and treatment that exhibited crenated erythrocytes of moderate severity or greater in the secondary gill lamellae	2.18
2.12	Proportions of fish sampled by exposure and treatment that exhibited dilated lamellar tips of moderate severity or greater	2.19
2.13	Proportions of fish sampled by exposure and treatment that exhibited epithelial hypertrophy of moderate severity or greater	2.19
2.14	Proportions of fish sampled by exposure and treatment that exhibited epithelial cell separation of moderate severity or greater	2.20
2.15	Proportions of fish sampled by exposure and treatment that exhibited hepatic glycogen depletion of moderate severity or greater	2.21
2.16	Proportions by treatment of fish sampled at pre-emergence that exhibited protozoan parasite infection of mild or moderate severity in the skin	2.22
2.17	General increase in total dissolved gas levels over the study period	2.23
2.18	Small clusters of bubbles observed in the pupil of fish exposed to 121% TDG and above	2.23
2.19	Temperature range during incremental exposure study	2.24
2.20	Coagulated yolk in fish exposed to 124.6% total dissolved gas and above	2.24
2.21	Mortality found when total dissolved gas levels reached 125.9% was observed with numerous large bubbles on the head, eyes, and jaw	2.25
2.22	A very large bubble in the vitelline membrane of a fish exposed to 127.5% total dissolved gas	2.25
2.23.	Percentage of fish experiencing mortalities with increasing total dissolved gas levels in both cup A (grey line – squares) and cup B(black line – circles).	2.26
3.1.	Egg tube to house wild chum salmon eggs and alevin while in the artificial redd	3.2
3.2	Artificial redd and egg tube configuration	3.3
3.3	Mobile laboratory and equipment used to examine chum salmon sac fry	3.4
3.4	Alevin were removed from the egg tube and placed into a shallow pan with the tube substrate.	3.5
3.5	Total dissolved gas levels over the sampling period	3.6
3.6	Comparison of fish from egg tube 6 to fish from egg tube 8	3.7

Tables

1.1	MiniSonde 5 water quality sensor specifications	1.5
1.2	Exposure estimates of Multnomah Falls area chum salmon redds to depth-compensated TDG based on 2008 river monitoring results	1.21
1.3	Percentage of chum salmon redds constructed at riverbed elevations higher than Ives Island area monitoring locations for total dissolved gas, 2005–2007 spawning years	1.21
2.1	Total dissolved gas levels used in the exposure experiments and expressed as daily means between February 6 and March 25, 2008	2.9
2.2	Mean daily temperature during the 48-day exposure period	2.10
2.3	Mean survival, days post-fertilization, date, and accumulated thermal units at 50%	
	emergence	2.12
2.4	Size of chum salmon sampled at 50% hatch and at time of transfer to emergence tubes	2.13
2.5	Size of chum salmon sampled at 50% emergence	2.14
2.6	Tissue, yolk, and total dry weights of emergent fry	2.16
3.1	Egg tube sampling dates	3.3
3.2	Mortality and survival in incubation tubes held in the artificial redd	3.8
3.3	Results of gross examinations of sac fry housed in the eight tubes inside the artificial redd	3.8

Abbreviations and Acronyms

ANOVA	analysis of variance
ATU	accumulated thermal unit(s)
°C	degree(s) centigrade
cm	centimeter(s)
CV	coefficient of variation; the percentage ratio of the standard deviation (or error) to the
	mean
d	day(s)
DO	dissolved oxygen
DPF	days post-fertilization
EC	effective concentration
EPA	U.S. Environmental Protection Agency
ESU	evolutionarily significant unit
ft	foot, feet
FY	fiscal year
GPS	Global Positioning System
in.	inch(es)
kcfs	thousand cubic feet per second
$k_{ m D}$	development index
km	kilometer(s)
L	liter(s)
lb	pound(s)
m	meter(s)
mg	milligram(s)
mm	millimeter(s)
mmHg	millimeters mercury
μS	microsiemen(s)

tricaine methanesulfonate
mean sea level
population size
subsample size
dinitrogen
sodium chloride
National Academy of Sciences
National Academy of Engineering
neutral buffered formalin
national geodetic vertical datum
National Marine Fisheries Service
National Oceanic and Atmospheric Administration
oxygen
Oregon Department of Fish and Wildlife
probability
Pacific Northwest National Laboratory
pounds per square inch
polyvinyl chloride
river kilometer
plus or minus standard error
total dissolved gas
U.S. Army Corps of Engineers
U.S. Geological Survey
1(/)

Overview

Gas supersaturation caused by spill from dams on the Columbia River was first acknowledged as an environmental concern in the mid 1960s (Ebel and Raymond 1976). Several studies monitored dissolved gas levels and investigated occurrence of gas bubble disease in the Columbia River from 1966 through 1969. These studies reported dissolved gas saturation levels ranging from 120% to 143% and found significant signs of gas bubble disease and associated mortalities for both juvenile and adult salmonids (Ebel 1969; Beiningen and Ebel 1970, 1971; Meekin and Allen 1974). In response, research on the causes and effects of gas supersaturation and resulting modifications to dam structures and operations reduced supersaturated gas levels. A nationwide water quality standard for total dissolved gas (TDG) saturation was set at 110% by the U.S. Environmental Protection Agency (EPA) in 1972 and remains in effect (NAS/NAE 1973; EPA 1987).

Waivers to the water quality standard were approved beginning in the 1990s to aid juvenile salmonid downstream migration. Studies reviewed as part of the 1995 and 2000 Biological Opinions (NOAA 1995, 2000) indicated that TDG saturation levels between 110% and 120% had minimal effects on aquatic organisms. Therefore, levels up to 115% TDG saturation in dam forebays and up to 120% TDG saturation in dam tailraces have been allowed on a limited basis (NOAA 1995).

The issue of gas supersaturation has once again become a concern regarding, in particular, the chronic effects on incubating embryos and larvae of salmonids downstream from Bonneville Dam (USACE et al. 2004). At the request of the U.S. Army Corps of Engineers (USACE; Portland District), Pacific Northwest National Laboratory (PNNL) undertook a two-part project in 2006 to look further into issues of TDG supersaturation in the lower Columbia River. First, PNNL conducted an extensive review and synthesis of literature related to the impacts of TDG supersaturation on fish species in the lower Columbia River. The product of that effort was a technical report, *Total Dissolved Gas Effects on Fishes of the Lower Columbia River* (McGrath et al. 2006). Second, a field study was initiated to monitor water quality in selected spawning habitats of chum salmon (*Oncorhynchus keta*) downstream from Bonneville Dam. The results of the field study are detailed in a 2007 technical report, *Total Dissolved Gas Monitoring in Chum Salmon Spawning Gravels Below Bonneville Dam* (Arntzen et al. 2007a).

Our literature review determined that recent research supports previous findings in regard to migratory juvenile or adult salmonids, that short-term exposure up to 120% TDG saturation does not produce significant effects when compensating depths are available. During periods of voluntary spill when TDG saturation averaged 120% or less, monitoring and assessment programs in the Snake and Columbia rivers from 1995 to the early 2000s consistently documented low incidence of significant gas bubble disease in migrating juvenile or adult salmonids as well as resident fishes or other taxa (Toner and Dawley 1995; Ryan and Dawley 1998; NMFS 1999; NOAA 2000; Ryan et al. 2000; Backman and Evans 2002; Backman et al. 2002; Weitkamp et al. 2003).

However, our review found that little research had been conducted recently on the effects of gas supersaturation on incubating and larval stages of salmonids. Most recent works focus on post-emergent juveniles and adults, which present a different case because of their mobility within the environment. Methods have advanced since older studies documented incidence of gas bubble disease in salmonid sac fry exposed to TDG supersaturation within levels currently authorized (McGrath et al. 2006). In addition, most studies conducted on larval fish did not include temperature, exposure duration, or TDG levels

relevant to conditions occurring downstream from Bonneville Dam. Therefore, the effects of supersaturated TDG exposure in hyporheic environments that support incubating life stages of salmonids warrant additional study.

Recommendations from the literature review and preliminary analysis of data from the 2006 field study led to the development of a more comprehensive research proposal. For fiscal year (FY) 2007, three objectives were proposed. The first was to repeat the 2006 field effort to collect empirical data on TDG from the Ives Island and Multnomah Falls study sites. These data would provide a more thorough understanding of TDG levels during different river stage scenarios (i.e., high-water year versus low-water year). The second objective was to conduct laboratory toxicity tests on hatchery chum salmon fry at gas levels likely to occur downstream from Bonneville Dam. Findings of effects to fish at different TDG concentrations, in conjunction with field data, could be used by managers when deciding on spill levels. The third objective was to sample chum salmon sac fry during Bonneville Dam spill operations to determine if there is a physiological response to TDG levels. The measured response provided a snapshot of fish health at a given place and time to use in comparison with the results from the other two tasks. The PNNL research conducted in support of those three objectives is documented in *Effects of Total Dissolved Gas on Chum Salmon Fry Incubating in the Lower Columbia River* (Arntzen et al. 2008a).

Field monitoring and laboratory toxicity testing were conducted again during 2008, to both verify the 2007 results and answer some additional questions about how sac fry respond to elevated TDG in the field and the laboratory. For FY 2008, three objectives were proposed. The first was to repeat the 2006–2007 field effort to collect empirical data on TDG from the Ives Island and Multnomah Falls study sites. These data would represent a third river stage scenario, increasing the range of river conditions over which we are able to assess risk to chum salmon redds. The second objective was two-fold. First, it involved repeating the static laboratory toxicity tests on hatchery chum salmon fry to verify 2007 results. Second, it involved exposing wild chum salmon fry to incremental increases in TDG, above those of the static test, until external symptoms of gas bubble disease were clearly present. The third objective was to assess physiological responses to TDG levels in wild chum salmon sac fry incubating below Bonneville Dam during spill operations. We created egg tubes to hold wild chum eggs in an artificial redd, which allowed us to quantitatively assess physiological responses to TDG levels. The measured response at several different time periods during 2008 provided a quantitative snapshot of fish health during various river conditions while spring spill occurred.

This report summarizes the tasks conducted and results obtained in pursuit of the three objectives. Chapter 1 discusses the field monitoring, Chapter 2 reports the findings of the laboratory toxicity tests, and Chapter 3 describes the field-sampling task. Each chapter contains an objective-specific introduction, description of the study site and methods, results of research, and discussion of findings. Literature cited throughout this report is listed in Chapter 4. Additional details on the monitoring methodology and results are provided in Appendices A and B included on the compact disc bound inside the back cover of the printed version of this report.

Chapter 1

Assessment of Total Dissolved Gas Within Chum Salmon Spawning Areas in the Columbia River Downstream of Bonneville Dam

E. V. Arntzen, K. J. Murray, D. R. Geist, E. M. Dawley, J. Vavrinec III

Introduction

Chum salmon that spawn and incubate downstream from Bonneville Dam near Ives Island and an associated site near Multnomah Falls collectively represent one of two remaining populations of the Lower Columbia River evolutionarily significant unit (ESU) listed under the Endangered Species Act. Spring spill from Bonneville Dam is initiated each year to assist downstream migrating juvenile salmonids. Spring spill produces supersaturated gas conditions, which may be causing negative impacts to chum salmon incubating within these reaches. The guidance that managers have used to provide protection for pre-emergent chum salmon fry has been to limit total dissolved gas (TDG) to 105% after allowing for depth compensation. However, signs of gas bubble disease have been found in sac fry at levels of 103% TDG (Wood 1979). Prior to 2006, no data were available on the TDG levels in incubation habitats downstream of Bonneville Dam.

During 2006, Pacific Northwest National Laboratory (PNNL) initiated research to determine whether TDG concentrations are elevated in chum salmon redds during spring spill operations at Bonneville Dam. Water quality was monitored at egg pocket depth and in the river at two chum salmon spawning locations downstream from Bonneville Dam during 2006 and 2007. Water quality sensors measured TDG, dissolved oxygen, temperature, specific conductance, and water depth at each location.

Results from 2006 and 2007 (Arntzen et al. 2007a, 2008b) showed that groundwater–surface water interaction differed between the Ives Island and Multnomah Falls locations. Egg pocket concentrations of TDG, dissolved oxygen, and temperature remained relatively stable at Multnomah Falls monitoring locations despite significant fluctuations in river depth. In contrast, water quality in the egg pocket fluctuated widely at some Ives Island monitoring locations, suggesting that spawning gravels in this area are in much closer contact with river water. Chum salmon redds were constructed at relatively low elevations during the 2005 spawning season, and water levels during spring spill 2006 were relatively high. Consequently, TDG was generally depth-compensated sufficiently to mitigate negative impacts to sac fry during 2006. During the 2006 spill season, we estimated that 80% of the chum salmon redds were constructed at relatively high riverbed elevations during the 2006 spawning season, and water levels during season, and water levels during season, and water levels during spring spill 2007 were lower than during the 2006 spill season. Exposure estimates showed that 80% of the chum salmon redds were exposed to 103% depth-compensated TDG for less than 240 hours.

The first objective in the FY 2008 study was to repeat the field effort to collect empirical data on TDG from the Ives Island and Multnomah Falls study sites during a third water year. This chapter

describes our assessment and presents monitoring results for TDG, dissolved oxygen, temperature, and specific conductance from FY 2008 in these locations. These data are compared to previous monitoring results from similar locations during FY 2006 and FY 2007, and the data from all three study years are used to estimate the exposure of Ives area chum salmon redds to TDG.

Study Sites

Two major chum salmon spawning areas were selected for monitoring. One site was a side channel downstream from Bonneville Dam on the right bank, north of Ives Island at river kilometer (rkm) 230, which is 4.3 km downstream from Bonneville Dam. The other site was on the left bank near Multnomah Falls at rkm 220, 14.8 km downstream from Bonneville Dam (Figure 1.1).

Figure 1.1. Ives Island and Multnomah Falls study sites

At the Ives Island site, we utilized five pairs of piezometers that were installed during either February 2006 or February 2007 (Figure 1.2; Arntzen et al. 2008b). Each pair of piezometers consisted of one river and one hyporheic piezometer. During 2008, Ives pair 4 was not used. At Multnomah Falls, pairs installed during February 2006 and February 2007 were used (Figure 1.3; Arntzen et al. 2008b). Pairs 1 and 3 were used during the sampling period; pair 2 at Multnomah Falls was considered an alternative location during 2008 and was not used.

Figure 1.2. Piezometer stations (black and white circles) near Ives Island. Red circles represent chum salmon redds marked from spawning years 2000 through 2007.

Figure 1.3. Piezometer stations (black and white circles) near Multnomah Falls. Red circles represent chum salmon redds marked from spawning years 2003 through 2007.

Methods

Water Quality Monitoring at Ives Island and Multnomah Falls Spawning Locations

During 2008, we used previously installed piezometers at Ives Island and Multnomah Falls locations (Arntzen et al. 2008b). To aid in recovering the sensors, a fixed diver line, similar to that installed in 2007 (Arntzen et al. 2008b), was installed at both the Ives Island and Multnomah Falls sites during early March 2008. Hydrolab Model 5 MiniSonde sensors (MS5; Hach Environmental, Loveland, Colorado) were used to monitor water quality. Each MS5 included sensors to monitor dissolved oxygen, specific conductance, salinity, depth, TDG, and temperature. Detailed specifications, including accuracies and resolutions of the sensors, are listed in Table 1.1. All MiniSondes were equipped with stirrers, which were shown during 2006 laboratory testing to be necessary to remove air bubbles from the TDG sensor (Arntzen et al. 2007a). The stirrers consisted of a 1.27-cm-wide revolving plastic blade attached to the MS5 next to the TDG sensor.

Sensor	Range	Stated Accuracy	Resolution
Total dissolved gas	400 to 1400 mmHg	±1.5 mmHg	1.0 mmHg
Luminescent dissolved oxygen	0 to 60 mg/L	0.1 mg/L at < 8 mg/L and ± 0.2 mg/L at > 8 mg/L	0.01 mg/L
Specific conductance	0 to 100 mS/cm	$\pm 2 \mu S/cm$	0.001
Depth	0 to 25 m	±0.05 m	0.01 m
Temperature	-5 to 50°C	±0.10°C	0.01°C

Table 1.1 .]	MiniSonde 5	water qualit	y sensor spe	ecifications	(Hach Env	ironmental 2006)
----------------------	-------------	--------------	--------------	--------------	-----------	------------------

Prior to deployment, fully charged AA batteries were installed in all MS5 sensors. One measurement was recorded for each parameter every hour until the batteries were spent. The MiniSondes were given a 3-minute sensor warm-up and a 1-minute stirrer warm-up. MiniSondes were deployed with the sensor tips located in the center of the piezometer screen, pointed upward. Every two to three weeks from March 4 through May 14, 2008, MS5 sensors were recovered, downloaded, maintained, and redeployed. After the final deployment in May, the MiniSondes were left logging data in the piezometers until they were recovered during lower river discharge during July. During a typical deployment, power lasted approximately 20 days.

The accuracy of TDG readings was ensured by collecting post deployment data adjacent to a freshly calibrated unit (hereafter termed a side-by-side test). To collect the side-by-side test data, we placed the laboratory-calibrated MiniSonde and the recovered MiniSondes in the river at an approximate depth of 1 m. For side-by-side deployments, we logged depth, temperature, TDG, dissolved oxygen, specific conductance, and salinity every 3 minutes for a minimum of 60 minutes. The Minisondes were programmed to have a 1-minute sensor and 1-minute stirrer warm-up prior to sampling. Following sideby-side tests, each TDG membrane was removed and later transported back to PNNL facilities in Richland, Washington, for quality assurance checks. Following membrane removal, we attached the TDG pressure sensor on the Minisonde to a Druck pressure calibrator (Druck Inc., Houston, Texas) that was certified to 0.0015-psi accuracy. We checked the TDG sensor for accuracy at 0, 100, 200, and 300 mmHg. If the pressure reading was off by more than 1 mmHg, the unit was recalibrated. A barometric pressure reading was obtained from a laboratory-calibrated Garmin Global Positioning System (GPS) unit (Garmin Vista, Olathe, Kansas) and used to reset the pressure sensor. Before each field trip, the barometric pressure from the Hanford Meteorological Station was used to calibrate the Garmin GPS unit. After recalibration, the sensor was checked once more for accuracy at 100, 200, and 300 mmHg. We calibrated the dissolved oxygen sensor by attaching a calibration cap filled with air-saturated water to the MiniSonde. The MiniSonde was held upright for the duration of the calibration by a clamping laboratory stand. The specific conductance sensor was also calibrated. First, it was rinsed three times and then immersed in a calibration cap full of $100-\mu$ S/cm NaCl standard. If the sensor read between 90 μ S/cm and 110 μ S/cm, we did not recalibrate. The depth sensor was calibrated by holding the sensor out of the water, pointing upward, and setting the depth value to zero. We also checked stirrers to ensure that the stirrers were functioning correctly and cleaned them if they were not. The laboratory calibrated unit was calibrated using the same procedure outlined for field calibration.

After all calibrations were completed, a laboratory-tested TDG membrane was attached to the pressure sensor. Each MiniSonde was then given a fully charged set of eight AA batteries and reprogrammed for a long-term deployment. All data were backed up using a SanDisk thumb drive

(SanDisk Corporation, Milpitas, California). The membranes brought back to Richland were tested for functionality before they were reused in the field, as outlined in Tanner and Johnston (2001) and described in Arntzen et al. (2008b). All membrane test results are listed in Appendix A. For quality assurance, we looked at both the membrane test results and the side-by-side data. If either appeared questionable, we omitted the data. The Ives 1 river TDG data from the second deployment (March 20–April 3) were discarded because the membrane failed the tests and performed poorly during the side-by-side test. Ives 2 river TDG data from the fifth deployment (March 30-May 14) were discarded also due to membrane failure. During periods when TDG data were omitted due to membrane failure, other water quality parameters were retained. Data were omitted also due to problems with sensor dewatering, battery life, or stirrer failure. Whenever the specific conductance values were zero and depth was less than 0.15 m, we assumed that dewatering was imminent and omitted data from all parameters. Although many of these instances occurred at the end of a deployment when we took the MiniSondes out of the water, there were times when the MiniSondes became dewatered during a deployment. When the battery life of a MiniSonde dropped below approximately 4.3 V, zero values were recorded by some sensors. Zero values recorded due to low power were omitted from the data analysis. We deleted dissolved oxygen values from Multnomah Falls 3 river during deployment 4 (April 15–April 30). During this time, the stirrer stopped working; because of slow water movement through the piezometer, dissolved oxygen values quickly fell and were not representative of the river.

Water depth influences TDG saturation and, therefore, the physiological effects on sac fry. If the water depth is greater than the compensation depth (water depth at which gas is in equilibrium with hydrostatic, barometric, and water vapor pressure, and saturation level is at 100%), TDG remains in solution and there are no negative impacts to sac fry. However, if the water depth is less than the compensation depth and TDG levels are elevated, gas bubbles begin to form, with potential negative impacts to sac fry. When this occurs, there is still a percentage reduction in the effective supersaturation in terms of impact to biota, based on the pressure of the water column, but the effective TDG is not fully reduced to 100%. The extent to which it is reduced (and the potential negative impact to sac fry) is a function of the starting TDG concentration and the depth of the water column. We computed the percentage reduction (compensation) in supersaturation based on the pressure of the water column using an equation from Knittel et al. (1980):

Percentage Compensation = [Water Depth (cm) x 0.740 (mmHg/cm water)] 100/Barometric Pressure (mmHg) (1.1)

We assumed that potential impacts to chum salmon sac fry would occur if the resulting dissolved gas levels were greater than 103% after the percentage compensation was subtracted from the TDG concentration (Wood 1979).

Fluctuations in hyporheic water quality (e.g., temperature and dissolved oxygen) are known to occur in lower Columbia River chum salmon spawning areas, especially within the Ives Island area (Geist et al. 2002, 2008; Arntzen et al. 2007b). To evaluate how these fluctuations affected TDG composition, we used a computer program written by Dawson (1986) that incorporated equations from Bouck (1982) and Colt (1983). The program allowed us to compute the ratio of oxygen to nitrogen, which can affect mortality and symptoms of gas bubble trauma in anadromous sac fry (Nebeker et al. 1979; Krise and Herman 1989). The program required several known quantities to solve for its variables. These included barometric pressure, water temperature, differential dissolved gas pressure, dissolved oxygen, and salinity.

Water quality results were summarized using functions in Microsoft Excel to calculate the mean, standard error, standard deviation, minimum, and maximum values of uncompensated TDG, depth-compensated TDG, dissolved oxygen, temperature, and specific conductance. Data were summarized from the start of monitoring until emergence (from March 4 through May 15) excluding the data we omitted.

Estimated Exposure of Chum Salmon Redds to Total Dissolved Gas

The exposure of chum salmon redds to potentially harmful TDG levels is ultimately controlled by the TDG concentration of water surrounding the egg pocket, the extent to which TDG can be depthcompensated (which depends on the elevation of the redd and the water level of the river), and the length of time embryos are exposed to harmful levels of TDG. Operations at Bonneville Dam and chum salmon seining data from the Oregon Department of Fish and Wildlife (ODFW) suggest that incubating fry could be exposed to elevated TDG between March 1 and May 15. The spatial distribution of chum salmon redds was provided by the ODFW for spawning year 2007 (ODFW, unpublished data). To assign vertical elevations to chum salmon redds, we used a bathymetric coverage constructed previously as part of a hydrodynamic model in the Ives Island area (Tiffin et al. 2004). Redd locations were combined with vertical elevations from the bathymetric coverage using ArcMap (Environmental Systems Research Institute, Inc. [ESRI], Redlands, California). A benchmark was created to establish vertical control using a Trimble real-time kinematic GPS receiver (Arntzen et al. 2008b).

We used redd elevations and hourly water surface elevation to estimate the hourly water depth at each redd during incubation year 2008. Our goal was to assess the greatest potential risk to chum salmon fry from elevated TDG. Thus, for each hour, we selected the highest TDG value from a group of sensors simultaneously recording TDG data in the Ives Island area. This TDG value was assumed to be representative of TDG at each redd for that hour and was depth-compensated using the depth of water over each redd. This process was completed first using surface water monitoring TDG sensors, then repeated using hyporheic monitoring TDG sensors. Using both the surface water and hyporheic TDG data allowed us to evaluate whether they each pose an equal risk to chum sac fry. In each case, TDG monitoring results (from either the hyporheic zone or from surface water) were applied to individual redds so that exposure histories over time could be compiled for each redd. The number of hours that depth-compensated TDG exceeded 100%, 103%, 105%, and 108% were tallied for each redd, allowing for comparisons between redd elevation and exposure time at the various depth-compensated TDG concentrations. During periods of redd dewatering, TDG was not counted toward total exposure time for any of the tested levels. Thus, high-elevation redds could show slightly lower exposure times to given TDG levels due to the increased time they were dewatered.

Results

Comparison of PNNL Surface Water Total Dissolved Gas Monitoring to Other Columbia River Monitoring Locations

We compared surface water TDG concentrations obtained from our stations near Ives Island and Multnomah Falls to results obtained by the U.S. Geological Survey (USGS) during the same period at Bonneville Dam, Cascades Island, Warrendale, and Camas/Washougal (Figure 1.4). Surface water TDG was generally lower at Bonneville and Ives Island stations compared to that measured at Warrendale and Camas/Washougal (Figure 1.5). Multnomah Falls was the closest to the average of all the sites (excluding Cascades Island). With the exception of Cascades Island, the data from each site remained within 4% of the average of all the sites. The data did not match as well as they did during the 2007 monitoring season when the data from each site remained within 2% of the average of all of the sites. The TDG records from all of the sites were very highly correlated with one another (correlation coefficient of at least 0.84) except for Cascades Island, which had a correlation coefficient of between 0.60 and 0.69 when compared to the other locations. Excluding Cascades Island, all correlation coefficients from the 2007 monitoring season were above 0.91.

Figure 1.4. Total dissolved gas monitoring stations downstream of Bonneville Dam

Figure 1.5. Comparison of 2008 total dissolved gas values obtained at PNNL monitoring stations and USGS surface water monitoring stations

Water Quality Monitoring at Ives Island and Multnomah Falls Spawning Locations

The following sections provide a summary of the water quality data collected at both the Ives Island and Multnomah Falls study sites during the period when spring spill operations occurred during chum sac-fry incubation (March 4 through May 15, 2008; Figure 1.6). All data collected during the monitoring at both sites are presented in Appendix B.

	March	April	May
lves 1 River	March 20 - N	/lay 15	
lves 1 Hyporheic	March 20 - N	/lay 15	
lves 2 River	March 4 - May 15		
lves 2 Hyporheic	March 4 - May 15		
lves 3 River			May 1 - 15
lves 3 Hyporheic			May 1 - 15
lves 5 River	March 20 - M	/lay 1	
lves 5 Hyporheic	March 20 - N	/lay 1	
MF 1 River	March 4 - May 15		
MF 1 Hyporheic	March 4 - May 15		
MF 3 River		April 16 -	May 15
MF 3 Hyporheic	March 20 - N	/lay 15	

Figure 1.6. Deployment periods for water quality sensors in Ives Island and Multnomah Falls area monitoring locations

Ives Island Site

We monitored water quality including TDG, dissolved oxygen, temperature, specific conductance, and water level at five monitoring stations in the Ives Island area during March 4 through May 15, 2008 (Figure 1.6). Total dissolved gas results for each location are presented in terms of both uncompensated and depth-compensated values at the exact location of each sensor.

Uncompensated Total Dissolved Gas

Ives Island river TDG levels followed similar trends at all of our sampling pairs (Figure 1.7). Average values (\pm SE) ranged from 106.5% (\pm 0.1) at Ives 2 river to 112.2% (\pm 0.1) at Ives 3 river. The maximum hourly value for TDG was 118.5% at Ives 3 river. Ives Island hyporheic TDG varied between sites (Figure 1.7). The highest TDG values were recorded at Ives 2 hyporheic, and averaged (\pm SE) 105.4% (\pm 0.04). The TDG response at Ives 2 hyporheic was most variable during the early part of the record (March 4, 2008, through April 21, 2008), with a range of approximately 18%, compared to a range of approximately 7% from April 22 through May 15 (Figure 1.7). TDG was lower at Ives 1 hyporheic and Ives 5 hyporheic, averaging (\pm SE) 102.5% (\pm 0.1) and 97.2% (\pm 0.1), respectively. Ives 2 had the highest hyporheic TDG value, with a maximum hourly value of 111.1%.

After spring spill started (April 10, 2008), Ives 1 hyporheic average uncompensated TDG percentage saturation values rose (from $101.6\% \pm 0.1\%$ to $103.1\% \pm 0.2\%$). A similar increase occurred at Ives 5 hyporheic, where uncompensated TDG increased following the initiation of spill from 96.3% (± 0.1) to 98.3% (± 0.1). At Ives 2 hyporheic, average TDG values decreased following the onset of spring spill, averaging 106.1% (± 0.1) before spring spill started and 104.6% (± 0.1) afterward. We recorded no data at Ives 3 hyporheic prior to April 10, 2008.

Final Report

Figure 1.7. Ives Island uncompensated TDG values. (A) Ives pair 1, (B) Ives pair 2, (C) Ives pair 3, and (D) Ives pair 5. Solid red lines represent uncompensated TDG values for hyporheic sensors; dashed blue lines represent uncompensated TDG values for river sensors. Solid black lines represent river depth at the hyporheic sensors.

Depth-Compensated Total Dissolved Gas

Depth-compensated TDG levels were elevated at our monitoring locations during 2008 compared to previous monitoring years (Figure 1.8). During 2008, depth-compensated TDG levels were above 103.0% for 334 hours at river monitoring locations and 84 hours at hyporheic monitoring locations. During 2006 and 2007 combined, depth-compensated TDG in the river exceeded 103.0% for 11 hours, and zero hours were recorded for hyporheic sensors. The difference between 2008 and the other monitoring years was caused primarily by shallower river depths during the spring spill season that year, providing less depth compensation than in 2006–2007.

Figure 1.8. Ives Island area depth-compensated TDG values measured in (A) surface water and (B) the hyporheic zone. Blue lines represent 2006, black lines represent 2007, and red lines represent 2008. Data represent the maximum values recorded from all active sensors for each measurement.

Dissolved Oxygen

Average (\pm SE) river percentage saturation of dissolved oxygen (DO) remained relatively stable at Ives monitoring locations, ranging from 98.7 (\pm 0.6) at Ives 3 river to 108.4 (\pm 0.2) at Ives 5 river. There were frequent diurnal fluctuations, presumably due to photosynthetic activity, that caused the data to fluctuate over an approximately 30% range (Figure 1.9). The most variability occurred at Ives 2, where percentage saturation of DO had a range of 61.2%. Hyporheic dissolved oxygen levels were generally lower than river levels and much more variable (Figure 1.9). Average (\pm SE) hyporheic values ranged from 23.4% (\pm 0.3) saturation at Ives 5 hyporheic to 48.7% (\pm 0.3) at Ives 2 hyporheic. Dissolved oxygen generally remained above 20% saturation at Ives 1 hyporheic and above 30% at Ives 2 hyporheic. Minimum DO values were less than 5% saturation at Ives 5 hyporheic and at Ives 3 hyporheic, where minimum values approached 0.9%. The largest difference between minimum and maximum hyporheic DO—96.8%—occurred at Ives 3 hyporheic. The smallest difference was 71.3%, at Ives 5 hyporheic. Fluctuations in dissolved oxygen influenced the ratio of oxygen to nitrogen within Ives Island hyporheic wonitoring locations. Average O₂/N₂ ranged from 0.19 at Ives 5 hyporheic to 0.41 at Ives 2 hyporheic. Values of O₂/N₂ were 0.30 and 0.37 at Ives 3 hyporheic and Ives 1 hyporheic, respectively (see Appendix B for comprehensive O₂/N₂ data).

Figure 1.9. Ives Island area dissolved oxygen values. (A) Ives pair 1, (B) Ives pair 2, (C) Ives pair 3, and (D) Ives pair 5. Solid red lines represent dissolved oxygen for hyporheic sensors, and dashed blue lines represent dissolved oxygen for river sensors. Solid black lines represent river depth at the hyporheic sensor.

Temperature

River temperatures at all four monitoring stations displayed a typical spring warming trend over the sampling period, gradually increasing from February through May, from approximately 4.5°C to approximately 12.5°C (Figure 1.10). Hyporheic temperature was relatively stable at all sites monitored throughout our study, with only a slight upward trend and a range of approximately 2–3°C at Ives 1, 3, and 5 and a range of approximately 5°C at Ives 2 hyporheic. Hyporheic water was warmer than river water at the beginning of the record and approached river temperatures as part of seasonal warming trends during mid-April. At the end of the monitoring period, hyporheic water was almost 2°C colder than the river (Figure 1.10). Over short time scales (e.g., during the period between March 22 and April 14, 2008), hyporheic temperature data tended to be highly variable and were inversely correlated with river stage at Ives 1 hyporheic (R = -0.84) and Ives 2 hyporheic (R = -0.67; Figure 1.11). A similar response had been observed during previous monitoring years at some of the monitoring locations (Arntzen et al. 2008b). However, during longer periods, the trends at all 2008 hyporheic monitoring locations exhibited a relatively stable average hyporheic temperature. The relative stability of mean hyporheic data during 2008 may reflect lower river levels that year as compared to 2006 and 2007, when water levels were higher and hyporheic trends tended to match those of the river more closely (Arntzen et al. 2008b).

Figure 1.10. Ives Island site temperature values. (A) Ives pair 1, (B) Ives pair 2, (C) Ives pair 3, and (D) Ives pair 5. Solid red lines represent temperature for hyporheic sensors, and dashed blue lines represent temperature for river sensors. Solid black lines represent river depth at the hyporheic sensor.

Figure 1.11. Ives Island site hyporheic temperatures, March 22–April 14, 2008. (A) Ives Island pair 1 and (B) Ives Island pair 2. Red lines represent temperature for hyporheic sensors, and black lines represent river depth at hyporheic sensors.

Specific Conductance

Specific conductance was higher in the river than in the hyporheic zone (Figure 1.12). Mean specific conductance in the river ranged from 164.3 μ S/cm (±0.4 μ S/cm) at Ives 3 river to 180.1 μ S/cm (±0.6 μ S/cm) at Ives 5 river. Mean hyporheic values ranged from 141.1 μ S/cm (±0.4 μ S/cm) at Ives 3 hyporheic to 148.8 μ S/cm (±0.2 μ S/cm) at Ives 1 hyporheic. Specific conductance fluctuated more throughout the monitoring period within the hyporheic zone than it did in the river (Figure 1.12).

Figure 1.12. Ives Island site specific conductance values. (A) Ives pair 1, (B) Ives pair 2, (C) Ives pair 3, and (D) Ives pair 5. Solid red lines represent specific conductance for hyporheic sensors, and dashed blue lines represent specific conductance for river sensors. Solid black lines represent river depth at the hyporheic sensor.

Multnomah Falls Site

We monitored water quality at Multnomah Falls locations pair 1 and Multnomah Falls pair 3 at various times during the period from March 4 through May 15, 2008. Data availability from each Multnomah Falls monitoring location was summarized in Figure 1.6.

Uncompensated Total Dissolved Gas

Mean uncompensated TDG was 107.3% (± 0.2) at Multnomah Falls 1 river and 113.9% (± 0.1) at Multnomah Falls 3 river (Figure 1.13). The higher average at Multnomah Falls 3 river was a function of the period during which monitoring was conducted there; monitoring was conducted only after the onset of spring spill (April 10, 2008) at Multnomah Falls 3, when TDG concentrations were elevated. At Multnomah Falls 1 river, TDG increased by approximately 10% following the start of spring spill (Figure 1.13). Hyporheic TDG ranged from 100.7% (± 0.02) at Multnomah Falls 1 hyporheic to 102.3% (± 0.04) at Multnomah Falls 3 hyporheic (Figure 1.13). Total dissolved gas was more variable at Multnomah Falls 3 hyporheic than at Multnomah Falls 1 hyporheic, where the overall ranges in TDG were 9.7% and 3.7%, respectively. Increased variability at Multnomah Falls 1 hyporheic.

Figure 1.13. Multnomah Falls total dissolved gas values. (A) Multnomah Falls pair 1 and (B) Multnomah Falls pair 3. Solid red lines represent uncompensated TDG values for hyporheic sensors, and dashed blue lines represent uncompensated TDG values for river sensors. Solid black lines represent river depth at the hyporheic sensor.

Depth-Compensated Total Dissolved Gas

During 2008, less depth compensation was available compared to monitoring years 2006–2007. Depth-compensated TDG within the hyporheic zone at Multnomah Falls still remained below 100%. However, at Multnomah Falls river monitoring locations, depth-compensated TDG frequently exceeded 103%. During 2008, depth-compensated TDG at Multnomah Falls 1 river exceeded 100.0% for 133 hours and exceeded 103.0% for 43 hours. At Multnomah Falls 3 river, TDG exceeded 100.0% for 182 hours and exceeded 103.0% for 93 hours. Peak depth-compensated TDG values exceeded 109.0% at both Multnomah Falls river monitoring locations. Values at Multnomah Falls 1 river were elevated above 105.0% three times—once each during early March, early April, and early May (Figure 1.14). At Multnomah Falls 3 river, monitoring began after the onset of spring spill, and depth-compensated TDG approached 110% twice during that period, once during mid-April and again during early May (Figure 1.14).

Figure 1.14. Multnomah Falls depth-compensated total dissolved gas. (A) Multnomah Falls pair 1 and (B) Multnomah Falls pair 3. Solid blue lines represent depth-compensated TDG values for river sensors, and black lines represent river depth.

Dissolved Oxygen

River DO values were highly variable over short time scales (e.g., days), especially prior to spring spill, a result noted not only in the Ives area during 2008 but also during previous monitoring years at Multnomah Falls (Arntzen et al. 2008b). During 2008, Multnomah Falls river DO saturation ranged from approximately 60% to 150% (Figure 1.15). Dissolved oxygen levels stabilized following the start of spring spill, generally ranging only 10%–15%. Mean river DO was similar to that recorded in the Ives Island area, with values of 101.4% (\pm 0.4) and 110.4% (\pm 0.2) at Multnomah Falls 1 and 3 river, respectively. In contrast to hyporheic DO in the Ives Island area, Multnomah Falls hyporheic DO values were stable throughout the study and were quite a bit higher than in the Ives Island area; mean values were 86.0% (\pm 0.1) and 76.5% (\pm 0.1) at Multnomah Falls 1 and 3 hyporheic, respectively (Figure 1.15). Similarly, the ratio of oxygen to nitrogen was higher within Multnomah Falls hyporheic to 0.82 at Multnomah Falls 1 hyporheic (see Appendix B for comprehensive O₂/N₂ data).

Figure 1.15. Multnomah Falls dissolved oxygen. (A) Multnomah Falls pair 1 and (B) Multnomah Falls pair 3. Solid red lines represent dissolved oxygen values for hyporheic sensors, and dashed blue lines represent dissolved oxygen for river sensors. Solid black lines represent river depth at the hyporheic sensor.

Temperature

Temperature patterns at Multnomah Falls 1 and Multnomah Falls 3 locations during 2008 were very similar to 2007 monitoring results (Arntzen et al. 2008b). During 2008, river temperature at both sites displayed a typical spring warming trend, gradually increasing from February through May, starting at approximately 5°C and rising to 12.5°C (Figure 1.16). Hyporheic temperatures were very stable throughout the study period (Figure 1.16). Similar to 2007 monitoring results, during 2008 Multnomah Falls 1 hyporheic was warmer than Multnomah Falls 3 hyporheic, with an average of 7.3°C compared to 5.6°C, respectively. The stable nature of hyporheic temperatures and apparent lack of influence of surface water in the Multnomah Falls area suggest relatively constant water discharge through the hyporheic zone there (Shepherd et al. 1986; Crisp 1990).

Figure 1.16. Multnomah Falls temperature values. (A) Multnomah Falls pair 1 and (B) Multnomah Falls pair 3. Solid red lines represent temperature values for hyporheic sensors, and dashed blue lines represent temperature values for river sensors. Solid black lines represent river depth at the hyporheic sensor.

Specific Conductance

Specific conductance values measured by the river piezometers were more variable early during the monitoring period than later after spring spill started (Figure 1.17). This was true also during previous specific conductance monitoring in 2007 and may be caused by the influence of low-conductivity hyporheic water discharging from the hyporheic zone into the river during periods of low river stage early in the monitoring season. Later in the season, when river stage was higher, specific conductance in the river was higher and probably less influenced by discharging hyporheic water. Hyporheic specific conductance values were much lower and more stable than those recorded in the river, averaging 40.3 μ S/cm and 32.5 μ S/cm at Multnomah Falls 1 hyporheic and Multnomah Falls 3 hyporheic, respectively (Figure 1.17). Multnomah Falls 3 hyporheic was more variable than Multnomah Falls 1 hyporheic, with an overall range of 9 μ S/cm compared to a range of 4 μ S/cm at Multnomah Falls 1 hyporheic. However, both of these sites were very stable compared to the hyporheic zone at Ives Island, where the minimum range was 34 μ S/cm. Similar to Multnomah Falls temperature data, the stable nature of the specific conductance response is indicative of an environment where groundwater discharges into the river and the hyporheic water quality is not significantly affected by fluctuations in river stage.

Figure 1.17. Multnomah Falls specific conductance values. (A) Multnomah Falls pair 1 and (B) Multnomah Falls pair 3. Solid red lines represent temperature values for hyporheic sensors, and dashed blue lines represent temperature values for river sensors. Solid black lines represent river depth at the hyporheic sensor.

Estimated Exposure of Chum Salmon Redds to Total Dissolved Gas

The extent to which chum salmon redds are exposed to potentially toxic depth-compensated TDG concentrations is controlled largely by the concentration of TDG in the water surrounding the egg pocket and the depth of the water column above the egg pocket that is available to provide depth compensation. The amount of water available to provide depth compensation was reduced during the 2008 incubation year compared to most of the previous five years, especially monitoring years 2006–2007 (Figure 1.18).

Redds constructed at relatively shallow riverbed elevations are provided less depth compensation than redds constructed at deeper riverbed elevations. To estimate chum salmon redd exposure to TDG in the Ives Island and Multnomah Falls areas, we evaluated the elevation distribution of the redds constructed there during the 2007 spawning year.

Figure 1.18. Water surface elevations during chum emergence (our study period) for the Ives Island area, 2003–2008

Within the Multnomah Falls area, 33 chum salmon redds were mapped during 2007. The redds were generally constructed at elevations equivalent to our monitoring locations. However, individual chum salmon redd elevations were not recorded relative to our sensors in the Multnomah Falls area. During subsequent incubation in 2008, Multnomah Falls hyporheic depth-compensated TDG never exceeded 100% saturation of TDG at the depth of our sensors. However, monitoring results from river sensors (depth-compensated using water depth above the river sensor) exhibited higher TDG levels (Figure 1.14). We estimated TDG exposure using the river monitoring results by first assuming an additional 25 cm of water were located between the river sensors and egg pocket depth, thus providing additional depth compensation. Subsequent exposure estimates showed that chum salmon redds in the Multnomah Falls area could have been exposed to depth-compensated TDG above 100% for more than 100 hours and depth-compensated TDG above 103% for more than 30 hours (Table 1.2).

Depth-compensated TDG (saturation, %)	Hours of exceedance at egg pocket depth based on Multnomah Falls 1 river monitoring	Hours of exceedance at egg pocket depth based on Multnomah Falls 3 river monitoring
100	60	115
103	10	31
105	6	18
108	0	0

Table 1.2. Exposure estimates of Multnomah Falls area chum salmon redds to depth-compensated TDG based on 2008 river monitoring results

We evaluated the elevation distribution of 2007 Ives area chum salmon redds by comparing their locations (as determined by the ODFW) to a digital elevation model constructed by the USGS (Tiffan et al. 2004). Comparison of the 2007 chum redd elevation distribution to our sensor pairs shows that most 2007 redds were constructed at lower elevations than our monitoring locations (Table 1.3). The elevation distribution of 2007 redds was similar to that of 2005. During 2006, redds were distributed at much higher elevations (Table 1.3).

Table 1.3 .	Percentage of chum salmon redds constructed at riverbed elevations higher than Ives Island
	area monitoring locations for total dissolved gas, 2005–2007 spawning years

Monitoring location	Elevation (NGVD 29 m)	2007 chum redds at a higher elevation (%)	2006 chum redds at a higher elevation (%)	2005 chum redds at a higher elevation (%)
Pair 1	2.50	37	99	25
Pair 2	2.80	2	92	4
Pair 3	2.90	0	91	0
Pair 5	2.47	47	99	NA ^(a)
(a) Pair 5 was installed during 2006.				

During the 2007 spawning year, only 32 redds were mapped within our Ives Island assessment area (Figure 1.19). The redds were distributed at elevations ranging from 2.0 m to 2.8 m above mean sea level (MSL; NGVD 29). Of those 32 redds, 50% were at an elevation below 2.5 m MSL, and 80% were below 2.6 m MSL. At the highest riverbed elevations, there was little difference in risk estimates made using the river and hyporheic monitoring results. At lower elevations, surface monitoring resulted in longer exposure estimates.

Figure 1.19. Estimated TDG exposure to chum salmon sac fry. (A) Incubation year 2008 hyporheic water monitoring results; (B) incubation year 2008 surface water results.
At the shallowest redd in the distribution, estimated exposure time to depth-compensated TDG greater than 100% was 634 hours based on hyporheic monitoring TDG and 652 hours based on surface water TDG. Hyporheic monitoring results suggest that at this elevation, redds were exposed to TDG greater than 105% for more than 100 hours and to TDG greater than 103% for more than 200 hours. These durations represent approximately 4% and 8% of the total chum salmon incubation period, respectively. At slightely deeper riverbed elevations (e.g., the 80th elevation distribution percentile), exposure times based on hyporheic results were 323 hours at 100% TDG, 87 hours at 103% TDG, and 4 hours at 105% TDG (Figure 1.20). Similar estimates based on surface water TDG monitoring were obtained; exposure times were 340 hours at 100% TDG, 127 hours at 103% TDG, and 53 hours at 105% TDG (Figure 1.21). Hyporheic monitoring estimates suggest redds at the 50th elevation percentile were exposed to depth-compensated TDG greater than 100% for 209 hours (Figure 1.20). Hyporheic estimates for exposure times to TDG levels of 103% and 105% were 14 hours and zero hours, respectively. Exposure times based on surface water TDG monitoring and estimated for the 50th depth percentile were 219 hours at 100% TDG, 70 hours at 103% TDG, and 38 hours at 105% TDG (Figure 1.21). Only three redds were dewatered during incubation year 2008, for a period ranging from 2 hours to 24 hours.

Figure 1.20. Estimated hours of TDG exposure and dewatering to chum salmon sac fry based on hyporheic results from incubation year 2008. Dashed lines show the 2007 chum salmon redd elevation distribution percentiles.

Figure 1.21. Estimated hours of TDG exposure and dewatering to chum salmon sac fry based on surface water results from incubation year 2008. Dashed lines show the 2007 chum salmon redd elevation distribution percentiles.

The timing of exposure of elevated TDG to incubating chum salmon in the Ives Island area varied widely during our three-year study. TDG was elevated in surface water due to corner collector operation and spring spill operations all three years. However, tailwater elevations and chum salmon redd elevation distributions were substantially different each year. These differences caused exposure timing to vary during chum salmon incubation each year from 2006 through 2008. During 2006, there was very little exposure to elevated TDG (Arntzen et al. 2007a). During 2007, exposure occurred both prior to and after the onset of spring spill (Figure 1.22). During 2008, most of the exposure occurred prior to the start of spring spill (Figure 1.22). For the shallowest redd in the distribution, there were 21 instances during 2007 and 39 instances during 2008 when depth-compensated TDG became elevated above 103%. The median exposure duration above 103% TDG at this elevation was 4 hours during 2007 and 5 hours during 2008. For a given TDG concentration, the number of exposures, median exposure duration, and maximum exposure duration increased with increasing redd elevation (redds in shallower water received less depth compensation; Table 1.4).

Figure 1.22. Temporal distribution of chum salmon sac fry exposure to elevated TDG during (A) 2007 and (B) 2008. Exposures were estimated for the shallowest redd constructed within our study area during 2007 and 2008, respectively. Blue lines represent exposure to TDG greater than 103%. Red lines represent exposure to TDG greater than 105%.

			2007			2008	
TDG							
Concentration	Redd		Median	Maximum		Median	Maximum
(%)	Elevation ^(a)	Number	(h)	(h)	Number	(h)	(h)
103	50th	8	5.5	50	2	7	8
103	80th	9	6	40	11	6	24
103	Shallowest	21	4	113	39	5	19
105	50th	4	17	46	0	0	0
105	80th	7	3	23	2	2	2
105	Shallowest	14	4	57	22	4	18

Table 1.4. Frequency and duration of TDG exposure to incubating chum salmon, 2007–2008

(a) Redd elevations are shown using elevation distribution percentiles. Elevation distribution percentiles show the percentage of redds that are shallower (e.g., the 80th elevation distribution percentile is at an elevation higher than 80% of the redds).

Discussion

During 2008, involuntary spill (in excess of the USACE target of 100 kcfs spill discharge) occurred on three occasions during the period between the onset of spring spill (April 10, 2008) and the end of chum salmon emergence (May 15, 2008). On these occasions, spill discharge ranged up to approximately 150 kcfs and remained above 100 kcfs for up to 7 hours. Depth-compensated TDG remained below 100% saturation at all river and hyporheic monitoring stations within the Ives Island and Multnomah Falls areas on all three occasions.

The response of water quality to fluctuation in river stage was significantly different at the Ives Island site compared to the Multnomah Falls site. At Multnomah Falls, hyporheic responses were relatively

stable despite substantial fluctuation in river water quality (Figures 1.13, 1.15, 1.16, and 1.17). In contrast, Ives hyporheic values fluctuated more than river values in response to daily changes in river stage (Figures 1.7, 1.9, 1.10, and 1.12). A similar difference in the response of hyporheic water quality to river stage fluctuation was noted during previous monitoring years (Arntzen et al. 2007a, 2008b). Stable water quality responses at Multhomah Falls indicate there may be a fairly constant source of subsurface water discharging through the hyporheic zone from groundwater or spring water (Shepherd et al. 1986; Crisp 1990). It is possible that such a water source originates from Multnomah Creek, entering the subsurface upgradient from our study site and later upwelling into the Columbia River through the hyporheic zone. This idea is supported by similarities between the water chemistry of Multnomah Creek upstream from our study site and the hyporheic zone at our study site (Arntzen et al. 2007a). In contrast, the relative instability of hyporheic water quality near Ives Island suggests that the direction of flux between hyporheic water and the river is reversed with river stage fluctuations. This condition has been observed before in the Columbia River associated with large and frequent fluctuations in river stage (Arntzen et al. 2006; Geist et al. 2008). The hyporheic response to river stage changes in the Ives area varied by location, with the most variable results obtained from Ives 1 hyporheic and Ives 2 hyporheic. These monitoring locations were installed in an area where chum salmon are known to spawn and where previous water quality monitoring has shown large differences between the hyporheic zone and the river (Geist et al. 2002).

Temperature affects dissolved gas solubility. At higher temperatures, total dissolved gas levels increase. Elevated hyporheic temperatures in the Ives Island area may thus contribute toward elevated hyporheic TDG levels found within the Ives study site early in the season and may also affect TDG concentrations during fluctuations in hyporheic temperature when the river stage fluctuates. There was an inverse relationship between temperature and river stage at Ives Island locations 1 and 2 (Figure 1.11). This pattern suggests that surface water fluctuations are affecting the interaction between hyporheic water and river water. The extent of riverbed permeability at these locations could control this pattern of interaction. For example, if the riverbed is highly permeable there, river water easily could be forced below the riverbed surface into the hyporheic zone, especially when the river stage is higher (Vaux 1968; White 1993; Arntzen et al. 2006). The location of groundwater upwelling areas may also affect the response of water quality to river stage changes in the Ives Island area. There is quite a bit of geothermal activity near North Bonneville, Washington, including developed hot springs northeast of North Bonneville (Moffetts Hot Springs) and east of Carson (St. Martin's Hot Springs). These hot springs are thought to occur along a northeast-trending lineament that is defined by the pre-Bonneville landslide Columbia River shoreline (Nielson and Moran 1980; Korosec 1983). There are also locations southeast of this line, especially near the current shoreline of the Columbia River, where hot springs are known to occur or where anecdotal accounts suggest evidence of geothermal activity. It is generally thought that these locations occur along northwest-trending lineaments or faults that intersect the previously mentioned northeast-trending lineament (Nielson and Moran 1980; Korosec 1983). Shipherds Hot Springs near the mouth of the Wind River and Collins Hot Springs (now submerged by the Bonneville Dam pool) are examples of such locations (Korosec 1983). Nielson and Moran (1983) discuss anecdotal evidence of warm water encountered during the replacement of the Highway 14 bridge over Hamilton Creek in North Bonneville, as well as of warm water (60°F compared to 20°F ambient temperature) encountered on the Washington shoreline during Bonneville Dam construction. These locations are particularly close to our field site at Ives Island, and it is possible that the warm water encountered within chum salmon spawning areas north of Ives Island is related to geothermal activity. Water chemistry could be used to determine whether this is true. Korosec et al. (1983) presented water chemistry analyses

of Moffetts Hot Springs and also of water from a test well drilled by the city of North Bonneville. The geothermal waters are chemically distinct, most notably by high pH values, which were well above 9 at both locations. We have not tested the pH of water extracted from chum salmon spawning locations near Ives Island or evaluated other analytes that would allow us to determine whether the water is chemically similar to nearby hot springs.

Hyporheic dissolved oxygen fluctuations in the Ives Island area (see Figure 1.9) have the potential to affect chum alevin negatively, both directly by lowering dissolved oxygen levels below thresholds that cause harm and indirectly by altering the ratio of oxygen to dinitrogen (O_2/N_2), which can increase mortality during periods of elevated TDG (Rucker 1975). Dissolved oxygen was generally lower at Ives hyporheic monitoring locations during 2008 compared to 2007. This may be due to lower river water levels during 2008, which may have reduced river flow into the hyporheic zone compared to previous monitoring years when river levels were higher. It is generally thought that DO levels above 5 mg/L are sufficient to incubate salmon embryos (Bjornn and Reiser 1991). There are examples in which DO above 5 mg/L negatively impacted salmonid survival. Malcolm et al. (2003) found a substantial negative impact on survival of Atlantic salmon at DO concentrations above 6.2 mg/L. Not surprisingly, chum salmon have a very low rate of survival to emergence when dissolved oxygen is less than 1.67 mg/L (Wickett 1954). During 2008, we measured DO levels below 1.67 mg/L at the Ives 3 hyporheic and Ives 5 hyporheic locations. During 2008 at Ives 3 hyporheic, average DO was 3.97 mg/L and DO levels were less than 1.67 mg/L for 45 hours. At Ives 5 hyporheic, dissolved oxygen averaged 2.75 mg/L and was less than 1.67 mg/L for a total of 164 hours. Low dissolved oxygen for that extended length of time is a concern for the redds near Ives 5, which is in the vicinity of chum salmon redds (Figure 1.2). The ratio of O_2 to N_2 becomes very important when TDG supersaturation is high and O_2/N_2 ratios are low, raising the lethality of total dissolved gas (Rucker 1975). Although most of the areas in which we have sampled TDG can be depth-compensated to safe levels, we are concerned that very low O_2/N_2 occurs where groundwater-surface-water interaction occurs in the Ives area, and that shallow redds at elevations well above our monitoring stations could be exposed to dangerously low O_2 or O_2/N_2 . Nebeker et al. (1979) demonstrated a significant decrease in mortality when the ratio of oxygen to nitrogen was increased while holding the total percentage saturation constant. After 71 hours at 120% TDG, 50% of the fish died when the O_2/N_2 ratio was 0.966. Only 7% of the fish died after 167 hours when the O_2/N_2 ratio was changed to 1.593. During 2008, we estimated average ratios in the Ives area from 0.19 at Ives 5 hyporheic to 0.41 at Ives 2 hyporheic (see Appendix B for comprehensive O₂/N₂ data). Similar lows were recorded during 2007 at Ives 3 hypotheic (0.18), but the highest average ratio that year was 0.7 at Ives 1 hypotheic, substantially higher than during 2008. During 2008, at Multnomah Falls hyporheic 1 and 3, average O_2/N_2 ranged from 0.82 to 0.7, respectively. Although O_2/N_2 was highly variable within the hyporheic zone, average ratios we measured are typical of those found in groundwater. Mookherji et al. (2003) performed a dissolved gas analysis in a riparian wetland with nested piezometers in upwelling regions and found ratios ranging from 0.038 to 0.444. Blicher-Mathiesen et al. (1998) measured denitrification and degassing in groundwater in a Danish riparian wetland. They sampled groundwater from four piezometers and found ratios ranging from 0.011 to 0.125. The variability of O_2/N_2 at our study site likely was controlled by frequent changes in hyporheic DO. Changes in DO likely were caused by frequent surface water fluctuations, which influenced the mixture of surface water and hyporheic water. It also is likely that photosynthetic activity and biological respiration contributed to changes in DO and thus altered O₂/N₂ (Nebeker et al. 1979).

Chapter 2

Bioassays on the Formation of Gas Bubble Disease in Chum Salmon Fry at Total Dissolved Gas Levels Ranging up to 129% Saturation

K.D. Hand, K.M. Carter, D.R. Geist, V.I. Cullinan, R.A. Elston

Introduction

Prior to our study of the effect of total dissolved gas (TDG) on chum salmon (*Oncorhynchus keta*) survival and development, other dissolved gas toxicity studies had not been conducted on this species. Results from 2007, the first year of our 2-year laboratory study, showed that direct mortality and body size at emergence were not influenced by TDG levels ranging up to 113% (Hand et al. 2008). However, the presence of moderate epithelial hypertrophy and moderate epithelial separation and swelling of secondary gill lamellae were related to the concentration of TDG; a larger proportion of the fish exposed to 108% and 113% TDG exhibited these symptoms than would be expected due to chance (Hand et al. 2008). Similar histological findings have been observed with fingerling Chinook salmon (*O. tshawytscha*) (Pauley and Nakatani 1967) and other salmonids (Wright and McLean 1985; Krise and Meade 1988). However, previous studies have shown a reduction in survival usually accompanies histological aberrations when exposures are of sufficient duration. In a long-term study on lake trout (*Salvelinus namaycush*), Krise (1993) showed that mortality did not increase at 110% TDG until after day 28. That survival was not significantly different between our groups of juvenile chum salmon from the 2007 study suggested the disease was chronic and that the period of exposure to TDG may not have been long enough to elicit a survival response.

It is possible that newly hatched chum salmon sac fry in the Columbia River downstream from Bonneville Dam are exposed to elevated dissolved gas that could result in reductions in survival. Arntzen et al. (2008b) showed that dissolved gas in riverbed gravels exceeds 103% TDG as early as March 1. It is conceivable that without adequate water depths over chum salmon redds, dissolved gas concentrations could reach levels early in the development that would create sublethal concentrations of dissolved gas that eventually could reduce overall survival. Understanding the relationship between these dissolved gas thresholds and histological aberrations is needed.

We evaluated lethal and sublethal effects of both static and incrementally increasing levels of elevated TDG on chum salmon embryos and alevin in order to complete three objectives. Our first two objectives exposed fish to static levels of TDG up to 113% saturation for two separate exposure periods. The first exposure period began approximately 4 weeks before emergence, replicating work done in 2007. The second group was exposed starting at an earlier development stage, approximately 6 weeks before emergence, to examine the effects of chronic elevated gas exposure during a longer portion of the development period between hatch and emergence. Our third objective involved exposing chum salmon alevin to incremental increases in TDG from 101% to 129% to determine the concentration at which external gas bubble disease symptoms become apparent.

Methods

Static Exposure to Supersaturated Total Dissolved Gas Levels up to 113%

We examined the effects of 48- and 34-day exposures to untreated (95% TDG) water and 103, 108, and 113% TDG supersaturation at a constant water temperature of 9.8°C on direct mortality, sublethal tissue damage, delayed mortality, and abnormal behavior. Alevin were sampled periodically throughout the experiment (immediately prior to exposure, three weeks pre-emergence and emergence for the long exposure, one week pre-emergence and emergence for the short exposure, and 30 days after the end of the exposures) for histopathological examination. Incubating alevin were monitored daily during the exposures to document mortality and developmental differences between treatments.

Egg Source, Egg and Alevin Incubation

For this task, approximately 18,500 fertilized chum salmon eggs were obtained in two lots from the Washington Department of Fish and Wildlife Minter Creek Hatchery, Gig Harbor, Washington. The eggs were spawned on December 4, 2007. The first lot of 17,000 eggs was transferred to the PNNL Aquatic Research Laboratory on January 15, 2008, at a development stage of 395 accumulated thermal units (ATU). The eggs were placed in incubation trays at approximately 10°C. A water quality problem in the incubation trays resulted in higher than normal egg mortality so a second lot of 1,500 eggs was transferred to PNNL on January 23 at a development stage of 461 ATU to ensure an adequate number of fish for the experiment. The eggs were maintained in incubation trays at approximately 10°C through hatching and until the alevin were transferred to the exposure troughs.

Supersaturated Gas and Temperature Control

Gas supersaturated water was produced by a gas supersaturation column. The 9-ft-high x 6-in.diameter PVC pipe column has inflow hoses for both gas and water. A centrifugal pump maintains inflow water pressure. Water enters at the top of the column; a gate valve controls flow rate. Compressed air is injected to either the top or bottom of the column. A sight glass at the side of the column has a proximity meter that can be adjusted up or down to control the injected air supply. Outflow occurs from the bottom of the column. The desired saturation level produced by the column can be maintained by manipulating the combination of water inflow, water outflow, and column water level.

The exposure to three levels of gas supersaturation took place in three of four stainless steel troughs (30 x 305 x 13 cm) arranged side by side on an elevated platform. The fourth trough housed fish for the untreated water, or control group. The gas supersaturation column provided water to head tanks supplying three of the troughs (Figure 2.1). In the head tanks, supersaturated and control water were mixed via both manual and computerized solenoid valves to achieve the 103, 108, and 113% exposure levels. Water was piped by gravity flow from the head tanks into PVC manifolds. Ball valves on the manifolds were used to adjust flow volume. From each manifold, 24 individual sections of 1/8-in.-inside diameter tubing supplied water to emergence tubes and egg cups. Water flow through the tubing to each container was approximately 600 mL/min. The emergence tubes received treated water directly in a closed system. The egg cups received a smaller percentage directly; the remaining water in the trough supplying the egg cups came from the outflow of the emergence tubes. Due to gas loss at the exposed water surface of the trough and egg cups, the TDG levels in the water in the egg cups for the 103, 108,

and 113% TDG levels averaged 0.7%–0.9% less than in the emergence tubes. Gas levels were monitored in-line using TDG sensors (Model T507, In-Situ Inc., Fort Collins, Colorado) that were connected to a data logger (Model CR1000 datalogger, Campbell Scientific, Inc., Logan, Utah) and a personal computer. Chilled well water with a 95% TDG concentration and no gas level manipulations supplied the control trough.

Figure 2.1. Total dissolved gas experimental system

Daily adjustments were made to the gas column during periods of unstable weather to decrease or increase percentage saturation of output as needed to maintain 103, 108, and 113% TDG treatment water. Water temperature was maintained at an average of 9.8°C during the exposure period. Temperature control was achieved using the chilled water system supplying the PNNL Aquatic Research Laboratory.

Alevin Exposure to Supersaturated Gas

For the exposure, alevin were housed in both egg cups and emergence tubes. Egg cups were constructed of 15-cm sections of 10-cm-diameter PVC pipe that was screened on the bottom and slotted (4 banks of 11 horizontal grooves, each 2.5 mm x 5 cm) and screened on the sides. The sides were screened to prevent chum salmon alevin from escaping through the slots. Alevin in the egg cups were accessible for daily monitoring of abnormal behavior, mortality, and histology sampling throughout the entire exposure period. Emergence tubes consisted of a light and dark chamber connected to each other via a clear tube. They were constructed of 17-cm-long sections of 5-cm-diameter white and 6.5-cm-diameter clear PVC pipe. Water flow (approximately 600 mL/min) was directed such that it upwelled through gravel in the bottom of the dark (white) chamber, across the clear tube, and into the light (clear) chamber. Fry emergence occurred when the alevin followed the flow of water toward the light and moved across to the clear chamber of the emergence tube. In the emergence tubes, until alevin emerged, they were not accessible for daily monitoring or sampling; these alevin were used to determine survival and timing to emergence and for the emergence histology sampling.

On February 6, alevin were randomly assigned to one of two exposure periods and divided into treatment groups, and the long exposure was started. For the long exposure, approximately 200 alevin (measured volumetrically at approximately 200 alevin per 70 mL) were placed into each of 24 egg cups and 100 alevin (counted) were placed into each of 24 emergence tubes. Six replicate egg cups and six replicate emergence tubes were distributed among each of the four troughs (the 103, 108, and 113% TDG treatment troughs and the 95% TDG untreated control trough).

Also on February 6, the alevin for the short exposure were divided into treatment groups but were kept in the control trough until the short exposure began. In this case, approximately 300 alevin (measured volumetrically at approximately 300 alevin per 105 mL) were placed into each of 24 egg cups in the control trough. On February 20, the short exposure was started. On this day, 100 alevin (counted) were taken from each egg cup (leaving approximately 200 per egg cup) and placed into corresponding emergence tubes. Six replicate egg cups and their corresponding emergence tubes were then distributed among each of the four troughs.

The long exposure period lasted 48 days, and the short exposure period lasted 34 days. Both exposure periods ended on March 25, 2008.

Survival and Development

The date of 50% hatch was January 28 and was determined from daily observations of the eggs in the incubation trays. On the day of 50% hatch, a sample of 200 alevin was taken from the population, euthanized, measured for weight and length, and preserved in a 10% solution of neutral buffered formalin (NBF). A small sample of 20 alevin was measured for weight and fork length on the day treatments were assigned and distributed (February 6) and preserved in 10% NBF.

Throughout the exposure periods, alevin in the egg cups and the clear portion of the emergence tubes were monitored daily. Dead alevin and emergent fry were counted and removed.

Alevin that moved to the clear side of the emergence tubes within 24 hours of being placed there were removed and eliminated from the trial. After 24 hours, alevin found in the clear tube were recorded as

emerged for purposes of documenting the dates of first, 50%, and 100% emergence. Within ± 1 day of 50% emergence, 15 emergent fry from each emergence tube were euthanized, measured for weight and fork length, and preserved in 10% NBF.

The various wet weight and fork length data were used to compare alevin and emergent fry size and to calculate growth curves and a developmental index. The development index (k_D) was calculated as described in Bams (1970) using Equation (2.1):

$$k_{\rm D} = \frac{10 \sqrt[3]{\text{wet weight in mg}}}{\text{fork length in mm}}$$
(2.1)

Samples from hatch and emergence were analyzed further for dry weight. After at least 80 days in 10% NBF, the preserved samples from 50% hatch and 50% emergence were processed for dry weight ratios of body tissue and yolk. The body tissue and yolk tissue were dissected, combined according to treatment and replicate, and dried in an oven at 60°C for 48 hours. After drying, the body tissue and yolk tissue of each group were weighed and ratios were calculated.

Near the time of 50% emergence, a subsample of alevin remaining in the egg cups was transferred to a Living Stream system (Frigid Units Inc., Toledo, Ohio; 60 x 274 x 55 cm; 700-L capacity) supplied with control water for a 30-day observation period. Fifty fish per replicate were combined by treatment and exposure to form eight groups of 300 fish each. The fish were placed into one of eight mesh pens within the Living Stream tank. Fish were fed size #0 crumb BioVita Starter (Bio-Oregon, Longview, Washington) four to six times daily using automatic feeders. Minimum daily feed amounts were calculated to allow for a 4.4% daily weight gain. Fish were observed daily for abnormal behavior and mortality. At the end of the holding period, five fish per group were euthanized, measured for weight and length, and preserved in Bouin's solution. The remaining fish were euthanized and disposed.

Necropsy and Histology

Samples of alevin were euthanized and preserved prior to exposure (baseline), twice during exposure for each exposure period, and at the end of the post-exposure period for histological analysis. Baseline samples were taken on February 6, 2008 and preserved in 10% NBF. For the long exposure, samples were taken on February 21, 2008 (approximately 3 weeks pre-emergence) and on March 11–12 (50% emergence). For the short exposure, samples were taken on March 4 (approximately one week pre-emergence) and on March 11–12 (50% emergence). The pre-emergence samples included alevin preserved in Bouin's solution and in 10% NBF; all emergence samples were preserved in Bouin's solution. Samples were taken also at the end of the 30-day post-exposure holding period on April 16 and preserved in Bouin's solution. These samples were stored in fixative at the Aquatic Research Laboratory until they were submitted to Dr. Ralph Elston, AquaTechnics, Inc. (Sequim, Washington), for histological examination.

Necropsy

The sample fish were received at AquaTechnics on June 9 and assigned case number AQ08 138. Upon receipt, each preserved fish was placed whole into separate coded histology cassettes. The fish were oriented so that sagittal (longitudinal or anterior to posterior) histology sections would result. Thus, the cut fish sections are viewed from the side from anterior to posterior. The cassettes containing fish were then re-immersed in fixative. A spreadsheet was created that referenced the PNNL inventory code and histology cassette identity for each fish.

Histology Processing

Histology processing was performed by a subcontractor to AquaTechnics, Inc. Routine methods of dehydration, embedding, sectioning, and staining tissue sections with hematoxylin and eosin were used (Luna 1968). A set of subcontractor histology processing protocols approved by AquaTechnics is on file at AquaTechnics. The cassettes and resulting histology blocks and slides carried the coded case number unique to each specimen and histology cassette. The coded identification information did not contain any reference to the specific treatment the specimen received during the experiment that produced the fish. The resulting embedded tissue block for each fish was cut at nine approximately evenly spaced levels, utilizing about 75% of the thickness of each fish. Each of the nine levels was numbered sequentially; each section was cut at approximately 5-µm thicknesses. Thus, each fish resulted in nine tissue sections that, in total, represented a range of the organs and tissues present in each fish. The objective was to obtain all types of organs or tissue that were thought to be potentially affected by gas supersaturation.

Histology Interpretation

The histology sections were examined by light microscopy using an Olympus BX40 microscope equipped with 4x, 10x, 20x, 40x, and 100x objective lenses. The sections were examined without knowledge of the treatment group to which the specimen belonged. Each organ of interest was examined, and lesions were recorded in an Excel spreadsheet. Because the first reading of all slides indicated that significant lesions in the gill tissues occurred at an apparent high prevalence, the gill tissues were reexamined and results added to the spreadsheet. Lesions in the secondary lamellae of the gills were graded as follows: grade 0 = lesion not present; grade 1 = very rare/very mild; grade 2 = few/mild; grade 3 = many/moderate; and grade 4 = too many to count/severe.

Special Stains

Due to the finding of an unknown structure (apparently a protistan parasite) in epithelium of the gills and adjacent tissues, special staining studies were conducted to attempt to elucidate the nature of this structure. To implement these special staining studies, the sections were recut from several representative blocks containing the unknown structures and stained with the following special stains: periodic acid-Schiff, Giemsa, Gomori methenamine silver, Gram, and mucicarmen (Luna 1968).

Statistical Analysis

Descriptive statistics, including the coefficient of variation and histograms, were used to evaluate the variability in exposure concentrations and water temperature. Analysis of variance (ANOVA) was used to compare average water temperature, ATU, and fish response among exposure concentrations. The nonparametric alternative, the Kruskal-Wallis test, was used when sample sizes were small or when transformation of the response variable did not satisfy parametric assumptions.

The severity of each type and the sum of all gill lesions were analyzed to test the null hypothesis of equal proportional occurrence among TDG level percentages for each sampling stage (pre-emergence and emergence). When expected frequencies were too low to meet the assumptions of a chi-square analysis, a binomial exact test of goodness-of-fit was used if moderate lesions were observed in the higher

concentrations of TDG. The rankings of gill lesion severity (0 = no lesion and 1 to 4 indicating increasing severity) were pooled into two categories (low = 0 + 1 and moderate = 2 + 3 + 4) to meet the assumptions of both the chi-square and the binomial exact goodness-of-fit test using the marginal frequencies of occurrence as the expected proportions. When the data exhibited a dose-response, a probit analysis was conducted on the proportion of moderate lesions as a function of TDG. An effective concentration that causes 50% response (EC50) and the 95% confidence limits were calculated when appropriate. Because of the small number of doses (four), a simple linear regression also was employed. A generalized linear model on the proportion of moderate lesions was used to compare sampling scenario (a combination of the age sampled and the number of days exposed) and TDG exposure levels. The age sampled and the number of days exposed also were evaluated as covariates.

The maximum number and proportional occurrence of parasites in the tissues of the thymus and skin also were evaluated. A full generalized linear model was used to evaluate the main effects of sampling scenario (a combination of the age sampled and the number of days exposed) and TDG exposure levels.

Incremental Exposure to Supersaturated Total Dissolved Gas Levels up to 129%

Fish Source

Wild chum salmon were obtained as eggs from Washougal Hatchery (Washougal, Washington) and incubated in our laboratory to serve as a control group for the artificial redd study (Chapter 3, this report). Extra alevin not needed for that task were utilized for this study. On March 20, 60 alevin were divided into two equal groups and placed into one of two exposure cups housed within a 5-gal aquarium. Exposure cups A and B were identical to those used for the static exposure experiment in our laboratory. The alevin were 93 days post-fertilization and had 613 ATU when placed in the exposure cups. Each sac fry still retained a large portion of yolk distending from the ventral side (Figure 2.2).

On March 21, 27 of the 30 alevin escaped from cup A. Eight of these fish were recovered. The other 19 fish were not found. Because of the limited number of alevin available to us, we placed the 8 recovered fish back into cup A along with an additional 13 excess alevin from the control group for the artificial redd study. Cup A contained 24 fish, all of which remained in the cup until removed for examination or mortality. No fish escaped from cup B.

Figure 2.2. Alevin retained large yolk sacs when placed in the exposure cups

Supersaturated Gas and Temperature Control

Gas supersaturated water was produced using a gas superaturation column, similar to that used for the static exposure study. Well water was pumped into a gas supersaturation column where it was mixed with compressed air. The level of supersaturation was controlled by adjusting the water pressure within the gas column. Higher water pressures allowed for higher supersaturation levels. On the initial day of the experiment, TDG levels were set at 101.8%. For the remainder of the study, we increased TDG levels approximately 2% every other day. Actual dissolved gas levels varied slightly from the experimental target of 2% every other day. Changes to the water pressure in the supersaturating gas column did not always bring predictable results, and several adjustments over a period of hours sometimes were needed to achieve the desired level of supersaturation. Changes in barometric pressure also added variability to the TDG percentage.

Supersaturated water was pumped from the gas column to a head tank for distribution to the exposure cups. Water was piped by gravity flow from the head tank to each of the two egg cups containing fish. The head tank was situated 12 ft above the aquarium, which maintained head pressure adequate to keep the water supersaturated until reaching the egg cups. Gas levels were measured in-line just prior to the exposure cups using the same equipment as used for the static exposure study.

Water temperature ranged from 6.25°C to 9.9°C throughout the study. Although the temperature of the water was controlled within the laboratory, the experimental head tank was located outside and was subject to some environmental conditions that caused the temperature to fluctuate during the experiment.

Gross Examination and Histology

Fish in each exposure cup were monitored daily for mortality, abnormal behavior, and anatomical signs of gas bubble disease. Dead fish were examined upon discovery. In addition, a detailed gross examination on one fish from cup A was performed every other day. The live fish were euthanized with 250 mg of MS-222/L of water prior to examination. Fish were examined for external bubbles in the nares, mouth, fins, yolk sac, and eyes and for internal bubbles in the gills, swim bladder, and intestinal tract. Three fish also were submitted for histological examination, once gas bubble disease became grossly apparent. These examinations were performed as described for the static exposure study. Fish in cup B were monitored only for mortality and examined only if mortality occurred. No live fish were removed for examination.

Results

Static Exposure to Supersaturated Total Dissolved Gas Levels up to 113%

Gas and Temperature Levels

Actual dissolved gas levels followed very closely the experimental targets (Table 2.1) and varied little. The coefficient of variation (CV) values for all treatments were less than 1%; the largest variability (CV = 0.59%) occurred in the control group (Figure 2.3).

		-		Standard		
Treatment	N	Mean	Median	Deviation	Minimum	Maximum
Control	42	94.9%	95.97%	0.558	93.27%	95.87%
103%	48	103.0%	103.06%	0.367	101.76%	103.58%
108%	48	108.0%	107.97%	0.254	107.47%	108.75%
113%	48	113.0%	112.92%	0.309	112.43%	113.71%

Figure 2.3. Daily mean total dissolved gas levels for the exposure period

The average daily water temperature over the study period from hatching (January 28) until termination (April 16) ranged from 10.2°C to 7.7°C (Figure 2.4). During the exposure periods, mean daily water temperatures in the control and three treatment groups were very stable, ranging from a low of 9.7°C in the 113% TDG group to a high of 9.9°C in the control group (Table 2.2). During the 30-day post-exposure holding period, the average temperature decreased approximately 2°C (from 9.5°C to 7.7°C). This change occurred because the chilled water source supplying both the laboratory and this experiment was adjusted to meet the needs of other research projects.

Figure 2.4. Daily mean temperatures for the study period

		Mean	Median	Standard	Minimum	Maximum
Treatment	Ν	(°C)	(°C)	Deviation	(°C)	(°C)
Control	42	9.81	9.81	0.042	9.77	9.90
103% TDG	48	9.81	9.81	0.016	9.78	9.86
108% TDG	48	9.82	9.83	0.017	9.79	9.87
113% TDG	48	9.77	9.77	0.020	9.73	9.82

Table 2.2. Mean daily temperature during the 48-day exposure period

Survival and Development

Survival from hatch to emergence equaled or exceeded 98.8% in all treatments (Table 2.3). The proportion that survived to emergence did not differ among the treatment groups in either the long (48-day) or short (34-day) exposures (ANOVA: F = 0.96; df = 3, 40; P = 0.421; Figure 2.5). Survival also did not differ between the two exposure periods (ANOVA: F = 0.19; df = 1, 40; p = 0.662; Table 2.3). No substantial mortalities or abnormal behavior were noted during the 30-day post-exposure holding period.

The average dates of 50% emergence occurred from March 10 (97 days post-fertilization [DPF]) to March 12 (99 DPF) for treatments in both exposure periods (Figure 2.6). Timing of emergence did not differ among treatments within each exposure period (ANOVA: F = 0.881; df = 3, 40; p = 0.459) but did differ slightly between exposure periods. The long-exposure group emerged one day earlier, on average, than did the short-exposure group. Though this was statistically significant (ANOVA: F = 4.52; df = 1, 40; p = 0.040) it is not biologically significant. The thermal units accumulated at the time of 50% emergence ranged from 913 to 925 ATU for the long exposure and from 921 to 930 for the short exposure (Table 2.3). The thermal units accumulated at the time of 50% emergence did not differ among treatments within each exposure period (ANOVA: F = 1.01; df = 3, 40; p = 0.399). Between the two exposure periods, however, the thermal units accumulated at 50% emergence were significantly different.

The long-exposure group had significantly fewer ATU than the short-exposure group (ANOVA: F = 4.73; df = 1, 40; p = 0.036).

(b) Short-exposure (34-day) treatment group

Figure 2.5. Number of days to 50% and 100% emergence for each treatment group

Figure 2.6. Number of days post-fertilization at 50% emergence for each exposure period and treatment. The first and third quartiles are represented by the lower and upper bounds of the box, respectively; median values are represented by a horizontal line within the box; and mean values are represented by a black solid circle.

Table 2.3 .	Mean (and range) survival, days post-fertilization (DPF), date, and accumulated thermal units
	(ATU) at 50% emergence

Exposure Period	Treatment	Survival	DPF	Date	ATU
	Control	99.3% (98–100%)	96 (96–98)	3/10 (3/10–12)	917 (908–928)
Long	103% TDG	99.0 (98–100%)	97 (96–98)	3/11 (3/10–12)	918 (908–928)
(48 days)	108% TDG	99.5 (98–100%)	97 (96–99)	3/11 (3/10–13)	925 (908–938)
	113% TDG	99.2 (98–100%)	97 (94–98)	3/11 (3/8–12)	913 (887–926)
	Control	99.5% (98–100%)	97 (96–100)	3/11 (3/10–14)	921 (908–948)
Short	103% TDG	98.8% (97–100%)	97 (97–99)	3/11 (3/11–13)	926 (918–937)
(34 days)	108% TDG 99.3% (97–100%)		98 (96–101)	3/12 (3/10–15)	930 (908–957)
	113% TDG	99.8% (99–100%)	98 (96–99)	3/12 (3/10–13)	927 (907–937)

Alevin and Fry Size

The mean wet weight of alevin at 50% hatch (January 28, 2008) was 216.4 mg, while the mean fork length was 23.1 mm (Table 2.4). At the time the alevin were transferred to the emergence tubes (and the long exposure was initiated) on February 6, their average wet weight had increased to 236 mg and their mean fork length had increased to 27.9 mm (Table 2.4).

Development Stage	Variable	N	Mean	Median	Standard Deviation	Minimum	Maximum
50% hatch	Wet weight (mg)	200	216	209	26	158	298
	Fork length (mm)	200	23.1	23.0	0.8	21.0	25.0
Transfer to emergence tubes	Wet weight (mg)	20	236	224	32	190	310
	Fork length (mm)	20	27.9	28.0	1.6	25.0	31.0

Table 2.4. Size of chum salmon sampled at 50% hatch (January 28, 2008) and at time of transfer to
emergence tubes (February 6, 2008)

The mean wet weight of alevin at 50% emergence ranged from 286 mg in the short-exposure control group to 312 mg in both the short- and long-exposure 113% TDG treatment groups, a range of 26 mg. Differences in wet weight were statistically significant among exposure periods (ANOVA: F = 6.18; df = 1,40; p = 0.017) and treatments (ANOVA: F = 4.24; df = 3; p = 0.011) but not significant for the interaction of exposure period and treatment (ANOVA: F = 1.33; df = 3,40; p = 0.277). These differences may be due in part to the difficulty in obtaining accurate and consistent wet weight measurements due to differences in water retention on the surface of the samples. The mean fork length ranged from 36.4 mm in the short-exposure control group to 37.0 mm in the long-exposure 113% TDG treatment group (Table 2.5). Lengths did not differ among exposure periods (ANOVA: F = 3.54; df = 1,40; p = 0.067) or treatments (ANOVA: F = 2.35; df = 3,40; p = 0.087).

The mean development index (k_D) ranged from 1.81 to 1.84 and was significantly different among the treatments (ANOVA: F = 7.84; df = 3,40; p = 0.0003) and exposure periods (ANOVA: F = 5.45; df = 1,40; p = 0.025). The range is small (0.03) and is likely not biologically significant. These differences also may be related to variabilities in wet weight measurements.

Exposure	Variable	Treatment	Ν	Mean	Median	Standard Deviation	Minimum	Maximum
1		Control	90	303	297	34	233	409
	Wet weight	103%	90	311	299	40	237	434
	(mg)	108%	90	306	297	35	263	462
		113%	90	312	301	34	247	463
		Control	90	36.8	37.0	0.96	35.0	39.0
Long	Fork length	103%	90	36.7	36.5	1.18	34.0	41.0
(48 days)	(mm)	108%	90	36.9	37.0	0.90	35.0	40.0
		113%	90	37.0	37.0	1.08	34.0	41.0
		Control	90	1.82	1.82	0.04	1.70	1.99
	Development	103%	90	1.84	1.83	0.06	1.77	2.05
	index (k _D)	108%	90	1.82	1.82	0.04	1.74	2.01
		113%	90	1.83	1.83	0.03	1.75	1.91
		Control	90	286	285	32	192	401
	Wet weight	103%	90	297	290	31	225	390
	(mg)	108%	90	302	296.5	33	222	422
		113%	90	312	302	30	242	294
		Control	90	36.4	36.0	1.10	34.0	40.5
Short	Fork length	103%	90	36.6	36.5	0.95	34.0	39.0
(34 days)	(mm)	108%	90	36.8	37.0	1.01	34.0	41.0
		113%	90	36.9	37.0	0.94	34.0	39.0
		Control	90	1.81	1.81	0.04	1.70	2.02
	Development	103%	90	1.82	1.82	0.04	1.73	1.97
	index (k _D)	108%	90	1.82	1.82	0.04	1.68	1.88
		113%	90	1.84	1.84	0.04	1.76	1.93

 Table 2.5.
 Size of chum salmon sampled at 50% emergence

On average, alevin gained weight at approximately 2 mg/d (Figure 2.7) and length at approximately 0.32 mm/d (Figure 2.8) from hatch to emergence and followed a growth curve typical of salmonid alevin. The weight gain did not differ among treatment groups and was related more to days post-fertilization. Both weight and length could be modeled as a second-order polynomial function of days post-fertilization ($R^2 = 0.98$). The regression equation for weight was

Weight =
$$76.44 + 2.84 (DPF) - 0.0053 (DPF2)$$
 (2.2)

where DPF was days post-fertilization.

The length gains of the fish were represented by

Length =
$$-28.64 + 1.29 (DPF) - 0.00637 (DPF2)$$
 (2.3)

Figure 2.7. Average daily weight gain (mg/d) from 50% hatch to 50% emergence. Long (48-day) exposure represented by closed symbols (L); short (34-day) exposure represented by open symbols (S).

Figure 2.8. Average daily length gain (mm/d) from 50% hatch to 50% emergence. Long (48-day) exposure represented by closed symbols (L); short (34-day) exposure represented by open symbols (S).

The mean dry tissue weight of alevin at 50% hatch was 12.6 mg (range 11.3–15.3 mg). At the time of 50% emergence, the mean dry tissue weight across the treatments ranged from a low of 51.1 mg in the short-exposure control group to a high of 55.8 mg in the short-exposure 113% TDG treatment group (Table 2.6). The differences in dry tissue weight among the treatment groups were nearly significant (ANOVA: F = 2.69; df = 3,40; p = 0.059), as were differences between exposures (ANOVA: F = 4.01; df = 3,40; p = 0.052). The dry tissue weights for the short exposure were more variable than those for the long exposure. The mean dry yolk weight of alevin at 50% hatch was 77.0 mg (range 71.2–83.4 mg). At 50% emergence, the mean dry yolk weight across treatment groups ranged from a low of 2.5 mg in the short-exposure control group to 4.3 mg in the short-exposure 113% TDG treatment group (Table 2.6). There were no significant differences in dry yolk weight among treatments within each exposure at 50% emergence (ANOVA: F = 1.09; df = 3,40; p = 0.363) or between exposures (ANOVA: F = 0.34; df = 3,40; p = 0.564). Again, the short-exposure alevin exhibited more variability. Finally, the total dry weight of alevin at 50% emergence ranged from a low of 53.6 mg in the short-exposure control group to

60.1 mg in the short-exposure 113% TDG treatment group (Table 2.6); with more variability among the short-exposure alevin.

Exposure	Variable	Treatment	Ν	Mean	Median	Standard Deviation	Minimum	Maximum
		Control	6	54.6	54.7	1.4	52.8	56.3
	Tissue dry	103%	6	54.9	54.8	2.0	52.0	57.1
	wt (mg)	108%	6	54.7	54.6	3.1	49.7	59.1
		113%	6	55.4	54.9	2.3	52.3	58.1
		Control	6	3.9	3.6	0.84	3.0	5.2
Long	Yolk dry	103%	6	3.1	3.0	0.43	2.6	3.8
(48 days)	wt (mg)	108%	6	3.3	3.3	0.66	2.5	4.2
		113%	6	3.7	3.8	0.91	2.6	5.1
		Control	6	58.5	58.8	2.0	55.8	60.9
	Total dry	103%	6	58.0	57.5	1.8	55.8	60.5
	wt (mg)	108%	6	58.0	57.2	3.3	53.4	63.3
		113%	6	59.1	58.9	2.7	54.9	Maximum 56.3 57.1 59.1 58.1 5.2 3.8 4.2 5.1 60.9 60.5 63.3 62.2 55.5 56.3 58.3 57.7 3.7 7.8 5.1 5.7 59.2 58.7 62.8 61.5
		Control	6	51.1	50.8	2.6	48.2	55.5
	Tissue dry	103%	6	51.9	52.1	3.0	48.3	56.3
	wt (mg)	108%	6	54.0	53.8	3.9	48.6	58.3
		113%	6	55.8	56.0	1.7	53.7	57.7
		Control	6	2.5	2.6	0.79	1.4	3.7
Short	Yolk dry	103%	6	3.9	3.6	2.32	1.0	7.8
(34 days)	wt (mg)	108%	6	4.0	4.1	0.87	2.6	5.1
		113%	6	4.3	4.2	0.81	3.5	5.7
		Control	6	53.6	53.0	2.9	51.0	59.2
	Total drv	103%	6	55.8	55.4	2.0	53.7	58.7
	wt (mg)	108%	6	57.9	58.3	4.5	52.2	62.8
		113%	6	60.1	60.9	1.6	57.8	61.5

Table 2.6. Tissue, yolk, and total dry weights of emergent fry

Histology

The most significant histologic findings were present in the secondary lamellae of fish. The findings included *crenated erythrocytes*, *dilated lamellar tips*, *epithelial hypertrophy*, *epithelial cell separation*, and *distal gill arch epithelization*. For lesions of moderate severity or greater (grades 2, 3, and 4), only *epithelial hypertrophy* (Figure 2.9) and *epithelial separation* were present in substantive numbers of the pre-emergence and emergence samples (Figure 2.10). Other findings included hepatic glycogen depletion and an infection with a presumed protozoan parasite.

Figure 2.9. Epithelial hypertrophy appears as a thickening of the outer layer, or epithelium of the secondary lamellae (black arrows). Normal gill epithelium (white arrows) should appear as a thin layer around the lamellae.

Figure 2.10. Percentage occurrence of moderate severity or greater gill lesions in the overall preemergence and emergence samples from the long and short exposures (n = 120)

Crenated erythrocytes of moderate severity or greater were present in 18.3 % of fish sampled during the exposure periods (Figure 2.10). The proportions of these lesions within each exposure period and percent TDG treatment group are shown in Figure 2.11. This lesion was limited to the capillaries in the secondary lamellae and could be an artifact of fixation or euthanasia. For the long exposure, no moderate lesions occurred in the pre-emergence sample; at emergence, the rates had increased significantly based on all pair-wise comparisons (Tukey simultaneous test: T = 4.03; df = 15; p = 0.011), although they were not significantly different across percent TDG treatments (chi-square test: p = 0.72). For the short exposure, the rate of moderate lesions was not significantly different across percent TDG levels in the

pre-emergence sample (binomial exact test: p > 0.19); at emergence, there were slightly more moderate lesions than expected in the control group (chi-square test: p = 0.046).

Figure 2.11. Proportions of fish sampled by exposure and treatment that exhibited crenated erythrocytes of moderate severity or greater in the secondary gill lamellae

Dilation of secondary lamellar tips and mild epithelization of gill arch tips was present at mild severity in most fish. Dilated lamellar tips appeared to be a terminal event and may have been related to stress at euthanasia; this lesion was present at moderate or greater severity in only 3.3% of fish sampled during the exposure periods (Figure 2.10). For the long exposure, no moderate *dilated lamellar tip* lesions occurred in the pre-emergence or emergence samples. For the short exposure, the rate of moderate dilated lamellar tip lesions was not significantly different across percent TDG levels in the preemergence samples (binomial exact test: p > 0.32). Epithelial hypertrophy also was present in many fish; 55% sampled had moderate severity or greater overall (Figure 2.10). For the long exposure at preemergence, slightly more moderate epithelial hypertrophy lesions occurred in the control group (binomial exact test: p = 0.06). At emergence, the rates across treatments were significantly higher based on all pair-wise comparisons (Tukey simultaneous test: T = 5.765; df = 15; p < 0.001); nearly all of the fish sampled had moderate lesions. For the short exposure at pre-emergence, slightly more lesions occurred than expected in the 113% TDG treatment group (binomial exact test: p < 0.1). However, at emergence, the rate of moderate lesions was not significantly different across percent TDG groups (chi-square test: p > 0.1). The proportions of *dilated lamellar tips* and *epithelial hypertrophy* within each exposure period and percent TDG treatment group are shown in Figures 2.12 and 2.13. No fish sampled had distal gill arch epithelization of moderate severity or greater. The mild distal gill arch epithelialization coupled with the *epithelial hypertrophy* could be the result of poor water quality. However, *epithelial hyperplasia* was not present to indicate a severe water quality problem.

Figure 2.12. Proportions of fish sampled by exposure and treatment that exhibited dilated lamellar tips of moderate severity or greater

Figure 2.13. Proportions of fish sampled by exposure and treatment that exhibited epithelial hypertrophy of moderate severity or greater

Epithelial cell separation and vacuolar swelling and/or fragmentation with possible separation of the basement membrane from the pillar cell cytoplasm were observed at moderate severity or greater in 76.7% of fish sampled during the exposure periods (Figure 2.10). This was characterized by observation of a clear empty space between the epithelial cell and basement membrane or cytoplasm of the pillar cell. In the most severe cases (grade 4), a separation of approximately 5 to 6 μ was noted. The separation was so severe that the pillar cell cytoplasm that forms the lamellar blood channels was clearly isolated from the epithelium. This gave the impression of a tube within a blood-filled tube. This is a unique lesion and most probably represents edema. The proportions of *epithelial cell separation* within each exposure period and percent TDG treatment group are shown in Figure 2.14. The rate of moderate *epithelial cell separation* was not significantly different across percent TDG levels for either the long or short exposures

at pre-emergence (binomial exact test: p < 0.21 and p < 0.3, respectively). At emergence, the rates of lesions were not different across percent TDG groups for either the long or short exposures. The occurrence of lesions had increased from the pre-emergence period for the long exposure; this increase was significant based on all pair-wise comparisons (Tukey simultaneous test: T = 8.08; df = 15; p < 0.001).

Figure 2.14. Proportions of fish sampled by exposure and treatment that exhibited epithelial cell separation of moderate severity or greater

Hepatic glycogen depletion was present at mild severity in 42.5% and at moderate severity or greater in 18.3% of fish sampled during the exposure periods. The proportions of *hepatic glycogen depletion* at moderate severity or greater within each exposure period and percent TDG treatment group are shown in Figure 2.15. The proportions of *hepatic glycogen depletion* were significantly different between the preemergence and emergence samples (ANOVA: F = 6.19; df = 1,7; p = 0.042) but not significantly different among percent TDG treatments (ANOVA: F = 6.19; df = 7,7; p = 0.409). Correlations between moderate *hepatic glycogen depletion* and moderate gill lesions were not consistent across exposures or treatments.

Figure 2.15. Proportions of fish sampled by exposure and treatment that exhibited hepatic glycogen depletion of moderate severity or greater

Of the fish examined during pre-emergence and emergence, 25% overall were infected with an unidentified presumed protozoan parasite on the thymus, gills, and/or skin. Most occurrences were graded only mild severity, and the skin generally contained more parasites than either the thymus or gills. All fish exhibiting parasites were from the pre-emergence samples (of which 41.7% had parasites); no fish from the emergence samples were infected. Figure 2.16 shows the distribution of parasite infection of mild and moderate severity within each exposure period and treatment. The proportions of moderate parasite infections was not significantly different by exposure (ANOVA: F = 0.08; df = 1,3; p = 0.8) or percent TDG treatment (ANOVA: F = 1.0; df = 3,3; p = 0.5). This infection did not appear to correlate with the lesions in the secondary lamellae. Special stains for the parasitic wall and/or for internal structures were negative, including the PAS, GMS, Geimsa, and stain for mucin. The presumed "zoites" in the protozoan could be best visualized with the mucin stain due to the yellow background. The zoites were negative for the red-staining mucin. The results did indicate the presumed round intra-cytoplasmic structures were protozoan and not intracellular mucous-containing cysts. Mucus in the epithelial cells was positive with all four special stains. The special stains also helped to differentiate the protozoan from smaller intracellular apoptotic cells (phagocytized dead cellular debris in a vacuole).

Figure 2.16. Proportions by treatment of fish sampled at pre-emergence that exhibited protozoan parasite infection of mild or moderate severity in the skin

Incremental Exposure to Supersaturated Total Dissolved Gas Levels up to 129%

Gross Examinations

Total dissolved gas levels increased throughout the study from a low of 101.8% at the beginning of the experiment to a high of 129.1% on April 12 (Figure 2.17). Alevin in this study exhibited signs of gas bubble trauma when exposed to supersaturated gas levels of 121% TDG and higher. Symptoms first appeared as small bubbles in the pupil and along the lateral line (Figure 2.18). Mortality occurred at 124.6% TDG and above. Bubbles were observed in the eye, jaw, and operculum of dead fish but not in living fish. The most prevalent symptom was the formation of bubbles in the vitelline membrane. These bubbles caused changes in behavior, as fish were noted to first swim tail-up, then float at the surface, and finally swim upside down.

Final Report

Figure 2.17. General increase in total dissolved gas levels over the study period (black line). All fish were found in the substrate with tails up at 121% TDG (A). Bubbles in the pupil and lateral line also were noted. Mortality began at 124.6% TDG (B) and continued throughout the study. Fish were found swimming at the surface of the water at 125.9% TDG (C). Large bubbles in the vitelline membrane formed causing fish to swim upside down at 127.5% TDG (D). The first signs of gas bubble disease occurred when fish reached 715 ATU (grey line).

Figure 2.18. Small clusters of bubbles observed in the pupil of fish exposed to 121% TDG and above

As shown in Figure 2.19, the water temperature ranged from 6.25 to 9.9 °C over the duration of the incremental exposure study.

Figure 2.19. Temperature range during incremental exposure study

The first mortality occurred on April 6 when gas levels reached 124.6%. This fish was too decomposed to examine, and the cause of death could not be determined. An additional fish examined on this day was noted to have bubbles in the intestine and stomach. The yolk was beginning to coagulate and turn an opaque orange-white (Figure 2.20). Small white patches were observed on the gills. We could not determine if the patches were a result of emboli in the filaments. No other fish examined during the study were observed with abnormalities in the gills.

Figure 2.20. Coagulated yolk in fish exposed to 124.6% total dissolved gas and above. Note the bright orange color of the residual normal yolk (arrow) for comparison to the coagulated portion.

A second mortality occurred on April 9 when TDG levels reached 125.9%. This fish had several large bubbles around the eyes, head, and jaw, and cranial swelling (Figure 2.21). Cohorts did not show any apparent signs of bubbles or other abnormalities other than bubbles in the pupil, lateral line, and intestines. However, several fish were observed floating at the surface of the water. Fish not at the surface floated to the surface if the substrate was removed.

Figure 2.21. Mortality found when total dissolved gas levels reached 125.9% was observed with numerous large bubbles on the head, eyes, and jaw.

As TDG levels reached 127.5% on April 11, all fish were swimming erratically and some fish were ventral side up due to a large bubble within the vitelline membrane (Figure 2.22). A necropsy on one of these fish showed large bubbles in the intestines and behind the eyes as well as the bubble in the vitelline membrane. Mortalities found on April 12 exhibited large bubbles covering the face, jaw, and opercula and in the intestines. The eyes were exophthalmic due to bubbles behind and around the orbs. In two fish, the vitelline membrane had burst.

Figure 2.22. A very large bubble in the vitelline membrane of a fish exposed to 127.5% total dissolved gas. Note how the bubble is displacing the yolk.

No additional symptoms were noted between April 12 and the end of the exposure period on April 18. The majority of fish remaining had developed a large bubble in the vitelline membrane. Mortalities were seen in 26% of fish in cup A and 17% of fish in cup B (Figure 2.23). Interestingly, only mortalities exhibited bubbles in the jaw and opercula. All mortalities had bubbles in the eye. Only one sacrificed fish was noted with bubbles in the eye causing exophthalmia.

Figure 2.23. Percentage of fish experiencing mortalities with increasing total dissolved gas levels in both cup A (grey line – squares) and cup B(black line – circles).

Histology

Three fish were removed from the incubation cups for histological analysis between April 15 and 18. Moderate amounts of epithelial hypertrophy and epithelial separation or swelling were found in the gills of two of the fish. One of the fish had low levels of these lesions. All three fish showed moderate to severe levels of glycogen/lipid depletion. All other organs appeared normal.

Discussion

This study demonstrated that survival to emergence of developing chum salmon alevin was not influenced by exposure to supersaturated gas levels up to 113% but that alevin did show signs of gas bubble trauma at gas levels of 121% and above. Alevin size and timing at emergence were not affected and not biologically different between the different exposure lengths and supersaturation levels up to 113%. Histological analysis found incidence of gill and organ lesions, but frequency and severity of these lesions failed to correlate with exposure to increasing levels of gas supersaturation.

The high survival rates for this study (>98%) compared similarly to those of last year (>99% for control through 108% TDG and 95% for 113% TDG; Hand et al. 2008). Beacham and Murray (1990) reported a survival rate of greater than 90% for chum alevin raised at 10°C. These high rates of survival in both the 48-day and 34-day exposure periods demonstrate that incubating chum salmon alevin are not detrimentally affected by exposure up to 113% TDG. The nationwide water quality standard for TDG

(established in 1972 and still in effect) is 110% (EPA 1987). Results from this study indicate that this level may be adequate to protect chum salmon incubating in the Columbia River.

The size of chum salmon fry at emergence and the timing to emergence for this study compare well with other researchers' findings. Bams (1970) reported chum salmon fry raised in hatchery conditions had an average length of 36.15 mm at emergence, compared to 36.4 to 37.0 mm in our study. The average weight of 367.9 mg reported by Bams (1970) was higher than our results of 286 to 312 mg. This difference could be due to different methods of determining emergence and because egg size (from population and species variation) is a major factor in alevin weight (Beacham and Murray 1990). The number of days to emergence in our study (97 to 99 days post-fertilization) are consistent with the observed and predicted times reported by Beacham and Murray (1990). That the values from our study correspond well with known parameters further indicates that the development of chum salmon alevin was not influenced by gas concentrations up to 113%.

Histological analysis of the gills and other organs showed several types of lesions in fish from most treatment groups in this study. The most significant histological lesions consisted of epithelial separation and vacuolar swelling in the gills and epithelial hypertrophy, similar to those seen in the 2007 laboratory study (Hand et al. 2008). Unlike that study, the frequency or severity of the gill lesions this year did not correlate with increasing TDG levels. Alevin in the static study (up to 113% TDG) showed histological lesions but no gross physical effects or decreased survival, indicating that factors other than TDG level may be involved.

Because the apparent dose response of moderate epithelial hypertrophy observed in 2007 (Hand et al. 2008) was not seen this year, the cause of the 2007 lesion increase was questioned. We reexamined the data to identify other variables that may have differed proportionally with TDG level. We found that the power outage that occurred in 2007 could have affected the experimental results more than initially thought and is a possible cause of the dose-related increase in this lesion. The disruption of power altered flow rates, water temperatures, and possibly oxygen levels. Although epithelial hypertrophy could be expected from chronic gas supersaturation exposure, it is also a lesion that results from excess un-ionized ammonia, which could have increased with increased water temperature. Because the temperature effect was correlated directlywith TDG level, it is likely the cause of the observed increase in epithelial hypertrophy from the control through the 113% TDG treatment levels in 2007.

This year, fish exposed to less than 100% TDG (control) often had as high as, or higher than, levels of gill lesions of fish exposed to supersaturated waters. Where differences were evident, the time of exposure was generally the significant factor; longer exposure times generally resulted in increased occurrence and severity of lesions. This finding, in addition to the lack of other signs of gas bubble trauma in the static exposure study, suggests that elevated TDG levels above 100% are not the sole mechanism for these lesions. Ultrastructural studies have noted similar gill lesions in fish exposed to toxins and overly turbid waters (Camargo and Martinez 2007; Sutherland and Meyer 2007). This study used filtered well water that is not known to contain contaminants, although testing would be necessary to rule out water quality problems. It is also possible that stress (i.e., poor water flow and quality) during the egg stage could have weakened some of the fish and contributed to the development of gill lesions. In conclusion, there does not appear to be an obvious explanation for the varying levels of observed histological lesions, especially in the control group, in 2008.

Due to small sample sizes, statistical analysis could not be performed on the incremental study fish samples. However, the few fish from the incremental study that were examined histologically did not exhibit obviously higher frequency or severity of gill lesions than did the static study samples. One reason for this may be that gas bubble trauma that results in gross physical symptoms is an acute disease and changes at the cellular level may not have time to develop. Rucker and Kangas (1974) did not note any histological abnormalities in mortalities in Chinook and coho alevin with grossly visible bubbles in the vitelline membrane.

Alevin in this study showed increased levels of lipid or glycogen depletion in the liver over the chum salmon alevin in the 2007 laboratory study also exposed to supersaturated water up to 113% TDG (Hand et al. 2008). Glycogen plays a role in energy metabolism and can vary widely in fish. The differences in the amount of glycogen depletion were related more to length of exposure than to supersaturated gas levels, which indicates that experimental treatments were not the cause.

The infection by a presumed protozoan parasite was mild and did not appear to affect alevin survival or susceptibility to gas bubble trauma. It is unusual that alevin at pre-emergence were infected but alevin later at emergence were not because, in 2007, the parasite infection increased with length of exposure (Hand et al. 2008). Fish were not medicated or treated for disease during the study period. Examination by electron microscopy would be required to identify the protozoan before its significance can be evaluated.

In the incremental study, direct alevin mortality began at 124.6% TDG. Before direct mortality occurred, alevin were observed with positive buoyancy, unable to stay down in the gravel. Due to this abnormal swimming behavior, in a natural system mortality through predation most likely would occur before direct mortality.

The gross physical symptoms we witnessed in the incremental exposure study are similar to those seen in other studies examining the effects of supersaturated gas on sac-fry salmonids. Embody (1934), Rucker and Kangas (1974), Adams and Towle (1974), Stroud et al. (1975), and Wood (1979) all report bubbles in the vitelline membrane to be the most pronounced symptom of gas supersaturated water exposure. In our study, dead fish had symptoms; live fish did not have symptoms. This may be due to changes in permeability in skin and membranes after death.

The development stage of the fish in this study may have influenced the onset of the symptoms. The study fish were 108 days post-fertilization, 715 ATU, and close to buttoned-up when symptoms appeared at 121% TDG. Onset of gas bubble disease in the later portion of incubation has been noted in sac fry of Chinook salmon and coho salmon (Rucker and Kangas 1974). It is possible that symptoms may have occurred at lower TDG levels in our study if fish had been exposed during later development stages. Results from the static exposure study suggest that if the onset of gas bubble disease will occur at lower levels, it likely will be at a level above 113% TDG.

Decreased tolerance to supersaturation may arise as fish develop from the larval to juvenile life stage, as several features of the young alevin's physiology and anatomy could protect the fish from gas bubble formation. Young salmonid alevin respiration is accomplished through passive diffusion of gasses across the skin and, to some extent, the yolk, rather than the gills. This mode of respiration persists until gills are developed and surface-to-mass ratios become too great to make this mechanism feasible (Wells and Pinder 1996a, 1996b; Rombough 1999). Symptoms of gas bubble disease have been documented in sturgeon soon after conversion to gill respiration (Counihan et al. 1998). The time at which fry will

convert to gill respiration will depend on the size and the ratio of surface area to volume of the fish, which will vary with species.

Changes in skin and membrane permeability also occur as fish approach emergence (Talbot et al. 1982), which also may affect gas permeability. Finally, the large yolk content of young alevin may act as a sink for nitrogen and protect the fish from bubble formation. Body fat influences gas bubble development in humans after rapid decompression due to the greater solubility of nitrogen in lipids versus other tissues (Philip and Gowdey 1964). However, further testing would need to be done to confirm this concept.

In conclusion, gas supersaturation up to 113% did not affect chum salmon survival through emergence, but behavior and mortality were affected detrimentally at levels of 121% and above. A full-scale study of the effects on survival, behavior, and histological changes of levels above 113% TDG would be valuable to further understand this topic.
Chapter 3

Field Analysis of Incubating Chum Salmon Sac Fry Exposed to In-River Total Dissolved Gas Levels Downstream of Bonneville Dam

K. M. Carter, E. V. Arntzen, D. R. Geist, E. M. Dawley

Introduction

During FY 2007, we examined the effects of TDG levels up to 113% on the sac fry of chum salmon (*Oncorhynchus keta*) in a laboratory setting. However, laboratory conditions differ from natural redd conditions, and hydropower project management agencies and Native American tribes have questioned whether controlled laboratory studies are representative of TDG exposure in the Columbia River. Their concern led to the recommendation to sample pre-emergent chum salmon fry incubating in the river environment. Consequently, as part of our study in FY 2007, live alevin were captured from wild redds in the Ives Island location. This sampling coincided with a period of elevated TDG—in fact, depth-compensated TDG exceeded 105% while sampling was conducted. Field examination showed potential signs of gas bubble trauma, such as bubbles in the nares and intestinal tract and hemorrhaging in fins. However, assessments were qualitative, and survival could not be calculated by sampling naturally occurring redds.

To assess negative impacts to field sac fry and quantify their survival, we executed an egg tube study during FY 2008. We placed eight artificial incubation tubes in an artificial redd near Ives Island to study the effects of elevated TDG as would be experienced by pre-emergent wild chum salmon sac fry. The area chosen was adjacent to areas sampled during FY 2007, as well as close to known wild chum salmon redds. Unlike FY 2007, our study design allowed for quantitative estimates of survival and physiological impacts to chum salmon.

Study Site

We built one artificial redd downstream from Bonneville Dam at rkm 230. The artificial redd was located north of Ives Island, between Ives pair 1 and Ives pair 2 monitoring stations (see Figure 1.2). Chum salmon are known to spawn at this location; they may experience elevated TDG when water is spilled at Bonneville Dam and adequate compensation depths are not available.

Methods

Artificial Redd

On the day of egg tube deployment, eyed wild chum salmon eggs were obtained from the Washougal Hatchery (Washougal, Washington) and transported to the Ives Island location. At deployment, eggs were at 449 accumulated thermal units (ATU). Egg tubes (Figure 3.1) were filled with washed gravel ranging in size from 4 mm to 62 mm. The gravel was transported to the field using two different mixtures, which were divided by hand into each egg tube using approximately equal quantities. By weight, one gravel mixture contained 64% material in the 16- to 31-mm size class and 36% gravel in the 32- to 62-mm size class. The other gravel mixture contained (by weight) 5% gravel in the 4- to 7-mm size class, 36% 16- to 31-mm size class, and 59% in the 8- to 15-mm size class. One hundred eggs were placed within each tube. Eight tubes were placed in the redd, for a total of 800 eggs. Each tube also contained a temperature logger (DST milli-T [archival temperature logger], Star-Oddi, Reykjavik, Iceland). Unused eggs were transported to the PNNL Aquatics Research Laboratory in Richland, Washington, for incubation and use as an experimental control group.

Figure 3.1. Egg tube to house wild chum salmon eggs and alevin while in the artificial redd

The artificial redd was constructed near existing monitoring piezometers in the Ives Island area (refer to Figure 1.2 in Chapter 1). We used hand shovels to excavate the redd to total depth of 30 cm below the surrounding undisturbed gravel (Figure 3.2A). This depth allowed our 9-cm-diameter egg tubes to be covered by approximately 21 cm of gravel, closely simulating the geometry of a natural chum salmon redd. Spawning chum salmon typically excavate redds to a depth of up to 30 cm and create an egg pocket with a ceiling approximately 20 cm below the surrounding riverbed (Peterson and Quinn 1996). Redds were excavated to measure approximately 60 cm at the bottom, in a direction parallel to river flow, and approximately 150 cm perpendicular to flow (Figure 3.2B).

Figure 3.2. Artificial redd (A) and egg tube (B) configuration (drawings not to scale)

Eight egg incubation tubes (Figure 3.1) were deployed within the redd. The tubes were placed perpendicular to flow in two rows of four (Figure 3.2B). Each tube had a rope extending above the river surface so it could later be located. Tailings from redd excavation were placed on top of the egg tubes until the substrate was above the elevation of the surrounding riverbed. Once the artificial redd was constructed, the fixed diver line was placed at a known location relative to the redd.

Sampling

Sampling occurred on five days during March and April 2008 (Table 3.1). The sampling dates corresponded to times of dewatering in which little to no depth compensation was available. On each of the five sampling dates, divers retrieved one egg tube, transferred it to a water-filled bucket, and transported it directly to a mobile laboratory trailer located at the Pierce National Wildlife Refuge. The laboratory was equipped with a dissecting scope and associated tools (Figure 3.3). On dates on which more than one egg tube was examined, divers did not retrieve subsequent egg tubes until the previous examination was finished.

Table 5.1. Egg	g tube sampling dates			
Egg Tube	Sampling Date			
1	March 4, 2008			
2	March 21, 2008			
3, 4	April 3, 2008			

April 15, 2008

April 16, 2008

5, 6, 7

8

Table 3.1. Egg tube sampling dates

Figure 3.3. Mobile laboratory and equipment used to examine chum salmon sac fry

Alevin were removed from the incubation tube by removing one of the end screens and gently tipping the tube to empty it into a shallow water-filled pan (Figure 3.4). Once out of the tube, alevin were allowed to shelter in the substrate until removed for examination. While they were in the pan, we observed living alevin for abnormal behaviors, such as erratic swimming or floating head or abdomen up—signs of gas bubble disease (Harvey and Cooper 1962). Dead eggs and alevin contained in the tube were counted along with living alevin.

Figure 3.4. Alevin were removed from the egg tube and placed into a shallow pan with the tube substrate

Evidence suggests that signs of gas bubble disease are apparent for at least 1 hour after removal from supersaturated conditions (Hans et al. 1999). We ensured that our detailed examinations were completed within this timeframe. Alevin were examined using a Bausch & Lomb StereoZoom 7 variable magnification (7x-70x) dissecting microscope (Bausch & Lomb, Inc., Rochester, New York). Histological samples were quickly euthanized with 250 mg of buffered MS-222/L of water and transferred into Bouin's fixative solution for later examination. Remaining alevin were removed from the pan and euthanized 1 at a time. We observed fish for external signs of gas bubble disease, including air bubbles in the yolk sac or between the yolk sac and perivitelline membrane (Shirahata 1966), in the mouth (Peterson 1971), or on the body surface (Shirahata 1966), fins, caudal peduncle, and yolk sac. Hemorrhaging in fins and eyes also were noted, as this may be a delayed sign of gas bubble disease (Stroud et al 1975). We also noted internal signs such as bubbles in the stomach and intestines (Dannevig and Dannevig 1950; Henly 1952) and hyperinflation of the air bladder (Krise and Herman 1989). When possible, we examined the fish for bubbles in the stomach and intestines. If inflated, the size of the swim bladder was recorded.

Alevin continued to be examined for 1 hour after removal from the redd. During this time, as many alevin as possible were examined for signs of gas bubble disease. This equated to 5 to 25 fish per egg tube. During subsequent examination dates, examination became more time-consuming as the alevin developed. Older fish had larger and more discernable organs. Younger fish were small and had undeveloped organs, so detailed internal examination was difficult and therefore not attempted. This resulted in far fewer fish being examined during later sampling dates. At the end of the hour, the

remainder of alevin were euthanized and counted, weighed, and measured. Detailed examinations of these fish were not attempted. Histology processing was similar to that described in Chapter 2.

Results

Water levels fluctuated over the sampling period from March through April 2008, resulting in variable depth compensation. Early sampling dates in March and early April occurred when water levels were high enough to provide depth-compensated TDG levels below 100% around the artificial redd. Lower tailwaters around April 14 resulted in depth-compensated TDG reaching 105% to 110% (Figure 3.5).

Figure 3.5. Total dissolved gas levels over the sampling period. Depth-compensated values are given for the Ives 2 (red line) hyporheic and (blue line) river sensors. The dashed black line represent river depth at the hyporheic sensor. Routine sensor servicing on 4/15 corresponds with the lapse in the TDG monitoring seen in the graph.

The alevin survival for the eight egg tubes pulled from the artificial redd during March and April 2008 ranged from 0% (tube 6) to 89% (tube 3) to 0% (tube 6). Dead eggs comprised the majority of mortality in five of the tubes. Tubes 3 and 5 had a higher mortality of hatchlings compared to eggs. The ratio of dead fish and eggs was not quantified in tube 6. The fish in tube 6 were found covered in fungus and decaying, as evidenced by the soft and friable condition of the tissue. It was not possible to determine the number of fish and eggs present in this tube. We did note the alevin had large yolk sacs at the time of death, unlike those in the other tubes pulled at the same time (Figure 3.6), suggesting the alevin from tube 6 died 3 to 4 weeks prior to sampling. Eggs incubated at PNNL had 98% survival. Of the 100 eggs housed at our facility, only 2 failed to hatch. No alevin died after hatching.

Figure 3.6. Comparison of fish from (A) egg tube 6 to fish from (B) egg tube 8. Note the large yolk sac on the fish from egg tube 6.

The number of fish grossly examined from each tube during the 1-hour gas bubble disease observation period varied from 25 to 5, depending on the developmental stage of the fish (Table 3.2). The number of fish examined decreased with subsequent sampling dates. Younger fish had underdeveloped or nonexistent swim bladders compared to older fish and were not measured. Therefore, the examinations took less time to complete for younger fish. No fish from tube 6 were examined due to their state of decay.

Hemorrhaging fins was the most common ailment noted in 15% of all fish (Table 3.3), although no fish from tubes 2 and 5 were found with hemorrhaging fins. Hemorrhaging eyes was the next most common aliment. Fish from tubes 5, 7, and 8 had very small clusters of bubbles visible in the pupil of the eye. No fish had bubbles in the cornea, the more commonly cited area of bubble formation in fish eyes (Rucker and Kangas 1974; Weitkamp and Katz 1980). Fish from tubes 5, 7, and 8 also had small bubbles occluding 5% to 15% of the lateral line. The bubbles were very small and visible only by turning the fish from side to side and noting a small sparkle of a bubble along the line. One fish from tube 4 had a very small bubble in the roof of the mouth. No fish were found with bubbles in the fins, nares, or yolk sacs. No bubbles were found in the gills; however, they were more difficult to examine grossly due to their small size, even with the aid of the dissecting scope. Internal examinations revealed bubbles in the stomach and hindgut of some fish in tubes 4 and 8. Fish were found with inflated swim bladders in tubes 3 through 8. No swim bladders appeared to be overinflated.

Egg Tube	Sampling Date (2008)	Survival (%)	Number of Dead Eggs	Number of Dead Alevin	Number of Fish Examined ^(a)
1	March 4	70	30	0	25
2	March 21	44	29	27	10
3	April 3	89	2	9	7
4	April 3	86	11	3	8
5	April 15	61	10	29	5
6	April 15	0	^(b)	^(b)	0
7	April 15	58	28	14	5
8	April 16	78	13	9	5

Table 3.2. Mortality and survival in egg tubes held in the artificial redd

(a) Examinations occurred for 1 hour after removal from the artificial redd. Older alevin were more difficult to examine and fewer examinations were possible in that time.

(b) Did not count due to level of tissue degradation. However, the majority were alevin with large yolk sacs.

	Egg Tube Number and Sampling Date							
Examination Points	1 3/4	2 3/21	3 4/3	4 4/3	5 4/15	6 4/15	7 4/15	8 4/16
Number Examined	25	10	7	8	5	0	5	5
Bubbles on eyes	0	0	0	0	3		1	1
Bubbles in nares	0	0	0	0	0		0	0
Bubbles in mouth	0	0	0	1	0		0	0
Bubbles in fins	0	0	0	0	0	ation	0	0
Bubbles in caudal fin	0	0	0	0	0	gradi	0	0
Bubbles in yolk sac	0	0	0	0	0	e deg	0	0
Bubbles in lateral line	0	0	0	0	2	issu	3	3
Hemorrhaging in eyes	0	3	1	2	1	e to t	1	0
Hemorrhaging in fins	1	0	2	2	0	l due	1	4
Gills	0	0	0	0	0	ninec	0	0
Inflated swim bladder	No	No	4 of 7	6 of 8	5 of 5	exan	5 of 5	5 of 5
Bubbles in stomach	0	0	0	3	0	Not 6	0	1
Bubbles in hindgut	0	0	0	3	0		0	1
Swim bladder length (mm)	NA	NA	4.3	4.1	4.8		5.4	5
Swim bladder width (mm)	NA	NA	1.4	0.8	1.6		1.5	1.5

Table 3.3. Results of gross examinations of sac fry housed in the eight egg tubes inside the artificial redd

Discussion

We observed potential but subtle signs of gas bubble disease in the chum salmon fry incubated in the artificial redd. The potential symptoms were more prevalent in fish during sampling periods on April 15 and 16 after depth-compensated TDG levels rose to 105%. The rise in TDG levels was a result of a drop in river levels near the artificial redd. The lowest levels occurred on April 14.

Mortality varied from 11% to 100% in the eight incubation tubes. Failure to hatch was the cause of the majority of this mortality as noted by the number of eggs remaining in the incubation tube. The control eggs incubated at our facility had a higher survival rate than those incubated in the field. Dissolved oxygen levels can vary dramatically within small spatial ranges and impact egg and alevin survival (Malcom et al. 2003). The percentage of fines in the redd substrate has been shown to decrease embryo survival as a result of decreased dissolved oxygen (Shirazi et al. 1981). It is possible that the egg and alevin mortality could have been due to sediment infiltration.

The bubbles in the eyes were the most surprising symptom noted. Their appearance corresponded with times when uncompensated TDG levels reached over 105%. To our knowledge, bubbles in the pupil have not been reported in the literature and may or may not be a symptom of gas bubble disease. The bubbles in the eyes of these fish were very small and isolated to the pupil only. The composition of these bubbles is unknown; they could be filled with gas or lipid. They appeared to be gas-filled, but no tests were done to confirm this observation. These small bubbles were observed also in chum salmon sac fry exposed to 121% TDG and above in the laboratory portion of this study (Chapter 2). These bubbles were unlike the bubbles found in the epithelial tissue surrounding the eye cited by others (Rucker and Kangas 1974; Weitkamp and Katz 1980). These more commonly mentioned epithelial bubbles were noted also in the chum sac fry in this study (Chapter 2) but did not appear until TDG levels reached 124%.

Susceptibility to GBD may change with environmental conditions. The water level fluctuations caused intermittent rather than constant exposure to elevated TDG. In general, intermittent exposure reduces total exposure time and thus decreases symptoms of GBD as compared to constant exposure (Antcliffe 2002). During intermittent exposure, a cumulative effect has been observed in which fish resistance to GBD decreased with subsequent exposures (White et al. 1991). The cumulative effects of GBD during intermittent exposure cannot equate to those during a constant exposure, however they may reduce the expected benefits of providing intermittent depth compensation.

We noted bubbles in the lateral line, intestines, and stomach, as well as hemorrhaging fins and eyes. These symptoms may be a sign of gas bubble disease. Fish residing in unsaturated conditions also have shown some signs of gas bubble disease, such as bubbles along the lateral line (Dawley et al. 1976), gas-filled intestines (Hand et al. 2008), and hemorrhaging eyes and fins. Presence of these symptoms in this study may indicate effects from elevated TDG levels, but also could be a result of other disease processes or simply a normal occurrence.

Inflated swim bladders were observed in some fish examined from tubes 3 and 4 and all fish examined in tubes 5, 7, and 8. Some evidence suggests that even low supersaturation can result in overinflation of the swim bladder (Fidler 1988; Shrimpton et al. 1990). Fish noted with inflated swim bladders had been exposed to uncompensated TDG levels over 105%. However, the swim bladders did not appear to be overinflated or strained. Although inflation may be due to exposure to elevated TDG, it

also may be a result of the fish's developmental state (Hoar 1937), as swim bladder inflation usually occurs close to yolk absorption.

Histological analysis showed moderate levels of epithelial hypertrophy and epithelial separation and swelling in the gill. Similar lesions in chum salmon sac fry have been attributed to edema in the gills because of exposure to supersaturated conditions up to 113% TDG (Hand et al. 2008). However, our 2008 laboratory study (Chapter 2) did not find a correlation between gill lesions and TDG levels up to 113%, although severe gill lesions were noted in many fish, including those exposed to 100% TDG.. Similar gill lesions can be caused by toxins (Woodward et al. 1989), usually accompanied by epithelial hyperplasia, and by lamellae fusion, which was not noted in our study fish.

Chapter 4

Literature Cited

Adams ES and FG Towle. 1974. Use of a compression chamber to alleviate gas-bubble disease in coho sac-fry. *The Progressive Fish-Culturist* 36(1):41.

Arntzen EV, DR Geist, and PE Dressel. 2006. Effects of fluctuating river flow on groundwater/surface water mixing in the hyporheic zone of a regulated, large cobble bed river. *River Research and Applications* 22(8):937–946.

Arntzen EV, JL Panther, DR Geist, and EM Dawley. 2007a. *Total Dissolved Gas Monitoring in Chum Salmon Spawning Gravels Below Bonneville Dam*. PNNL-16200, Pacific Northwest National Laboratory, Richland, Washington.

Arntzen EV, RP Mueller, CJ Murray, Y-J Bott, JL Panther, DR Geist, and TP Hanrahan. 2007b. *Evaluation of Salmon Spawning Below Bonneville Dam – Annual Report – October 2005– September 2006.* DOE/BP-00000652-35, Bonneville Power Administration, Portland, Oregon.

Arntzen EV, KD Hand, DR Geist, KJ Murray, JL Panther, VI Cullinan, EM Dawley, and RA Elston. 2008a. *Effects of Total Dissolved Gas on Chum Salmon Fry Incubating in the Lower Columbia River*. PNNL-17132, Pacific Northwest National Laboratory, Richland, Washington.

Arntzen EV, KJ Murray, JL Panther, DR Geist, and EM Dawley. 2008b. Assessment of total dissolved gas within chum salmon spawning areas in the Columbia River downstream of Bonneville Dam. Chapter 1 in *Effects of Total Dissolved Gas on Chum Salmon Fry Incubating in the Lower Columbia River*, EV Arntzen, KD Hand, DR Geist, KJ Murray, JL Panther, VI Cullinan, EM Dawley, and RA Elston, PNNL-17132, pp. 1.1–1.38. Pacific Northwest National Laboratory, Richland, Washington.

Backman TWH and AF Evans. 2002. Gas bubble trauma incidence in adult salmonids in the Columbia River Basin. *North American Journal of Fisheries Management* 22:579–584.

Backman TWH, AF Evans, MS Robertson, and MA Hawbecker. 2002. Gas bubble trauma incidence in juvenile salmonids in the lower Columbia and Snake Rivers. *North American Journal of Fisheries Management* 22:965–972.

Bams RA. 1970. Evaluation of a revised hatchery method tested on pink and chum salmon fry. *Journal of the Fisheries Research Board of Canada* 27:1429–1452.

Beacham TD and CB Murray. 1990. Temperature, egg size, and development of embryos and alevins of five species of Pacific salmon: A comparative analysis. *Transactions of the American Fisheries Society* 119(6):927–945.

Beiningen KT and WJ Ebel. 1970. Effect of John Day Dam on dissolved nitrogen concentrations and salmon in the Columbia River. *Transactions of the American Fisheries Society* 99:664–671.

Beiningen KT and WJ Ebel. 1971. *Dissolved Nitrogen, Dissolved Oxygen, and Related Water Temperatures in the Columbia and Lower Snake Rivers, 1965–69.* Data Report No. 56, National Marine Fisheries Service, Seattle, Washington. Blicher-Mathiesen G, GW McCarty, and LP Nielsen. 1998. Denitrification and degassing in groundwater estimated from dissolved dinitrogen and argon. *Journal of Hydrology* 208:16–24.

Bouck GR. 1982. Gasometer: An inexpensive device for continuous monitoring of dissolved gases and supersaturation. *Transactions of the American Fisheries Society* 111:505–516.

Camargo MMP and CBR Martinez. 2007. Histopathology of giills, kidney and liver of a Neotropical fish caged in an urban stream. *Ichthyology* 5(3):327–336.

Colt J. 1983. The computation and reporting of dissolved gas levels. Water Research 17:841-849.

Counihan TD, AI Miller, MG Mesa, and MJ Parsley. 1998. The effects of dissolved gas supersaturation on white sturgeon larvae. *Transactions of the American Fisheries Society* 127:316–322.

Crisp DT. 1990. Water temperatures in a stream gravel bed and implications for salmonid incubation. *Freshwater Biology* 23:601–602.

Dannevig A and G Dannevig. 1950. Factors affecting the survival of fish larvae. *Journal du Conseil International pour l'Exploration de la Mer* 15:277–283.

Dawley EM, M Schiewe, and B Monk. 1976. Effects of long-term exposure to supersaturation of dissolved atmospheric gases on juvenile chinook salmon and steelhead trout in deep and shallow tank tests. In *Gas Bubble Disease*, DH Fickeisen and MJ Schneider (eds), pp. 1–10. ERDA CONF-741033, National Technical Information Service, Springfield, Virginia.

Dawson DK. 1986. Computer program calculation of gas supersaturation in water. *The Progressive Fish-Culturist* 48:142–146.

Ebel WJ. 1969. Supersaturation of nitrogen in the Columbia River and its effect on salmon and steelhead trout. *Fisheries Bulletin* 68(1):1–11.

Ebel W and H Raymond. 1976. Effects of atmosphere gas saturation on salmon and steelhead trout of the Snake and Columbia Rivers. *Marine Fisheries Review* 38(7):1–14.

Embody GC. 1934. Relation of temperature to the incubation period of eggs of four species of trout. *Transactions of the American Fisheries Society* 64:281–292.

EPA (U.S. Environmental Protection Agency). 1987. *Quality Criteria for Water 1986*. EPA 440/5-86-001, U.S. Environmental Protection Agency, Washington, D.C.

Fidler LE. 1988. *Gas bubble trauma in fish*. Doctoral dissertation, University of British Columbia, Vancouver, Canada.

Geist DR, TP Hanrahan, EV Arntzen, GA McMichael, CJ Murray, and Y-J Chien. 2002. Physicochemical characteristics of the hyporheic zone affect redd site selection by chum salmon and fall Chinook salmon in the Columbia River. *North American Journal of Fisheries Management* 22:1077– 1085.

Geist DR, EV Arntzen, CJ Murray, KE McGrath, Y-J Bott, and TP Hanrahan. 2008. Influence of river level on temperature and hydraulic gradients in chum and fall Chinook salmon spawning areas

downstream of Bonneville Dam, Columbia River. *North American Journal of Fisheries Management* 27:30–41.

Hach Environmental. 2006. *Hydrolab DS5X, DS5, and MS5 Water Quality Multiprobes – User Manual – February 2006, Edition 3*. Hach Environmental, Loveland, Colorado.

Hand KD, DR Geist, VI Cullinan, and RA Elston. 2008. Bioassays on the formation of gas bubble disease in chum salmon fry at total dissolved gas levels ranging up to 113% saturation. Chapter 2 in *Effects of Total Dissolved Gas on Chum Salmon Fry Incubating in the Lower Columbia River*, EV Arntzen, KD Hand, DR Geist, KJ Murray, JL Panther, VI Cullinan, EM Dawley, and RA Elston, PNNL-17132, pp. 2.1–2.20. Pacific Northwest National Laboratory, Richland, Washington.

Hans KM, MG Mesa, and AG Maule. 1999. Rate of disappearance of gas bubble trauma signs in juvenile salmonids. *Journal of Aquatic Animal Health* 11:383–390.

Harvey HH and AC Cooper. 1962. *Origin and Treatment of a Supersaturated River Water*. Progress Report 9, International Pacific Salmon Fisheries Commission, New Westminster, British Columbia, Canada.

Henly E. 1952. The influence of the gas content of sea-water on fish and fish larvae. *Rapports et Proces-verbaux des Reunions, Conseil International pour l'Exploration de la Mer* 131(3):24–27.

Hoar WS. 1937. The development of the swim bladder of the Atlantic salmon. *Journal of Morphology* 61:309–319.

Knittel MD, GA Chapman, and RR Garton. 1980. Effects of hydrostatic pressure on steelhead survival in air-supersaturated water. *Transactions of the American Fisheries Society* 109:755–759.

Korosec MA, WM Phillips, and JE Schuster. 1983. *The 1980–1982 Geothermal Resource Assessment Program in Washington*. DOE/ET/27014-T6, National Technical Information Service, Springfield, Virginia.

Krise WF. 1993. Effects of one-year exposures to gas supersaturation on lake trout. *The Progressive Fish-Culturist* 55:159–176.

Krise WF and RL Herman. 1989. Tolerance of lake trout (*Salvelinus namaycush* Walbaum) sac fry to dissolved gas supersaturation. *Journal of Fish Diseases* 12:269–273.

Krise WF and JW Meade. 1988. Effects of low-level gas supersaturation on lake trout (*Salvelinus namaycush*). *Canadian Journal of Fisheries and Aquatic Sciences* 45:666–674.

Luna LG (ed). 1968. *Manual of Histologic Staining Methods of the Armed Forces Institute of Pathology*. 3rd edition. McGraw-Hill Book Company, New York.

Malcolm IA, AF Youngson, and C Soulsby. 2003. Survival of salmonid eggs in a degraded gravel-bed stream: effects of groundwater-surface water interactions. *River Research and Applications* 19(4):303–316.

McGrath K, EM Dawley, and DR Geist. 2006. *Total Dissolved Gas Effects on Fishes of the Lower Columbia River*. PNNL-15525, Pacific Northwest National Laboratory, Richland, Washington.

Meekin TK and RL Allen. 1974. Summer Chinook and sockeye salmon mortality in the upper Columbia River and its relationship to nitrogen supersaturation. In *Nitrogen Supersaturation Investigations in the Mid-Columbia*, Washington Department of Fisheries Technical Report 12, pp. 127–153. Washington Department of Fisheries, Olympia.

Mookherji S, GW McCarty, and JT Angier. 2003. Dissolved gas analysis for assessing the fate of nitrate in wetlands. *Journal of the American Water Resources Association* 39:381–387.

NAS/NAE (National Academy of Sciences/National Academy of Engineering). 1973. *Water Quality Criteria 1972*. EPA-R3-73033, U.S. Environmental Protection Agency, Washington, D.C.

Nebeker AV, AK Hauck, and FD Baker. 1979. Temperature and oxygen-nitrogen gas ratios affect fish survival in air-supersaturated water. *Water Research* 13:299–303.

Nielson DL and MR Moran. 1980. *Geologic Interpretation of the Geothermal Potential of the North Bonneville Area*. Earth Science Laboratory, University of Utah Research Institute, Salt Lake City.

NMFS (National Marine Fisheries Service). 1999. Listing Endangered and Threatened Species and Designating Critical Habitat: Petition to List Eighteen Species of Marine Fishes in Puget Sound, Washington. *Federal Register*, 21 June 1999, 64(118):33037–33040.

NOAA (National Oceanographic and Atmospheric Administration). 1995. Item 2. Pages 104-110 in: Endangered Species Act - Section 7 Consultation, Biological Opinion, Federal Columbia River Power System (FCRPS). National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northwest Regional Office, Seattle, Washington.

NOAA (National Oceanographic and Atmospheric Administration). 2000. Risk Assessment for Spill Program Described in 2000 Draft Biological Opinion. Appendix E in *Endangered Species Act – Section* 7, *Biological Opinion on the Reinitiation of Consultation on Operation of the Federal Columbia River Power System, Including the Juvenile Fish Transportation Program, and 19 Bureau of Reclamation Projects in the Columbia Basin.* National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northwest Regional Office, Seattle, Washington.

Pauley GB and RE Nakatani. 1967. Histopathology of "gas-bubble" disease in salmon fingerlings. *Journal of the Fisheries Research Board of Canada* 24(4):867–871.

Peterson H. 1971. Smolt rearing methods, equipment and techniques used successfully in Sweden. In *Atlantic Salmon Workshop*, WM Carter (ed), Atlantic Salmon Foundation Special Publication Series 2(1), pp. 32–62. International Atlantic Salmon Foundation, Fredericton, Nova Scotia, Canada.

Peterson NP and TP Quinn. 1996. Persistence of egg pocket architecture in redds of chum salmon, *Oncorhynchus keta. Environmental Biology of Fishes* 46:243–253.

Philip RB and CW Gowdey. 1964. Experimental analysis of the relation between body fat and susceptibility to decompression sickness. *Aerospace Medicine* 35:351–356.

Rombough PJ. 1999. The gill of fish larvae. Is it primarily a respiratory or an ionoregulatory structure? *Journal of Fish Biology* 55(SUP A):186–204.

Rucker RR. 1975. Gas-bubble disease: mortalities of coho salmon, *Oncorhynchus kisutch*, in water with constant total gas pressure and different oxygen-nitrogen ratios. *Fishery Bulletin* 73:915–918.

Rucker RR and PM Kangas. 1974. Effect of nitrogen supersaturated water on coho and Chinook salmon. *The Progressive Fish-Culturist* 36(3):152–156.

Ryan BA and EM Dawley. 1998. *Effects of Dissolved Gas Supersaturation on Fish Residing in the Snake and Columbia Rivers, 1997.* Bonneville Power Administration, Portland, Oregon. Available at http://pisces.bpa.gov/release/documents/documentviewer.aspx?doc=93605-2 (November 2008).

Ryan BA, EM Dawley, and RA Nelson. 2000. Modeling the effects of dissolved gas supersaturation on resident aquatic biota in the mainstem Snake and Columbia Rivers. *North American Journal of Fisheries Management* 20:192–204.

Shepherd BG, GF Hartman, and WJ Wilson. 1986. Relationships between stream and intra-gravel temperatures in coastal drainages, and some implications for fisheries workers. *Canadian Journal of Fisheries and Aquatic Sciences* 43:1818–1822.

Shirahata S. 1966. Experiments on nitrogen gas disease with rainbow trout fry. *Bulletin of the Freshwater Fisheries Research Laboratory (Tokyo)* 15:197–211.

Shirazi MA, WK Seim, and DH Lewis. 1981. Characterization of spawning gravel and stream system evaluation. In *Salmon-Spawning Gravel: A Renewable Resource in the Pacific Northwest?* State of Washington Water Research Center, Pullman.

Shrimpton JM, DJ Randall, and LE Fidler. 1990. Factors affecting swim bladder volume in rainbow trout (*Oncorhyncus mykiss*) held in gas supersaturated water. *Canadian Journal of Zoology* 68:962–968.

Stroud RK, GR Bouck, and AV Nebeker. 1975. Pathology of acute and chronic exposure of salmonid fishes to supersaturated water. In *Chemistry and Physics of Aqueous Gas Solutions*, WA Adams (ed), pp. 435 – 449. The Electrochemical Society, Princeton, New Jersey.

Sutherland AB and JL Meyer. 2007. Effects of increased suspended sediment on frowth rate and gill conditions of two southern Appalachian minnows. *Environmental Biology of Fishes* 80:389–402.

Talbot C, FB Eddy, and J Johnston. 1982. Osmoregulation in salmon and sea trout alevins. *Journal of Experimental Biology* 101:61–70.

Tanner DQ and MW Johnston. 2001. *Data-Collection Methods, Quality-Assurance Data, and Site Considerations for Total Dissolved Gas Monitoring, Lower Columbia River, Oregon and Washington, 2000.* Water Resources Investigations Report 01-4005, U.S. Geological Survey, Portland, Oregon.

Tiffin K, R Garland, D Rondorf, and J Skalicky. 2004. *Juvenile and Adult Fall Chinook and Chum Salmon habitat Studies below Bonneville Dam on the Columbia River – 2002–2003 Annual Report.* DOE/BP-00004701-2, Bonneville Power Administration, Portland, Oregon.

Toner MA and EM Dawley. 1995. Evaluation of the Effects of Dissolved Gas Supersaturation on Fish and Invertebrates Downstream from Bonneville Dam, 1993. U.S. Army Corps of Engineers, Portland District, Portland, Oregon.

USACE (U.S. Army Corps of Engineers), U.S. Bureau of Reclamation, and Bonneville Power Administration. 2004. *Final Updated Proposed Action for the FCRPS Biological Opinion Remand*. November 24, 2004. Available at

http://www.salmonrecovery.gov/biological_Opinions/FCRPS/biop_remand_2004/update (November 2008).

Vaux WG. 1968. Intragravel flow and interchange of water in a streambed. U.S. Fish and Wildlife Service *Fishery Bulletin* 66:479–489.

Weitkamp DE and M Katz. 1980. A review of dissolved gas supersaturation literature. *Transactions of the American Fisheries Society* 109:659–702.

Weitkamp DE, RD Sullivan, T Swant, and J DosSantos. 2003. Gas bubble disease in resident fish of the Lower Clark Fork River. *Transactions of the American Fisheries Society* 132:865–876.

Wells PR and AW Pinder. 1996a. The respiratory development of Atlantic salmon – I. Morphometry of gills, yolk sac and body surface. *The Journal of Experimental Biology* 199:2725–2736.

Wells PR and AW Pinder. 1996b. The respiratory development of Atlantic salmon – II. Partitioning of oxygen uptake among gills, yolk sac and body surfaces. *The Journal of Experimental Biology* 199:2737–2744.

White RG, G Phillips, G Liknes, J Brammer, W Connor, L Fidler, T Williams, and WP Dwyer. 1991. *Effects of Supersaturation of Dissolved Gases on the Fishery of the Bighorn River Downstream of the Yellowtail Afterbay Dam.* Montana Cooperative Fishery Unit, Montana State University, Bozeman.

Wickett P. 1954. The oxygen supply to salmon eggs in spawning beds. *Journal of the Fisheries Research Board of Canada* 116:933–953.

Wood JW. 1979. *Diseases of Pacific Salmon, Their Prevention and Treatment*. 3rd edition. Washington Department of Fisheries, Hatchery Division, Olympia, Washington.

Woodward DF, AM Farag, ME Mueller, KK Little, and FA Vertucci. 1989. Sensitivity of endemic Snake River cutthroat trout to acidity and elevated aluminum. *Transactions of the American Fisheries Society* 118(6):630–643.

Wright PB and WE McLean. 1985. The effects of aeration on the rearing of summer Chinook fry (*Onchorhunchus tshawytscha*) at the Puntledge Hatchery. *Canadian Technical Report of Fisheries and Aquatic Sciences* 1390.

Appendixes

Supplemental information is included in the following appendixes, which are on the CD that accompanies this report:

Appendix A – Membrane Tests

Appendix B - Water Quality Data

Appendix A

Membrane Tests

Appendix A

Membrane Tests

The following graphs represent membrane tests done before and after deployments. Dates listed for each membrane are the dates during which sensors collected data. The *attachment tests* show the pressure increase as the membrane was attached to a data-logging sensor, followed by a reduction in pressure toward atmospheric equilibrium over time. The *soda tests* show the response when the sensor tip was inserted into a beaker of soda water. A functioning membrane would show a rapid increase in pressure well above barometric pressure, followed by a gradual return to barometric pressure. The steeper decrease in pressure corresponds to the time at which the tester removed the membrane from the soda water (after approximately 10 minutes). Post-deployment testing was performed to establish whether the data we collected were reliable. Following quality testing to confirm that the integrity of the membranes was fully functional, many were reused in additional deployments.

Pre-Deployment

All membranes were tested prior to use.

Membrane 29 was used at Multnomah Falls 1 river from 3/4/2008 to 3/20/2008 with MiniSonde 44927.

Membrane 30 was used at Multnomah Falls 1 hyporheic from 3/4/2008 to 3/20/2008 with MiniSonde 44945.

Membrane 31 was used at Ives 2 river from 3/4/2008 to 3/20/2008 with MiniSonde 44946.

Membrane 32 was used at Ives 2 hyporheic from 3/4/2008 to 3/20/2008 with MiniSonde 44947.

Membrane 22 was used as the control for the side-by-side after deployment 1 with MiniSonde 40347.

Membrane 2 was used at Multnomah Falls 1 river from 3/20/2008 to 4/3/2008 with MiniSonde 44927.

Membrane 3 was used at Multnomah Falls 1 hyporheic from 3/20/2008 to 4/3/2008 with MiniSonde 44945.

Membrane 7 was used at Ives 2 hyporheic from 3/20/2008 to 4/3/2008 with MiniSonde 44947.

Membrane 9 was used at Ives 2 river from 3/20/2008 to 4/3/2008 with MiniSonde 44946.

Membrane 34 was used at Ives 5 river from 3/20/2008 to 4/3/2008 with MiniSonde 43639.

Membrane 35 was used at Multnomah Falls 3 hyporheic from 3/20/2008 to 4/3/2008 with MiniSonde 43656.

Membrane 36 was used at Ives 1 hyporheic from 3/20/2008 to 4/3/2008 with MiniSonde 43659.

Membrane 37 was used at Ives 1 river from 3/20/2008 to 4/3/2008 with MiniSonde 43655. This membrane did not have a definitive "bad" test, but its side-by-side data was questionable also, so these data were thrown out.

Membrane 38 was used at Ives 5 hyporheic from 3/20/2008 to 4/3/2008 with MiniSonde 45451.

Membrane 19 was used as the control for the side-by-side after deployment 2 with MiniSonde 40347.

Membrane 1 was used at Multnomah Falls 1 hyporheic from 4/3/2008 to 4/15/2008 with MiniSonde 44945.

Membrane 11 was used at Multnomah Falls 1 river from 4/3/2008 to 4/15/2008 with MiniSonde 44927.

Membrane 22 was used at Ives 5 hyporheic from 4/3/2008 to 4/15/2008 with MiniSonde 45451.

Membrane 25 was used at Ives 2 hyporheic from 4/3/2008 to 4/15/2008 with MiniSonde 44947.

Membrane 28 was used at Ives 2 river from 4/3/2008 to 4/15/2008 with MiniSonde 44946.

Membrane 29 was used at Multnomah Falls 3 hyporheic from 4/3/2008 to 4/15/2008 with MiniSonde 43656.

Membrane 30 was used at Ives 5 river from 4/3/2008 to 4/15/2008 with MiniSonde 43639.

Membrane 31 was used at Ives 1 river from 4/3/2008 to 4/15/2008 with MiniSonde 43655.

Membrane 32 was used at Ives 1 hyporheic from 4/3/2008 to 4/15/2008 with MiniSonde 43659.

Membrane 36 was used as the control for the side-by-side after deployment 3 with MiniSonde 40347.

Membrane 2 was used at Ives 5 river from 4/15/2008 to 4/30/2008 with MiniSonde 43639.

Membrane 3 was used at Multnomah Falls 3 river from 4/15/2008 to 4/30/2008 with MiniSonde 44948.

Membrane 7 was used at Ives 5 hyporheic from 4/15/2008 to 4/30/2008 with MiniSonde 45451.

Membrane 9 was used at Multnomah Falls 3 hyporheic from 4/15/2008 to 4/30/2008 with MiniSonde 43656.

Membrane 19 was used at Ives 2 hyporheic from 4/15/2008 to 4/30/2008 with MiniSonde 44947.

Membrane 24 was used at Ives 1 river from 4/15/2008 to 4/30/2008 with MiniSonde 43655.

Membrane 29R was used at Ives 2 river from 4/15/2008 to 4/30/2008 with MiniSonde 44946.

Membrane 34 was used at Multnomah Falls 1 hyporheic from 4/15/2008 to 4/30/2008 with MiniSonde 44945.

Membrane 35 was used at Ives 1 hyporheic from 4/15/2008 to 4/30/2008 with MiniSonde 43659.

Membrane 38 was used at Multnomah Falls 1 river from 4/15/2008 to 4/30/2008 with MiniSonde 44927.

Membrane 36 was used as the control for the side-by-side after deployment 4 with MiniSonde 40347.

Post Deployment 5

Membrane 1 was used at Ives 5 hyporheic from 4/30/2008 to 5/14/2008 with MiniSonde 45451.

Membrane 11 was used at Multnomah Falls 3 river from 4/30/2008 to 5/14/2008 with MiniSonde 44948.

Membrane 15 was used at Ives 1 hyporheic from 4/30/2008 to 5/14/2008 with MiniSonde 43659.

Membrane 22 was used at Multnomah Falls 1 hyporheic from 4/30/2008 to 5/15/2008 with MiniSonde 44945.

Membrane 25 was used at Multnomah Falls 3 hyporheic from 4/30/2008 to 5/14/2008 with MiniSonde 43656.

Membrane 28 was used at Ives 5 river from 4/30/2008 to 5/14/2008 with MiniSonde 43639.

Membrane 29 was used at Multnomah Falls 1 river from 4/30/2008 to 5/14/2008 with MiniSonde 44927.

Membrane 30 was used at Ives 2 river from 4/30/2008 to 5/14/2008 with MiniSonde 44946. This membrane tested badly so these data were thrown out.

Membrane 31 was used at Ives 2 hyporheic from 4/30/2008 to 5/14/2008 with MiniSonde 44947.

Membrane 32 was used at Ives 1 river from 4/30/2008 to 5/14/2008 with MiniSonde 43655.

Membrane 36 was used as the control for the side-by-side after deployment 5 with MiniSonde 40347.

Post Deployment 6

Membrane 2 was used at Ives 2 river from 5/14/2008 to 5/15/2008 with MiniSonde 44946.

Membrane 3 was used at Multnomah Falls 1 hyporheic from 5/14/2008 to 5/15/2008 with MiniSonde 44945.

Membrane 7 was used at Ives 1 hyporheic from 5/14/2008 to 5/15/2008 with MiniSonde 43659.

Membrane 9 was used at Multnomah Falls 3 hyporheic from 5/14/2008 to 5/15/2008 with MiniSonde 43656.

Membrane 19 was used at Ives 2 hyporheic from 5/14/2008 to 5/15/2008 with MiniSonde 44947.

Membrane 24 was used at Ives 3 hyporheic from 5/14/2008 to 5/15/2008 with MiniSonde 45451.

Membrane 29R was used at Ives 1 river from 5/14/2008 to 5/15/2008 with MiniSonde 43655.

Membrane 34 was used at Multnomah Falls 3 river from 5/14/2008 to 5/15/2008 with MiniSonde 44948.

Membrane 35 was used at Multnomah Falls 1 river from 5/14/2008 to 5/15/2008 with MiniSonde 44927.

Membrane 38 was used at Ives 3 river from 5/14/2008 to 5/15/2008 with MiniSonde 43639.

Membrane 20 was used as the control for the side-by-side after deployment 6. It was used with MiniSonde 40347.

Draft for Review Only

	Bonneville			TDG % Sat			
Date/Time	Total Gas Pressure (mmHG)	TDG%	Spill (KCFS)	Warrendale	Washougal	Cascades	
3/4/08 14:00	785	102.1	2.4	103.1	103.5	113.1	
3/4/08 15:00	785	102.1	2.4	103.2	103.6	112.8	
3/4/08 16:00	785	102.1	2.4	103.2	103.8	112.5	
3/4/08 17:00	786	102.2	2.4	102.8	103.8	112.1	
3/4/08 18:00	786	102.2	2.4	103	104	111.8	
3/4/08 19:00	786	102.1	2.4	102.7	103.9	111.4	
3/4/08 20:00	786	102.2	0.8	102.7	103.9	110.9	
3/4/08 21:00	787	102.2	0	102.6	103.8	111.3	
3/4/08 22:00	786	102.1	0	102.7	103.5	112.3	
3/4/08 23:00	786	102.1	0	102.6	103.2	112.7	
3/5/08 0:00	785	101.9	0	102.6	103.1	113.4	
3/5/08 1:00	785	101.9	0	102.5	102.8	113.6	
3/5/08 2:00	784	101.8	0	102.6	102.6	113.7	
3/5/08 3:00	784	102	0	102.5	102.5	113.9	
3/5/08 4:00	783	101.7	0	102.5	102.3	114.1	
3/5/08 5:00	783	101.7	0	102.3	102.2	114.4	
3/5/08 6:00	783	101.7	1.3	102.2	102.1	114	
3/5/08 7:00	783	101.7	2.4	102.2	101.9	112.8	
3/5/08 8:00	784	101.8	2.4	102.2	101.8	112.6	
3/5/08 9:00	784	101.8	2.4	102.3	101.8	112.7	
3/5/08 10:00	784	101.8	2.4	102.5	102.1	112.7	
3/5/08 11:00	785	102.1	2.5	102.9	102.2	112.7	
3/5/08 12:00	785	102.1	2.5	103.2	102.6	112.6	
3/5/08 13:00	786	102.3	2.5	103.5	103.1	112.6	
3/5/08 14:00	787	102.6	2.5	104.2	103.6	112.5	
3/5/08 15:00	788	102.7	2.5	104.2	104.2	112.2	
3/5/08 16:00	789	102.9	2.4	104.2	104.4	112.2	
3/5/08 17:00	790	103.1	2.4	104.2	104.6	112	
3/5/08 18:00	791	103.3	2.4	104	104.6	111.7	
3/5/08 19:00	792	103.3	2.4	104.3	104.6	111.5	
3/5/08 20:00	792	103.3	0.1	104.3	104.3	111.8	
3/5/08 21:00	791	103.1	0	104.3	104.2	113	
3/5/08 22:00	791	103.1	0	104.3	103.8	113	
3/5/08 23:00	791	103.1	0	104.3	103.4	113.8	
3/6/08 0:00	790	103	0	104.3	103	114.2	
3/6/08 1:00	789	102.7	0	104.3	102.9	114.6	
3/6/08 2:00	789	102.9	0	104.3	102.7	115.1	
3/6/08 3:00	788	102.7	0	104.7	102.6	115.4	
3/6/08 4:00	787	102.6	0	104.4	102.5	115.8	
3/6/08 5:00	786	102.3	0	104.5	102.2	115.6	
3/6/08 6:00	786	102.3	1.2	104.4	102.1	115.6	
3/6/08 7:00	786	102.3	2.4	104.2	102	114.2	
3/6/08 8:00	785	102.1	2.4	104.3	101.8	113.4	
3/6/08 9:00	786	102.2	2.4	104	101.9	112.9	
3/6/08 10:00	786	102.3	2.4	104.3	102.2	112.9	
3/6/08 11:00	786	102.3	2.4	104.4	102.3	111.9	
3/6/08 12:00	786	102.3	2.4	104.2	102.7	111.6	
3/6/08 13:00	787	102.5	2.4	104.7	103.4	111.8	
3/6/08 14:00	787	102.6	2.4	104.8	103.9	111.6	
3/6/08 15:00	787	102.6	2.4	105.1	104.3	111.2	

3/6/08 16:00	788	102.7	2.5	105.6	104.8	110.9
3/6/08 17:00	788	102.7	2.4	106.1	105.2	110.9
3/6/08 18:00	788	102.7	2.4	106.1	105.5	111.1
3/6/08 19:00	788	102.6	2.4	106	105.6	110.5
3/6/08 20:00	788	102.6	0	106	105.7	111.1
3/6/08 21:00	788	102.6	0	105.7	105.7	111.4
3/6/08 22:00	788	102.6	0	105.5	105.8	112.4
3/6/08 23:00	787	102.5	0	105.2	105.7	112.7
3/7/08 0:00	787	102.5	0.5	105.1	105.6	113.5
3/7/08 1:00	788	102.6	34.8	104.9	105.3	113.7
3/7/08 2:00	787	102.5	35.7	104.9	104.9	113.9
3/7/08 3:00	787	102.6	35.7	105.2	104.7	113.9
3/7/08 4:00	786	102.5	35.6	106.5	104.5	113.8
3/7/08 5:00	786	102.5	35.6	107.4	104.5	114
3/7/08 6:00	785	102.3	37	108.6	104.7	113.8
3/7/08 7:00	785	102.3	38	108.3	104.7	113.5
3/7/08 8:00	786	102.5	38	108.4	104.8	112.9
3/7/08 9:00	786	102.5	38.2	108.6	105.1	113.2
3/7/08 10:00	787	102.6	38.2	108.7	105.2	112.8
3/7/08 11:00	788	102.7	38.1	109	105.3	113.9
3/7/08 12:00	789	103	38.1	109.2	105.5	114.3
3/7/08 13:00	789	103.1	38.1	109.4	105.7	114.5
3/7/08 14:00	790	103.3	38.1	108.2	105.9	114.4
3/7/08 15:00	790	103.4	38.1	108.2	106.3	114.2
3/7/08 16:00	790	103.4	38	108.1	106.4	114.2
3/7/08 17:00	790	103.4	38	108.1	106.4	114.1
3/7/08 18:00	790	103.4	38	108	106.6	114.1
3/7/08 19:00	790	103.4	38	107.8	107	114.2
3/7/08 20:00	790	103.5	36.2	108	107.4	114.5
3/7/08 21:00	790	103.4	35.5	108	107.8	114.5
3/7/08 22:00	790	103.4	35.5	107.8	107.8	114.5
3/7/08 23:00	790	103.4	35.5	107.6	107.8	114.6
3/8/08 0:00	789	103.1	35.6	107.6	107.8	114.8
3/8/08 1:00	789	103.1	35.6	107.3	107.7	114.6
3/8/08 2:00	789	103.1	35.6	107.4	107.4	114.5
3/8/08 3:00	788	103	35.6	107.4	107.4	114.3
3/8/08 4:00	788	102.9	35.6	107.4	107.2	114.2
3/8/08 5:00	788	102.9	35.5	107.4	106.9	114.1
3/8/08 6:00	788	102.7	36.9	108.2	106.6	113.9
3/8/08 7:00	788	102.7	37.9	108.2	106.5	113.5
3/8/08 8:00	788	102.6	37.9	108.1	106.4	113.6
3/8/08 9:00	788	102.6	37.8	108.2	106.5	114
3/8/08 10:00	789	102.6	38	108.4	106.6	113.9
3/8/08 11:00	790	102.9	38	108.4	106.9	114
3/8/08 12:00	790	102.9	38	108.7	107	114
3/8/08 13:00	792	103.1	38	109.1	107.3	113.9
3/8/08 14:00	793	103.3	38	109.1	107.9	114
3/8/08 15:00	794	103.4	37.9	109.7	108.2	114
3/8/08 16:00	795	103 7	37.9	109.9	108.4	113.9
3/8/08 17:00	795	103 7	37.9	109.9	108.4	113.9
3/8/08 18:00	795	103 7	37.9	109.8	108 7	113.8
3/8/08 19:00	795	103.7	37.9	109.5	108.7	113.8
			51.10			

3/8/08 20:00	795	103.7	35.6	109.4	108.5	114.2
3/8/08 21:00	795	103.7	35.7	109.1	108.5	114.3
3/8/08 22:00	795	103.7	35.7	109	108.5	114.2
3/8/08 23:00	795	103.7	35.8	108.7	108.3	114.3
3/9/08 0:00	794	103.5	35.8	109	108.1	114.3
3/9/08 1:00	793	103.5	35.8	109.2	107.8	114.3
3/9/08 2:00						
3/9/08 3:00	792	103.3	35.8	109	107.4	114.1
3/9/08 4:00	792	103.3	35.8	109	107.3	114.1
3/9/08 5:00	791	103.1	35.7	109.1	107	114.1
3/9/08 6:00	790	103.1	35.7	108.8	106.9	114.1
3/9/08 7:00	789	102.9	37.7	108.8	106.6	113.8
3/9/08 8:00	789	102.9	38	108.8	106.6	113.8
3/9/08 9:00	789	102.9	37.9	108.7	106.4	113.7
3/9/08 10:00	789	102.9	37.8	108.6	106.5	113.7
3/9/08 11:00	789	102.7	37.9	108.3	106.4	113.8
3/9/08 12:00	790	103	37.8	109.1	106.4	113.7
3/9/08 13:00	791	103.3	37.7	109	106.5	113.8
3/9/08 14:00	791	103.3	37.7	109.2	106.8	114
3/9/08 15:00	792	103.5	37.6	109.6	107.2	113.7
3/9/08 16:00	793	103.7	37.4	110	107.6	113.8
3/9/08 17:00	794	103.9	37.3	110.2	108.1	113.7
3/9/08 18:00	794	103.9	37.2	110.1	108.4	113.9
3/9/08 19:00	795	104.1	37.1	109.7	108.6	113.9
3/9/08 20:00	795	104.1	35	109.4	108.7	114.1
3/9/08 21:00	795	103.9	34.9	108.7	108.9	114
3/9/08 22:00	796	104.1	34.9	108.6	108.9	114.1
3/9/08 23:00	796	104.1	35	108.3	108.7	114
3/10/08 0:00	795	103.9	35	108.2	108.7	114.2
3/10/08 1:00	795	103.9	34.9	108.2	108.6	114
3/10/08 2:00	794	103.8	34.9	108.2	108.1	114
3/10/08 3:00	793	103.7	34.8	108	107.7	114
3/10/08 4:00	792	103.7	34.7	108.4	107.5	114.1
3/10/08 5:00	791	103.5	34.6	108.2	107.2	114.1
3/10/08 6:00	790	103.4	35.8	108.2	106.9	113.9
3/10/08 7:00	790	103.4	6.3	108	106.9	113.6
3/10/08 8:00	789	103.3	2.6	107.7	106.8	111.9
3/10/08 9:00	789	103.3	2.4	107.7	106.4	110.7
3/10/08 10:00	789	103.1	2.4	107.6	106.5	110.1
3/10/08 11:00	789	103.1	2.4	107.7	106.7	109.5
3/10/08 12:00	790	103.4	2.4	107.6	106.9	109.1
3/10/08 13:00	790	103.4	2.4	107.6	106.9	109.3
3/10/08 14:00	791	103.7	2.4	107.7	107.1	109.3
3/10/08 15:00	791	103.7	2.4	108.5	107.2	109.7
3/10/08 16:00	791	103.7	2.4	107.7	107.3	109.7
3/10/08 17:00	792	103.9	2.4	108.1	107.7	109.7
3/10/08 18:00	792	103.9	2.4	107.9	108	109.7
3/10/08 19:00	793	103.9	2.3	107.6	108.1	109.4
3/10/08 20:00	792	103.8	0	106.9	108.2	110.1
3/10/08 21:00	793	103.8	0	106.5	108.2	111.5
3/10/08 22:00	793	103.7	0	106	108.1	112.7
3/10/08 23:00	793	103.5	0	105.9	107.8	113.4
			2			

3/11/08 0:00	793	103.5	0	105.6	107.8	113.7
3/11/08 1:00	793	103.4	0	105.9	107.7	113.9
3/11/08 2:00	792	103.4	0	106	107.3	114.2
3/11/08 3:00	792	103.3	0	105.9	107	114.5
3/11/08 4:00	793	103.4	0	106.2	106.8	114.4
3/11/08 5:00	792	103.3	0	106.2	106.4	114.6
3/11/08 6:00	792	103.1	1.4	106.2	106.1	114.7
3/11/08 7:00	792	103.1	2.4	105.7	105.7	112.9
3/11/08 8:00	791	102.9	2.4	105.7	105.6	111.4
3/11/08 9:00	791	102.9	2.4	105.3	105.4	110.8
3/11/08 10:00	791	102.7	2.4	105.4	105.3	110.4
3/11/08 11:00	790	102.6	2.5	105	105.6	110
3/11/08 12:00	790	102.5	2.5	104.8	105.7	109.8
3/11/08 13:00	791	102.7	2.4	104.9	105.7	109.8
3/11/08 14:00	791	102.7	2.4	104.7	105.7	110
3/11/08 15:00	791	102.7	2.4	104.8	106	109.8
3/11/08 16:00	792	103	2.4	104.8	106.2	110
3/11/08 17:00	792	103	2.4	104.8	106.3	109.9
3/11/08 18:00	792	103	2.4	105.1	106.5	110
3/11/08 19:00	793	103.1	2.3	104.7	106.5	109.6
3/11/08 20:00	793	103.1	0	104.9	106.5	110.1
3/11/08 21:00	792	103	0	104.9	106.4	111.3
3/11/08 22:00	792	103	0	105.1	106.4	111.9
3/11/08 23:00	792	103	0	105.1	106.2	112.5
3/12/08 0:00	792	103.1	0	104.7	106	112.6
3/12/08 1:00	792	103.1	0	105.2	105.8	113
3/12/08 2:00	791	103	0	105.3	105.6	113.1
3/12/08 3:00	791	103.1	0	105.3	105.6	113.4
3/12/08 4:00	791	103.3	0	106	105.5	113.7
3/12/08 5:00	791	103.3	0	106.4	105.2	114.1
3/12/08 6:00	790	103.1	1.4	106	104.9	113.2
3/12/08 7:00	789	103	2.4	106.2	104.7	112.1
3/12/08 8:00	789	103.1	2.4	106.4	104.7	111.6
3/12/08 9:00	789	103.1	2.4	106.5	104.4	111.1
3/12/08 10:00	789	103.1	2.4	106.2	104.6	110.7
3/12/08 11:00	789	103.3	2.4	106.7	104.7	110.4
3/12/08 12:00	790	103.4	2.4	106.1	105.4	110.4
3/12/08 13:00	790	103.5	2.4	106.4	105.6	110.6
3/12/08 14:00	791	103.7	2.4	105.9	105.9	110.9
3/12/08 15:00	791	103.8	2.4	106.4	106.4	110.9
3/12/08 16:00	792	103.9	2.1	106.3	107.1	110.9
3/12/08 17:00	792	104.1	2.1	106	107.7	110.9
3/12/08 18:00	792	104 1	2.1	106.3	108	110.9
3/12/08 19:00	793	104.2	2.1	106	108.3	110.5
3/12/08 20:00	792	104.1	2.1	105.9	108.4	111
3/12/08 21:00	702	104.1	0	105.8	108.4	112.2
3/12/08 22:00	703	104.2	0	105.0	100.4	112.2
3/12/08 23:00	702	104.3	0	105.8	100.0	112.7
3/13/08 0.00	792	104.3	0	106	100.1	112.6
3/13/08 1.00	792	104.3	0	106 2	107.9	112.0
3/13/08 2.00	701	104.3	0	100.3	107.0	11/1
3/13/08 2.00	700	104.4	0	100.4	107.2	114.1
5/15/00 5.00	790	104.4	0	100.5	107.1	114.4

3/13/08 4:00	790	104.4	0	106.5	106.9	114.6
3/13/08 5:00	790	104.5	0	106.3	106.6	114.5
3/13/08 6:00	789	104.4	1.1	106.3	106.3	113.9
3/13/08 7:00	789	104.4	2.4	106.1	106.1	112.5
3/13/08 8:00	789	104.4	2.4	106.1	105.8	112.3
3/13/08 9:00	789	104.4	2.4	105.8	105.5	111.7
3/13/08 10:00	789	104.2	2.4	105.7	105.3	111.2
3/13/08 11:00	789	104.2	2.4	105.5	105.4	110.9
3/13/08 12:00	789	104.2	2.4	105.5	105.5	110.7
3/13/08 13:00	789	104.2	2.4	105.7	105.7	110.7
3/13/08 14:00	789	104.2	2.4	105.7	105.8	110.7
3/13/08 15:00	789	104.2	2.5	105.8	105.9	110.5
3/13/08 16:00	789	104.2	2.4	105.5	106.1	109.9
3/13/08 17:00	789	104.2	2.4	105.4	106.2	110.3
3/13/08 18:00	789	104.2	2.4	105.3	106.4	110.3
3/13/08 19:00	789	104.2	2.4	105.3	106.7	110.4
3/13/08 20:00	789	104.2	0.1	105.4	106.7	110.5
3/13/08 21:00	789	104.2	0	105.5	106.6	111.3
3/13/08 22:00	789	104.2	0	105.5	106.3	112
3/13/08 23:00	788	104.1	0	105.5	106.0	112.5
3/14/08 0.00	789	104.4	0	105.7	105.8	113.1
3/14/08 1:00	788	104.4	0	105.7	105.5	113.6
3/14/08 2:00	788	104.2	0	105.9	105.0	113.0
3/14/08 3:00	787	104.2	0	106.3	105.4	114
3/14/08 4:00	787	104.1	0	106.3	105.4	114
3/14/08 5:00	786	104.2	0	106.5	105.3	114.4
3/14/08 6:00	786	104.1	12	106.3	105.3	113.6
3/14/08 7:00	786	104.1	24	106.2	105.0	112.0
3/14/08 8:00	786	104.1	2.4	106.2	105.1	112.4
3/14/08 9:00	786	104.1	2.4	106.0	104 9	112
3/14/08 10:00	786	104	2.4	106.1	104.0	111.5
3/14/08 11:00	786	104	2.4	105.1	104.5	111.3
3/14/08 12:00	786	104	2.4	105.9	105	111.0
3/14/08 13:00	786	104	2.4	105.5	105 3	111.2
3/14/08 14:00	787	104	2.4	105.0	105.5	111.1
3/14/08 15:00	787	104.1	2.4	105.0	105.5	111.1
3/14/08 16:00	787	104.2	2.4	105.5	105.0	111.2
3/14/08 17:00	788	104.1	2.4	105.7	100.1	111.1
3/14/08 18:00	780	104.2	2.4	105.7	100.5	111.1
3/14/08 10:00	709	104.4	2.4	105.7	100.0	110.0
3/14/08 20:00	790	104.5	2.4	105.7	100.7	110.9
3/14/08 20:00	790	104.5	0	105.5	100.7	110.9
3/14/08 21:00	709	104.4	0	105.4	100.0	111.1
3/14/08 22:00	790	104.4	0	105.5	100.3	111.0
3/14/00 23.00	709	104.2	0	105.5	100.1	111.5
3/15/08 0.00	709	104.2	0	105.5	105.7	111.0
3/15/08 1.00	709	104.2	0	105.5	105.4	113.2
3/13/00 2.00	788	104.1	0	100.0	105.1	113.4
3/13/00 3.00	788	104.1	0	100.4	104.9	113.0
3/13/08 4.00	788	104.1	0	105.4	104.9	113.8
3/15/00 5:00 2/15/09 6:00	788	104	0	105.3	104.7	113.8
3/15/08 0:00	/88	104	1.3	105.3	104.5	113.2
3/15/08 /:00	788	103.8	2.4	105.4	104.3	112

3/15/08 8:00	788	103.8	2.4	105.4	104.2	111.6
3/15/08 9:00	788	103.7	2.4	105.6	104.1	111.2
3/15/08 10:00	788	103.7	2.4	105.8	104.1	110.8
3/15/08 11:00	788	103.5	2.4	106	104.2	110.8
3/15/08 12:00	789	103.7	2.4	106.2	104.3	110.6
3/15/08 13:00	789	103 7	24	106.3	104.6	110.6
3/15/08 14:00	790	103.8	24	106.4	104 7	110.6
3/15/08 15:00	791	103.9	2.1	106.7	105.2	110.0
3/15/08 16:00	701	103.0	2.4	106.7	105.6	110.7
3/15/08 17:00	702	100.0	2.4	106.7	105.0	110.7
3/15/08 18:00	702	104.1	2.4	106.7	105.9	110.4
3/15/08 10:00	702	104.1	2.4	100.4	105.0	110.2
2/15/08 19:00	792	103.9	2.4	100.5	105.9	110.2
3/15/08 20.00	792	103.9	0.2	100	105.9	110.9
3/15/08 21.00	792	103.0	0	100	105.7	111.0
3/15/08 22:00	791	103.7	0	105.7	105.6	112.4
3/15/08 23:00	791	103.7	0	105.9	105.5	112.4
3/16/08 0:00	791	103.5	0	105.9	105.1	112.7
3/16/08 1:00	790	103.4	0	105.5	105.1	112.5
3/16/08 2:00	789	103.1	0	105.3	104.8	112.5
3/16/08 3:00	788	103	0	105.1	104.8	112.8
3/16/08 4:00	787	102.9	0	104.8	104.8	113.2
3/16/08 5:00	787	102.7	0	104.7	104.7	113.4
3/16/08 6:00	787	102.7	0.5	104.9	104.6	113.5
3/16/08 7:00	785	102.3	2.4	105.1	104.6	112.8
3/16/08 8:00	784	102.2	2.4	104.8	104.4	111.1
3/16/08 9:00	784	102.1	2.4	105.3	104.5	110.3
3/16/08 10:00	784	102.1	2.4	105.8	104.4	109.5
3/16/08 11:00	784	102	2.4	106.2	104.5	109.5
3/16/08 12:00	784	102	2.4	106.6	104.8	109.7
3/16/08 13:00	784	102	2.4	106.6	104.9	110.2
3/16/08 14:00	785	102.1	2.4	106.7	105.2	110.4
3/16/08 15:00	785	102.1	2.4	106.9	105.4	110.6
3/16/08 16:00	786	102.2	2.4	106.6	105.6	110.9
3/16/08 17:00	786	102.3	2.4	106.5	105.7	110.6
3/16/08 18:00	786	102.3	2.4	106.5	105.8	110.9
3/16/08 19:00	786	102.3	2.4	106.4	105.8	111.2
3/16/08 20:00	787	102.5	0.6	106 1	105.8	111.6
3/16/08 21:00	787	102.5	0	105.8	105.8	111.8
3/16/08 22:00	787	102.0	ů 0	105.2	105.7	112.9
3/16/08 23:00	787	102.5	0	103.2	105.6	112.0
3/17/08 0:00	787	102.5	0	104.0	105.0	113.4
3/17/08 1:00	796	102.0	0	104.7	105.4	113.9
2/17/08 2:00	700	102.5	0	104.5	105.5	114
3/17/08 2:00	700	102.5	0	104.5	105.5	114.0
3/17/08 3:00	785	102.3	0	104.5	105.3	114.0
3/17/08 4:00	785	102.3	0	104.7	105.3	115.1
3/17/08 5:00	784	102.2	0	105.2	105.5	115.4
3/17/08 6:00	783	102.2	2	105.1	105.3	115.8
3/17/08 7:00	782	102.1	2.4	105.9	105.3	114.5
3/17/08 8:00	782	102.1	2.4	105.9	105.2	113.7
3/17/08 9:00	782	102.1	2.4	105.7	105.2	113
3/17/08 10:00	782	102.1	2.4	105.5	105.1	112.8
3/17/08 11:00	782	102.1	2.4	104.4	105.1	112.4

3/17/08 12:00	782	102.1	2.4	104.3	105.1	112.4
3/17/08 13:00	782	102.1	2.4	104.2	105.1	112.3
3/17/08 14:00	782	102.2	2.4	104.2	105.1	112.3
3/17/08 15:00	783	102.4	2.4	104.3	105.2	112.1
3/17/08 16:00	783	102.4	2.4	104.4	105.5	112
3/17/08 17:00	783	102.4	2.4	104.4	105.5	112.3
3/17/08 18:00	784	102.6	2.4	104.6	105.7	112
3/17/08 19:00	784	102.6	2.4	104.6	105.9	111.9
3/17/08 20:00	784	102.0	2.1	104.3	106.0	111.8
3/17/08 21:00	784	102.0	2.4	104.0	106.1	111.0
3/17/08 22:00	78/	102.0	0	104.2	106.0	110.8
3/17/08 23:00	78/	102.0	0	103 0	100.1	111.8
3/18/08 0:00	78/	102.0	0	103.0	105.6	112 /
3/18/08 1:00	704	102.0	0	103.9	105.0	112.4
2/18/08 2:00	704	102.0	0	103.0	105.1	112.7
3/16/08 2:00	704	102.0	0	103.9	104.7	112.0
3/16/08 3.00	704	102.0	0	103.9	104.4	112.9
3/18/08 4:00	783	102.6	0	103.9	104.4	113
3/18/08 5:00	783	102.8	0	103.9	104.3	113.2
3/18/08 6:00	783	102.8	1.9	103.8	104.3	113.4
3/18/08 7:00	783	102.8	2.4	103.7	104.3	114
3/18/08 8:00	782	102.6	2.4	103.7	104.3	113.5
3/18/08 9:00	783	102.8	2.4	103.7	104.2	113
3/18/08 10:00	783	102.8	2.4	103.9	104.2	112.3
3/18/08 11:00	783	102.8	2.4	104.2	104.2	111.3
3/18/08 12:00	783	102.8	2.4	104.6	104.4	110.6
3/18/08 13:00	783	102.6	2.4	104.6	104.6	110.1
3/18/08 14:00	783	102.6	2.4	103.7	104.6	109.7
3/18/08 15:00	784	102.6	2.4	103.5	104.6	108.7
3/18/08 16:00	784	102.5	2.4	103.6	104.6	108.5
3/18/08 17:00	784	102.5	2.4	103.9	104.7	108.2
3/18/08 18:00	785	102.6	2.4	103.5	104.8	108.1
3/18/08 19:00	785	102.6	2.4	103.8	104.8	108.5
3/18/08 20:00	786	102.6	0.4	103.5	104.8	110.7
3/18/08 21:00	786	102.6	0	103.5	104.7	111.6
3/18/08 22:00	786	102.6	0	104.2	104.7	112.1
3/18/08 23:00	787	102.7	0	104.4	104.4	111.9
3/19/08 0:00	786	102.1	0	104.3	104.4	111.0
3/19/08 1:00	786	102.6	0	104	104	112.9
3/19/08 2:00	786	102.7	0	103.9	103.9	113.4
3/19/08 3:00	784	102.7	0	103.7	103.7	113.4
3/19/08 4:00	78/	102.5	0	103.7	103.7	11/ 2
3/19/08 5:00	783	102.5	0	103.5	103.5	114.2
3/19/08 6:00	703	102.5	1	103.5	103.5	114.5
3/19/08 7:00	703	102.5	2.4	103.3	103.4	114.9
3/19/08 7.00	704	102.0	2.4	103.1	103.3	113.3
3/19/08 8:00	784	102.6	2.4	103.4	103.1	113.1
3/19/08 9:00	784	102.8	2.4	103.4	103.1	113.3
3/19/08 10:00	784	102.6	2.4	103.8	103.1	113.1
3/19/08 11:00	784	102.8	2.4	103.7	103.4	112.4
3/19/08 12:00	/84	102.8	2.4	103.9	103.8	111.8
3/19/08 13:00	784	102.8	2.4	103.8	104.4	111.6
3/19/08 14:00	785	103	2.4	104.2	104.8	111.9
3/19/08 15:00	785	103	2.4	104.3	105.1	111.9
3/19/08 16:00	785	103	2.4	104.3	105.4	112.1
---------------	-----	-------	-----	-------	-------	-------
3/19/08 17:00	785	103.2	2.4	104.3	105.6	111.5
3/19/08 18:00	787	103.3	2.4	104.3	105.8	111.1
3/19/08 19:00	787	103.3	2.4	104.1	105.6	111.7
3/19/08 20:00	789	103.5	0	104.2	105.5	111.7
3/19/08 21:00	789	103.5	0	104.6	105.4	111.8
3/19/08 22:00	788	103.4	0	104.4	105	111.3
3/19/08 23:00	789	103.4	0	104.4	104.6	111.4
3/20/08 0:00	789	103.4	0	104.4	104.2	111.3
3/20/08 1:00	789	103.4	0	104.3	103.8	111.3
3/20/08 2:00	787	103.1	0	104.2	103.7	110.7
3/20/08 3:00	787	103.1	0	104.2	103.7	111
3/20/08 4:00	786	103	0	103.8	103.7	111.6
3/20/08 5:00	786	102.9	0	103.7	103.5	113.2
3/20/08 6:00	786	102.9	1.3	103.7	103.4	113.9
3/20/08 7:00	786	102.9	2.4	103.5	103.3	112.9
3/20/08 8:00	786	102.9	2.4	103.5	103.1	114.1
3/20/08 9:00	786	102.9	2.4	103.4	103.1	113.7
3/20/08 10:00	786	102.7	2.4	103.8	103.3	113.3
3/20/08 11:00	787	102.9	2.4	104	103.5	112.9
3/20/08 12:00	787	102.9	2.4	104.2	104	112.3
3/20/08 13:00	787	103	2.4	104.2	104.3	111.6
3/20/08 14:00	788	103.1	2.4	104.4	104.8	111
3/20/08 15:00	788	103.1	2.4	104.6	105.2	111
3/20/08 16:00	789	103.3	2.4	104.6	105.5	111.1
3/20/08 17:00	790	103.4	2.4	105	105.5	111.1
3/20/08 18:00	790	103.4	2.4	104.6	105.6	110.5
3/20/08 19:00	792	103.8	2.4	104.6	105.6	111.1
3/20/08 20:00	792	103.8	0	104.4	105.4	112
3/20/08 21:00	792	103.5	0	104.4	105	111.9
3/20/08 22:00	792	103.4	0	104.4	104.6	111.1
3/20/08 23:00	792	103.3	0	104.3	104.2	110.2
3/21/08 0:00	792	103.3	0	104	103.8	110.4
3/21/08 1:00	791	103	0	103.8	103.2	110.3
3/21/08 2:00	790	102.7	0	103.5	102.8	110.1
3/21/08 3:00	789	102.6	0	103.4	102.7	110
3/21/08 4:00	788	102.3	0	103.1	102.6	109.7
3/21/08 5:00	788	102.2	0	102.8	102.6	109.6
3/21/08 6:00	787	102.1	1.2	102.6	102.3	109.6
3/21/08 7:00	787	101.9	2.4	102.3	102.1	111.6
3/21/08 8:00	787	101.8	2.4	102.3	102.1	112.1
3/21/08 9:00	787	101.8	2.4	102.3	102.1	112.3
3/21/08 10:00	787	101.7	2.4	102.6	102.2	111.9
3/21/08 11:00	787	101.7	2.4	102.7	102.3	111.3
3/21/08 12:00	787	101.5	2.4	102.8	102.8	110.6
3/21/08 13:00	788	101.7	2.4	103.1	103.2	109.9
3/21/08 14:00	788	101.7	2.4	103.2	103.5	109.8
3/21/08 15:00	788	101.7	2.4	103.3	103.7	109.9
3/21/08 16:00	788	101.7	2.4	103.6	104	109.7
3/21/08 17:00	789	101.8	2.4	103.6	104 2	109.8
3/21/08 18:00	789	101.8	2.4	103.7	104.4	109.7
3/21/08 19:00	789	101.8	2.4	103.6	104.5	109.8
	-			-	-	-

3/21/08 20:00	790	101.9	1.2	103.3	104.4	110.7
3/21/08 21:00	789	101.8	0.1	103	104.2	112.1
3/21/08 22:00	790	101.9	0	103.5	104	112.6
3/21/08 23:00	789	101.8	0	103.6	103.9	113.5
3/22/08 0:00	789	101.8	0	103.3	103.9	114
3/22/08 1:00	789	101.8	0	103.2	103.5	114.4
3/22/08 2:00	788	101.7	0	103.1	103.1	114.4
3/22/08 3:00	787	101.7	0	103	103	114.7
3/22/08 4:00	787	101.7	0	102.8	102.8	115.2
3/22/08 5:00	786	101.6	0	102.8	102.6	115.4
3/22/08 6:00	785	101.6	1.3	102.8	102.6	115.2
3/22/08 7:00	785	101.6	2.5	102.7	102.3	114.5
3/22/08 8:00	785	101.6	2.4	102.6	102.2	113.7
3/22/08 9:00	785	101.6	2.4	102.7	102.2	114.2
3/22/08 10:00	785	101.6	2.4	102.7	102.2	114.2
3/22/08 11:00	786	101.8	2.4	103	102.5	114.1
3/22/08 12:00	786	101.8	2.4	103.1	102.7	114
3/22/08 13:00	787	102.1	2.4	103.4	103.4	113.6
3/22/08 14:00	787	102.2	2.4	103.8	103.9	113.6
3/22/08 15:00	788	102.5	2.4	104.2	104.2	113.6
3/22/08 16:00	788	102.5	2.4	104	104.4	113.1
3/22/08 17:00	788	102.6	2.4	103.9	104.7	113
3/22/08 18:00	788	102.7	2.4	103.6	104 7	113
3/22/08 19:00	789	102.9	2.4	103.6	104 7	112.8
3/22/08 20:00	788	102.7	0	103.5	104.6	112.2
3/22/08 21:00	789	102.9	0	103.4	104.2	112.2
3/22/08 22:00	789	102.9	0	103.3	103.9	113.2
3/22/08 23:00	788	102.7	0	103.8	103.6	113.3
3/23/08 0:00	789	103	0	104	103.4	114.3
3/23/08 1:00	788	102.9	0	104.2	103.1	114 7
3/23/08 2:00	787	102.7	0	104.3	103	115.3
3/23/08 3:00	787	102.7	0	104.3	102.7	116
3/23/08 4:00	787	102.9	0	104.4	102.9	116
3/23/08 5:00	786	102.7	0	104.4	102.9	116.6
3/23/08 6:00	786	102.9	1.3	104.7	103	116.7
3/23/08 7:00	786	102.9	2.4	104 7	103	115
3/23/08 8:00	786	102.7	2.4	105	103	113.8
3/23/08 9:00	786	102.9	2.4	105	103	114
3/23/08 10:00	786	102.9	2.4	105.2	103.1	113.5
3/23/08 11:00	786	103	2.4	105.4	103.1	112.8
3/23/08 12:00	786	103	2.4	105.6	103	112.2
3/23/08 13:00	786	103 1	2.4	106.0	103.1	111.6
3/23/08 14:00	787	103.3	2.4	106.5	103.4	111.3
3/23/08 15:00	787	103.4	2.4	107.1	103.7	110.7
3/23/08 16:00	787	103.4	2.1	107.1	103.9	110.7
3/23/08 17:00	788	103.4	2.1	107.3	103.9	110.6
3/23/08 18:00	788	103.4	2.1	107.3	100.0	110.6
3/23/08 19:00	788	103.4	2.4	107.0	104.0	110.0
3/23/08 20:00	787	103.1	2. 1 0	106 8	104.4	110.5
3/23/08 21:00	786	102.9	0	106.6	104.3	111 6
3/23/08 22:00	786	102.0	0	106.0	104.0	112 4
3/23/08 23:00	786	102.7	0	106.4	104.2	112.4
0, 20, 00 20,00	,		0	100.4	101.2	112.0

3/24/08 0:00	785	102.6	0	106.1	104.2	113.3
3/24/08 1:00	785	102.6	0	106.1	104.2	113.7
3/24/08 2:00	788	102.9	0	106.1	103.9	113.6
3/24/08 3:00	787	102.7	0	106.2	103.6	113.5
3/24/08 4:00	787	102.7	0	106.2	103.6	113.8
3/24/08 5:00	786	102.6	0	106.4	103.8	114.1
3/24/08 6:00	786	102.5	1.1	106.4	103.8	114.6
3/24/08 7:00	786	102.5	2.4	106.4	103.9	113.8
3/24/08 8:00	786	102.5	2.4	106.4	103.9	113.5
3/24/08 9:00	786	102.5	2.4	106.5	103.9	112.9
3/24/08 10:00	785	102.3	2.4	106.8	104.4	112.2
3/24/08 11:00	787	102.6	24	107	104.9	111.6
3/24/08 12:00	787	102.6	23	107.4	105.3	111.3
3/24/08 13:00	787	102.7	2.3	107.8	105.6	111.5
3/24/08 14:00	788	102.9	2.3	107.5	106	111.2
3/24/08 15:00	789	102.0	23	107.6	106 5	111.2
3/24/08 16:00	789	103.1	2.0	107.0	100.0	112
3/24/08 17:00	700	103.1	2.4	107 2	107.2	112 1
3/24/08 18:00	790	103.3	2.0	107.2	107.7	112.1
3/24/08 10:00	790	103.5	2.4	107.5	108 1	117.5
3/24/08 20:00	791	103.4	2.4	107	100.1	112.1
3/24/00 20.00	791	103.4	0	106 0	100.1	112.7
3/24/08 21.00	791	103.4	0	100.9	100.1	114
3/24/00 22.00	791	103.4	0	100.0	100	114.5
3/24/00 23.00	792	103.5	0	100.5	107.0	114.5
3/25/06 0.00	792	103.5	0	100.4	107.0	110
3/25/08 1.00	792	103.5	0	106.4	107.3	110.0
3/25/08 2.00	792	103.5	0	106.2	107	110.0
3/25/08 3:00	791	103.4	0	106.1	106.6	117.1
3/25/08 4:00	791	103.4	0	106.4	106.4	117.5
3/25/08 5:00	790	103.3	0	106.3	106.1	118
3/25/08 6:00	790	103.3	1.1	105.9	106	117.4
3/25/08 7:00	789	103.1	2.4	105.7	105.6	117.2
3/25/08 8:00	789	103.1	2.4	105.6	105.3	117
3/25/08 9:00	789	103.1	2.4	105.5	105.2	116.4
3/25/08 10:00	789	103.1	2.4	105.5	105.3	115.9
3/25/08 11:00	789	103.1	2.4	105.5	105.5	115.5
3/25/08 12:00	790	103.4	2.4	105.5	105.5	115.4
3/25/08 13:00	790	103.4	2.1	105.9	105.7	115
3/25/08 14:00	790	103.4	1.3	106	106	114.4
3/25/08 15:00	/91	103.7	1.3	106	106.5	114.5
3/25/08 16:00	/92	103.8	1.3	106.1	107.1	114.7
3/25/08 17:00	793	103.9	1.5	106	107.3	114.7
3/25/08 18:00	793	104.1	2.4	106	107.7	114.7
3/25/08 19:00	794	104.2	2.4	105.9	107.7	114.7
3/25/08 20:00	794	104.2	0	106	107.6	114.9
3/25/08 21:00	795	104.3	0	106	107.3	115.7
3/25/08 22:00	795	104.3	0	106	107.2	119.8
3/25/08 23:00	795	104.5	0	105.9	106.9	121.4
3/26/08 0:00	795	104.5	0	105.9	106.7	121
3/26/08 1:00	794	104.3	0	106	106.4	119.9
3/26/08 2:00	794	104.5	0	106	106.2	118.9
3/26/08 3:00	794	104.5	0	106.2	105.9	119.1

3/26/08 4:00	793	104.3	0	106.2	105.6	119.6
3/26/08 5:00	793	104.3	0	106	105.4	119
3/26/08 6:00	792	104.1	1.4	105.9	105.2	119
3/26/08 7:00	791	103.9	2.4	105.6	105.1	118.2
3/26/08 8:00	791	103.9	2.4	105.5	104.8	117.3
3/26/08 9:00	790	103.8	2.4	105.4	104.7	116.9
3/26/08 10:00	790	103.8	2.4	105.5	104.7	116.3
3/26/08 11:00	790	103.8	2.4	105.5	104.8	116.1
3/26/08 12:00	790	103.9	2.4	105.6	105.1	116.1
3/26/08 13:00	789	103.8	1.6	105.4	105.2	115.9
3/26/08 14:00	789	103.8	1.2	105.5	105.6	115.2
3/26/08 15:00	789	103.8	1.2	105.6	106	115.4
3/26/08 16:00	789	103.8	1.2	105.4	106.3	114.8
3/26/08 17:00	790	103.9	1.2	105.6	106.6	115.2
3/26/08 18:00	790	103.9	2	105.8	106.3	114.7
3/26/08 19:00	790	103.8	2.4	105.4	106	114.3
3/26/08 20:00	789	103.4	0.1	105.1	105.6	113.6
3/26/08 21:00	789	103.3	0	104.8	105.2	113.9
3/26/08 22:00	789	103.1	0	104.6	104.8	114.1
3/26/08 23:00	788	102.9	0	104.3	104.3	114.2
3/27/08 0:00	787	102.6	0	103.9	103.8	114.7
3/27/08 1:00	786	102.5	0	103.8	103.5	115.5
3/27/08 2:00	786	102.5	0	103.8	103.2	116.1
3/27/08 3:00	785	102.2	0	103.8	103	116.6
3/27/08 4:00	785	102.2	0	104.2	102.9	117.1
3/27/08 5:00	784	102.1	0	104.7	102.9	117.5
3/27/08 6:00	782	101.7	1.3	104.8	102.6	117.4
3/27/08 7:00	782	101.7	2.3	105.4	102.5	116.6
3/27/08 8:00	781	101.6	2.3	105.1	102.5	115.4
3/27/08 9:00	781	101.6	2.3	104.5	102.6	115
3/27/08 10:00	781	101.4	2.3	104.1	102.6	114.8
3/27/08 11:00	781	101.4	2.3	103.6	102.8	114.2
3/27/08 12:00	782	101.6	2.3	103.6	103.2	114.3
3/27/08 13:00	782	101.7	1.2	103.8	104	114.1
3/27/08 14:00	783	101.8	1.2	103.8	104.2	113.6
3/27/08 15:00	784	102	1.2	104	104.7	113.6
3/27/08 16:00	785	102.2	2	104.2	104.9	114.7
3/27/08 17:00	786	102.3	2.3	104.4	105.6	114.4
3/27/08 18:00	786	102.5	2.3	104.8	105.7	114.1
3/27/08 19:00	786	102.6	2.3	104.8	106	114.1
3/27/08 20:00	786	102.6	0.1	104.8	106	114
3/27/08 21:00	786	102.6	0	104.6	106.1	115.9
3/27/08 22:00	786	102.7	0	104.2	105.9	117.5
3/27/08 23:00	785	102.7	0	104.3	105.5	117.5
3/28/08 0:00	784	102.6	0	104.3	105.1	118.3
3/28/08 1:00	783	102.6	0	104.4	104.6	119.1
3/28/08 2:00	783	102.8	0	104.6	104.2	119.5
3/28/08 3:00	782	102.8	0	104.5	104.1	119.6
3/28/08 4:00	782	102.9	0	104.6	103.7	120.4
3/28/08 5:00	782	103	0	104 7	103 5	120.2
3/28/08 6:00	782	103.2	1.2	104.9	103.6	119.5
3/28/08 7:00	782	103.2	2.4	105.1	103.6	117.4
			=			

3/28/08 8:00	782	103.3	2.4	105.4	103.6	117.5
3/28/08 9:00	782	103.4	2.4	105.3	103.7	116.9
3/28/08 10:00	782	103.6	2.4	105.1	104	116.4
3/28/08 11:00	782	103.6	2.4	105	104	115.7
3/28/08 12:00	781	103.4	2.4	104.9	103.8	115.1
3/28/08 13:00	781	103.4	2.4	105	104.1	114.1
3/28/08 14:00	781	103.4	2.4	104.7	104.5	114.1
3/28/08 15:00	780	103.3	2.4	104.6	104.5	114
3/28/08 16:00	780	103.2	2.4	104.4	104.7	113.3
3/28/08 17:00	780	103.2	2.4	104	104.9	113.3
3/28/08 18:00	780	103	2.4	103.7	105	113.3
3/28/08 19:00	780	102.9	2.4	103.2	104.7	113.2
3/28/08 20:00	780	102.9	0	103	104.6	111.7
3/28/08 21:00	780	102.9	0	102.9	104.3	111 1
3/28/08 22:00	779	102.8	0	102.9	104.1	112
3/28/08 23:00	779	102.6	0	102.8	103.8	112.4
3/29/08 0:00	779	102.0	ů 0	102.8	103.4	113.8
3/29/08 1:00	778	102.0	0	102.0	103.1	114.5
3/29/08 2:00	778	102.0	0	102.8	102.1	114.6
3/29/08 3:00	778	102.4	0	102.0	102.0	114.0
3/29/08 4:00	778	102.4	0	103.7	102.4	115
3/29/08 5:00	778	102.2	0	103.9	101 7	114 9
3/29/08 6:00	777	102.2	13	103.3	101.7	114.5
3/29/08 7:00	777	102	2.4	104.2	101.3	114.5
3/29/08 8:00	777	101 8	2.4	103.0	101.2	113.0
3/29/08 9:00	777	101.0	2.4	103.5	100 9	113.3
3/29/08 10:00	777	101.0	2.4	103.3	100.9	110.0
3/29/08 11:00	777	101.0	2.4	103.4	100.9	112.0
3/29/08 12:00	777	101.7	2.4	103.1	100.9	111.9
3/29/08 13:00	776	101.7	2.4	102.9	101.3	111.2
3/29/08 17:00	770	101.0	2.4	103	101.7	110.8
3/29/08 15:00	777	101.7	2.4	103.1	102.2	110.0
3/29/08 16:00	777	101.7	2.4	103.1	102.9	110.0
3/29/08 17:00	778	101.7	2.4	103.1	103 3	110.0
3/20/08 18:00	770	101.7	2.4	102.0	103.5	110.0
3/29/08 10:00	778	101.7	2.4	102.5	103.3	111.2
3/29/08 20:00	770	101.0	2.4	102.5	103.0	111.2
3/29/08 21:00	778	101.7	0	102.0	103.9	113.5
3/29/08 22:00	778	101.0	0	102.9	103.0	113.5
3/29/08 22:00	778	101.0	0	103.3	103.7	113.0
3/30/08 0:00	770	101.0	0	104.4	103.3	114.9
3/30/08 0.00	777	101.7	0	104.8	103.4	115.4
3/30/08 1.00	770	101.7	0	105	103.3	115.0
3/30/08 2:00	770	101.0	0	105.4	103.1	110.7
3/30/08 3.00	776	101.7	0	105.5	102.9	115.0
3/30/08 4.00	770	101.0	0	105.5	102.0	115.9
3/30/08 5.00	770	101.7	0	105.2	102.5	110.1
3/30/08 5:00	//b 775	101.6	1.2	105.1	102.3	116.2
3/30/08 7:00	115	101.4	2.4	104.8	102.1	115.6
3/30/08 8:00 2/20/08 0:00	116	101.6	2.4	104.8	101.8	113.7
3/30/08 9:00	(15	101.4	2.4	104.8	101.8	112.7
3/30/08 10:00		101.6	2.4	105	101.8	112.1
3/30/08 11:00	111	101.6	2.4	104.9	101.8	111./

3/30/08 12:00	778	101.7	2.4	105.1	102.2	111.7
3/30/08 13:00	779	101.8	2.4	105.2	102.7	111.5
3/30/08 14:00	780	102	2.4	105.3	103.5	111.3
3/30/08 15:00	781	102.1	2.4	105.5	104.2	111.5
3/30/08 16:00	782	102.2	2.4	105.9	104.6	111.5
3/30/08 17:00	782	102.2	2.4	105.9	105.1	111.5
3/30/08 18:00	784	102.3	2.4	105.7	105.3	111.1
3/30/08 19:00	784	102.3	2.4	105.9	105.5	111.1
3/30/08 20:00	784	102.3	0	105.7	105.6	112
3/30/08 21:00	784	102.2	0	105.5	105.5	113.7
3/30/08 22:00	783	102	0	105.6	105.3	114
3/30/08 23:00	784	102.1	0	105.4	105.2	114.8
3/31/08 0:00	783	102	0	105.3	104.9	115.2
3/31/08 1:00	783	102	0	105.4	104.5	115.5
3/31/08 2:00	782	101 7	0	105.3	104.2	115.8
3/31/08 3:00	782	101.7	0	105.6	103.9	116
3/31/08 4:00	781	101.7	0	105.6	103.6	116
3/31/08 5:00	781	101.0	0	105.0	103.6	116.2
3/31/08 6:00	780	101.0	12	105.4	103.5	116.2
3/31/08 7:00	770	101.4	2.4	105.4	103.5	11/ 0
3/31/08 8:00	770	101.3	2.4	105.4	103.5	114.5
2/21/08 0:00	770	101.2	2.4	105.3	103.5	110
3/31/00 9.00	770	101 2	2.4	105.2	103.5	112.2
3/31/08 10:00	779	101.2	2.4	105	103.0	111.0
3/31/08 11:00	779	101 2	2.4	105	103.9	111.5
3/31/06 12:00	700	101.2	2.4	105.2	104.3	
3/31/08 13:00	780	101.3	2.4	105.3	104.9	111.7
3/31/08 14:00	781	101.6	2.4	105.4	105.3	111.9
3/31/08 15:00	782	101.7	2.4	105.4	105.7	111.8
3/31/08 16:00	783	101.8	2.4	105.4	106.4	112.1
3/31/08 17:00	784	102	2.4	105.7	106.9	112.1
3/31/08 18:00	785	102.2	2.4	105.8	107.3	112.2
3/31/08 19:00	785	102.2	2.4	105.8	107.4	112.1
3/31/08 20:00	785	102.2	0	105.6	107.5	112.7
3/31/08 21:00	786	102.2	0	105.3	107.4	113.1
3/31/08 22:00	786	102.2	0	105.2	107.3	113.4
3/31/08 23:00	786	102.2	0	104.9	106.9	113.5
4/1/08 0:00	786	102.3	0	104.8	106.5	113.9
4/1/08 1:00	785	102.1	0	104.7	106.1	114.5
4/1/08 2:00	784	102	0	104.5	105.6	115.6
4/1/08 3:00	783	102	0	104.4	105.2	115.8
4/1/08 4:00	782	101.8	0	104.3	104.8	116
4/1/08 5:00	781	101.7	0	104.2	104.8	117
4/1/08 6:00	781	101.7	1.3	104	104.5	116
4/1/08 7:00	781	101.7	2.4	103.8	104.3	115
4/1/08 8:00	781	101.7	2.4	103.6	104.2	114.3
4/1/08 9:00	781	101.7	2.4	103.8	104.2	113.9
4/1/08 10:00	781	101.7	2.4	103.8	104.3	113.8
4/1/08 11:00	781	101.8	2.4	103.9	104.4	113.7
4/1/08 12:00	782	102	2.4	104.3	104.8	113.7
4/1/08 13:00	783	102.2	2.4	104.7	105.3	113.7
4/1/08 14:00	784	102.5	2.4	105.1	105.9	113.7
4/1/08 15:00	785	102.6	2.4	105.3	106.5	113.8

4/4/00 40.00	700	400 7	0.4	105 7	100.0	1120
4/1/08 16:00	786	102.7	2.4	105.7	106.9	113.9
4/1/08 17:00	787	103	2.4	105.6	107.3	113.7
4/1/08 18:00	789	103.4	2.4	105.6	107.4	113.6
4/1/08 19:00	790	103.5	2.4	105.5	107.7	113.5
4/1/08 20:00	790	103.5	0.1	105.4	107.5	113.2
4/1/08 21:00	790	103.4	0	105.2	107	113.2
4/1/08 22:00	791	103.5	0	105.1	106.7	114.1
4/1/08 23:00	790	103.4	0	105	106.3	117
4/2/08 0:00	790	103.4	0	105	105.7	117.6
4/2/08 1:00	789	103.3	0	105	105.2	117.6
4/2/08 2:00	788	103.1	0	105.1	104.8	117.3
4/2/08 3:00	787	102.9	0	105.1	104.6	116.6
4/2/08 4:00	787	102.9	0	105.1	104.4	117.1
4/2/08 5:00	786	102.7	0	105.1	104.3	116.8
4/2/08 6:00	786	102.7	1.4	104.9	104.2	116.7
4/2/08 7:00	785	102.6	2.4	104.8	103.8	115.8
4/2/08 8:00	785	102.5	2.4	104.8	103.6	114.9
4/2/08 9:00	785	102.5	2.4	104.8	103.6	114.2
4/2/08 10:00	785	102.6	2.4	104.7	103.8	114
4/2/08 11:00	786	102.7	2.4	104.6	104	114
4/2/08 12:00	787	102.9	2.4	104.7	104.6	114.5
4/2/08 13:00	788	103	2.4	105	105.2	114.5
4/2/08 14:00	789	103.3	24	105.2	105.9	114.6
4/2/08 15:00	790	103.4	24	105.5	106.8	114.5
4/2/08 16:00	792	103 7	24	106	107.4	114.4
4/2/08 17:00	792	103.8	24	106.5	107.8	114 1
4/2/08 18:00	793	103.9	2.1	106.8	108.1	113.9
4/2/08 10:00	794	104.1	2.4	106.9	108.1	113.0
4/2/08 20:00	794	103.9	0.5	106.8	108.1	113.3
4/2/08 21:00	794	103.9	0.0	106.5	108	113.0
4/2/08 22:00	704	103.8	0	106.2	107 7	11/ 6
4/2/08 23:00	703	103.0	0	100.2	107.7	115.0
4/3/08 0:00	703	103.7	0	105.0	107.5	117.0
4/3/08 1:00	703	103.7	0	105.9	105.0	110.3
4/3/08 1.00	795	103.5	0	105.9	105.9	110.1
4/3/08 2.00	792	103.4	0	105.9	105.5	110.1
4/3/08 3.00	792	103.4	0	100	104.0	110.3
4/3/08 4.00	792	103.4	0	100.1	104.7	110.1
4/3/08 5.00	792	103.4	0	106.1	104.6	119
4/3/08 6:00	791	103.3	2.3	106.1	104.4	117.1
4/3/08 7:00	792	103.3	2.3	106.1	104.3	115.8
4/3/08 8:00	792	103.3	2.3	105.8	104.3	114.8
4/3/08 9:00	793	103.4	2.3	105.8	104.4	114.2
4/3/08 10:00	794	103.5	2.3	106	104.6	114.1
4/3/08 11:00	795	103.7	2.2	106.2	104.8	113.9
4/3/08 12:00	796	103.9	2.2	106.5	105.2	114.1
4/3/08 13:00	797	104.2	2.2	106.6	106	114.4
4/3/08 14:00	798	104.3	2.2	106.8	106.6	114.2
4/3/08 15:00	799	104.4	2.2	107	107.4	114.1
4/3/08 16:00	801	104.8	2.2	107.2	108	114.2
4/3/08 17:00	802	105	2.2	107.3	108.6	114.1
4/3/08 18:00	802	105	2.2	107.4	108.7	114
4/3/08 19:00	803	105.2	2.2	107.3	108.9	114.1

4/3/08 20:00	804	105.4	2.2	107.3	109	113.9
4/3/08 21:00	804	105.4	1.1	107.2	109	113.7
4/3/08 22:00	803	105.2	0	107	108.9	114.1
4/3/08 23:00	803	105.2	0	107.1	108.5	116.1
4/4/08 0:00	803	105.4	0	107.1	108.1	118.2
4/4/08 1:00	802	105.2	0	107.2	107.6	118.3
4/4/08 2:00	802	105.2	0	107.1	106.9	118.6
4/4/08 3:00	802	105.4	0	107.1	106.7	118.9
4/4/08 4:00	802	105.4	0	107.1	106.4	118.6
4/4/08 5:00	802	105.4	0	107.2	106.3	119
4/4/08 6:00	802	105.4	2.4	107.7	106.2	117.5
4/4/08 7:00	802	105.4	2.4	108.4	106	115.3
4/4/08 8:00	802	105.4	2.4	108.9	106.3	114.6
4/4/08 9:00	803	105.7	2.4	109.2	106.2	113.9
4/4/08 10:00	803	105.5	2.4	109.3	106.2	113.8
4/4/08 11:00	803	105.5	2.4	109	106	113.5
4/4/08 12:00	804	105.7	2.4	108.9	106.2	113.2
4/4/08 13:00	805	105.8	2.1	108.8	106.3	113.1
4/4/08 14:00	806	105.9	2.1	108.6	106.0	113.2
4/4/08 15:00	808	106.2	2.1	108.6	107.2	113
4/4/08 16:00	809	106.2	2.1	108.9	107.6	113
4/4/08 17:00	810	106.4	2.1	108.9	107.0	113 3
4/4/08 18:00	811	106.4	2.4	109	107.9	113.3
4/4/08 19:00	814	100.0	2.4	109	107.3	113.2
4/4/08 20:00	815	107 1	2.4	109	107.7	113
4/4/08 21:00	815	107.1	0.9	109	107.7	113.1
4/4/08 22:00	815	107.1	0.5	100	107.5	114.7
4/4/08 23:00	815	107 1	0	100	107.5	115.5
4/5/08 0.00	814	107.1	0	108 9	107.5	116.6
4/5/08 1:00	814	107	0	108.8	107.3	116.0
4/5/08 2:00	813	106.8	0	108.8	106.0	117.2
4/5/08 3:00	812	106.0	0	108.8	106.5	117.2
4/5/08 4:00	811	106.6	0	108.8	106.7	118.1
4/5/08 5:00	810	106.0	0	108.6	106.0	118.6
4/5/08 6:00	808	106.4	22	108.5	106.4	118./
4/5/08 7:00	808	100.2	2.2	100.5	100.4	110.4
4/5/08 8:00	807	105 8	2.4	109	100.3	11/13
4/5/08 0:00	803	105.0	2.4	109.4	100.4	114.5
4/5/08 10:00	804	105.7	2.4	109.7	100.7	113.5
4/5/08 10:00	803	105.5	2.4	110 1	100.9	112.7
4/5/08 11:00	803	105.7	2.4	110.1	107.2	112.0
4/5/06 12:00	804	105.0	2.4	110.4	107.5	112.0
4/5/08 13.00	804	105.0	2.4	110.4	100.1	112.3
4/5/08 14.00	804	105.9	2.4	110.0	100.7	112.2
4/5/08 15.00	804	105.9	2.4	110.9	109.1	112.1
4/5/08 16:00	804	105.9	2.4	111	109.6	112.1
4/5/08 17:00	805	106.2	2.4	111	109.7	111.7
4/5/08 18:00	805	106.2	2.4	110.9	109.9	111.8
4/5/08 19:00	805	106.2	2.4	110.9	110.1	112
4/5/08 20:00	805	106.2	2.4	110.5	110.1	111.9
4/5/08 21:00	805	106.2	2.4	110.1	109.9	111.9
4/5/08 22:00	805	106.2	0.1	110	109.9	112.4
4/5/08 23:00	806	106.3	0	109.9	109.9	114.6

1/6/00 0.00	906	100.0	0	100 7	110.1	11E E
4/0/08 0.00	000	100.3	0	109.7	110.1	115.5
4/6/08 1:00	806	106.5	0	109.6	110	117.5
4/6/08 2:00	806	106.5	0	109.6	109.7	118.7
4/6/08 3:00	807	100.0	0	109.6	109.5	119.6
4/6/08 4:00	808	106.7	0	109.9	109.2	120
4/6/08 5:00	808	106.7	0.1	109.9	108.9	120.6
4/6/08 6:00	808	106.6	2.4	109.9	108.8	116.7
4/6/08 7:00	809	106.7	2.4	109.7	108.4	115.9
4/6/08 8:00	809	106.6	2.4	109.7	108.1	114.6
4/6/08 9:00	809	106.6	2.4	109.7	108.3	113.7
4/6/08 10:00	808	106.3	2.4	109.8	108.4	113.1
4/6/08 11:00	808	106.3	2.4	109.8	108.3	113
4/6/08 12:00	808	106.2	2.4	110.1	108.3	113.1
4/6/08 13:00	808	106.3	2.4	110.5	108.5	113
4/6/08 14:00	809	106.4	2.4	110.7	108.5	113.1
4/6/08 15:00	809	106.4	2.4	110.7	108.8	113.1
4/6/08 16:00	809	106.3	2.4	110.5	109	112.6
4/6/08 17:00	809	106.3	2.4	110.5	109.6	112.9
4/6/08 18:00	810	106.4	2.4	110.4	109.7	112.7
4/6/08 19:00	810	106.4	2.4	110.2	109.6	112.3
4/6/08 20:00	810	106.4	2.4	109.8	109.3	111.9
4/6/08 21:00	810	106.3	2.2	109.7	109	112.1
4/6/08 22:00	810	106.3	0	109.5	108.8	113.2
4/6/08 23:00	809	106	0	109.5	108.6	115.6
4/7/08 0:00	809	106	0	109.3	108.4	116.8
4/7/08 1:00	808	105.9	0	109.1	108.1	117.3
4/7/08 2:00	808	105.9	0	109.1	108	117.6
4/7/08 3:00	808	105.9	0	109.3	107.6	118.3
4/7/08 4:00	808	105.9	0	109.4	107.0	118.7
4/7/08 5:00	807	105.8	02	109.4	107.4	118 7
4/7/08 6:00	807	105.8	2.5	109.7	107.3	118.2
4/7/08 7:00	807	105.8	2.5	109.4	107.2	116.6
4/7/08 8:00	807	105.6	2.0	100.4	106.9	115.4
4/7/08 0:00	807	105.0	2.5	108 7	106.0	11/ 0
4/7/08 10:00	807	105.0	2.5	100.7	100.9	114.9
4/7/08 10.00	007	105.5	2.5	100.3	100.9	114.0
4/7/00 11.00	000	105.0	2.3	100.2	100.0	114.3
4/7/08 12.00	009	105.0	2.4	107.9	106.9	114.2
4/7/08 13:00	810	105.9	2.4	108.2	107.2	114.3
4/7/08 14:00	811	106.2	2.4	108.5	107.4	114.5
4/7/08 15:00	811	106.2	2.5	108.6	108	114.2
4/7/08 16:00	811	106	2.5	108.7	108.3	114.4
4/7/08 17:00	812	106.3	2.5	108.7	108.6	114.1
4/7/08 18:00	812	106.3	2.5	108.7	108.7	114
4/7/08 19:00	811	106.2	2.5	108.7	108.7	113.7
4/7/08 20:00	811	106.2	2.4	108.9	108.7	113.8
4/7/08 21:00	811	106.2	1.3	108.9	108.6	113.7
4/7/08 22:00	811	106.2	0	109	108.3	114.2
4/7/08 23:00	810	106	0	109	108.1	115.5
4/8/08 0:00	810	106	0	108.9	108.1	116.3
4/8/08 1:00	809	105.9	0	108.9	107.7	117.5
4/8/08 2:00	809	106	0	108.7	107.3	118.7
4/8/08 3:00	809	106	0	108.6	107.3	119.2

1/0/00 1:00	000	105.0	0	100.0	107 1	100.0
4/0/00 4.00	808 808	105.9	0	100.0	107.1	120.2
4/8/08 5:00	808	100	0	108.6	107.1	120.8
4/8/08 6:00	807	105.9	2.4	108.8	106.9	116.6
4/8/08 7:00	807	105.9	2.4	108.9	106.9	116
4/8/08 8:00	807	105.9	2.4	109.3	106.8	114.9
4/8/08 9:00	807	105.9	2.4	109.8	106.7	114.3
4/8/08 10:00	807	105.9	2.4	110.2	107.6	114.1
4/8/08 11:00	807	105.9	2.4	110.7	107.9	114
4/8/08 12:00	808	106.2	2.4	110.9	108	114.2
4/8/08 13:00	808	106.2	2.4	110.7	108.4	114.3
4/8/08 14:00	808	106.2	2.4	110.9	108.8	114.2
4/8/08 15:00	809	106.4	2.4	110.9	109.4	114.4
4/8/08 16:00	808	106.3	2.4	110.7	110.1	114.2
4/8/08 17:00	808	106.3	2.4	110.2	110.6	114.5
4/8/08 18:00	808	106.3	2.4	109.8	110.6	114.1
4/8/08 19:00	807	106.2	2.4	109.3	110.5	113.6
4/8/08 20:00	807	106	2.4	109	110.4	113.9
4/8/08 21:00	806	105.9	1.3	108.6	110.1	113.9
4/8/08 22:00	805	105.8	0	108.4	109.8	115
4/8/08 23:00	805	105.8	0	108.4	109.7	116.1
4/9/08 0:00	804	105.7	0	108.4	109.4	116.8
4/9/08 1:00	803	105.5	0	108.2	109.3	117.1
4/9/08 2:00	802	105.4	0	108.2	109.2	117.1
4/9/08 3:00	801	105.3	0	108.1	109	117.1
4/9/08 4:00	800	105.1	0	108.1	108.8	117.5
4/9/08 5:00	799	105	0.2	108	108.7	117.5
4/9/08 6:00	798	104.9	2.4	107.9	108.4	117.2
4/9/08 7:00	797	104.7	2.4	107.7	108.1	116
4/9/08 8:00	796	104.5	2.4	107.6	107.9	115.2
4/9/08 9:00	796	104.5	2.4	107.5	107.9	114.7
4/9/08 10:00	796	104.5	2.4	107.6	107.9	114.4
4/9/08 11:00	796	104.5	2.4	107.5	107.9	114.1
4/9/08 12:00	797	104.6	2.4	107.5	107.7	114
4/9/08 13:00	797	104.6	2.4	107.3	108.2	113.9
4/9/08 14:00	798	104.7	2.4	107.5	108.6	114
4/9/08 15:00	798	104.7	2.4	107.5	109.2	113.9
4/9/08 16:00	798	104.7	2.4	107.5	109.4	113.9
4/9/08 17:00	799	104.9	2.4	107.5	109.7	113.9
4/9/08 18:00	799	104.9	2.4	107.3	109.5	113.8
4/9/08 19:00	799	104.9	2.4	107.2	109.4	113.4
4/9/08 20:00	799	104.7	2.4	107	109	113.2
4/9/08 21:00	798	104.5	1.3	106.9	108.7	113.1
4/9/08 22:00	798	104.5	0	106.8	108.2	113.3
4/9/08 23:00	797	104.2	0	106.8	107.8	114.5
4/10/08 0:00	797	104.2	0	106.5	107.3	116.2
4/10/08 1:00	797	104.2	88.3	106.0	107.0	117.5
4/10/08 2:00	796	107.2	99.5	106.4	106.8	117.3
4/10/08 2.00	790	103.9	99.0 00 R	100.4	100.0	117.3
4/10/08 1·00	795	103.0	00 P	107.4	100.4	117.3
1/10/08 5·00	702	103.7	33.0 00 7	110.0	100	117.3
4/10/08 S.00	793	103.0	99.1 00 e	110.1	100.9	117.0
1/10/00 0.00 1/10/00 7·00	792	103.3	99.0 00 7	112.0	100.0	117.0
H/ 10/00 / .00	792	103.3	99.7	113.2	105.2	117.2

4/10/08 8:00	792	103.1	99.7	113.6	104.9	117.4
4/10/08 9:00	792	103.1	99.7	113.9	104.9	117.3
4/10/08 10:00	793	103.1	99.7	114.1	104.9	117.3
4/10/08 11:00	793	103.1	99.7	114.6	104.9	117.3
4/10/08 12:00	794	103.3	99.5	114.9	105.2	117.1
4/10/08 13:00	794	103.3	99.5	115.2	105.4	117.1
4/10/08 14:00	795	103.2	99.3	115.7	105.8	117.3
4/10/08 15:00	795	103.2	99.1	115.7	106.3	117.1
4/10/08 16:00	796	103.4	98.9	115.7	106.7	117.3
4/10/08 17:00	797	103.5	98.9	115.8	107.3	117.3
4/10/08 18:00	797	103.5	99	115.8	107.8	117
4/10/08 19:00	798	103.6	98.9	115.9	108.5	117.1
4/10/08 20:00	798	103.5	98.9	115.8	109.3	117.3
4/10/08 21:00	798	103.5	98.9	115.2	110.5	117.1
4/10/08 22:00	798	103.4	99.2	115.2	111.1	117.2
4/10/08 23:00	798	103.4	99.3	115.2	112	116.9
4/11/08 0:00	798	103.4	99.3	114.8	112.5	117.1
4/11/08 1:00	797	103.2	99.1	114.8	112.5	117.1
4/11/08 2:00	797	103.2	98.9	114.7	112.5	117.1
4/11/08 3:00	796	103.1	98.8	114.8	112.4	117.1
4/11/08 4:00	795	102.8	98.7	115	112.4	117.1
4/11/08 5:00	794	102.7	98.5	114.7	112.3	117.1
4/11/08 6:00	793	102.6	98.4	114.7	112.3	116.9
4/11/08 7:00	793	102.6	98.3	114.9	112.3	116.9
4/11/08 8:00	792	102.5	98.5	114.9	112.3	117.1
4/11/08 9:00	793	102.6	99	115.1	112.3	116.9
4/11/08 10:00	793	102.6	99.1	115.4	112.6	117.1
4/11/08 11:00	794	102.8	99.2	115.9	113	116.9
4/11/08 12:00	796	103.1	99.4	116.3	113.6	116.9
4/11/08 13:00	797	103.4	99.6	116.9	114.1	117.1
4/11/08 14:00	799	103.6	99.7	116.9	114.6	117.3
4/11/08 15:00	800	103.9	99.5	117.1	115.4	117
4/11/08 16:00	801	104	99.5	117.1	116.3	117.1
4/11/08 17:00	803	104.4	99.5	117.4	117.1	117.3
4/11/08 18:00	804	104.6	99.6	117.4	117.6	117.3
4/11/08 19:00	805	104.8	99.8	116.7	118.1	117.2
4/11/08 20:00	805	104.8	99.8	116.5	118.2	117.3
4/11/08 21:00	806	104.8	99.8	116.1	118.1	117.3
4/11/08 22:00	806	104.8	99.8	116	117.8	116.8
4/11/08 23:00	806	104.8	99.9	115.4	117.6	116.6
4/12/08 0:00	805	104.8	100	115.1	117	117.3
4/12/08 1:00	804	104.7	99.8	114.8	116.4	116.9
4/12/08 2:00	803	104.6	99.9	114.7	115.6	117.4
4/12/08 3:00	803	104.0	99.9	114.7	114.8	117.4
4/12/08 4:00	802	104.0	100	114.7	113.0	117.3
4/12/08 5:00	801	104.4	100	113.5	113.0	117.2
4/12/08 6:00	801	104.3	100	11/	110.2	117.2
4/12/08 7:00	807 802	104.0	100	112 5	111.0	117
4/12/08 8:00	802 802	104.4	100	112.7	111.7	117 2
4/12/08 9:00	200 200	105.1	100.1	11/ 2	111.0	117.3
<u>4/12/08 10:00</u>	Q11	105.1	100.1	114.2	110.6	117.0
1/12/08 11:00	011 Q16	106.5	100.1	116.0	110.0	117.4
T/12/00 11.00	010	100.0	100	110.1	110.3	C. 1 I

4/12/08 12:00	819	106.9	97.5	116.8	109.9	117.1
4/12/08 13:00	823	107.4	95.3	116.7	109.9	117.5
4/12/08 14:00	826	108	95.3	116.6	110.2	117.3
4/12/08 15:00	828	108.2	95.1	117	110.8	116.3
4/12/08 16:00	830	108.6	95.1	116.8	111.1	116.5
4/12/08 17:00	833	109	95.1	116.7	111.2	116.4
4/12/08 18:00	835	109.4	95	116.2	111.6	116.5
4/12/08 19:00	837	109.7	95	115.6	111.9	116.5
4/12/08 20:00	839	110	95.1	115.2	112.2	116.4
4/12/08 21:00	842	110.2	95.2	114.9	112.3	116.5
4/12/08 22:00	844	110.5	95.2	114.6	112.7	116.5
4/12/08 23:00	845	110.6	95.2	114.5	112.9	116.4
4/13/08 0:00	846	110.7	95.3	114.6	112.7	116.8
4/13/08 1:00	846	110.7	95.4	114.6	112.8	117.3
4/13/08 2:00	846	110.7	95.3	114.8	112.8	117.3
4/13/08 3:00	847	110.9	95.2	114.4	112.8	117
4/13/08 4:00	847	110.9	95	114.8	112.8	117.3
4/13/08 5:00	849	111.1	94.9	114.9	112.8	117
4/13/08 6:00	849	111.1	94.9	115	112.8	117.4
4/13/08 7:00	851	111.4	94.9	115.3	112.7	117.4
4/13/08 8:00	853	111.6	94.9	115.3	112.5	117.3
4/13/08 9:00	855	111.9	96.3	115.8	112.5	117.1
4/13/08 10:00	857	112.3	96.5	116.3	112.7	117.3
4/13/08 11:00	860	112.9	96.4	116.7	112.9	117
4/13/08 12:00	863	113.3	96.4	117	113.3	117.2
4/13/08 13:00	866	113.8	96.1	117.7	114	117.2
4/13/08 14:00	868	114.1	96	117.5	114.8	117.5
4/13/08 15:00	870	114.5	95.9	117.7	115.6	117.5
4/13/08 16:00	872	114.7	95.8	118	116.3	117.5
4/13/08 17:00	872	114.9	95.6	118	116.7	117.5
4/13/08 18:00	873	115	85.3	117.7	117.1	114.9
4/13/08 19:00	873	115.2	75.7	118	117.1	114.8
4/13/08 20:00	872	114.9	75.7	116.9	116.8	114.7
4/13/08 21:00	870	114.5	75.7	115.9	116.4	114.7
4/13/08 22:00	869	114.2	75.7	115.7	115.8	114.8
4/13/08 23:00	867	113.9	75.6	115.3	115.4	114.6
4/14/08 0:00	865	113.5	75.7	114.4	114.9	114.5
4/14/08 1:00	862	113.3	75.7	114.8	114.3	114.6
4/14/08 2:00	860	113.2	75.8	115.2	113.9	114.6
4/14/08 3:00	858	112.7	75.8	114.9	113.8	114.6
4/14/08 4:00	857	112.6	75.7	115.1	113.8	114.7
4/14/08 5:00	856	112.6	75.7	114.4	113.5	114.6
4/14/08 6:00	854	112.2	75.7	115.3	113.8	114.7
4/14/08 7:00	853	112.2	76.9	115.2	114	115.4
4/14/08 8:00	853	112.1	96.4	115.3	114.2	117.7
4/14/08 9:00	853	112.2	96.5	115.3	114.2	117.6
4/14/08 10:00	852	112.1	96.8	115.5	114.2	117.6
4/14/08 11:00	853	112.2	96.8	116	114.2	117.6
4/14/08 12:00	855	112.5	96.8	116.3	114.2	117.7
4/14/08 13:00	858	112.9	96.8	116.5	114.2	117.7
4/14/08 14:00	858	112.9	95.5	116.4	114.7	117.3
4/14/08 15:00	860	113.2	93.8	116.8	114.9	117.1

1/1 1/00 10:00	000	440.0	00.0	440.0	445 0	4470
4/14/08 16:00	860	113.2	93.8	116.8	115.3	117.6
4/14/08 17:00	859	112.9	93.8	116.8	115.5	117.2
4/14/08 18:00	858	112.9	93.7	116.6	115.1	117.3
4/14/08 19:00	856	112.6	93.7	116.6	115.3	117.2
4/14/08 20:00	854	112.2	93.7	116.4	115.5	117.1
4/14/08 21:00	851	111.8	94.1	116.2	115.3	117.1
4/14/08 22:00	847	111.2	94.3	115.8	114.9	117.2
4/14/08 23:00	844	110.8	94.5	115.8	114.5	117
4/15/08 0:00	841	110.2	94.6	115.6	114.2	117
4/15/08 1:00	838	109.8	94.5	115	113.7	117
4/15/08 2:00	835	109.4	94.2	114.9	113.6	116.9
4/15/08 3:00	834	109.3	94.1	115.3	113.6	117
4/15/08 4:00	833	109	94.2	115	113.6	117
4/15/08 5:00	833	109	94.2	114.2	113.4	117
4/15/08 6:00	832	108.9	94.2	115	113.6	117.1
4/15/08 7:00	832	108.8	94.2	114.7	113.2	117
4/15/08 8:00	832	108.8	94.2	114.7	112.9	117.1
4/15/08 9:00	831	108.6	94.2	114.7	112.9	117.1
4/15/08 10:00	831	108.6	94.5	115.1	112.9	116.9
4/15/08 11:00	832	108.6	94.6	114.8	112.9	117.1
4/15/08 12:00	834	108.9	94.6	115.2	113	117.1
4/15/08 13:00	835	109	94.7	115.5	113.1	117.1
4/15/08 14:00	837	109.3	94.9	115.3	113.4	117.2
4/15/08 15:00	838	109.4	97.3	115.7	113.7	117.5
4/15/08 16:00	837	109.3	97.8	115.5	113.8	117.3
4/15/08 17:00	837	109.3	97.7	115.7	113.8	117.2
4/15/08 18:00	835	108.9	97.7	115.7	113.7	117.4
4/15/08 19:00	834	108.7	98.5	115.7	113.8	116.9
4/15/08 20:00	832	108.5	98	115.5	113.5	116.8
4/15/08 21:00	829	108.1	98	115.3	113.2	116.8
4/15/08 22:00	827	107.7	98.3	115.2	113.1	116.8
4/15/08 23:00	824	107.3	98.5	114.9	112.8	116.9
4/16/08 0:00	823	107.2	98.9	114.3	112 7	117.2
4/16/08 1:00	821	106.9	98.8	114.3	112.6	117.4
4/16/08 2:00	819	106.5	98.4	114 4	112.5	117
4/16/08 3:00	817	106.2	98.3	114.2	112.5	117
4/16/08 4:00	817	106.2	98.3	114 5	112.0	117 3
4/16/08 5:00	816	106.1	98.5	114.6	112.2	117.0
4/16/08 6:00	817	106.1	98.4	114.8	112.2	116.9
4/16/08 7:00	817	106.2	98.2	114.8	112.2	116.2
4/16/08 8:00	810	106.4	90.2	114.0	112.2	116
4/16/08 0:00	820	106.5	07.1	113.2	112.2	116
4/16/08 10:00	822	100.5	07	112.2	112.2	115.0
4/16/08 11:00	022	100.0	07.1	112.0	112	116.1
4/10/00 11:00	024	100.9	97.1	112.2	112.2	110.1
4/16/08 12:00	020	107.1	97.1	111.0	112.4	110.1
4/16/08 13:00	829	107.7	97.2	111.4	112.5	110.2
4/16/08 14:00	831	107.8	99.6	111.1	112.7	116.7
4/10/08/15:00 4/40/09 40:00	832	108.1	101.4	111.5	113.1	116./
4/16/08 16:00	833	108.2	101.4	111.6	113.6	116.6
4/16/08 17:00	833	108.2	101.5	111.8	114	116.6
4/16/08 18:00	833	108.2	101.5	112	114.4	116.7
4/16/08 19:00	832	108.1	101.4	112	114.6	117.1

4/16/08 20:00	831	108.1	101.2	112	114.6	117.4
4/16/08 21:00	830	107.9	101.3	112.4	114.5	117.4
4/16/08 22:00	830	107.9	101.6	113.1	114.1	117.4
4/16/08 23:00	830	107.9	101.1	113.3	113.5	117.1
4/17/08 0:00	830	107.9	101.2	113.5	112.8	116.9
4/17/08 1:00	831	108.1	101	113.6	112.2	116.9
4/17/08 2:00	831	108.1	101	113.7	112.1	116.5
4/17/08 3:00	831	108.2	100.7	114	111.9	116.9
4/17/08 4:00	830	108.1	100.6	114.4	111.9	116.9
4/17/08 5:00	830	108.1	100.7	114.4	111.9	117
4/17/08 6:00	829	107.9	101.1	114.8	111.9	116.6
4/17/08 7:00	828	107.8	100.8	114.9	111.9	116.5
4/17/08 8:00	827	107.7	100.9	115.2	111.9	116.5
4/17/08 9:00	826	107.6	101	115.3	112.1	116.5
4/17/08 10:00	826	107.6	101	115.2	112.2	116.5
4/17/08 11:00	826	107.6	100.9	115.2	112.3	116.4
4/17/08 12:00	826	107.6	100.9	114.9	112.6	116.5
4/17/08 13:00	827	107.7	100.7	115.2	113	116.4
4/17/08 14:00	828	108	100.2	115.3	113.1	116.5
4/17/08 15:00	830	108.4	100.2	115.5	113.5	116.7
4/17/08 16:00	832	108.4	100.2	115.3	113.7	116.6
4/17/08 17:00	834	108.0	100.0	115.0	113.0	116.4
4/17/08 18:00	836	100.0	100.2	115.4	114.2	116.6
4/17/08 19:00	837	100.0	100.2	115.2	114.2	116.4
4/17/08 20:00	838	100.4	100.0	115.4	114.5	117.1
4/17/08 21:00	830	100.0	101.4	115.0	114.0	117.1
4/17/08 22:00	838	103.7	101.0	11/1 8	114.5	117.1
4/17/08 23:00	838	103.5	101.3	114.0	114.1	116.8
4/18/08 0:00	837	109.5	102.2	114.5	113.7	116.8
4/18/08 1:00	835	103.4	101.1	114.5	112.5	116.8
4/18/08 2:00	833	103.2	100.8	114.7	112.0	116.8
4/18/08 3:00	832	100.9	100.0	114.5	112.1	117.1
4/18/08 4:00	830	100.9	100.7	114.7	111 7	116.0
4/18/08 5:00	828	100.0	100.5	114.3	111.7	116.0
4/18/08 6:00	826	100.4	100.5	114.7	111.0	116.0
4/18/08 7:00	824	100.1	100.5	114.7	111.0	116.0
4/18/08 8:00	024	107.9	100.0	114.5	111.2	110.9
4/18/08 0:00	020	107.7	00.8	115 1	110.9	116.9
4/10/00 9.00	921	107.0	99.0 100	115.1	110.8	110.0
4/18/08 11:00	021 921	107.5	100	114.0	110.8	116 7
4/18/08 12:00	021	107.5	100.1	114.9	110.7	116.0
4/10/00 12:00	022	107.0	100.1	115.1	111.1	110.9
4/10/08 13:00	023	107.9	100.2	115.1	111.2	116.0
4/10/08 14:00	020	100.3	100.2	110.4	111.0	110.0
4/16/08 15:00	027	100.7	100	110.0	111.9	110.0
4/18/08 16:00	828	108.8	99.8	115.4	111.9	117.1
4/18/08 17:00	830	109.1	99.7	115.3	111.9	117.1
4/10/U8 18:00	831 000	109.2	99.8	115.2	111.8	11/./
4/18/08 19:00	832	109.3	99.7	115.3	111.8	
4/18/08 20:00	834	109.6	99.6	115.1	111.3	117.5
4/18/08 21:00 4/48/08 08:00	834	109.6	99.8	114.9	111.1	117.5
4/18/08 22:00	836	109.9	100.1	115.6	111	11/.7
4/18/08 23:00	835	109.7	100.3	115.6	111.1	117.6

4/19/08 0:00	835	109.9	100.4	115.2	110.7	117.6
4/19/08 1:00	833	109.6	100.2	115.5	110.7	117.6
4/19/08 2:00	832	109.5	100.2	116.1	110.6	117.6
4/19/08 3:00	830	109.4	100.3	115.9	110.6	117.5
4/19/08 4:00	828	109.1	100.3	116.3	110.6	117.6
4/19/08 5:00	826	108.8	100.3	115.8	110.6	117.6
4/19/08 6:00	824	108.6	100.3	115.7	110.5	117.5
4/19/08 7:00	822	108.3	100.3	115.5	110.4	117.6
4/19/08 8:00	820	108	100.2	116	110.4	117.5
4/19/08 9:00	819	107.9	100.2	115.9	110.5	117.6
4/19/08 10:00	818	107.8	100.2	116.3	110.5	117.5
4/19/08 11:00	818	107.9	100.2	116.2	110.5	117.5
4/19/08 12:00	817	107.8	100.2	116.4	110.9	117.5
4/19/08 13:00	817	107.8	100.2	116.6	111.7	117.5
4/19/08 14:00	816	107.8	100.2	116.3	112.6	117.5
4/19/08 15:00	816	107.7	100.1	116.2	113.1	117.5
4/19/08 16:00	816	107.7	100.1	116.2	113.4	117.5
4/19/08 17:00	816	107.7	100.1	116	113.9	117.5
4/19/08 18:00	816	107.7	100.2	116.3	114.1	117.5
4/19/08 19:00	816	107.7	100.2	116.2	113.9	117.5
4/19/08 20:00	817	107.6	100.3	114.8	113.7	117.7
4/19/08 21:00	817	107.6	100.5	115.5	113.6	117.5
4/19/08 22:00	818	107.8	100.6	115.6	113.5	117.5
4/19/08 23:00	819	107.9	101	115.6	113.4	117.6
4/20/08 0:00	820	108	101.2	115.6	113	117.5
4/20/08 1:00	822	108.3	101	115.9	113	117.5
4/20/08 2:00	823	108.3	101	116	112.9	117.6
4/20/08 3:00	824	108.4	101.1	116.1	112.9	117.5
4/20/08 4:00	824	108.4	101.1	115.9	112.9	117.6
4/20/08 5:00	826	108.7	101.1	115.3	112.6	117.5
4/20/08 6:00	827	108.8	101.1	115.5	112.5	117.5
4/20/08 7:00	829	108.9	101.1	115.4	112.3	117.6
4/20/08 8:00	831	109.2	101.1	115.8	112.5	117.5
4/20/08 9:00	833	109.5	101.1	116.2	112.4	117.7
4/20/08 10:00	835	109.7	101.1	116.5	112.6	117.7
4/20/08 11:00	837	110	100.9	116.8	112.7	117.8
4/20/08 12:00	837	110	100.8	117	113	118
4/20/08 13:00	838	110.1	101	117.3	113.6	117.8
4/20/08 14:00	838	110.1	101	117.1	114.1	117.8
4/20/08 15:00	838	110	101	117.1	114.9	117.8
4/20/08 16:00	838	110	100.9	117 1	115.6	118
4/20/08 17:00	837	109.8	101	117	115.8	117.8
4/20/08 18:00	836	109.9	100.9	116.8	115.8	117.6
4/20/08 19:00	835	100.0	100.5	116.3	115.7	117.0
4/20/08 20:00	834	100.4	100.0	115.8	115.4	116.9
4/20/08 21:00	831	108.0	100.0	115.8	115.4	116.5
4/20/08 22:00	820	100.5	100.0	115.0	115.4	116.6
4/20/08 22:00	820	108.7	100.0	115.2	11/ 5	116.6
4/21/08 0.00	023 878	108.7	100.0	115.5	11/	116.6
4/21/08 1·00	020 820	108.5	100.9	115.1	113 6	116.6
1/21/08 2·00	023	100.7	100.9	115	112.0	116.0
1/21/08 2.00	001	100.9	100.7	11/ 6	113.0	116.0
$\pi/2$ 1/00 3.00	000	109.2	100.7	114.0	113.0	110.0

4/21/08 4:00	835	109.6	100.6	115	113.7	116.8
4/21/08 5:00	837	109.8	100.4	114.9	113.6	116.8
4/21/08 6:00	839	110.1	100.4	114.8	113.6	116.9
4/21/08 7:00	841	110.4	100.3	115.2	113.6	116.9
4/21/08 8:00	841	110.2	100.2	115.3	113.6	117
4/21/08 9:00	842	110.4	100.3	115.6	113.6	116.8
4/21/08 10:00	843	110.5	100.3	115.8	113.7	116.9
4/21/08 11:00	844	110.6	100.2	115.9	113.7	116.8
4/21/08 12:00	844	110.6	100.3	116.3	114	116.8
4/21/08 13:00	844	110.8	100.3	116.3	114	116.8
4/21/08 14:00	844	110.8	100.3	116.2	114.3	116.8
4/21/08 15:00	844	110.8	100.4	116.2	114.1	116.9
4/21/08 16:00	843	110.6	100.5	116.2	114.4	117
4/21/08 17:00	843	110.6	100.1	116.3	114.1	116.8
4/21/08 18:00	843	110.6	100	116.2	114	116.8
4/21/08 19:00	842	110.5	100.2	115.9	114	116.8
4/21/08 20:00	842	110.5	100	115.7	113.7	117.3
4/21/08 21:00	842	110.5	99.9	115.4	113.6	117.4
4/21/08 22:00	845	110.9	100	115.3	113.6	117.8
4/21/08 23:00	847	111.2	100.2	115	113.5	118
4/22/08 0:00	850	111.5	100.6	114.8	113.4	117.3
4/22/08 1:00	852	111.8	101	114.5	113.4	117.2
4/22/08 2:00	854	112.2	100.8	114.7	113.2	117.2
4/22/08 3:00	856	112.5	100.7	114.8	113.4	116.9
4/22/08 4:00	856	112.5	100.7	115.2	113.1	117.2
4/22/08 5:00	857	112.8	100.5	115.6	112.9	117
4/22/08 6:00	858	112.9	100.1	115.7	112.4	117
4/22/08 7:00	857	112.8	99.8	116.1	111.8	117
4/22/08 8:00	855	112.5	99.4	116.1	111.6	117.3
4/22/08 9:00	853	112.2	99.3	115.9	111.1	117.7
4/22/08 10:00	849	111.9	99.5	116.1	110.9	117.7
4/22/08 11:00	846	111.5	99.4	115.5	110.7	118
4/22/08 12:00	843	111.1	99.2	115.4	110.8	117.8
4/22/08 13:00	841	110.9	99.1	115.3	110.8	118.1
4/22/08 14:00	840	111	99	115.2	110.6	118.2
4/22/08 15:00	841	111.2	99.1	115	111	117.8
4/22/08 16:00	844	111.6	98.8	114.6	111.1	118
4/22/08 17:00	847	112	98.5	114.6	111.1	117.8
4/22/08 18:00	850	112.4	98.4	114.9	111.4	117.7
4/22/08 19:00	854	113	98.2	114.4	111.8	117.6
4/22/08 20:00	857	113.5	98.2	115.1	112.2	117.7
4/22/08 21:00	858	113.6	98.3	115.1	112.2	117.3
4/22/08 22:00	858	113.6	98.6	115.5	111.8	116.8
4/22/08 23:00	858	113.8	98.6	116	111.2	117
4/23/08 0.00	858	113.5	98.8	115.4	110.4	116.9
4/23/08 1.00	857	113.4	99	115.8	110.2	117.2
4/23/08 2.00	856	113.2	98.7	116.2	109.9	116.9
4/23/08 3.00	854	113	98.5	116.1	109.9	117 2
4/23/08 4.00	853	112.8	98.4	115.8	110.2	116 9
4/23/08 5:00	850	112.0	98.3	116.1	110.2	117
4/23/08 6.00	848	112.7	98.2	116.2	110.0	117
4/23/08 7.00	846	111 9	90.2 98 1	115.0	110.7	117
., _0, 00 1.00	540		50.1	10.0	110.7	

4/23/08 8:00	845	111.8	97.7	116.1	110.8	116.8
4/23/08 9:00	844	111.6	97.8	116.1	110.9	116.6
4/23/08 10:00	845	111.6	97.9	116.1	111.1	116.9
4/23/08 11:00	847	111.9	97.9	116.1	111.1	116.9
4/23/08 12:00	850	112.3	97.9	116.2	111.3	116.9
4/23/08 13:00	854	112.8	97.9	116.1	111.9	116.9
4/23/08 14:00	860	113.6	97.9	116.3	112.6	117
4/23/08 15:00	864	114.1	97.9	116.2	113.3	117
4/23/08 16:00	870	114.9	97.9	115.7	113.8	116.9
4/23/08 17:00	873	115.2	97.9	115.2	114.2	117
4/23/08 18:00	877	115.5	97.9	115.8	114.2	117.1
4/23/08 19:00	879	115.8	97.9	115.9	114.1	117
4/23/08 20:00	881	116.1	98.1	115.7	113.5	117.1
4/23/08 21:00	880	115.8	98.2	115.9	113.1	117
4/23/08 22:00	877	115.2	98.3	116	113	116.9
4/23/08 23:00	874	114.7	98.4	116.1	112.7	116.8
4/24/08 0:00	872	114.4	98.7	115.9	112.3	116.9
4/24/08 1:00	868	113.8	98.9	115.8	111.9	116.9
4/24/08 2:00	865	113.2	98.7	115.8	111.3	116.7
4/24/08 3:00	861	112.5	98.7	115.5	110.8	116.4
4/24/08 4:00	858	112	98.3	115.5	110.5	116.3
4/24/08 5:00	854	111.5	98.2	115.3	110.1	116.6
4/24/08 6:00	851	111 1	98.1	115.2	110	116.6
4/24/08 7:00	847	110.4	98.1	115.2	109.9	116.5
4/24/08 8:00	844	110	98.1	115.2	110.1	116.3
4/24/08 9:00	842	109.6	98.2	114.9	110.2	116.5
4/24/08 10:00	840	109.2	98	114.8	110.6	116.8
4/24/08 11:00	830	100.2	98	114.0	111.0	116.0
4/24/08 12:00	838	103.1	98.1	114.0	111.2	117
4/24/08 13:00	838	100 1	08.1	114.0	111.4	116.8
4/24/08 14:00	838	100.1	08.1	114.7	112.6	116.0
4/24/08 15:00	830	100 1	08.1	114.7	112.0	116.0
4/24/08 16:00	840	109.1	08.1	114.5	113.1	110.9
4/24/08 17:00	940	109.2	09.1	114.4	112.5	116.0
4/24/08 17:00	040	109.2	90.1	114.3	113.7	110.9
4/24/08 10:00	041	109.4	90.1	114.3	113.9	117
4/24/08 19:00	040	109.2	90.1	114.4	113.9	117
4/24/08 20.00	041	109.4	90.1	114.3	113.0	11/.1
4/24/08 21:00	840	109.2	98.1	114.1	113.1	
4/24/08 22:00	840	109.2	98.1	114.2	112.7	117.1
4/24/08 23:00	840	109.2	98.1	113.9	112.3	117
4/25/08 0:00	840	109.2	98.2	114.1	111.9	11/
4/25/08 1:00	840	109.2	98.4	114.1	111.7	116.6
4/25/08 2:00	839	109.1	98.6	114	111.4	116.3
4/25/08 3:00	839	109	98.5	114	111.3	116.3
4/25/08 4:00	838	108.8	98.3	114.4	111.1	116.2
4/25/08 5:00	838	108.8	98.1	114.4	111	116.1
4/25/08 6:00	838	108.8	98	114.4	110.9	116.2
4/25/08 7:00	838	108.8	97.6	114.6	110.6	116.2
4/25/08 8:00	837	108.6	97.8	114.7	110.5	116.3
4/25/08 9:00	837	108.6	98	114.7	110.6	116.3
4/25/08 10:00	837	108.6	98.3	115	110.7	116.2
4/25/08 11:00	837	108.6	98.5	115.1	111.1	116.2

4/25/08 12:00	837	108.6	98.5	115.1	111.6	116.5
4/25/08 13:00	838	108.7	98.3	115.5	112.3	117
4/25/08 14:00	839	108.8	98.4	115.5	112.9	117.1
4/25/08 15:00	842	109.4	98.5	115.4	113.7	117.3
4/25/08 16:00	844	109.6	98.7	115	114.4	117.3
4/25/08 17:00	846	109.9	98.9	115.3	114.8	117.4
4/25/08 18:00	848	110.3	99.1	115.2	115	117.3
4/25/08 19:00	849	110.4	99.3	115	115.2	117.4
4/25/08 20:00	850	110.5	99.5	114.8	115	117.5
4/25/08 21:00	850	110.4	99.6	114.5	114.8	117.8
4/25/08 22:00	850	110.4	100.1	114.5	114.5	117.6
4/25/08 23:00	850	110.4	100.5	114.4	114.1	117.6
4/26/08 0:00	850	110.4	100.8	114.2	113.6	117.9
4/26/08 1:00	850	110.4	100.9	114.5	113.2	117.9
4/26/08 2:00	849	110.3	100.9	114.4	112.8	117.8
4/26/08 3:00	848	110.1	100.7	114.6	112.4	117.8
4/26/08 4:00	848	110	100.5	114.6	112	117.8
4/26/08 5:00	847	109.9	100.3	114.6	111.4	117.4
4/26/08 6:00	847	109.9	100.2	114.4	110.9	117.2
4/26/08 7:00	847	109.9	100.2	114.3	110.5	117
4/26/08 8:00	846	109.6	100.2	114.1	110	116.8
4/26/08 9:00	846	109.7	100.3	114.6	109.8	116.7
4/26/08 10:00	845	109.6	100.4	115.3	109.8	116.7
4/26/08 11:00	845	109.7	100.4	115.5	110.1	116.7
4/26/08 12:00	845	109.7	100.4	115.9	110.5	116.6
4/26/08 13:00	846	109.9	100.4	115.9	111	116.8
4/26/08 14:00	847	110.1	100.4	116.2	111.7	116.8
4/26/08 15:00	848	110.3	100.4	116.1	112.2	116.9
4/26/08 16:00	849	110.5	100.4	116.2	112.5	116.9
4/26/08 17:00	850	110.7	100.4	116.2	112.7	117.2
4/26/08 18:00	851	111	100.4	116	112.7	117.4
4/26/08 19:00	851	111	100.6	116	112.8	117.4
4/26/08 20:00	852	111.1	100.9	115.7	112.5	117.6
4/26/08 21:00	853	111.2	100.9	115.5	112.2	117.8
4/26/08 22:00	854	111.3	101	115.6	112	117.8
4/26/08 23:00	855	111.5	101.1	115.5	111.8	118
4/27/08 0:00	856	111.6	101.1	115.2	111.5	117.7
4/27/08 1:00	856	111.6	100.9	115	111.3	117.8
4/27/08 2:00	857	111.7	100.8	115.1	111.2	117.6
4/27/08 3:00	857	111.7	100.7	115	111.2	117.5
4/27/08 4:00	857	111.7	100.5	115	111.2	117.2
4/27/08 5:00	858	112	100.1	115.2	111	117.2
4/27/08 6:00	858	112	99.8	115.4	110 7	116.9
4/27/08 7:00	858	112	99.8	115.4	110.4	116.8
4/27/08 8:00	858	112	99.9	115.5	110.2	116.8
4/27/08 9:00	858	112	99.7	115.8	110	116.9
4/27/08 10:00	859	112 1	99.4	116.1	110.3	116.8
4/27/08 11:00	860	112.4	99.2	116.8	110.7	117.2
4/27/08 12:00	861	112.5	99	116.9	111.2	117
4/27/08 13:00	862	112.8	98.8	117.3	111 7	117
4/27/08 14:00	864	112.9	98.5	117.3	112.4	117
4/27/08 15:00	866	113.4	98.4	117.6	113.2	117

4/27/08 16:00	867	113.5	98.4	117.8	114	116.9
4/27/08 17:00	868	113.8	98.6	117.8	114.6	116.9
4/27/08 18:00	869	113.9	98.5	117.2	115.3	116.9
4/27/08 19:00	869	113.9	98.6	117.1	115.9	116.9
4/27/08 20:00	869	113.9	98.8	116.9	116.2	117
4/27/08 21:00	870	114	99.1	116.6	116.2	117
4/27/08 22:00	870	114	99.4	116.2	116.2	116.8
4/27/08 23:00	871	114.2	99.9	116.2	116.1	116.9
4/28/08 0:00	871	114.2	100.1	116.2	115.9	117.1
4/28/08 1:00	870	114	100.1	116.3	115.7	117.3
4/28/08 2:00	871	114.2	100	116.6	115.7	117.2
4/28/08 3:00	871	114.3	99.9	116.5	115.8	117.4
4/28/08 4:00	872	114.4	99.6	116.6	115.7	117.4
4/28/08 5:00	872	114.4	99.5	116.9	115.7	117.4
4/28/08 6:00	872	114.4	99.3	117.1	115.6	117.4
4/28/08 7:00	872	114 4	98.9	116.9	115.3	117
4/28/08 8:00	873	114.6	98.4	117	115.2	116.8
4/28/08 9:00	873	114.6	98.2	117	115.1	117.2
4/28/08 10:00	873	114 7	98.5	116.9	114.9	117.2
4/28/08 11:00	873	114.7	98.5	116.9	115.1	117.2
4/28/08 12:00	874	114.7	98.5	116.8	115.3	117.0
4/28/08 13:00	875	114.0	98.5	116.6	115.6	117.4
4/28/08 17:00	875	115	90.5	116.8	116	117.0
4/28/08 15:00	875	115 1	90.5	116.8	116.5	117.7
4/28/08 16:00	875	115.1	90.5	117.2	117.3	117.7
4/28/08 17:00	875	115.3	90.0	117.2	117.3	110
4/28/08 18:00	874	115.3	90.0	117	118.2	110
4/28/08 10:00	074 974	115.5	90.7	117	110.2	110
4/28/08 19:00	074	115.5	90.0	116.9	110.2	117.0
4/28/08 20:00	073	115.2	99	116.0	117.9	117.9
4/28/08 22:00	073	115.2	99.4	110.4	117.5	116.0
4/20/00 22.00	013	110.2	99.0	110.3	110.7	110.0
4/20/00 23.00	012	114.9	100	110.7	115.7	117.1
4/29/08 0.00	074	114.9	100	110.3	110.2	117.2
4/29/08 1.00	071	114.0	99.0	115.9	114.0	117.4
4/29/08 2:00	0/0	114.0	99.6	110	114.3	117.2
4/29/08 3.00	009	114.0	99.4	110.4	114.2	117.1
4/29/08 4.00	007	114.4	99.3	110.7	114.2	117.4
4/29/08 5:00	C08	114.1	99.1	117	114.1	117.1
4/29/08 6:00	863	113.9	98.9	117	113.9	117.3
4/29/08 7:00	862	113.7	98.5	116.7	113.7	116.9
4/29/08 8:00	861	113.6	98	117	113.7	117.1
4/29/08 9:00	860	113.5	97.8	117	113.7	117.4
4/29/08 10:00	859	113.3	98	116.7	113.8	117.4
4/29/08 11:00	859	113.3	98.1	116.6	113.8	117.2
4/29/08 12:00	859	113.3	98.2	116.3	114.3	117.2
4/29/08 13:00	859	113.3	98.4	116.4	114.7	117.4
4/29/08 14:00	860	113.3	98.6	116.1	114.7	117.2
4/29/08 15:00	859	113.2	98.7	116.1	115.4	117.4
4/29/08 16:00	858	113	98.8	116	115.5	117.4
4/29/08 17:00	858	113	98.6	116	115.5	117.1
4/29/08 18:00	858	112.9	98.6	115.9	115.5	117.1
4/29/08 19:00	857	112.8	98.8	116	115.5	116.8

4/29/08 20:00	857	112.8	99.1	115.7	115.7	117
4/29/08 21:00	855	112.4	99.3	115.6	115.6	117.1
4/29/08 22:00	854	112.2	99.5	115.2	114.9	116.9
4/29/08 23:00	852	112	99.6	115.3	114.7	117.1
4/30/08 0:00	851	111.8	99.7	115.3	114	116.8
4/30/08 1:00	851	111.7	99.5	115.2	113.2	117
4/30/08 2:00	851	111.7	99.4	115.6	112.8	117
4/30/08 3:00	850	111.5	99.1	115.4	112.3	116.9
4/30/08 4:00	848	111.3	99	115.7	111.9	116.8
4/30/08 5:00	846	110.9	98.9	115.3	111.6	116.8
4/30/08 6:00	844	110.6	98.7	115	111.4	116.9
4/30/08 7:00	843	110.5	98.4	115.5	111.2	116.8
4/30/08 8:00	842	110.2	98.3	115.5	111.2	116.6
4/30/08 9:00	841	110.1	98.4	115.5	111.4	116.5
4/30/08 10:00	840	109.9	98.5	115.5	111.4	116.6
4/30/08 11:00	840	109.9	98.5	115.4	111.6	116.4
4/30/08 12:00	840	109.9	98.9	115.6	112	116.8
4/30/08 13:00	840	109.9	99.1	116	112.6	116.7
4/30/08 14:00	839	109.8	99.1	115.9	113	116.6
4/30/08 15:00	839	109.8	99.3	115.8	113.7	116.7
4/30/08 16:00	840	109.9	99.5	115.8	114.1	116.6
4/30/08 17:00	839	109.7	99.6	115.6	114.5	116.7
4/30/08 18:00	840	109.8	99.8	115.4	114.7	116.7
4/30/08 19:00	839	109.8	100	115.3	115	116.6
4/30/08 20:00	838	109.5	100.1	114.7	115	117
4/30/08 21:00	839	109.5	100.2	114.8	114.6	117.1
4/30/08 22:00	839	109.5	100.4	114.6	114.3	116.8
4/30/08 23:00	838	109.4	100.6	114.4	114	116.8
5/1/08 0:00	838	109.3	100.7	114.6	113.7	116.9
5/1/08 1:00	837	109.1	100.8	114.7	113.1	116.7
5/1/08 2:00	836	109	100.5	114.5	112.7	116.7
5/1/08 3:00	835	108.9	100.5	114.7	112.5	116.7
5/1/08 4:00	835	108.9	100.4	114.9	112.1	116.5
5/1/08 5:00	834	108.7	100.1	114.8	111.9	116.9
5/1/08 6:00	833	108.5	99.8	114.7	111.7	116.9
5/1/08 7:00	832	108.3	99.6	114.7	111.4	117.2
5/1/08 8:00	832	108.3	99.7	114.4	111.4	117.2
5/1/08 9:00	832	108.3	99.8	114.4	111.4	117.2
5/1/08 10:00	832	108.3	99.8	114.7	111.7	117.2
5/1/08 11:00	833	108.5	99.7	114.8	112.1	117.2
5/1/08 12:00	835	108.9	99.8	114.9	112.7	116.9
5/1/08 13:00	839	109.4	99.7	115.1	113.5	117.4
5/1/08 14:00	841	109.8	99.6	115.6	114.3	117.6
5/1/08 15:00	844	110.2	99.5	115.6	114.8	117.9
5/1/08 16:00	847	110.7	99.4	115.9	115.5	118.1
5/1/08 17:00	850	111.1	99.3		115.8	117.9
5/1/08 18:00	851	111.2	99.3		116.2	118
5/1/08 19:00	852	111.5	99.3		116.2	118.2
5/1/08 20:00	852	111.5	99.3		115.8	118.2
5/1/08 21:00	851	111.4	99.4		115.3	118.1
5/1/08 22:00	852	111.4	99.6		114.7	118.1
5/1/08 23:00	852	111.4	99.7		114.2	118.3

5/2/08 0:00	851	111.4	99.8	113.6	118.1
5/2/08 1:00	850	111.1	99.8	113	118
5/2/08 2:00	850	111.3	99.8	112.7	117.8
5/2/08 3:00	850	111.3	100	112.3	117.4
5/2/08 4:00	849	111.1	99.9	112	117.5
5/2/08 5:00	849	111.3	99.7	111.6	117.4
5/2/08 6:00	848	111.1	99.7	111.1	117.1
5/2/08 7:00	847	110.9	99.7	110.6	117.1
5/2/08 8:00	846	110.7	99.7	110.4	117.1
5/2/08 9:00	846	110.9	99.7	110.4	117.6
5/2/08 10:00	847	111	99.8	110.6	117.5
5/2/08 11:00	848	111.1	100	111.2	117.5
5/2/08 12:00	850	111.4	100.1	111.9	117.4
5/2/08 13:00	851	111.5	100.2	112.8	117.4
5/2/08 14:00	852	111.7	100.1	113.5	117.9
5/2/08 15:00	853	111.9	100.1	113.9	118.2
5/2/08 16:00	854	112.1	100.4	114	118
5/2/08 17:00	856	112.3	100.6	114.1	118
5/2/08 18:00	858	112.7	100.5	114	118.1
5/2/08 19:00	861	113.1	100.2	114.2	118.5
5/2/08 20:00	863	113.4	100.2	114	118.6
5/2/08 21:00	864	113.4	100.3	114	118.5
5/2/08 22:00	865	113.5	100.5	113.6	118.5
5/2/08 23:00	866	113.6	100.5	113.3	118.2
5/3/08 0:00	867	113.8	100.7	112.9	118.3
5/3/08 1:00	868	113.8	100.9	112.8	118.1
5/3/08 2:00	868	113.8	100.7	112.7	117.9
5/3/08 3:00	868	113.8	100.5	112.7	117.5
5/3/08 4:00	868	113.8	100.6	112.7	117
5/3/08 5:00	869	113.9	100.7	112.7	117.1
5/3/08 6:00	868	113.8	100.6	112.4	117.4
5/3/08 7:00	868	113.6	100.4	112.4	117.3
5/3/08 8:00	868	113.6	100.4	112.3	117.2
5/3/08 9:00	868	113.6	100.4	112.4	117.1
5/3/08 10:00	869	113.7	100.3	112.5	117.1
5/3/08 11:00	869	113.7	100.5	112.8	117.2
5/3/08 12:00	870	113.9	100.5	113.2	117.2
5/3/08 13:00	870	113.9	100.5	113.7	117
5/3/08 14:00	871	114.2	100.4	114.2	117.3
5/3/08 15:00	871	114.2	100.5	114.9	117.1
5/3/08 16:00	871	114.2	100.4	115.3	117.1
5/3/08 17:00	872	114.3	100.5	115.5	117.3
5/3/08 18:00	872	114.3	100.5	115.7	117.1
5/3/08 19:00	872	114.4	100.5	115.7	117
5/3/08 20:00	871	114.2	100.7	115.5	117.3
5/3/08 21:00	871	114.2	100.9	115.4	117.3
5/3/08 22:00	870	113.9	100.9		117.6
5/3/08 23:00	868	113.6	101.1		117.8
5/4/08 0:00	867	113.5	101.4		117.4
5/4/08 1:00	867	113.5	101.2		11/
5/4/08 2:00	866	113.4	101.4		117.3
5/4/08 3:00	865	113.2	101.3	113.8	117.3

E/4/00 4.00	064	110 1	101 1	111	117 0
5/4/08 4.00	804 802	113.1	101.4	114	117.2
5/4/08 5:00	863	113	101.3	114	117.6
5/4/08 6:00	863	113	101.3	113.8	118
5/4/08 7:00	861	112.7	101.2	113.7	117.9
5/4/08 8:00	861	112.7	101.2	113.8	117.8
5/4/08 9:00	861	112.5	101.1	114	117.5
5/4/08 10:00	861	112.7	101	114.1	117.6
5/4/08 11:00	862	112.8	101	114.6	117.6
5/4/08 12:00	864	113.2	101	115.3	118.1
5/4/08 13:00	865	113.5	101.1	116.2	118.1
5/4/08 14:00	866	113.6	101	117.1	118.2
5/4/08 15:00	868	114.1	100.9	117.8	118.4
5/4/08 16:00	869	114.2	100.9	118.5	118.4
5/4/08 17:00	870	114.5	100.7	118.7	118.4
5/4/08 18:00	870	114.5	100.7	119	118.4
5/4/08 19:00	871	114.6	100.7	119.2	118.4
5/4/08 20:00	871	114.6	100.7	119.2	118.4
5/4/08 21:00	871	114.6	101	119.1	118.1
5/4/08 22:00	871	114.5	101.2	119.1	118.4
5/4/08 23:00	870	114.3	101.4	119.1	118.5
5/5/08 0:00	870	114.3	101.4	118.7	118.2
5/5/08 1:00	869	114.2	101.2	118.2	118
5/5/08 2:00	868	114.1	101.1	118	118
5/5/08 3:00	867	114.1	101	117.7	117.8
5/5/08 4:00	866	113.8	100.7	117.3	117.3
5/5/08 5:00	866	113.8	100.4	117	117.2
5/5/08 6:00	866	113.8	100.3	116.6	117.2
5/5/08 7:00	867	113.9	100	116.6	117.2
5/5/08 8:00	869	114.2	100	116.6	117.3
5/5/08 9:00	870	114.3	100.2	116.6	117
5/5/08 10:00	871	114.5	100.1	116.8	117.2
5/5/08 11:00	873	114.9	100.1	117.1	117.2
5/5/08 12:00	875	115.1	100	118.1	117.2
5/5/08 13:00	877	115.4	99.9	118.6	117.6
5/5/08 14:00	878	115.5	99.9	119.4	117.6
5/5/08 15:00	880	115.9	97.4	119.9	117.4
5/5/08 16:00	880	115.9	97.3	120.5	117.4
5/5/08 17:00	880	115.9	97.4	120.7	117.4
5/5/08 18:00	881	116.1	97.3	120.6	117.5
5/5/08 19:00	882	116.2	97.3	120.2	117.6
5/5/08 20:00	880	115.9	97.2	119.7	118
5/5/08 21:00	879	115.7	97.2	118.9	117 9
5/5/08 22:00	876	115.3	97.6	118.2	117.5
5/5/08 23:00	875	115.0	97.3	117.4	117.3
5/6/08 0:00	874	114.8	97.0	116.2	117.0
5/6/08 1:00	872	114.0	97.5	115 /	117.1
5/6/08 2:00	871	114.0	97.5	115.4	117.3
5/6/08 2.00	970	11/2	07 2	117.1	116 Q
5/6/08 1.00	070	114.0	51.5 07 1	114.0	110.0
5/6/09 5:00	670	114.0	91.4 07.2	114.4	110.0
5/0/00 5.00	809	114.2	91.3	114.2	110.0
5/0/06 0:00	808	114.1	97.1	114	0.011
00:1 80/0/C	867	113.8	96.9	113.9	117

5/6/08 8:00	865	113.5	96.9	113.7	117
5/6/08 9:00	864	113.4	97.3	113.7	117.1
5/6/08 10:00	863	113.3	97.3	113.7	117.3
5/6/08 11:00	861	112.8	97.3	113.6	117.3
5/6/08 12:00	860	112.9	97.3	113.8	117.3
5/6/08 13:00	859	112.7	94.2	114.4	116.9
5/6/08 14:00	859	112.7	94.1	114.8	116.8
5/6/08 15:00	859	112.7	94.2	115	116.8
5/6/08 16:00	859	112.7	94.1	115.3	116.8
5/6/08 17:00	858	112.6	94	115.6	116.9
5/6/08 18:00	858	112.6	94.1	116	116.6
5/6/08 19:00	858	112.7	94.1	116.2	116.5
5/6/08 20:00	858	112.7	94	115.9	116.6
5/6/08 21:00	857	112.5	93.9	115.6	116.6
5/6/08 22:00	856	112.3	94.2	115.1	116.5
5/6/08 23:00	854	111.9	94.3	114.6	117
5/7/08 0:00	853	111.8	94.4	113.8	116.7
5/7/08 1:00	852	111.7	94.2	113.1	116.2
5/7/08 2:00	850	111.4	94.2	112.4	116.2
5/7/08 3:00	848	111.1	94.1	112.1	116.3
5/7/08 4:00	846	110.7	94.1	112	116.3
5/7/08 5:00	845	110.6	94.2	112	116.2
5/7/08 6:00	843	110.3	94.2	111.7	116.2
5/7/08 7:00	841	109.9	94	111.5	116.1
5/7/08 8:00	839	109.7	94	111.3	116.4
5/7/08 9:00	837	109.4	93.6	111.1	116.9
5/7/08 10:00	836	109.1	93.6	111.1	116.9
5/7/08 11:00	835	109	93.9	111.1	117.1
5/7/08 12:00	836	109.1	93.7	111.3	118
5/7/08 13:00	836	109.1	93.8	111.7	118.2
5/7/08 14:00	835	109	95.1	112.1	118.8
5/7/08 15:00	834	108.9	100.3	112.4	119.3
5/7/08 16:00	834	108.9	100.5	112.6	119.3
5/7/08 17:00	834	109	100.7	112.9	119.2
5/7/08 18:00	833	108.9	100.9	113.2	119.1
5/7/08 19:00	832	108.8	101.1	113.3	119.2
5/7/08 20:00	832	108.8	101.3	113	119.2
5/7/08 21:00	832	108.8	101.3	112.4	119
5/7/08 22:00	832	108.8	101.4	111.7	119.2
5/7/08 23:00	831	108.5	101.4	110.9	119.3
5/8/08 0:00	831	108.6	101.4	110.4	119.4
5/8/08 1:00	830	108.4	101.3	110	118.9
5/8/08 2:00	829	108.4	100.9	109.9	118.9
5/8/08 3:00	828	108.2	100.7	110	118.4
5/8/08 4:00	826	108	100.9	110	118
5/8/08 5:00	826	108	100.9	110	117.3
5/8/08 6:00	825	107.8	100.7	110	117.2
5/8/08 7:00	825	107.8	100.6	109.9	117.1
5/8/08 8:00	825	107.8	100.6	110	117 1
5/8/08 9:00	827	108.1	100.6	110	117.5
5/8/08 10:00	828	108.2	100.6	110.3	117.7
5/8/08 11:00	829	108.4	100.4	110.5	117.6

5/8/08 12:00	830	108.6	100.4	110.9	118
5/8/08 13:00	830	108.6	100.6	111.6	118
5/8/08 14:00	830	108.6	100.8	112	118
5/8/08 15:00	830	108.8	100.7	112.5	118.2
5/8/08 16:00	831	108.9	105.6	112.9	120.8
5/8/08 17:00	831	108.9	115.4	113.2	122.9
5/8/08 18:00	829	108.7	109.4	113.1	119
5/8/08 19:00	820	108.8	107.8	113.2	130
5/8/08 20:00	820	108.8	101.0	113.2	110
5/8/08 21:00	828	100.0	101.5	112.8	110
5/8/08 22:00	828	100.7	101.5	112.0	110
5/8/08 22:00	828	100.5	101.7	112.3	110.6
5/0/08 0:00	820	100.5	101.5	1116	120
5/9/08 0.00	029	100.7	101.7	111.0	110.2
5/9/06 1.00	029	100.7	101.7	111.2	119.3
5/9/06 2.00	020	100.0	101.5	110.0	119.4
5/9/08 3:00	828	108.5	101.4	110.0	119.8
5/9/08 4:00	827	108.4	101.4	110.7	119.3
5/9/08 5:00	827	108.4	101.2	111	119.6
5/9/08 6:00	827	108.2	101.1	111	119.6
5/9/08 7:00	828	108.4	101.3	111	119.3
5/9/08 8:00	829	108.5	99.9	110.7	119.5
5/9/08 9:00	831	108.8	100.3	110.7	119.5
5/9/08 10:00	832	108.9	100.1	110.8	119.7
5/9/08 11:00	834	109.2	99.9	111.1	119.6
5/9/08 12:00	836	109.6	98.8	111.6	120.8
5/9/08 13:00	837	109.7	99.8	111.9	120.7
5/9/08 14:00	839	110.1	100	112.3	120.1
5/9/08 15:00	840	110.2	100.2	112.8	120.1
5/9/08 16:00	842	110.5	100.2	113.2	120.8
5/9/08 17:00	843	110.8	100.2	113.5	121.1
5/9/08 18:00	845	111	100.4	113.4	121
5/9/08 19:00	846	111.2	101.3	113.4	121.3
5/9/08 20:00	847	111.3	101.6	113.4	121.4
5/9/08 21:00	847	111.3	102.1	113.1	121.1
5/9/08 22:00	849	111.4	115.7	112.7	120.8
5/9/08 23:00	849	111.4	114.6	112.3	120.7
5/10/08 0:00	850	111.5	112.5	111.8	121.5
5/10/08 1:00	851	111.7	101.2	111.5	121.2
5/10/08 2:00	853	111.9	101.5	111.4	121.4
5/10/08 3:00	855	112.4	101.4	111.3	121.4
5/10/08 4:00	856	112.5	101.1	111.1	121.4
5/10/08 5:00	857	112.6	100.9	111	121.5
5/10/08 6:00	858	112.7	100.7	111.1	121.4
5/10/08 7:00	858	112.7	100.4	111.1	121.3
5/10/08 8:00	859	112.9	100.3	111.3	121.2
5/10/08 9:00	860	113	100.2	111.7	120.9
5/10/08 10:00	861	113.3	100	111.9	120.9
5/10/08 11:00	864	113.7	99.9	112.3	120.3
5/10/08 12:00	867	114 1	99.9	112.6	120.7
5/10/08 13:00	869	114 3	99.9	112.0	120.5
5/10/08 14:00	871	114.6	99.8	113 3	121
5/10/08 15:00	872	114.0	99.9	113.5	120 0
0/10/00 10.00	012	114.0	55.0	115.5	120.9

5/10/08 16:00	873	115	99.6	113.6	121.1
5/10/08 17:00	872	114.9	97.1	113.9	120.7
5/10/08 18:00	872	115	97.2	114.1	120.2
5/10/08 19:00	872	115	97.4	114.1	120.2
5/10/08 20:00	872	115	97.5	114.1	120.2
5/10/08 21:00	873	115	97.4	113.6	120
5/10/08 22:00	873	114.9	97.4	113.4	120
5/10/08 23:00	872	114.7	97.9	113	119.8
5/11/08 0:00	870	114.5	97.7	112.7	119.8
5/11/08 1:00	869	114.2	97.4	112.4	119.5
5/11/08 2:00	867	113.9	97.4	112.4	119.8
5/11/08 3:00	866	113.8	97.7	112.4	119.3
5/11/08 4:00	865	113.5	97.7	112.4	119.3
5/11/08 5:00	863	113.3	97.7	112.3	119.1
5/11/08 6:00	860	112.9	97	112.2	118.1
5/11/08 7:00	857	112.5	96.9	111.7	118.1
5/11/08 8:00	855	112.1	96.9	111.6	118.1
5/11/08 9:00	853	111.8	96.9	111.6	117.8
5/11/08 10:00	852	111.7	96.8	111.7	118
5/11/08 11:00	851	111.4	96.9	111.9	117.8
5/11/08 12:00	850	111.3	96.9	112	117.9
5/11/08 13:00	848	111	96.7	112.4	117.9
5/11/08 14:00	847	110.9	96.6	112.6	117.8
5/11/08 15:00	846	110.7	96.4	113	117.5
5/11/08 16:00	848	111	96.3	113.3	117.6
5/11/08 17:00	848	111.1	96.8	113.7	118.3
5/11/08 18:00	849	111.3	96.8	113.8	118
5/11/08 19:00	850	111.4	96.6	113.6	118
5/11/08 20:00	849	111.3	97.3	113.2	118
5/11/08 21:00	848	111	97.2	112.8	117.9
5/11/08 22:00	848	111	97.3	112.5	118
5/11/08 23:00	847	110.9	97.5	112.1	118
5/12/08 0:00	846	110.6	97.5	111.8	118.1
5/12/08 1:00	845	110.5	97.6	111.7	118
5/12/08 2:00	844	110.3	97.4	111.6	118
5/12/08 3:00	843	110.2	97.1	111.5	118.1
5/12/08 4:00	841	109.9	96.8	111.3	118.3
5/12/08 5:00	840	109.8	96.6	111.2	118.3
5/12/08 6:00	838	109.5	96.4	110.9	118.1
5/12/08 7:00	838	109.5	96.5	110.8	118.3
5/12/08 8:00	838	109.5	96.5	110.8	119
5/12/08 9:00	839	109.7	96.5	110.8	119.3
5/12/08 10:00	839	109.7	96.4	110.9	118.9
5/12/08 11:00	839	109.7	96.6	111.3	118.9
5/12/08 12:00	839	109.7	97.2	111.7	119.2
5/12/08 13:00	840	109.8	114.3	112.2	127.4
5/12/08 14:00	841	109.9	120.9	112.8	122.3
5/12/08 15:00	842	110.1	133.4	113.2	119.1
5/12/08 16:00	842	110.2	120.2	113.3	119
5/12/08 17:00	843	110.3	139.2	113.4	120.8
5/12/08 18:00	843	110.3	149.5	113.4	121.4
5/12/08 19:00	843	110.5	149.6	113.4	121.4

5/12/08 20:00	843	110.5	149	113.3	121.3
5/12/08 21:00	843	110.5	124.8	112.9	119.8
5/12/08 22:00	842	110.4	97.2	112.5	119
5/12/08 23:00	843	110.5	97.3	112.1	119.1
5/13/08 0:00	843	110.5	97.4	111.9	119.6
5/13/08 1:00	844	110.6	97.6	112.4	119.2
5/13/08 2:00	844	110.5	97.5	113.7	119.7
5/13/08 3:00	845	110.7	97.1	114.6	119.9
5/13/08 4:00	845	110.7	97.5	114.5	120
5/13/08 5:00	846	110.9	97.4	114.4	120
5/13/08 6:00	847	111	96.8	114.4	120.3
5/13/08 7:00	849	111.3	96.6	114.5	119.6
5/13/08 8:00	851	111.5	97.2	114.2	120.3
5/13/08 9:00	853	111.8	97.2	113.4	120.7
5/13/08 10:00	856	112.2	97.2	112.5	120.7
5/13/08 11:00	859	112.6	97.5	112.1	119.5
5/13/08 12:00	861	112.7	97.4	111.9	119.6
5/13/08 13:00	861	112.7	97.4	111.7	119.5
5/13/08 14:00	862	112.8	97.6	111.7	119.6
5/13/08 15:00	862	112.8	97.6	111.7	119.3
5/13/08 16:00	861	112.7	97.7	111.7	119.5
5/13/08 17:00	861	112.7	97.7	111.9	119.6
5/13/08 18:00	861	112.7	97.8	111.9	119.6
5/13/08 19:00	861	112.7	97.5	111.9	119.7
5/13/08 20:00	861	112.7	97.5	112	119.8
5/13/08 21:00	862	112.7	97.3	111.8	120.6
5/13/08 22:00	863	112.8	97.4	111.8	120.2
5/13/08 23:00	864	112.8	97.4	111.8	118.6
5/14/08 0:00	865	112.9	97.5	111.8	118.6
5/14/08 1:00	865	112.9	97.1	112	118.6
5/14/08 2:00	866	113.1	97.3	112.1	118.6
5/14/08 3:00	866	112.9	97.3	111.9	118.5
5/14/08 4:00	867	113	97	111.9	118.3
5/14/08 5:00	866	112.9	97.6	111.9	119.4
5/14/08 6:00	865	112.6	97.4	111.8	119.2
5/14/08 7:00	865	112.6	97.1	111.8	119.5
5/14/08 8:00	864	112.4	97	111.7	119.3
5/14/08 9:00	863	112.1	97.6	111.5	118.7
5/14/08 10:00	863	112.1	97.9	111.5	118.4
5/14/08 11:00	863	112.1	98	111.8	118.4
5/14/08 12:00	864	112.2	98	111.9	118.2
5/14/08 13:00	865	112.2	97.9	112.1	118.4
5/14/08 14:00	866	112.3	97.9	112.8	118
5/14/08 15:00	867	112.5	97.9	113.3	118.3
5/14/08 16:00	867	112.5	98	113.8	118.1
5/14/08 17:00	866	112.5	97.9	114.6	118
5/14/08 18:00	865	112.3	97.2	115	117.8
5/14/08 19:00	865	112.3	97.2	115	117.6
5/14/08 20:00	864	112.2	97	114.9	118.1
5/14/08 21:00	864	112.2	97	114.6	118.4
5/14/08 22:00	864	112.1	97.1	114.4	118.1
5/14/08 23:00	865	112.3	97.1	114.1	118.4

5/15/08 0:00	865	112.3	97.3	113.8	117.6
5/15/08 1:00	865	112.3	97.3	113.7	117.9
5/15/08 2:00	866	112.5	97.3	113.6	117.8
5/15/08 3:00	867	112.6	97	113.6	117.8
5/15/08 4:00	867	112.6	96.8	113.6	117.9
5/15/08 5:00	868	112.7	96.7	113.5	118.2
5/15/08 6:00	867	112.6	97.2	113.5	118.4
5/15/08 7:00	867	112.6	97.2	113.3	118.4
5/15/08 8:00	866	112.5	97.3	113.2	118.1
5/15/08 9:00	866	112.6	97.2	113.1	118.3
5/15/08 10:00	865	112.5	97.4	113.4	119
5/15/08 11:00	865	112.6	97.1	113.6	119.5
5/15/08 12:00	866	112.9	97.2	114.4	119.6
5/15/08 13:00	866	112.9	97.1	115.1	120.1
5/15/08 14:00	869	113.4	97.1	115.6	120.1
5/15/08 15:00	872	114	97.1	116	120.1
5/15/08 16:00	875	114.4	97.1	116.4	120
5/15/08 17:00	876	114.7	97.1	116.8	120.1
5/15/08 18:00	878	114.9	96.9	117.1	120.1
5/15/08 19:00	879	115.2	96.9	117.3	120.3
5/15/08 20:00	880	115.3	97	117	120.3
5/15/08 21:00	880	115.3	97.1	116.6	120.4
5/15/08 22:00	881	115.3	97.2	115.9	120.5
5/15/08 23:00	881	115.3	97.2	115.5	121

BP (mmHg)

769 175.3 15.3 769 149.9 14.1 769 149.9 14.1 769 148.7 15.2 770 171.6 15.4 769 171.4 15.2 770 168.6 15.2 770 168.7 15.2 770 168.7 15.2 770 168.7 15.2 770 168.7 15.1 770 168.9 15.1 770 168.2 15.1 770 168.7 15.1 770 168.7 15.1 770 168.7 15.1 770 168.7 15.1 770 168.7 15.1 770 168.7 15.1 770 184.3 15.9 770 184.3 15.8 769 156 15 769 173.3 15.6 767 176.8 15.6 767 176.8 15.6 767 176.1 15.8 766 183.6 16 767 185.9 16.3 767 185.9 16.3 767 185.9 16.3 767 154.9 14.4 767 154.9 14.4 767 154.9 14.3 767 154.9 14.3 768 155.6 14.4 768 159.4 15 768 154.4 14.3 769 174.2 15.3 <th>from ACE web</th> <th>discharge</th> <th>TW (feet)</th> <th></th>	from ACE web	discharge	TW (feet)	
769 152 14.3 769 149.9 14.1 769 147.5 14 769 148.7 15.2 770 171.6 15.4 769 171.4 15.2 770 168.6 15.2 770 168.7 15.2 770 168.7 15.1 770 168.9 15.1 770 168.9 15.1 770 168.7 15.1 770 168.7 15.1 770 168.7 15.1 770 168.7 15.1 770 168.7 15.1 770 168.7 15.1 770 184.3 15.9 770 184.3 15.9 770 184.3 15.8 769 156 15 769 173.3 15.6 767 176.8 15.6 767 176.8 15.6 767 175.5 15.6 767 176.1 15.8 766 183.6 16 767 188.7 16.4 767 188.7 16.4 767 153 14.6 767 154.9 14.4 767 154.9 14.3 768 154.9 14.3 768 154.9 14.3 768 154.9 14.3 767 154.9 14.4 768 152.9 15.4 768 154.9 14.4 </td <td>769</td> <td>175.3</td> <td>15.3</td> <td></td>	769	175.3	15.3	
769 149.9 14.1 769 148.7 15.2 770 171.6 15.4 769 171.4 15.2 770 168.6 15.2 770 168.7 15.2 770 168.7 15.2 770 168.7 15.1 770 168.9 15.1 770 168.2 15.1 770 168.2 15.1 770 168.7 15.1 770 168.7 15.1 770 168.7 15.1 770 168.7 15.1 770 168.7 15.1 770 168.7 15.1 770 168.7 15.9 770 184.3 15.9 770 184.3 15.8 769 173.3 15.6 767 176.8 15.6 767 176.8 15.6 767 176.8 15.6 767 176.1 15.8 766 183.6 16 767 188.7 16.4 767 188.7 16.4 767 153 14.6 767 154.9 14.4 767 154.9 14.4 768 154 14.5 767 154.9 14.4 768 155.6 14.4 768 154 14.5 767 154.9 14.4 768 $154.14.15$ 768 $154.14.15$ 768 </td <td>769</td> <td>152</td> <td>14.3</td> <td></td>	769	152	14.3	
769 147.5 14 769 148.7 15.2 770 171.6 15.4 769 171.4 15.2 770 168.6 15.2 770 167.5 15.1 770 168.7 15.2 770 168.9 15.1 770 168.9 15.1 770 168.2 15.1 770 168.7 15.1 770 168.7 15.1 770 168.7 15.1 770 168.7 15.1 770 168.7 15.1 770 168.7 15.1 770 168.7 15.1 770 185.9 15.9 770 184.3 15.8 769 156 15 769 173.3 15.6 767 176.8 15.6 767 176.8 15.6 767 176.8 15.6 767 176.1 15.8 766 183.6 16 767 185.9 16.3 767 188.7 16.4 767 153 14.6 768 154 14.3 767 154.9 14.3 767 154.9 14.3 768 155.6 14.4 768 155.6 14.4 768 155.4 163.3 769 174.1 15.4 768 152.2 13.8 768 152.2 13.8 <	769	149.9	14.1	
769 148.7 15.2 770 171.6 15.4 769 171.4 15.2 770 168.6 15.2 770 167.5 15.1 770 168.7 15.2 770 168.9 15.1 770 168.2 15.1 770 168.2 15.1 770 168.4 15.1 770 168.7 15.1 770 168.7 15.1 770 168.7 15.1 770 168.7 15.1 770 168.7 15.1 770 168.7 15.1 770 184.3 15.9 770 184.3 15.8 769 156 15 769 173.3 15.6 767 176.8 15.6 767 176.8 15.6 767 176.8 15.6 767 176.1 15.8 766 183.6 16 767 185.9 16.3 767 188.7 16.4 767 153.3 14.6 767 154.9 14.3 767 154.9 14.3 767 154.9 14.3 768 155.6 14.4 768 155.6 14.4 768 155.4 163.3 769 174.1 15.4 768 152.2 13.8 768 127.8 13.1 768 126.5 12.9	769	147.5	14	
770 171.6 15.4 769 171.4 15.2 770 168.6 15.2 770 167.5 15.1 770 168.9 15.1 770 168.9 15.1 770 168.2 15.1 769 168.4 15.1 770 168.7 15.1 770 168.7 15.1 770 168.7 15.1 770 168.7 15.1 770 168.7 15.1 770 184.6 16 770 184.3 15.9 770 184.3 15.8 769 156 15 769 173.3 15.6 767 176.8 15.6 767 176.8 15.6 767 176.1 15.8 766 183.6 16 766 183.6 16 767 188.7 16.4 767 185.9 16.3 767 153 14.6 767 153 14.6 767 154.9 14.4 767 154.9 14.4 768 155.6 14.4 768 157.4 153.3 769 174.1 154.4 768 163.3 14.2 768 163.3 14.2 768 126.5 12.9 767 124.7 12.6	769	148.7	15.2	
769 171.4 15.2 770 168.6 15.2 770 167.5 15.1 770 168.7 15.1 770 168.2 15.1 770 168.2 15.1 770 168.7 15.1 770 168.7 15.1 770 168.7 15.1 770 169.5 15 770 172.1 15.4 770 184.6 16 770 184.3 15.9 770 184.3 15.9 770 184.3 15.8 769 156 15 769 173.3 15.6 767 176.8 15.6 767 176.8 15.6 767 176.1 15.8 766 183.6 16 767 186.7 16.4 767 188.7 16.4 767 185.9 16.3 767 185.9 16.3 767 153.9 16.1 767 154.9 14.3 767 154.9 14.3 767 154.9 14.3 768 155.6 14.4 768 159.4 15 768 174.2 15.3 769 174.1 15.4 768 163.3 14.2 768 163.3 14.2 768 163.3 14.2 768 162.5 12.9 767 124.7 12.6 </td <td>770</td> <td>171.6</td> <td>15.4</td> <td></td>	770	171.6	15.4	
770168.615.2 770 167.515.1 770 168.715.2 770 168.915.1 770 168.215.1 770 168.715.1 770 168.715.1 770 169.515 770 172.115.4 770 184.616 770 184.315.9 770 184.315.8 769 15615 769 173.315.6 767 175.515.6 767 176.115.8 766 183.616 767 185.916.3 767 185.916.3 767 185.916.3 767 185.916.3 767 185.916.3 767 153.14.6 767 154.914.4 767 154.914.4 767 154.914.3 768 155.614.4 768 159.415 768 154.215.3 769 171.915.4 768 163.314.2 768 163.314.2 768 162.912.7 767 124.712.6	769	171.4	15.2	
770 168.7 15.2 770 167.5 15.1 770 168.9 15.1 770 168.2 15.1 769 168.4 15.1 770 168.7 15.1 770 169.5 15 770 172.1 15.4 770 184.6 16 770 184.3 15.9 770 184.3 15.9 770 184.3 15.8 769 173.3 15.6 769 173.3 15.6 767 176.8 15.6 767 176.8 15.6 767 177.5 15.6 767 177.5 15.6 767 177.5 15.6 767 188.7 16.4 767 185.9 16.3 767 185.9 16.3 767 153.6 164.766 767 153.9 16.1 767 153.9 16.3 767 154.9 14.4 767 154.9 14.3 767 154.9 14.4 768 155.6 14.4 768 155.6 14.4 768 155.6 14.4 768 155.6 14.4 768 155.6 14.4 768 155.6 14.4 768 155.6 14.4 768 155.6 14.4 768 155.6 14.4 768 153.3 1	770	168.6	15.2	
770 167.5 15.1 770 168.9 15.1 770 168.2 15.1 769 168.4 15.1 770 168.7 15.1 770 169.5 15 770 172.1 15.4 770 184.6 16 770 185.9 15.9 770 184.3 15.9 770 184.3 15.8 769 156 15 769 173.3 15.6 767 176.8 15.6 767 176.8 15.6 767 177.5 15.6 767 177.5 15.6 767 177.5 15.6 767 177.5 15.6 767 188.7 16.4 767 185.9 16.3 767 185.9 16.3 767 153.9 16.3 767 153.9 16.3 767 153.9 14.4 767 154.9 14.4 767 154.9 14.3 767 154.9 14.3 768 155.6 14.4 768 155.6 14.4 768 155.6 14.4 768 155.6 14.4 768 155.6 14.4 768 155.6 14.4 768 155.6 14.4 768 155.6 14.4 768 155.6 14.4 768 155.6 14.4 <td>770</td> <td>168.7</td> <td>15.2</td> <td></td>	770	168.7	15.2	
77016815.2 770 168.915.1 770 168.215.1 769 168.415.1 770 169.515 770 172.115.4 770 184.616 770 185.915.9 770 184.315.8 769 15615 769 17615 769 17615.6 767 176.815.6 767 176.115.8 766 183.616 767 185.916.3 767 185.916.3 767 185.916.3 767 185.916.3 767 15314.6 767 154.914.4 767 154.914.4 767 154.914.3 767 154.914.4 768 155.614.4 768 155.614.4 768 159.415 768 174.215.3 769 171.915.4 768 163.314.2 768 163.314.2 768 163.314.2 768 162.512.9 767 124.712.6	770	167.5	15.1	
770 168.9 15.1 770 168.2 15.1 769 168.4 15.1 770 169.5 15 770 172.1 15.4 770 184.6 16 770 185.9 15.9 770 184.3 15.8 769 156 15 769 176 15 769 176.1 15.8 767 176.1 15.8 766 183.6 16 767 176.1 15.8 766 183.6 16 767 176.1 15.8 766 183.6 16 767 185.9 16.3 767 185.9 16.3 767 153 14.6 767 154.9 14.4 767 154.9 14.4 767 154.9 14.4 768 155.6 14.4 768 155.6 14.4 768 154.4 14.3 768 155.6 14.4 768 159.4 15 768 174.2 15.3 769 171.9 15.4 768 163.3 14.2 768 163.3 14.2 768 127.8 13.1 768 126.5 12.9 767 124.7 12.6	770	168	15.2	
770 168.2 15.1 769 168.4 15.1 770 169.5 15 770 172.1 15.4 770 184.6 16 770 185.9 15.9 770 184.3 15.8 769 156 15 769 173.3 15.6 769 173.3 15.6 769 175.5 15.6 767 176.8 15.6 767 176.8 15.6 767 176.1 15.8 766 183.6 16 766 184.4 16.3 767 185.9 16.3 767 185.9 16.3 767 183.9 16.1 767 $153.14.6$ 767 154.9 14.4 767 154.9 14.4 767 154.9 14.3 767 154.9 14.3 768 155.6 14.4 768 155.6 14.4 768 159.4 15 768 174.2 15.3 769 171.9 15.4 768 163.3 14.2 768 163.3 14.2 768 127.8 13.1 768 126.5 12.9 767 124.7 12.6	770	168.9	15.1	
769 168.4 15.1 770 169.5 15 770 172.1 15.4 770 184.6 16 770 184.3 15.9 770 184.3 15.8 769 156 15 769 173.3 15.6 769 173.3 15.6 769 173.3 15.6 769 175.5 15.6 767 176.8 15.6 767 176.5 15.6 767 176.1 15.8 766 183.6 16 766 184.4 16.3 767 185.9 16.3 767 185.9 16.3 767 183.9 16.1 767 $153.14.6$ 767 154.9 14.4 767 154.9 14.3 767 154.9 14.3 767 154.9 14.3 768 155.6 14.4 768 155.6 14.4 768 155.6 14.4 768 155.6 14.4 768 163.3 14.2 768 163.3 14.2 768 163.3 14.2 768 127.8 13.1 768 126.5 12.9 767 124.7 12.6	770	168.2	15.1	
770 168.7 15.1 770 172.1 15.4 770 184.6 16 770 185.9 15.9 770 184.3 15.9 770 184.3 15.8 769 156 15 769 173.3 15.6 769 175.8 15.6 767 176.8 15.6 767 176.8 15.6 767 $177.5.5$ 15.6 767 176.1 15.8 766 183.6 16 767 188.7 16.4 767 185.9 16.3 767 185.9 16.3 767 183.9 16.1 767 153 14.6 767 154.9 14.4 767 154.9 14.3 767 154.9 14.3 767 154.9 14.3 768 155.6 14.4 768 159.4 15 768 154.4 15 768 154.4 15 768 174.2 15.3 769 171.9 15.4 768 163.3 14.2 768 163.3 14.2 768 163.3 14.2 768 163.3 14.2 768 163.3 14.2 768 163.3 14.2 768 127.8 13.1 768 124.7 12.6	769	168.4	15.1	
770 169.5 15 770 172.1 15.4 770 184.6 16 770 184.3 15.9 770 184.3 15.8 769 156 15 769 173.3 15.6 769 177.8 15.6 767 176.8 15.6 767 177.5 15.6 767 177.5 15.6 767 177.5 15.6 767 177.5 15.6 767 177.5 15.6 767 177.5 15.6 767 188.7 16.4 766 183.6 16 767 185.9 16.3 767 183.9 16.1 767 153.6 14.8 767 153.766 14.8 767 154.9 14.4 767 154.9 14.3 768 155.6 14.4 768 155.6 14.4 768 155.6 14.4 768 155.6 14.4 768 155.6 14.4 768 155.6 14.4 769 171.9 15.4 768 152.2 13.8 768 163.3 14.2 768 127.8 13.1 768 126.5 12.9 767 124.7 12.6	770	168.7	15.1	
770 172.1 15.4 770 184.6 16 770 184.3 15.9 770 184.3 15.8 769 156 15 769 173.3 15.6 769 177.8 15.6 767 176.8 15.6 767 176.8 15.6 767 175.5 15.6 767 176.1 15.8 766 183.6 16 766 183.7 16.4 767 185.9 16.3 767 185.9 16.3 767 185.9 16.3 767 $153.14.6$ 767 154.9 14.4 767 154.9 14.4 767 154.9 14.4 767 154.9 14.3 768 155.6 14.4 768 155.6 14.4 768 155.6 14.4 768 155.6 14.4 768 155.6 14.4 768 155.6 14.4 768 155.6 14.4 768 155.6 14.4 768 155.6 14.4 768 155.6 14.4 768 155.6 14.4 768 155.6 14.4 768 155.6 14.4 768 155.6 14.4 768 152.2 13.8 768 163.3 14.2 768 127.8 13.1 <	770	169.5	15	
770184.616 770 185.915.9 770 184.315.8 769 15615 769 173.315.6 768 175.815.6 767 176.815.6 767 175.515.6 767 176.115.8 766 183.616 766 183.716.4 767 185.916.3 767 185.916.3 767 156.614.8 767 15314.6 768 15414.5 767 154.914.4 767 154.914.3 767 155.614.4 767 154.914.3 768 155.614.4 768 159.415 768 174.215.3 769 171.915.4 768 163.314.2 768 163.314.2 768 163.314.2 768 127.813.1 768 126.512.9 767 124.712.6	770	172.1	15.4	
770 185.9 15.9 770 184.3 15.8 769 156 15 769 173.3 15.6 769 173.3 15.6 769 173.3 15.6 769 175.8 15.6 767 176.8 15.6 767 175.5 15.6 767 176.1 15.8 766 183.6 16 766 184.4 16.3 767 185.9 16.3 767 185.9 16.3 767 183.9 16.1 767 156.6 14.8 767 156.6 14.8 767 154.9 14.4 767 154.9 14.4 767 154.9 14.3 768 155.6 14.4 768 155.6 14.4 768 159.4 15 768 174.2 15.3 769 171.9 15.4 768 163.3 14.2 768 163.3 14.2 768 163.3 14.2 768 162.5 12.9 767 124.7 12.6	770	184.6	16	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	770	185.9	15.9	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	770	184.3	15.9	
769 156 15 769 173.3 15.6 768 175.8 15.6 767 176.8 15.6 767 175.5 15.6 767 176.1 15.8 766 183.6 16 766 184.4 16.3 767 185.9 16.3 767 185.9 16.3 767 185.9 16.3 767 183.9 16.1 767 156.6 14.8 767 153 14.6 768 154 14.5 767 154.9 14.4 767 154.9 14.3 768 155.6 14.4 768 155.6 14.4 768 155.6 14.4 768 159.4 15 768 174.2 15.3 769 174.1 15.4 768 163.3 14.2 768 163.3 14.2 768 163.3 14.2 768 163.3 14.2 768 127.8 13.1 768 127.8 13.1 768 126.5 12.9 767 124.7 12.6	770	184.3	15.8	
769 173.3 15.6 768 175.8 15.6 767 176.8 15.6 767 175.5 15.6 767 176.1 15.8 766 183.6 16 766 184.4 16.3 767 185.9 16.3 767 185.9 16.3 767 183.9 16.1 767 183.9 16.1 767 153.6 14.8 767 153.6 14.8 767 153.766 14.8 767 154.9 14.4 767 154.9 14.4 767 154.9 14.4 768 155.6 14.4 768 155.6 14.4 768 159.4 15 768 159.4 15 768 174.2 15.3 769 171.9 15.4 768 163.3 14.2 768 163.3 14.2 768 126.5 12.9 767 124.7 12.6	769	156	15	
768 175.8 15.6 767 176.8 15.6 767 175.5 15.6 767 176.1 15.8 766 183.6 16 766 184.4 16.3 767 188.7 16.4 767 185.9 16.3 767 185.9 16.3 767 183.9 16.1 767 183.9 16.1 767 156.6 14.8 767 153 14.6 768 154 14.5 767 154.9 14.4 767 154.9 14.3 768 155.6 14.4 768 159.4 15 768 159.4 15 768 174.2 15.3 769 171.9 15.4 768 163.3 14.2 768 163.3 14.2 768 126.5 12.9 767 124.7 12.6	769	173.3	15.6	
767 176.8 15.6 767 175.5 15.6 767 176.1 15.8 766 183.6 16 766 184.4 16.3 767 188.7 16.4 767 185.9 16.3 767 183.9 16.1 767 183.9 16.1 767 185.6 14.8 767 156.6 14.8 767 153 14.6 768 154 14.5 767 154.9 14.3 767 154.9 14.3 768 155.6 14.4 768 159.4 15 768 174.2 15.3 769 171.9 15.4 768 163.3 14.2 768 163.3 14.2 768 126.5 12.9 767 124.7 12.6	768	175.8	15.6	
767 175.5 15.6 767 176.1 15.8 766 183.6 16 766 184.4 16.3 767 188.7 16.4 767 185.9 16.3 767 183.9 16.1 767 181.1 15.6 767 156.6 14.8 767 153 14.6 768 154 14.5 767 154.9 14.4 767 154.9 14.4 768 155.6 14.4 768 155.6 14.4 768 155.6 14.4 768 159.4 15 768 174.2 15.3 769 171.9 15.4 768 163.3 14.2 768 163.3 14.2 768 163.3 14.2 768 126.5 12.9 767 124.9 12.7 767 124.7 12.6	767	176.8	15.6	
767 176.1 15.8 766 183.6 16 766 184.4 16.3 767 188.7 16.4 767 185.9 16.3 767 183.9 16.1 767 181.1 15.6 767 156.6 14.8 767 153 14.6 768 154 14.5 767 154.9 14.4 767 154.9 14.3 767 154.9 14.4 768 155.6 14.4 768 155.6 14.4 768 159.4 15 768 174.2 15.3 769 174.1 15.4 768 163.3 14.2 768 163.3 14.2 768 163.3 14.2 768 126.5 12.9 767 124.9 12.7 767 124.7 12.6	767	175.5	15.6	
766 183.6 16 766 184.4 16.3 767 188.7 16.4 767 185.9 16.3 767 183.9 16.1 767 181.1 15.6 767 156.6 14.8 767 153 14.6 768 154 14.5 767 154.9 14.4 767 154.9 14.3 767 154.9 14.3 768 155.6 14.4 768 159.4 15 768 159.4 15 768 174.2 15.3 769 171.9 15.4 768 163.3 14.2 768 163.3 14.2 768 126.5 12.9 767 124.9 12.7 767 124.7 12.6	767	176.1	15.8	
766 184.4 16.3 767 188.7 16.4 767 185.9 16.3 767 183.9 16.1 767 181.1 15.6 767 156.6 14.8 767 153 14.6 768 154 14.5 767 154.9 14.4 767 154.9 14.3 767 154.9 14.3 768 155.6 14.4 768 159.4 15 768 174.2 15.3 769 171.9 15.4 768 163.3 14.2 768 163.3 14.2 768 126.5 12.9 767 124.7 12.6	766	183.6	16	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	766	184.4	16.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	767	188.7	16.4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	767	185.9	16.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	767	183.9	16.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	767	181.1	15.6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	767	156.6	14.8	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	767	153	14.6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	768	154	14.5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	767	154.9	14.4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	767	154.4	14.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	767	154.9	14.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	768	155.6	14.4	
768174.215.3769174.115.4769171.915.4768163.314.2768145.213.8768127.813.1768126.512.9767124.912.7767124.712.6	768	159.4	15	
769174.115.4769171.915.4768163.314.2768145.213.8768127.813.1768126.512.9767124.912.7767124.712.6	768	174.2	15.3	
769171.915.4768163.314.2768145.213.8768127.813.1768126.512.9767124.912.7767124.712.6	769	174.1	15.4	
768163.314.2768145.213.8768127.813.1768126.512.9767124.912.7767124.712.6	769	171.9	15.4	
768145.213.8768127.813.1768126.512.9767124.912.7767124.712.6	768	163.3	14.2	
768127.813.1768126.512.9767124.912.7767124.712.6	768	145.2	13.8	
768126.512.9767124.912.7767124.712.6	768	127.8	13.1	
767124.912.7767124.712.6	768	126.5	12.9	
767 124.7 12.6	767	124.9	12.7	
	767	124.7	12.6	

767	125.3	12.5
767	125.2	12.7
767	143.6	13.6
768	145.6	13.9
768	152.6	14.1
768	150.6	14.2
768	1/0 7	1/1
700	149.7	14.1
700	149.2	14.1
700	140.0	13.3
768	136	12.9
768	134.2	12.8
767	134.4	12.7
767	139.2	12.9
767	140.8	12.9
767	141.7	13
767	143	13.1
767	143.1	13.1
767	142.8	13.2
767	142.5	13.2
767	166.1	15.2
766	181 4	15.4
765	180.9	15.3
765	164	14.6
764	162.0	14.0
764	102.9	14.5
704	103.1	14.5
764	163.2	14.5
764	163.2	14.6
764	163.4	14.7
763	162	14.6
764	160.9	14.7
764	160.6	14.7
764	160.3	14.7
765	159.7	14.7
765	151.9	13.9
765	144.8	13.7
765	144.3	13.6
766	143.6	13.5
766	144.2	13.2
767	147.3	13.6
767	148	13.8
768	148 1	13.8
768	1/8 3	13.0
760	140.3	12.0
709	143.9	10.7
700	139.5	10.4
700	100	13.3
700	137.9	13.3
768	138.1	13.2
/68	141.2	13.3
767	141.3	13.1
767	144.2	13.2
767	145.4	13.4
767	148.2	13.7

767	143.8	13.4
767	142.7	13.5
767	142.1	13.5
767	142.1	13.4
767	142.4	13.4
766	142.4	13.4
767	142.4	13.3
767	142	13.2
767	145.7	13.4
766	146.2	13.4
767	151.3	13.6
767	152.1	13.7
767	151.8	13.7
767	145.2	13.6
768	144.4	13.6
/6/	140	13.3
766	138.5	13.3
766	139	13.2
765	140.8	13.4
765	143.4	13.4
764	146.7	13.6
764	150	13.0
764	130.2	13.0
765	147.7	13.4
765	147.3	13.0
765	147.3	13.0
765	147.2	13.7
765	144.5	13.5
765	141.9	13.4
765	146.8	13.6
764	147.8	13.5
764	147.9	13.5
764	150.7	12.6
764	123.9	12.3
764	120.1	11.9
764	118.1	12
765	116.3	12.1
765	111.7	12
764	108.5	11.9
764	111.8	12.1
763	113.9	11.9
763	115.1	12
763	116.3	12.3
762	131	12.7
762	131	12.6
763	130.9	12.5
763	128.1	12.5
764	128	12.4
765	127.3	12.6
100	120.4	12.5

766	126.6	12.6
767	118.5	12.1
766	116.5	12
767	116.8	11.9
767	119.3	12.2
767	122.2	12.1
768	123.7	12.4
768	132	12.6
769	133	13.1
769	155.1	14.1
770	157.4	14.5
770	157.6	14.8
771	159.1	15
770	161	15.1
770	161	15
770	144 7	14
769	135.1	13.7
769	133.4	13.5
769	133	13.4
769	134.5	13.4
769	131.3	13.0
769	130.6	13.1
760	120.0	12.0
769	129.9	12.9
769	129.0	12.0
769	119.0	12.0
700	112.2	12.2
700	113.0	12
707	117.0	12.1
700	117.0	12 2
700	123	12.2
700	124.7	12.4
700	132.3	107
705	152.5	13.7
700	154.2	13.9
705	154.6	14.1
764	154.9	14.3
764	156.3	14.0
763	157	14.7
763	156.4	14.7
762	155.9	14.7
762	155.9	14.7
761	155.9	14.7
761	155.6	14.7
761 To 1	156.2	14.6
/61	153	14.4
760	151.5	14.2
760	150.2	14.1
/59	150.3	14.1
759	150.5	14.2
759	152.5	14.2
758	153.5	14.4
757	154.9	14.4

757	155.8	14.5
756	153.2	14.3
756	153.7	14.4
756	156.8	14.4
756	156.9	14.5
756	156.6	14.6
757	157	14.7
757	156.8	14.7
757	155.3	14.8
757	154.6	14.5
757	136.9	14.1
757	147.8	14.7
757	154.4	14.7
757	155.2	14.5
757	164.2	15.2
757	104.5	15.5
757	170	15.0
151	173.3	10.0
/5/ 757	171.4	15.6
/5/	170.3	15.5
/5/	153.1	14.6
756	150	14.5
756	149.8	14.5
756	150	14.5
756	150.2	14.5
755	150.2	14.5
755	150.4	14.4
755	153	14.7
755	166.7	15.3
755	173.9	15.6
756	178.6	15.9
756	179.5	15.8
756	180.1	16
756	179.9	16.1
756	180.4	16.3
756	180.5	16.4
755	180.8	16.4
756	181	16.5
756	180.9	16.5
756	181.1	16.5
756	181.4	16.5
756	182.2	16.5
756	180.8	16.4
757	182.7	16.5
757	182.6	16.0
757	182.0	16.4
757	102.0	16.4
757	102.3	10.4
131	102.4	10.4
101	100.5	15.2
151	142	14.5
/58	140.1	14.4
/58	141.4	14.4
759	143	14.4

759	142.9	14.3
760	142.3	14.2
760	142	14.2
761	142.5	14.2
761	147.7	14.3
761	148.1	14.4
761	148.2	14.5
761	148.6	14.5
761	148.8	14.5
761	148.4	14.5
761	147.4	14.5
762	146.9	14.5
762	144.1	14.3
763	143.8	14.4
763	165	15.3
763	166.5	15.2
764	166.5	15.3
764	167.4	15.2
765	143	13.6
765	123.6	13.1
765	122.2	12.7
766	111.8	12.2
766	111.7	12.2
767	113.7	12.1
767	113.9	12
768	113.8	11.9
768	113.8	11.9
769	117.9	12.1
769	124.4	12.2
769	125.4	12.4
769	125.1	12.4
769	125.4	12.5
769	125.5	12.6
768	126.0	12.8
768	141 7	13.8
768	154	14.8
768	169.2	14.6
768	160.6	14.6
768	159.8	14.6
768	159.8	14.6
767	158.8	14.0
767	137.4	12.9
767	117.5	12.3
767	116.7	12.0
767	115.6	11.9
767	116.2	12.4
766	135.3	14.2
766	159.6	14.8
766	176.8	15.4
766	180.2	15.4
766	179.9	15.0
766	181 1	15.7

766	180.7	15.4
766	168.9	15.3
765	168.5	15.2
765	168	14.7
765	169.4	15.5
765	180.1	16
764	182.7	16.2
764	183.2	16.3
763	184.2	16.3
763	180.4	16.3
763	180.4	16.2
764	176.9	16.1
764	177.4	16.1
763	178.7	16.1
763	178.1	16.1
763	178.4	16.1
763	179	16.1
762	178.5	15.9
762	151.1	14.5
762	126	13.8
762	118.7	13.4
762	116.3	13.3
762	114.9	13.1
762	114.5	13
762	114	12.8
763	113.7	12.8
763	113.5	12.5
764	111.7	12.4
765	111.1	12.3
765	111.9	12.3
765	114.4	12.6
765	133.5	14.1
766	170.6	15.6
766	178.1	15.7
766	188	16.6
766	194.9	16.8
	197	16.9
766	198.9	17.1
765	200.8	17.3
765	202.7	17.3
765	202.8	16.6
764	175.8	14.9
764	148.3	14.6
764	139.5	14.7
764	136.2	14.4
763	135.7	14.3
764	134.6	14.2
763	132.5	14.1
763	132.1	13.8
763	132.4	14
762	137.3	14.1
762	137.3	14

762	136.7	13.9
761	136.5	13.9
762	144.4	14.3
762	184.7	16.6
762	198.8	17.1
762	199.4	17 1
762	100.1	17.2
762	100.2	17.2
703	199.3	17.2
703	196.4	17.3
763	199.4	17.4
763	189.7	17.3
763	194.6	17.2
763	195.3	17.2
764	195.4	17.3
764	161.5	15.4
764	140.7	14.5
764	130.3	14.5
764	132.6	14.4
765	132.2	13.9
765	131.9	14.3
765	131.5	14 1
764	130.8	14.1
764	124.6	1/1
704	134.0	14.1
764	134.9	14
764	134.8	14
764	134.9	13.9
764	142.7	14.5
763	165.2	15.8
763	200.5	17.1
765	204.8	17.5
766	205.2	17.6
767	204.7	17.6
767	204.4	17.7
768	204.3	17.7
769	205	17.8
769	204.5	17.8
770	205	17.8
771	204 5	17.8
771	16/	15.6
772	144 5	15.0
770	144.5	10.0
773	143.5	10
773	136.5	14.8
//4	135.5	14.7
774	133.6	14.5
775	133.4	14.3
775	133.9	14.3
775	132.9	14.1
775	131.5	14
775	131.8	13.8
775	131.3	13.8
775	130.9	13.8
775	143.1	14.3

775	173.7	15.7	
775	191.9	16.6	
775	193.7	16.8	
775	193.8	16.9	
775	194.6	17	
775	191.7	16.6	
775	185.6	16.5	
774	100.0	10.5	
774	100	10.5	
774	186.7	16.5	
//4	187.4	16.5	
773	160.2	14.7	
773	143.6	14.5	
773	137.8	14.2	
773	137.2	14.2	
773	137.1	14.3	
772	135.6	14	
772	136	13.9	
771	136.5	13.9	
770	136.7	13.7	
769	136.9	13.8	
760	136 /	13.6	
709	130.4	12.0	
700	130	13.0	
/6/	136.2	13.5	
/6/	135.5	13.5	
767	140.1	13.5	
767	160.4	14.6	
767	162.2	14.8	
767	162.3	14.8	
766	162.4	14.9	
766	162.8	15	
766	139.7	13.8	
766	137.6	13.7	
765	137.6	13.6	
765	137.9	13.6	
764	139.7	13.6	
764	140.2	13.5	
765	190.2	10.0	
705	120.4	12.0	
704	113.0	12.2	
764	109.2	12	
763	105	11.9	
763	104.7	11.8	
762	105.6	11.8	
762	108.8	11.8	
761	110.5	11.8	
761	112.2	11.8	
762	112.7	11.8	
762	117.4	11.9	
763	118.7	12	
763	117 7	11 8	
764	110	11 0	
765	1150	10	
700	110.9	14.0	
705	110.6	11.8	
765	110.5	11.8	
-----	-------	------	--
765	110.6	11.8	
766	111.8	11.8	
766	113.2	11.7	
766	115.8	11.7	
766	117.6	11.8	
767	119 1	11.0	
767	120.1	11.8	
767	120.1	11.0	
767	122.1	12	
707	140 5	12	
707	110.0	12.1	
767	119.1	12.5	
767	135.5	13.2	
766	136.5	13.3	
766	135.7	13.1	
765	116.5	12.3	
765	113.9	12.4	
765	126.6	13.4	
765	141.1	13.2	
765	142.1	13.3	
765	140.8	13.2	
765	139.9	13.2	
765	139.6	13.2	
765	139.3	13.3	
765	139.8	13.5	
765	141.7	13.5	
765	142.3	13.6	
765	154.6	14.3	
765	156.3	14.3	
765	155.8	14.3	
765	166.4	14.8	
765	168.6	14.9	
765	169.2	15	
765	169	15.1	
765	160.2	15.1	
765	160	15.2	
705	171.0	15.5	
764	169.1	15.0	
764	100.1	10.0	
764	166.1	15.3	
763	166.6	15.3	
763	167.5	15.4	
763	162.3	15.1	
762	162.9	15	
762	163	15	
762	171.9	15.4	
762	174.4	15.5	
762	173	15.4	
761	160.4	14.8	
761	158	14.8	
761	154.4	14.8	
760	157.8	14.9	
760	159.7	14.9	

760	161.5	15
760	161.8	15.1
761	165.1	15.2
761	180.4	15.8
761	175.2	15.5
761	173.6	15.7
761	175.6	15.6
761	175.6	15.9
760	174.7	15.8
760	170.7	15.7
760	168.3	15.5
760	168.7	15.5
760	167.3	15.4
760	165.5	15.4
760	165.8	15.5
761	165.3	15.5
763	178.8	16.2
764	180.6	16.1
765	178.3	16
766	175.8	15 5
767	1/0.1	1/1 3
767	197.8	13.3
767	127.0	13.5
769	110.2	10/
700	10.2	12.4
700	109.0	12.4
700	130.0	14
769	101	14.9
769	170 5	15.2
769	170.0	15.0
709	175.7	10.0
770	175.9	15.0
770	174.6	15.7
770	176.6	15.7
769	172.3	15.6
769	1/1./	15.6
769	170.6	15.5
768	1/1.1	15.7
768	170.3	15.6
/6/	181.4	16.1
766	183.2	16.2
766	181.5	16
766	179.2	16
765	178.5	15.9
764	177.3	15.9
764	177.4	15.8
763	178.2	15.9
762	177.1	15.7
761	154.7	14.8
760	151.7	14.6
759	152.1	14.6
758	167.1	15.4
758	182.6	16.1

757	185.7	16.2	
756	185.9	15.9	
755	178.2	15.9	
755	199.3	17.3	
755	208.9	17.6	
755	215.9	18	
755	218.7	18.3	
755	220.8	18.4	
756	220.8	18.5	
756	221.4	18.6	
757	221.4	18.5	
758	213.9	18.4	
758	209.4	17.9	
758	178.6	16.5	
758	173.5	16.3	
759	148.2	14.9	
759	133.4	14.3	
759	132	14.1	
760	132.6	14.1	
760	148.9	14.7	
761	150.9	14.7	
761	151.3	14.7	
762	169.3	15.5	
762	146.4	14.5	
763	142.8	14.4	
763	142.6	14.3	
763	142.2	14.2	
764	142.1	14.2	
764	141.8	14.2	
764	141.5	14.2	
764	141.9	14.2	
764	142	14.2	
764	142	14	
765	136.7	13	
764	123.5	12.7	
764	122.6	12.6	
764	118.8	12.3	
764	117.8	12.1	
764	118	12	
764	118	11.9	
764	121 1	12.3	
764	131.3	12.5	
764	131	12.0	
764	131	12.4	
764	130.8	12.8	
763	131	12.5	
764	132	12.0	
764	133 1	12.5	
764	133.5	12.0	
764	129.6	12.7	
764	128.4	12.3	
765	120.4	12.0	
105	120	12.0	

765	127.3	12.1
765	125.3	12.1
765	125.6	12.2
765	125.6	12.2
765	125.2	12.1
765	124.9	12.1
766	125	12.1
766	125.1	11.9
766	122.1	11.9
767	123.9	12.1
768	127.6	12
768	128	12
768	127.5	11.9
768	128.1	12
769	128.7	11.9
769	129.1	12
769	120.0	12
769	130.3	12.1
769	132.2	12.2
709	127.9	12 7
770	145.8	12.7
770	145.0	13 1
771	145.9	13.1
770	145.7	13.1
770	145.7	13.2
769	145.5	13.2
769	145.3	13.2
769	146	13.4
769	161.6	14.3
768	165.7	14.5
768	166	14.7
768	173.9	15.1
769	175.6	15.2
769	175	15.2
769	174.8	15.2
768	174.6	15.2
769	175.8	15.2
769	176.5	15.3
768	177.4	15.3
768	178.7	15.5
768	179.1	15.5
768	171.2	15.2
768	172.7	15.3
768	172.0	15.2
760	172.0	15.2
767	172.9	10.0
767	173.2	15.3
766	173.0	15.3
765	173.6	15.3
765	173.7	15.4

765	173.8	14.9
764	173.7	15.5
763	173.7	15.5
763	174.7	15.5
763	172.8	15.4
764	172.4	15.4
764	170.5	15.2
764	157.1	1/6
704	157.1	14.0
704	155.0	14.0
764	154.7	14.4
764	155.3	14.4
765	155.6	14.4
765	155.5	14.3
765	155.7	14.4
765	158	14.5
765	172.5	16.3
766	197.2	16.5
766	199.4	16.8
765	198.1	16
765	173.5	15.4
765	157.9	14.5
765	148.7	14.1
764	148.2	14 1
764	147 7	13.9
764	147 3	13.0
763	147.8	13.0
763	147.5	14.5
703	147.5	14.0
703	100.1	14.0
704	159.1	14.5
704	150.9	14.4
700	101.1	14.3
765	149.4	13.8
765	141.1	13.6
766	140.8	13.4
766	140.8	13.3
766	140.6	13.2
766	141.3	13.2
766	142.3	13.2
766	145.3	13.4
767	147.1	14.4
767	168.6	14.7
767	169.9	14.9
767	169.8	14.9
767	169.3	14.9
766	169.7	15
765	169	15
765	169 1	15
765	169.2	15.1
764	170 4	15.7
764	170.4	15.2
764	170.5	15.4
762	170 7	10.1
103	170.7	10.0

763	171.3	15.6
763	169.2	15.1
763	166.9	15.1
763	165.8	14.7
762	143.8	13
762	120.9	12.4
762	108.2	11.7
761	107.8	11.7
761	113.5	11.6
761	115.5	11.8
761	119.5	11.8
761	141.3	13.3
761	142.7	13.3
760	142.1	13.4
761	142.7	13.4
761	142	13.4
761	141.5	13.3
761	140.3	13.3
761	140.4	13.2
761	140.2	13.2
761	136.8	13
761	136.6	12.9
761	136.9	13.5
761	153.6	14.1
761	155.7	14.2
761	153.1	14.2
762	151	14.2
761	150.7	14.2
761	150.8	14.2
761	150.4	13.6
761	134.1	12.7
761	113.7	11.7
761	109.8	11.0
761	114	11.0
701	117.5	11.0
761	110.0	11.0
701	117.4	11.9
761	114	11.0
760	10.2	11.0
760	109.0	11.0
760	112.2	11.0
760	116.0	11.0
759	121.3	11.0
759	121.3	11.7
758	123.4	11.7
758	123.4	11 7
758	126 4	11 0
758	120.4	11 0
758	118.6	11.9
758	115.4	11.6
758	117 3	11 7
100		/

758	120.2	11.8
757	120.4	11.7
757	120.8	11.7
757	121.2	11.6
757	123.7	11.7
757	125.1	11.7
758	126.6	11.7
750	120.0	11.0
750	124.0	11.0
759	117.1	11.8
759	112.5	12
760	113	12.3
760	129.8	12.9
761	131	12.8
760	129	12.7
760	128.8	12.7
760	130.7	12.7
761	130.5	12.7
761	130.5	12.6
761	130.2	12.5
761	129.7	12.4
761	120.7	12.1
762	128.0	12.0
702	120.9	12.0
762	120.2	12.7
763	118.7	12.3
763	118.1	12.3
763	118.8	12.2
763	120.4	12
763	125.4	12.3
763	148.8	13.6
763	148.7	13.5
763	152.4	14.4
763	174.4	15.1
764	175.7	15.1
764	155.3	14.6
765	154.5	14.9
765	155.4	14.9
765	155 5	14.9
765	155	1/ 8
764	154 7	1/ 0
704	104.7	14.0
764	143.7	14
765	141.5	14
764	141.6	13.8
764	141.4	13.7
764	142.2	13.6
764	158.2	14.4
764	157.1	14.4
764	155.2	14.4
764	155	14.5
764	155.5	14.6
764	143.7	13.9
763	126.7	13.1
763	116.9	12.4

763	109.6	11.9
762	106.9	11.7
762	111	11.6
762	112.6	11.7
762	115.5	12.6
762	136	13.4
762	138.6	13.6
762	139	13.7
761	139.1	13.8
761	153.2	14.5
761	153.4	14.5
760	158.8	14.8
760	159.9	14.8
760	167.7	15.1
760	164	14.9
760	146.1	14
761	145.8	14
761	153.4	14.2
761	151.7	14.2
761	151.6	14.2
761	150.9	14.3
761	151.6	14.6
761	152.2	14.3
761	152.6	14.3
761	153.3	14.3
761	153.7	14.4
761	157.1	14.4
761	157.4	14.4
762	158	14.6
762	158.8	14.6
762	148.5	14.4
762	148.5	14.9
762	158.7	15.3
762	160.5	15.1
762	159.9	15
762	159.4	14.9
762	148.9	14.5
762	147.3	14.3
762	140.0	14.2
762	140.8	14.3
703	156.4	14.7
704	100.9	14.4
765	100.6	12.9
765	109.0	11.9
765	107.5	12.2
765	142.5	12.0
766	142.0	13.5
766	142.1 1/10 7	13.5
766	142.7	12.0
767	1/26	13.4
767	142.0	13.3

768	142.6	13.3
768	142.6	13.4
769	142.6	13.6
769	142.6	13.7
769	142.5	13.8
769	142 5	13.8
770	142.0	13.0
770	142.4	12.0
770	142.3	13.0
770	142.2	13.7
770	142.1	13.6
770	142.1	13.5
770	142.1	13.5
771	142.1	13.4
771	141.9	13.2
772	142	13.3
772	142.1	13.3
772	142.2	13.3
772	142.1	13.3
772	142	13.3
772	141 9	13.3
773	141.0	13.3
772	141.9	10.0
773	141.7	13.2
773	140.7	13.1
773	140	13
773	140.3	13
773	140.9	13
773	141	13.1
772	141.1	13.2
772	141.3	13.3
771	141.3	13.4
771	141.2	13.4
770	141.3	13.3
770	141.2	13.5
769	141.3	13.4
769	141.2	13.3
768	141.2	13.6
760	142.1	12.0
700	103.3	13.0
769	105.8	14.4
769	177.9	15
769	178.4	14.9
768	166.8	14.4
768	166.7	14.5
768	154.9	13.9
768	153.5	13.9
768	142.6	13.3
768	141.9	13.2
768	141.7	13.2
768	142.9	13.1
768	142 3	13
767	142.0	13.4
767	16/ 7	1/1
766	165.6	14.1
100	100.0	14.1

766	162.9	14
766	160.7	14.1
765	161	14.9
765	181.3	15.3
764	183.1	15.4
764	183.1	15.5
763	183.2	15.5
762	100.2	15.5
703	102.9	15.5
703	162.5	15.7
764	183.5	15.6
764	183.6	15.6
764	183.4	15.2
764	173.4	14.9
764	165.9	14.7
764	162.1	14.6
764	162	14.6
764	162.1	14.6
764	162.1	14.4
764	150.1	14.2
764	149.2	14
764	149.2	13.0
764	150.6	10.0
704	150.0	19
703	100.0	13.0
762	139.3	13.4
762	138.4	13.3
/61	138.2	13.2
761	137.8	13.3
760	137.8	13.3
760	137.8	13.3
759	137.7	13.2
759	127.2	12.4
758	117.5	12.2
759	117.3	12
760	117.2	11.8
761	117.1	11.8
761	117.2	11.7
762	117.2	11.6
761	117.3	11.0
760	117.3	11.2
700	117.3	11.5
701	118.3	11.5
761	126.2	11.8
760	126.2	11.8
761	126.4	11.8
760	127.5	12.6
761	147.8	12.8
760	144.4	12.9
760	150.8	13.3
760	151.2	13.3
760	151	13.4
760	151.2	13.4
760	149.8	13.3
760	148.3	13.4

760	148.4	13.4
761	148.3	13.5
760	148.3	13.5
760	148.4	13.5
761	148.5	13.6
761	148.4	13.5
762	148 5	13.6
762	140.0	13.6
762	140.0	12.5
703	140.0	10.0
703	140.7	13.3
703	140.3	13.4
763	148.3	13.4
764	148.5	13.5
764	148.5	13.5
764	148.5	13.6
765	148.4	13.6
765	148.4	13.6
765	148.4	13.6
765	148.6	13.7
766	149.5	13.6
766	161.4	14.2
766	161.7	14.2
766	161.2	14.2
766	163.7	14.4
766	164 1	14 4
766	164.2	14.4
767	164 1	14.6
767	165	14.0
767	175	15.2
767	177 9	15.2
768	177.8	15.3
768	177.0	15.5
760	164.6	147
700	104.0	14.7
768	164.7	14.0
769	164.6	14.6
769	165.1	14.5
769	164.6	14.6
769	165	15.1
769	175.2	16.3
769	197.4	16.5
770	193.5	16.4
770	193.6	16.6
770	204.4	17.1
771	206	17.2
771	205.6	17.2
770	205.4	17.2
771	208.9	17.4
770	210.8	17.5
770	210.5	17.5
770	210.1	17.6
770	210.1	17.6
770	220.2	18.3
110	<u></u>	10.0

769	235.5	18.3
769	227.5	18.3
769	226.8	18.4
769	225.9	17.4
769	201.1	17.2
769	199.4	16.6
769	186	15.9
768	163.6	15.4
768	157.2	15.2
768	160.1	15.2
768	169.5	15.6
768	186.6	16.2
768	186.9	16.2
768	187.3	16.3
768	187.2	16.3
768	187.2	16.3
768	187.1	16.2
768	187.2	16.2
767	187.1	16.2
766	187	16.2
766	187.1	16.2
766	186.9	16.1
765	186.8	16.1
765	187.2	16.9
765	207.3	17.2
765	208.8	17.3
765	208.2	17.1
765	191.4	16.5
765	188.3	16.5
765	165.6	15.4
765	163.8	15.3
764	163.7	15.2
764	165.3	15.2
764	164.1	15.1
764	163.5	15
764	163.4	10
764	102.0	15 1
764	102.0	15.1
764	102.7	15
764	102.7	15
763	162.6	1/ 0
762	162.0	14.0
761	162.5	14.5
761	162.0	14.0
761	161.9	14.6
761	146.8	14
761	145.2	13.9
761	145.1	14
761	145.3	14
761	145.5	13.9
761	145.8	13.9

760	145.7	13.8
760	145.7	13.9
760	145.9	13.8
759	145.8	13.6
759	145.8	13.6
759	145.8	13.7
759	145.8	13.6
759	145.8	13.6
759	145.8	13.9
759	145.9	13.9
759	145.9	13.8
758	145.7	13.8
758	145.6	13.8
758	145.6	13.7
757	145.6	13.7
758	145.6	13.6
758	145.6	13.6
758	145.5	13.5
758	145.4	13.4
758	145.4	13.5
759	145.6	13.6
759	145.6	13.5
759	145.7	13.6
759	146.1	13.6
759	146.2	13.6
759	146.1	13.6
760	146.1	13.5
760	146.2	13.5
760	146.3	13.6
760	146.2	13.4
760	146.1	13.4
761	146	13.4
761	146.1	13.6
761	146.3	13.7
761	146.5	13.8
761	157.1	14.3
761	158.3	14.4
761	158.6	14.4
761	157.6	14.3
762	157.6	14.2
762	157.6	14.2
762	157.7	14.2
761	157.7	14.1
763	167.9	14.7
763	181	15.2
763	195.4	16
763	196.1	16.2
763	196.2	16.2
763	196.6	16.3
763	196.4	16.4
763	196.8	16.4
763	186.5	15.8

762	181.1	15.7	
762	181.1	15.7	
762	175.6	15.4	
762	175.3	15.4	
763	175.2	15.5	
763	175.2	15.5	
763	175.5	15.6	
763	185.7	16.0	
763	182.3	15.8	
760	102.3	15.0	
702	101.3	15.9	
702	100.9	10.0	
702	172.3	15.4	
762	173.4	15.5	
762	192	16.2	
762	192.8	16.2	
762	193.5	16.5	
762	219.1	17.5	
762	221.7	17.8	
762	238.5	18.5	
762	239.3	18.5	
762	216.9	17.7	
762	203.8	17.2	
761	194.2	16.6	
761	171.6	15.7	
761	170.2	15.6	
760	170.6	15.5	
760	195	16.6	
760	199.5	17	
760	219.6	18.1	
760	237	18.7	
759	238.5	18.7	
759	240.7	18.9	
759	240.3	18.9	
758	240.8	19	
757	240.2	18.9	
756	228.8	18.5	
756	231.6	18.5	
756	221.8	17.9	
756	212.4	17.9	
756	210.2	17.6	
755	210	17.6	
755	198.7	17	
755	175	16.2	
754	172.1	15.9	
756	170.8	15.9	
756	170.6	15.7	
756	170.5	15.7	
756	170.4	15.6	
756	170.4	15.5	
756	170.5	15.5	
756	170.3	15.4	
756	170.9	15.8	

756	188.3	16.2
756	190.3	16.2
757	189.9	16.4
757	190	16.6
757	190.2	16.5
757	190.4	16.4
757	180.1	16.4
757	100.7	16.5
757	109.7	10.5
757	107.7	10.4
758	187.6	16.3
759	188.3	16.5
759	188.5	16.3
759	188.6	16.4
760	188	16.2
761	188.3	16.2
762	187.9	16.2
762	176.6	15.7
763	175.8	15.8
764	175.8	15.8
765	175.8	15.7
766	176	15.7
766	175.2	15.0
700	175.5	15.0
700	175.1	0.CT
767	187.3	16.1
/6/	187.2	16.1
768	194.3	16.7
769	208.9	17.2
769	209.1	17.5
769	207.5	17.4
768	207.7	17.6
769	208.6	17.6
769	213.3	17.7
769	215.9	17.7
769	215.9	17.8
769	215.9	17.8
760	215.5	17.0
760	215.0	17.0
709	210.4	17.0
709	210.1	17.0
769	215.4	17.8
769	216.4	17.8
769	216.2	17.8
769	197.9	17.1
769	185.6	16.4
770	180	16.3
770	180.1	16.2
770	179.8	16.1
770	179.6	16.1
770	179.5	16
771	179.5	15.7
771	179 3	16
771	179 4	15.8
771	170.4	16.3
111	110.0	10.0

771	194.4	16.9
771	211.2	17.6
771	223.5	18
770	224.9	18.2
770	226	18
770	224.4	17.9
769	224.4	18.6
760	225.2	10.0
709	220.2	10.0
769	226	18.3
770	237.8	18.8
770	237.7	18.8
770	236.9	18.8
770	236.4	18.9
770	237.5	19
770	237.7	19
770	237.9	19
771	234.5	18.9
771	222.8	18.4
771	210.5	17.7
771	197.2	17 1
772	107.2	16.9
771	101 1	16.8
774	191.1	10.0
771	190.7	10.7
770	190.7	16.8
770	190.6	16.7
770	190.4	16.6
769	192.5	16.7
769	195.3	16.9
768	196.6	17.2
768	207.1	17.3
767	217.8	17.8
767	218.7	17.8
767	218.7	17.8
767	237.3	18.8
767	240.9	18.9
767	241 1	18.9
767	233.2	18.6
767	231.4	18.6
767	201.4	10.0
767	224.3	17.6
707	207.7	17.0
767	201.7	17.3
766	201.5	17.3
766	200.9	16.5
766	183.8	16.1
766	161.5	15.4
766	159.9	15.3
766	159.9	15.2
765	159.9	15.3
765	159.3	15.1
764	161.8	15.1
765	166.5	15.4
764	166.8	15.3

764	176	16
763	186.7	16.2
763	196.1	16.5
763	195.9	16.5
763	196.1	16.5
763	196	16.5
763	195.4	16.3
763	182.4	15.7
763	168.5	15.2
763	167.8	15.1
763	162.3	14.9
762	160.4	14.8
762	159.9	14.7
762	159.5	14.6
762	159.6	14.8
762	177.3	16
762	198.8	16.7
762	216.1	17.2
761	217.1	17.3
761	219.5	17.6
761	221	17.7
761	220.4	17.9
761	228.8	18.2
760	229.7	18.3
759	229.7	18.3
759	231.2	18.5
758	231.5	18.5
758	231.7	18.3
758	221.3	17.9
758	200.4	17.2
758	183.2	16.1
759	163.7	15.7
759	162.6	15.4
759	162	15.3
758	162.1	15.4
758	163.2	15.1
758	162.1	15.1
758	164.7	15.2
758	163.9	15.2
758	183.8	16.3
758	203.9	17
758	213.6	17.4
758	214.5	17.4
758	214	17.6
758	213.4	17.4
758	212.8	17.5
759	212.6	17.5
759	205.4	17.2
759	202.6	17.2
759	203.5	17.2
760	200.1	17
760	189	16.3

760	176.7	15.8
761	163.9	15.4
761	162.8	15.3
761	162.7	15.2
761	162.6	15.1
762	162.7	15.1
762	162.6	15.1
762	102.0	14.0
702	102.0	14.9
762	160.1	14.9
763	158.8	14.8
763	160.4	15.1
763	168.9	15.2
764	168.9	15.2
764	169.4	15.3
764	182.6	15.8
764	183.4	15.8
764	183.2	15.8
764	183.4	16
764	196.2	16.5
764	196.9	16.6
764	196.9	16.6
765	190.9	16.6
705	197.7	10.0
700	196.5	10.7
764	196.4	17.2
765	209.2	1/
766	209.3	17.3
766	206.3	16.9
766	196.7	16.8
767	196.6	16.9
767	196.7	15.6
767	197.2	16.7
767	196.8	16.8
767	197.1	16.8
767	208.2	17.5
768	219.2	17.8
768	219.5	17.9
768	210.0	17.0
768	210.4	18
769	210.1	10
700	219.3	10
768	219.2	18
/6/	219	18
/6/	225.3	18.3
766	226.1	18.6
766	237.1	19
765	238.3	19.2
765	237.5	18.9
765	237.6	19.1
764	237.6	19.1
764	238.4	19.1
764	238.7	19.2
765	238.8	19.2
765	238.3	19.1

764	237.9	19
765	222.5	18.2
764	209.3	17.8
764	196.2	17.2
764	195.7	17.2
763	196.4	17.1
763	188.8	16.8
703	100.0	10.0
704	107.4	10.0
764	187.5	16.7
763	207.1	17.5
763	207.8	17.6
763	207.6	17.5
763	207.5	17.5
763	208.3	17.7
763	229.3	18.5
762	231.1	18.6
762	230.8	18.6
762	231	18.7
761	231.4	18.7
761	249 1	19.5
761	251 3	10.0
762	201.0	10.6
702	240.0	19.0
762	240.2	19.4
762	239.5	19.3
762	230.1	18.9
763	220.9	18.5
763	204.6	17.7
763	189	17
763	171.8	16.3
763	158.9	15.8
763	158.9	15.8
764	168.6	16
764	167.4	15.9
764	167.4	15.9
764	167.4	15.8
764	167.4	15.7
764	167.2	15.6
704	107.1	15.0
704	107.0	10.0
763	177.2	15.9
763	177.6	15.9
763	177.7	15.9
763	177.8	15.9
763	188.1	16.4
762	190.5	16.4
763	200.2	17
763	201.5	17.1
764	213.9	17.6
764	214.3	17.6
764	203 3	17 2
764	190.7	16.6
76/	178.8	16.0
764	177.0	10.1
104	111.4	10

155.9	15
155.4	15
155.2	15
155.3	15
155.3	15
155	14.9
154.7	14.9
154.7	14.8
154.7	14.8
154.6	14.6
154.5	14.5
154.5	14.4
154.3	14.4
154.3	14.3
154.3	14.3
159.3	14.7
157.3	14.5
157.3	14.5
157.4	14.6
160.9	14.8
167.3	14.9
168.1	14.9
168.8	15
186.1	15.7
187	15.8
187.1	16
192.8	16.4
193.2	16.5
193.9	16.6
193.5	16.7
193.4	16.7
193.4	16.8
205.5	17.3
206	17.3
203	17.2
203.1	17.2
203.3	17.3
213	17.6
214.9	18.2
236.8	18.8
236.4	18.8
231.8	19
228.1	18.7
216.6	18.2
215.2	18.2
214.9	17.9
193.2	17.2
191.8	17.1
191.9	17
192.1	17.2
203.6	17.5
	$\begin{array}{c} 155.9\\ 155.4\\ 155.2\\ 155.3\\ 155.3\\ 155.3\\ 155.7\\ 154.7\\ 154.7\\ 154.7\\ 154.6\\ 154.5\\ 154.3\\ 154.3\\ 154.3\\ 157.3\\ 157.3\\ 157.3\\ 157.4\\ 160.9\\ 167.3\\ 168.1\\ 168.8\\ 186.1\\ 187.1\\ 192.8\\ 193.2\\ 193.9\\ 193.5\\ 193.4\\ 193.4\\ 205.5\\ 206\\ 203\\ 203.1\\ 203.3\\ 213\\ 214.9\\ 236.8\\ 236.4\\ 231.8\\ 228.1\\ 216.6\\ 215.2\\ 214.9\\ 193.2\\ 193.2\\ 193.2\\ 193.4\\ 236.8\\ 236.4\\ 231.8\\ 228.1\\ 216.6\\ 215.2\\ 214.9\\ 193.2\\ 191.8\\ 191.9\\ 192.1\\ 203.6\\ \end{array}$

762	208.9	17.8
762	215.9	18.3
762	221.2	18.5
763	221.9	18.6
762	221.4	18.5
762	217.6	18.4
762	217.0	18.4
762	210.7	10.4
702	217.3	10.4
762	217.4	18.3
762	213.1	17.8
762	202.2	17.7
761	195.9	17.3
761	204.7	17.7
762	205.8	17.7
762	205.1	18.2
763	222.4	18.5
763	223.2	18.5
763	196 7	17 1
763	168 5	16.2
763	164.5	16
703	164.5	15.0
764	104.5	15.9
764	168	16
764	171.9	16
765	185.8	16.7
765	206.1	17.8
765	240.8	19.2
766	247.5	19.6
766	249.4	20.2
766	275	21
766	275	21
766	274.7	21.2
766	275.2	21.3
766	272.9	21.2
765	271.8	21.2
765	271.0	21.2
705	271.1	21.2
705	200.0	21.2
765	267.4	21.1
765	266	21.1
765	267.3	21.2
766	267.4	21.3
765	268.2	21.3
766	263.9	21
765	259.8	20.9
765	239.6	19.6
765	207.9	18.6
765	181.1	17.6
765	180	17 4
765	180 1	17.2
765	182 5	17.2
765	207.0	10 5
700	207.9	10.0
765	222.2	19.2
765	227.1	18.8

764	221.9	18.8
764	221.3	18.9
764	220.2	19.4
763	240.7	20.4
763	268.8	21.3
763	280.5	21.2
763	273.8	20.9
762	273.0	20.5
762	271.0	21.0
702	203.5	20.9
762	264.2	20.9
763	263.2	20.9
763	278.9	21.6
763	284.7	21.7
763	271.3	21.4
763	274	21.5
763	273.7	21.5
763	271.6	21.5
763	272.7	21.5
764	273.3	21.5
764	270.9	21.4
764	270 7	21.4
764	270.7	21.7
764	2027	27.7
764	212.1	22.5
704	211 6	23.2
763	311.0	23.2
763	312.2	23.2
762	305.3	23.1
762	303.3	23.2
762	308.5	23.5
761	313.3	23.5
761	313	23.6
761	314.5	23.7
761	314.3	23.8
761	314.5	23.7
762	330.8	24.3
762	328.9	24.3
762	327.4	24.1
762	312.8	23.8
762	.314	23.9
761	316.5	20.0
761	317.2	24
701	215.6	24
701	313.0	23.9
701	315	23.9
761	313.9	23.8
761	312	23.6
761	299.2	23.3
760	298.2	23.3
760	297.1	23.3
760	297.4	23.2
760	296.5	23.3
760	297.4	23.2
759	297.1	23.2

759	297	23.1
759	293.4	23
758	292	22.9
758	290.4	22.9
758	292	23
759	294	23
760	293.3	22.9
760	280.1	22.5
760	279.1	22.4
761	279.2	22.4
761	264.9	21.5
761	248.1	21
762	246.8	20.9
762	247.1	20.6
762	238.3	20.4
762	237.5	20.3
763	237.9	20.2
763	237.8	20.1
763	237.4	20
764	237.1	199
764	233.3	19.8
764	233.4	19.8
764	233.3	10.0
764	233.2	10.7
764	233.2	10.7
763	233.2	10.7
763	233.7	10.7
763	232.0	19.5
763	232.1	19.5
764	234.2	10.5
764	234.0	19.5
704	233.7	19.4
704	200.7	19.5
705	233.0	19.5
705	232.7	19.5
765	234.1	19.3
705	248.5	20.2
765	250.3	20
765	249.9	20.1
765	250	20.1
765	250.9	20.6
765	273.3	21.2
765	274.9	21.9
765	299.4	22.3
765	300.9	21.9
765	275.2	21.1
765	257.4	
765	260.4	21
765	272.8	21.5
764	257.4	21.5
764	276.7	22
764	287.7	22.1
763	287.6	22.1

763	293	22.4
763	294.4	22.4
763	306.3	23
763	310.9	23.1
763	311.5	23.2
763	311.1	23.2
764	311.4	23.3
763	311.3	23.3
763	314.6	23.5
763	310.7	23.3
763	309.2	23.2
763	302.8	20.2
763	302.0	23.2
763	304.8	23.2
762	205	20.2
703	202	22.1
703	204.4	22.0
764	291.8	22.5
764	284.8	22.3
764	282.1	22.2
764	282.9	22.3
764	283.9	22.3
764	282.6	22.2
764	282.5	22.2
764	299.5	22.9
764	302.6	23.1
765	308.2	23.3
765	304.2	22.9
766	288.2	22.4
766	285.7	22.4
766	285.1	22
766	262	21.4
767	259.7	21.3
767	261.7	21.4
767	265.5	21.4
768	266 1	21.5
768	267.5	21.5
769	266.1	21.0
770	250.1	20.6
770	2/1 8	20.0
770	241.0	20.0
770	240.3	20.1
770	237	20.1
771	238.4	20
771	238.3	20
//1	238.5	19.9
//1	238.1	19.8
770	239.2	19.8
770	238.6	19.7
770	238.9	20.3
770	261.3	20.6
770	262.6	20.6
771	261	20.7
770	262.1	20.5

770	241.2	19.9
770	239	19.7
770	239.1	19.7
770	239.7	19.7
770	239.6	19.6
770	239.8	19.8
770	241	19.7
770	241	19.7
770	240.5	19.7
769	241.8	19.8
769	251.6	20.6
768	257.4	20.4
767	272.1	21.6
767	287.4	21.8
766	288.4	21.9
765	289	21.9
765	290.1	22
764	289.5	22.2
764	304.1	22.7
763	306.5	22.8
763	306.3	23
763	307.8	23
764	308	23
764	307.8	23.1

902 Battelle Boulevard P.O. Box 999 Richland, WA 99352 1-888-375-PNNL (7665) www.pnl.gov

