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Abstract

High brightness electron beam sources such as rf photo-
injectors as proposed for SASE FELs must consistently
produce the desired beam quality. We report the results of a
study in which a combined neural network (NN) and first-
principles (FP) model is used to model the transverse phase
space of the beam as a function of quadrupole strength,
while beam charge, solenoid field, accelerator gradient, and
linac voltage and phase are kept constant. The parametric
transport matrix between the exit of the linac section and
the spectrometer screen constitutes the FP component of
the combined model. The NN block provides the param-
eters of the transport matrix as functions of quad current.
Using real data from SLAC Gun Test Facility, we will high-
light the significance of the constrained training of the NN
block and show that the phase space of the beam is accu-
rately modeled by the combined NN and FP model, while
variations of beam matrix parameters with the quad current
are correctly captured. We plan to extend the combined
model in the future to capture the effects of variations in
beam charge, solenoid field, and accelerator voltage and
phase.

INTRODUCTION

High brightness electron beam sources such as rf photo-
injectors as proposed for SASE FELs must consistently
produce the desired beam quality. Free Electron Laser
(FEL) applications have been the primary driving force be-
hind this requirement. To achieve the desired beam quality,
there have been systematic studies of both the transverse
and longitudinal beam properties from the RF photocath-
ode gun at SLAC Gun Test Facility (GTF) [1, 2]. One main
objective of these studies has been to identify the factors
affecting beam quality and to establish systematic method-
ologies for minimizing beam emittance. Reliable models
that are suitable for emittance minimization are therefore
of primary interest [1, 3].

Model-based optimization and control has found
widespread applications in all aspects of modern life from
robotics, aerospace, transportation, materials and process
industry, to biology and medicine [4]. For complex appli-
cations such as emittance minimization in a photo-injector,
however, model-based optimization and control will be vi-
able only if the models are both accurate and computation-
ally efficient.
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Figure 1: Block diagram of a PUNDA model. The PUNDA
model is formed by the series connection of a Nonlinear
Empirical Model (NEM) block and a Parametric First-
principles Model (PFM) block.

A framework for building accurate and computation-
ally efficient models is shown in Figure 1. This frame-
work, known as Parametric Universal Nonlinear Dynamics
Approximator (PUNDA), consists of a series connection of
a Nonlinear Empirical Model (NEM) block and a Paramet-
ric First-principles Model (PFM) block. The parameters,
�P , in the PFM block may vary as a function of process in-
puts, �u.

For the SLAC GTF beamline1, shown in Figure 2, the
PFM block is a static nonlinear model, Eq. (1), relating the
beam matrix at the exit of the linac to the beam matrix at
spectrometer screen . The parameters of the PFM block are
the elements of the transport matrix (i.e. AT , BT , CT , and
DT ) that are functions of the quadrupole current. Note that
the beam matrix at the linac exit is an unknown input to the
PFM block. The goal of the modeling exercise is to use the
measurements of the beam size at the spectrometer screen
to systematically identify the parameters of the PFM block
(i.e. transport matrix elements), while also estimating the
unknown input vector to the PFM block.

PUNDA MODEL FOR TRANSVERSE
PHASE-SPACE

The schematic diagram for transverse phase space mea-
surements at the SLAC GTF is shown in Figure 2. The
measurement technique, known as quadrupole scan [2],
measures the transverse size of the beam as a function of
quadrupole strength. The purpose of the analysis is to
identify the transverse beam matrix at the quadrupole dou-
blet [1, 5].

1The SLAC GTF beamline consists of a 1.6 cell S-band gun of the
BNL/SLAC/UCLA design followed by a 3 meter linac section. The drive
laser is a Nd:Glass CPA laser with a regenerative amplifier that provides
2 ps (fwhm) gaussian UV pulses to the cathode with an approximately
uniform, 2 mm transverse profile.
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Figure 2: The block diagram for longitudinal and trans-
verse beam measurements at SLAC GTF.

GTF Transport Matrix from Linac Exit to Spectrometer  
  The transport matrix for transverse motion of the
beam from the exit of Linac to spectrometer is modeled us-
ing the first order matrix presented in TRANSPORT [6].
The beam parameters used in constructing transport matrix
models are described in [7]. We have used this transport
matrix as the first-principles model for the training of the
PUNDA models as will be described later.

Designating the transport matrix as T =
[

AT BT

CT DT

]
,

the beam matrix at the quadrupole doublet may be related
to the beam matrix at the spectrometer screen as follows:

[
σs

11 σs
12

σs
21 σs

22

]
= T

[
σe

11 σe
12

σe
21 σe

22

]
T

′
(1)

where the superscript ‘s’ indicates the beam matrix param-
eters at the spectrometer screen while the superscript ‘e’
indicates the parameters at the doublet. The elements of
the transport matrix T are functions of quad current, I 2

2.

SIMULATION RESULTS

The PUNDA model structure in Figure 1 is used to ana-
lyze the transverse phase-space for the beamline of Fig. 2
under a variety of simulation scenarios.

Analysis with Fully Known Transport Matrix
Using the transport matrix computed in [7] (based on

TRANSPORT model), a constrained optimization problem
is solved to determine the optimal value of the beam matrix
at the quadrupole doublet, i.e. σ e

11, σe
12, and σe

22 given the
measurements of the horizontal beam size at the spectrom-
eter screen, σs

11. Figure 3 shows the measured beam size
versus the modeled beam size. The identified beam matrix
at the input of the PFM block is consistent with the results
reported in [7].

Analysis with Unknown Transport Matrix
For the second test, we used a neural network for the

NEM block in Fig. 1 to estimate AT and BT (as functions
of quad current I2) simultaneously with the elements of the
beam matrix at the exit of the linac given measurements
of the beam size at the spectrometer screen. From the FP
model in Eq. (1), the beam size at the spectrometer screen,

(ΔX)2=σs
11,

2This nonlinear function is experimentally determined to be k2(I2) =(
αI2+β
30.50

)0.5
with α, and β as tuning parameters.

can be described as:

(ΔX)2 = A2
T σe

11 + 2AT BT σe
12 + B2

T σe
22 (2)

The training of the PUNDA model in this case, involves
a systematic search for the weights and biases in the NN
model along with the elements of the beam matrix at the
quad doublet, i.e. σe

11, σe
12, and σe

22, to solve an optimiza-
tion problem that minimizes the error between predicted
and measured beam size at the spectrometer screen. Fig-
ure 4 compares the PUNDA model prediction of beam size
against the measured beam size. Figure 5 compares the
identified AT to that computed from first-principles mod-
els. It is important to point out that:

1. The results presented here are obtained using only the
following constraints, for I2 ∈ [0, · · · , 3.9], extracted
from FP model for beam matrix:

∂AT

∂I2
≤ 0, and

∂BT

∂I2
≤ 0 (3)

2. With only 14 data points available for the training of
the PUNDA model, a better fit to the beam size mea-
surements is obtained compared to that in Figure 3.

Analysis with Partially-known Transport Matrix
    For the third test, we assumed that the only unknown
components of the transport matrix are the parameters of
the I2 − k2 relationship of the quadrupole magnet that is

defined as k2(I2) =
(

αI2+β
30.50

)0.5

. In this case, α and β are

the outputs of the NEM block, and the elements of the beam
transport matrix, i.e. AT , BT , CT and DT are expressed as
explicit functions of these parameters (see [7]). The train-
ing of the PUNDA model in this case involves simultane-
ous identification of α and β along with the elements of the
beam matrix σe

11, σe
12, and σe

22 given the measurements of
the beam size at the spectrometer screen. Figures 6 and 7
demonstrate the prediction results by the PUNDA model in
this case. Note that the identified AT (shown in Figures 7 is
more consistent with the FP model of the transport matrix
(compared to Figure 5). This example underscores the abil-
ity of the PUNDA framework to optimally utilize empirical
data and FP knowledge/model.

CONCLUSIONS
We would like to conclude this section with two main ob-

servations regarding the applicability of the PUNDA mod-
els in GTF applications. First, PUNDA structure offers a
framework in which both beam data and first principles
models may be used to complement one another. Fur-
thermore, the measured data may be used to fine tune the
FP model. Second, a trained PUNDA model may be sys-
tematically used to find optimal operation conditions for
the GTF. For our first test case, for example, the PUNDA
model may be used to find the optimal quad current for
which a desired (ΔX, ΔX ′) may be achieved. We plan to
extend the PUNDA modeling methodology to analyze the
longitudinal phase space in an rf photoinjector.
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Figure 3: Comparison of measured beam size vs. the
beam size predicted by the PUNDA model when the trans-
port matrix was completely determined by TRANSPORT
model.
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Figure 4: Comparison of measured and predicted beam size
when ΔX , AT , and BT are identified simultaneously.
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Figure 5: Comparison of identified values for AT vs. the
AT values generated by the FP model. While the PUNDA
model accurately captures the beam size, as shown in Fig-
ure 4, the model for transport matrix parameters deviates
from FP values in the absence of additional constraints.
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Figure 6: Comparison of measured beam size vs. the beam
size predicted by the PUNDA model for the case where
beam matrix parameters and α and β in I2 − K2 mapping
are identified simultaneously.
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Figure 7: Comparison of identified values for AT vs. the
AT values generated by the FP model for the case discussed
in Figure 6. The inclusion of the FP knowledge regarding
transport matrix in the training of the PUNDA model has
made the model for transport matrix elements more consis-
tent with FP information.
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