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I. INTRODUCTION

Amplitude analyses of three-body decays of B mesons with no charm particle in the final state are well
suited to study the Cabibbo-Kobayashi-Maskawa (CKM) framework [1] for charged current weak interactions.
In the analysis of a Dalitz plot the strong phases between interfering resonances are measured and can be
used to constrain the weak phases related to the CKM parameters that, in the Standard Model, govern
C P-violation. Following the path [2,13, 4] of the 3-pion B meson decays which give constraints on the CKM
angle ackm = arg(—ViaVyi/VuaV.), it has been shown in [5, 6] that B decays into a kaon and two pions are
sensitive to the angle yoxm = arg(—VuaVy;/VeaVi)-

In this paper we present an amplitude analysis of the flavor-specific B — K*7~ 7" decay [7]. This
analysis, an update to an earlier analysis [§], compares the Dalitz plots of the B® and B° decays where K
and 7m resonances interfere. In addition to enhanced statistics, we utilize improved track reconstruction,
tagging information from the opposite B, and the measured B flight-time to improve the quality of the
measurements. Previous measurements of the three-body final state |9, 10] and subdecays |11, 112] to a vector
and a pseudoscalar meson have been published. Other B — Knm decays have been studied in [13, 14, [15, [16].
A phenomenological study of three-body B meson decays without charm in the final state is presented in [17].

This paper is organized as follows. We first present in Section [[Il the decay model based on an isobar
expansion of the three-body decay amplitude. The complex coefficients of the expansion are the unknowns
we seek to determine by means of an unbinned extended maximum likelihood fit. We describe the detector
and dataset in Section [Tl the procedure used to select the data sample in Section [[V], and the fit method
in Section [Vl The results are then described in Section [Vl together with the accounting of the systematic
uncertainties in Section [VIIl Finally in Section [VIII, we summarize our findings.

II. DECAY AMPLITUDES
The B° — K*tn~ 7% decay amplitude is a function of two independent kinematic variables commonly
chosen to be the invariant masses squared®, = m%.._- and y = m%._,. The Dalitz plot (DP) is the z, y

two-dimensional distribution. It is customary to express the decay amplitude as a sum over intermediate
(isobar) states:

A($7y> :Zajfj(xvy)a (1)

and similarly for the B® — K—nt 7% Dalitz plot,

./Tl(l',y) :Zajfj(xay)' (2)

The complex isobar coefficients a; are parameterized by:

a; = Cj(l =+ bj)ei(¢j +95) (3)
@j = ¢j(1 = by)e' @) (4)

8 We use natural units where i = ¢ = 1 in our algebraic equations



and are constant over the D_alitz plot. The parameters by, ¢r, 0r are related to the isobar fractions F Fy
(C P-averaged over B® and B°), C P-violation charge asymmetries and phases by:

Jopllarfs(z,y)* + [arfy(,y)||dz dy

FF, — _ S _ 5)
fDP“Z]‘a’jfj(x7y)| +|Zja’jfj(‘r7y)| ]dx dy

K [ar|? — |ax|? —2by,

Ace = =5 2 = 2
[ak|? + |ax| 1+

Qi = ¢k + 0k,

D = ¢p—

Note that, due to interference, the fractions F'Fj in general do not add up to unity.
The decay dynamics of an intermediate state are specified by the f;(z,y) function which describes the
Dalitz plot. For instance a resonance formed in the K7~ system gives a contribution which factorizes as:

fi(z,y) = Rj(x) x Tj(z,y) x Wj(z), (6)

where R;(x) is the resonance mass distribution or lineshape and Tj(z,y) models the angular dependence.
The product of Blatt-Weisskopf damping factors, W;(z) = \/Bp(Rp*(x)) B;(Rq(xz)) [18], slightly deviates
from unity as a function of z through the breakup momenta® of the (quasi) two body B and resonance
decays multiplied by a range parameter R. The f; are normalized,

/D )P dy = 1. (7)

We use the Zemach tensor formalism |19, [20] for the angular distribution TJ-(J)(:E, y) of a process by which
a pseudoscalar B meson produces a spin-J resonance in association with a bachelor pseudoscalar meson. For
J =0, 1, 2, we have:

7" =1,
)V = -2%.q,
4,
T =SB 9 - (Ald)?) (8)

wherel® p(z,y) (¢(z)) is the momentum vector of the bachelor particle (the resonance decay product @
defined below) measured in the resonance rest frame. For a neutral (charged) K7 resonance, @ is the pion
(kaon), and for a dipion resonance, @ is the 7°. Notice that these choices define for each two-body system
the helicity angle 6; = (p;, ¢;) between 0 and .

Our nominal model (Table[l) for the decay B® — K7~ 7” includes a nonresonant contribution which is
uniformly distributed over the Dalitz plot, and seven resonant intermediate states: p~(770)K*, p~ (1450)K T,
p~(1700) K+, K*(892) 070 and (K7)5"% % The notation for the last isobar component, introduced
by the BABAR experiment [13], denotes phenomenological amplitudes describing the neutral and charged K
S-waves each by a coherent superposition of an elastic effective range term and a term for the KJ(1430)
scalar resonance. It describes current knowledge on low energy K7 systems with a small number of pa-

rameters. In addition we include two non-interfering components for the decays B° — D'n® — K+r 70
and B - DK+ — K*t7~ 7" Variations in the nominal model are used to estimate the model-dependent
systematic uncertainty in the results. The Gounaris-Sakurai (GS), relativistic Breit-Wigner (RBW), and
LASS lineshapes are used to model the R;(z). Parameters are taken from [22] unless stated otherwise.

9 p*, the momentum of the bachelor particle in the B meson rest frame, is equal to the breakup momentum of the studied B

meson decay.
10 For simplicity, we have dropped the j index in 7 and §.
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TABLE I: The nominal model for the decay B® — K 7~ 7% comprises a nonresonant part and seven intermediate
states. The three types of lineshape are described in the text. The resonances masses and widths are from [22],
except for the LASS shape [21]. We use the same LASS parameters for both neutral and charged K7 systems.
Additional resonances that may contribute are included in extended models which we study to estimate the systematic
uncertainties.

Intermediate state Lineshape Parameters
Nominal model
Nonresonant Constant
p~(770) GS m = 7685 MeV/c?
= 1482 MeV
p~(1450) GS m = 1439  MeV/c?
= 550 MeV
p~(1700) GS m = 1795 MeV/c?
= 278 MeV
K*1(892) RBW
K*9(892) RBW
(Km)™ LASS m® =1415+£3 MeV/c?
(Km)s° = 300£6 MeV
cutoff m7*** = 1800 MeV/c?
a=207+0.10 (GeV/c)™ !
r=3.32+0.34 (GeV/c) !
Non-interfering Components
D° mass = 1862.3 Double Gaussian
width = 7.1 MeV/c? (From Data)
DT mass = 1864.4 Double Gaussian
width = 9.9 MeV/c? (From MC)
Additional resonances
K3 (1430)™° RBW
K*(1680)™° RBW

A. LINESHAPES
1. The relativistic Breit-Wigner distribution

The relativistic Breit-Wigner (RBW) parameterization is used for K*(892)%° K3(1430)*° and

K*(1680)+°;

1
! Y mf—x—zmjf(‘])( )

The mass-dependence of the total width Fg-‘])
which decay only elastically, it is defined by

can be ignored for high-mass states. For the low-mass states

FO m;

o)\ BY(Re(x))
17z \ atm?) 2

) = B (Rg(m?))

(10)
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where m; is the mass of the resonance j, I‘]Q = I‘j(mf) its width, and the barrier factors (squares of the
Blatt-Weisskopf damping factors [18]) are:

BO = 1, (11)
1
By — -
1+ R2¢%’
BO — 1

9+ 3R2q% + Righ
All range parameters (R) are set to the values in the PDG [22].

2.  The Gounaris-Sakurai distribution

The Gounaris-Sakurai (GS) parameterization [23] is used for p~(770), p~(1450) and p~ (1700):
14d; l"?/mj

R%%(z;m;,TY) =
J (w5 m;, T5) m?—l—gj(a:)—:z:—imjfj(x)

J

; (12)

with the same x-dependence of the width as for the RBW. The expressions of the constant d; and the
function g;(z) in terms of m; and '} are given in [23]. The parameters of the p lineshapes are taken from 7
and 77 scattering in [24] and [25].

8. The LASS distribution

For the K7 S-wave amplitudes, (K7); ", which dominate for m g, below mi =2 GeV/ 2, an effective-
range parameterization was suggested [26] to describe the slowly increasing phase as a function of the K
mass. We use the parameterization as in the LASS experiment [21], tuned for B decays:

Jz

RIASS (2;m, T = 13
J (&3mj, s a,7) qcotdp —iq (13)
o0 ™
1208 ijq_o
m9 "’
[(m)? — ] — im?l"?%q—oj
where
665 = —— + = rq(x) (14)
co =—— 4+ —rq(z
B aq(:v) 2 q 9

a is the scattering length, and r the effective range (Table [I).

B. THE SQUARE DALITZ PLOT

The accessible phase space for charmless three-body B decays is unusually large. Most contributing
resonances have masses much lower than the B mass. Hence signal events cluster along the Dalitz plot
boundaries. This is also true for background events. Past experience has shown that another set of variables,
defining the Square Dalitz Plot (SDP) is well suited to such configurations. It is defined by the mapping:

dr dy — dm' df’ (15)

- 1 M — Mmin
m' = —arccos(2
™

Mmax — Mmin
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FIG. 1: The standard (a) and square (b) Dalitz plots of the selected data sample of 23683 events. The selection
criteria are described in Sec. [¥]. The structures are more spread out in the square Dalitz plot. The D° — K+n~
narrow band is preserved with the choice made for the m’ variable.

where m = /z and 6 are respectively the invariant mass and helicity angle of the KT system. mpax =
mp — myo and Mmyin = Mi+ + m,— are the kinematic limits of m. The new variables both range between
0 and 1. The standard and square Dalitz plots are shown for our data sample in Fig. [II

IIT. THE BABAR DETECTOR AND DATASET

The data used in this analysis were collected with the BABAR detector at the PEP-II asymmetric energy
ete™ storage rings between October 1999 and September 2007. This corresponds to an integrated luminosity
of 413 fb~! or approximately Npp = 454 + 5 million BB pairs taken on the peak of the 7°(4S) resonance
(on resonance) and 41 fb~! recorded at a center-of-mass (CM) energy 40 MeV below (off resonance).

A detailed description of the BABAR detector is given in [27]. Charged-particle trajectories are measured by
a five-layer, double-sided silicon vertex tracker (SVT) and a 40-layer drift chamber (DCH) coaxial with a 1.5 T
magnetic field. Charged-particle identification is achieved by combining the information from a ring-imaging
Cherenkov device (DIRC) with the ionization energy loss (dE/dz) measurements from the DCH and SVT.
Photons are detected in a CsI(T1) electromagnetic calorimeter (EMC) inside the coil. Muon candidates are
identified in the instrumented flux return of the solenoid. We use GEANT4-based |28] software to simulate
the detector response and account for the varying beam and environmental conditions. Using this software,
we generate signal and background Monte Carlo (MC) to estimate the efficiency and expected backgrounds
in this analysis. Two samples of signal MC were used: one was generated with the Dalitz plot distribution
observed in the previous analysis []] while the other was generated with a phase-space distribution.

IV. EVENT SELECTION
A. SIGNAL SELECTION AND BACKGROUND REJECTION

To reconstruct B — K+7~ 7% decays, we select two charged particles and two photons. The charged
particle candidates are required to have transverse momenta above 100 MeV/c and at least 12 hits in the
DCH. They must not be identified as electrons or muons or protons. We select kaons and pions based on
their signatures in the DIRC and DCH. The 7° candidate is built from a pair of photon candidates, each
with an energy greater than 50 MeV in the laboratory frame (LAB) and a lateral energy deposition profile
in the EMC consistent with an electromagnetic shower. The invariant mass of a 7° candidate must satisfy
| a0 —TPRG | < 3. We also require | cos 0%,|, the modulus of the cosine of the angle the decay photons make

0'7717‘_0
with the 7° momentum vector to be less than 0.95 .
At the 7°(4S5) resonance, B mesons are characterized by two nearly independent kinematic variables, the
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beam energy substituted mass and the energy difference:

mes = \/(s/2+ 50 0B)2/ B — 1y, (16)
AE = Ej —/3/2, (17)

where E and p are energy and momentum, the subscripts 0 and B refer to the eTe™-beam system and the
B candidate respectively; s is the square of the center-of-mass energy and the asterisk labels the CM frame.
We require that 5.272 < mgs < 5.2875 GeV/c?. To avoid a bias in the Dalitz plot from the dependence on
the 7% energy of the resolution in AE, we introduce the dimensionless quantity:

AE +mo +mix + m2:172 + m3:173

AE = JAE (18)
wo + w1z + wex? + waaxd

where the coefficients are determined from fits to signal MC and o = m%.._-. We require [AE'| < 2.1.

Continuum e*e™ — ¢7 (¢ = u,d, s, c) events are the dominant background. To enhance discrimination
between signal and continuum, we select events by using a neural network [29] with an output NN which
combines six discriminating variables: the angles of the B momentum and the B thrust axis with respect
to the e™ beam direction in the CM frame, the angle between the thrust axes of the signal B and other B,
the zeroth and second order monomials Ly and Lo, and Az/o(Az), the flight distance between the two Bs
scaled by the error. The monomials are defined as L,, = ), p; - | cos 6;|™, where the sum runs over all charged
and neutral particles in the event (except for those in the B candidate) whose momenta p; make angles 6;
with the B thrust axis. The neural network was trained on off resonance data and correctly reconstructed
signal Monte Carlo events. We require 0.6 < NN.

Approximately 15% of the signal events have multiple reconstructed B candidates (usually two). We select
the candidate with the minimum value of:

2 (mﬂ'o - mPDG)2

X = + X%/crtcx' (19)

Om._o
where X%, e 15 the x? of the kinematic fit to the particles in the B meson candidate.

There are 23268 events in the data sample after the selection. The B meson candidate in each event is
mass constrained to ensure that the measurement falls within the Dalitz plot boundary.

B. TRUTH-MATCHED AND SELF-CROSS-FEED SIGNAL EVENTS

Using the Monte Carlo simulation as in [3], we distinguish between the correctly reconstructed and the
misreconstructed signal events. A correctly reconstructed event where the three particles of the B candi-
date match the generated ones, is called a Truth-Matched (TM) event. The TM PDFs describe correctly
reconstructed events in the fit to data. A misreconstructed signal event contains a B meson which decays
to the signal mode, but one or more reconstructed particles in the B candidate are not actually from the
decay of that B. Misreconstructed signal is called Self-Cross-Feed (SCF). Misreconstruction is primarily
due to the presence of low momentum pions. Consequently the efficiency e(m’,0’) to reconstruct an event
either correctly or incorrectly varies across the Dalitz plot. The SCF fraction fscr(m/,6’) is high, where the
quality of the reconstruction is poor. This occurs in the corners of the Dalitz plot where one of the final-state
particles has a low momentum in the LAB frame. These variations can be seen in Fig. [2 computed using
high statistics Monte Carlo samples. It is important to keep a high efficiency in the Dalitz plot corners where
the low-mass vector resonances interfere. Overall the total efficiency is close to 22.5% and the SCF fraction,
averaged over the Dalitz plot, is ~ 9%.
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FIG. 2: Selection efficiency for truth-matched events on the left and SCF events on the right.

C. BACKGROUND
1. Continuum background

Although the neural network selection rejects 90% of the continuum events, this background is the domi-
nant class of events in the data sample, representing about two thirds of its size.

2.  Background from other B decays

Since there is no restriction on any two-body invariant mass of the final state particles, large backgrounds
from other B decays occur. We use high statistics Monte Carlo samples to study these backgrounds. Conser-
vative assumptions about unknown branching fractions are made. Inclusive and exclusive B decays with or
without charm are grouped into nineteen classes to be used in the fit. Rates, and topological and kinematical
similarities are studied to define the classes listed in Table [l Those backgrounds whose contributions are
expected to be large (200 or more events) are varied in the fit while all others are fixed.

V. THE MAXIMUM LIKELIHOOD FIT

We perform an unbinned extended maximum likelihood fit to determine the total B — K7~ 7" event
yield, the magnitudes ¢;(1 £b;) and phases ¢; & d; of the complex isobar coefficients of the decay amplitude
defined in Eq. Bl The fit uses the variables m/, 6, mgs, AE’ and NN to discriminate signal from back-
ground. A simultaneous fit is performed using the B-tagging @] category from the opposite B, for a further
improvement in discriminating power. The variable label ¢ denotes each of seven tagging categories defined
in 30].

A. THE LIKELIHOOD FUNCTION

The selected on-resonance data sample consists of signal, continuum-background and background from
other B decays. The probability density function (PDF) P¢ for an event i in tagging category c is the sum
of the probability densities of all components, namely
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TABLE II: The list of B-backgrounds retained for the fit (Section [V]). For each channel, we give (anticipating Sec-
tion [V1)) either the fitted number of events in the data sample if its yield is allowed to vary in the fit procedure or
the expected number otherwise.

Class Mode Events
1  BY — K*°(892)y, K*U(1430)y 187 £14 fixed
2 pta® 1142 fixed
3 fo(980)K T, K*tr0, 48 £12 fixed
4 K*TK~ 144+ 10 fixed
5 ataxT Dalitz plot 8+ 1 fixed
6 KTa nT Dalitz plot 164+ 9 fixed
7 Kta° 65+3 fixed
8 Ktn~ 5342 fixed
9 xtr7° Dalitz plot 109 £ 13 fixed

10 Generic B — charm with D° 627 + 60 varied
11 Generic B — charm with DT 370 £ 80 varied

12 K*tay, K*0p°, 9+2 fixed
13 Knﬂ' , 8+ 1 fixed
14 KT, 2241 fixed
15 ptp afn” 2743 fixed
16 K*pt, 1546 fixed
17 K*tp~, 214+6 fixed
18 pTplalnt,afx® 50413 fixed
19 Combinatoric B Decays 660 £ 122 varied
—c —=c
Pi = Nsigfgg {(1 — fscr)Peig—tm,i + fSCF,PscigfsCF,l}
+ N;q 5 (1 + Grag,iAqq, tag) ,qu,i
NBJ
class 1
+ Z NBJfJ%,jg (1 + Qtag,iABytagyj) P]ci’,ij
j=1

(20)

where Ny is the total number of B — K T7~ 7 signal events in the data sample; is the fraction of signal

51g
events that are tagged in category c; f gCF is the fraction of SCF events in tagging category c, averaged over
the DP; Pg,_ v ; and Pg,_gcp,; are the products of PDFs of the discriminating variables used in tagging
category c for TM and SCF events respectively; Ngo is the number of continuum events that are tagged in
category ¢; giag,; is the tag flavor of the event, and is equal to the charge of the kaon from the B decay;

Aqq, tag Parameterizes possible tag asymmetry in continuum events; Py ; is the continuum PDF for tagging

category ¢; N5 . is the number of B-related background classes considered in the fit, namely nineteen; Np
is the number of expected events in the B background class j; f§ B,; 1s the fraction of B background events
of class j that are tagged in category c; Ap, tag,; describes a pos51b1e tag asymmetry in the B background
class j; Pg ,; is the B-background PDF for tagging category ¢ and class j.

The PDFs P (X = {sig—TM, sig—SCF, ¢g, B) are the product of the four PDFs of the discriminating
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TABLE III: Summary of the PDF parameterizations. G=Gaussian, P1=1st order polynomial, NP=non-parametric.
The notation (DP) designates a PDF with parameters which vary over the Dalitz plot. The Dalitz plot signal model
is described in Section [

Component mES AFE’ NN Dalitz
signal (TM) see text G(DP)+P1(DP) NP see text
signal (SCF) NP NP NP see text
Continuum Argus P1 see text NP
B backgrounds NP NP NP NP

variables ', 1 = mgs, 72 = AE’, x3 = NN output and the doublet 2, = {m/,0'}:

4

Piigy = 1 Prag (@) (21)
k=1

where ¢ is the event index and j is a B background class. The extended likelihood over all tagging categories
is given by

TN
c= 1] IIPs. (22)
c=1 i

where N° is the total number of events expected in category c.

The correlations among the measurements are handled by building conditional PDFs where appropriate.
The PDF parametizations are given in Table[[Ill and a summary of the parameters varied in the fit can be
found in Section V.D.

B. THE DALITZ PROBABILITY DENSITY FUNCTIONS

Since the decay B® — K+n~ 7 is flavor-specific (the charge of the kaon identifies the b flavor), the B°
and B Dalitz plots are independent. However, because the backgrounds are essentially flavor blind, we get
a more robust procedure by fitting them simultaneously. It is enough to describe only the BY Dalitz plot
PDF. A change from A to A (Eq. () and (@))) accompanied by the interchange of the charges of the kaon
and pion gives the B PDF.

1. Signal

The model for the distribution of signal events in the Dalitz plot has been described in Section [l The
free parameters are c¢j, b; ,¢;, 0; defined in Eq. () and (@) for all the intermediate states of the signal
model given in Table[ll Since the measurement is done relative to the p~(770) final state, the phases of this
and the charge conjugate channels are fixed to zero. The amplitude of B® — p~(770)K* is also fixed but
not that of B® — p*(770)K~ in order to be sensitive to direct C'P-violation. The weak phase §; and CP
violating amplitude b; of the p~(1450) and p~(1700) are constrained to equal those of the p~(770) in the
fit.

The normalization of the component signal PDF's:

Prari x ei(1 — fscr.i)|detJi|| A2, (23)

11 Not all the PDFs depend on the tagging category. The general notations P i) and P§ i) are used for simplicity.
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Pscr.i x & fscr.if|detT|| Al @ Rscrlis (24)

is model dependent. J is the Jacobian matrix of the mapping to the square Dalitz plot. The symbol ®
stands for a convolution and the R matrix is described below in Eq. (29). The normalization requires the
computation of the integrals

1 1
/ dm’ / do’ e(1 — fscr)|detT | frfi, (25)
0 0

1 1

/ dm// do' < fscr|det T | fuf7, (26)
0 0
and

1 1
/ dm’ / do’ e|det T | frf], (27)

0 0

where the notations of Eq. () are used. The integrations over the square Dalitz plot are performed
numerically. The weight

fol dm/ fol df’ e fscr|detT||AJ?
fol dm/’ fol do’ e|detJ||Al?

TSCF = (28)

ensures that the total signal PDF is normalized. The PDF normalization depends on the decay dynamics
and is computed iteratively. In practice the computation of fgqp rapidly converges to a value which we fix
after a few exploratory fits.

Studies in simulation have shown that the experimental resolutions of m’ and #’ need not be introduced in
the TM signal PDF. However, misreconstructed events often incur large migrations, when the reconstructed
m.., 0. are far from the true values mj, ;. We use the Monte Carlo simulation to compute a normalized

two-dimensional resolution function Rscp(m 0/, m},0;), with

ryYry

/dm / d9 RSCF mr,or,mt,e) 1. (29)

Rgcr is convolved with the signal model in the expression of Pgcor in Eq. (24).

2.  Background

Except for events coming from exclusive B — D decays, all background Dalitz PDF are modeled with
non-parametric, smoothed, two-dimensional histograms. The continuum distributions are extracted from a
combination of off resonance data and a sideband (5.20 < mgs < 5.25 GeV/c?) of the on-resonance data
from which the B-background has been subtracted. The square Dalitz plot is divided into eight regions
where different smoothing parameters are applied in order to optimally reproduce the observed wide and
narrow structures by using a two-dimensional kernel estimation technique [31]. For 0.64 < m/ < 0.66 and
all ¢, a finely binned, unsmoothed histogram is used to follow the peak from the narrow D° continuum
production. The B-background (Table [l Dalitz PDFs are obtained from the Monte Carlo simulation. For
the components which model b — ¢ decays with real D° mesons, a fine grained binning around the D mass
is used to construct unsmoothed histograms.

C. THE OTHER PDFS
1. Signal

The mgg distribution for signal events is parameterized as:
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(z —m)?

f(z =mps) =exp |- (30)

202 + ay(z —m)?
where m and o4 are floated in the data fit.

For SCF-signal events we use a non-parametric shape taken from the Monte Carlo simulation.

AFE' is correlated with the Dalitz plot variables for TM-signal events. To account for the correlation, we
choose the combination of a Gaussian and 1st order polynomial PDF. The mean and standard deviation
of the Gaussian and slope of the polynomial vary linearly with miiﬂ;. These parameters (intercept and
slope) are free in the fit. A non-parametric shape taken from the Monte Carlo simulation is used for the
SCF-signal AE" PDF.

The NN PDFs for TM and SCF events are non-parametric distributions taken from the Monte Carlo.

2. Background

We use the Argus function [32]

flz= mn}fx) x z\/1 — 22¢~6(1=%") (31)

Mgs

as the continuum mgg PDF. The endpoint mpd* is fixed to 5.2897 GeV/c? and ¢ is free in the fit. The AE'
PDF is a linear polynomial whose slope is free to vary in the fit. The shape of the NN distribution for
continuum is correlated with the event location in the Dalitz plot. To account for that effect we use for the
NN PDF a function that varies with the closest distance Agajt, between the point representing the event
and the boundary of the standard Dalitz plot,

P(NN; Agatir,) = (1 — NN)k (32)
x (ko NN? + k3NN + ky).
ki = ¢ + pi - Adalitz

The k; are linear functions of Agajt, Where the ¢; and p; are varied in the likelihood fit.
We use non-parametric distributions taken from the Monte Carlo to describe mgg, AE’and NN distribu-
tions for the B-background classes in Table [l

D. THE FIT PARAMETERS

The following parameters are varied in the fit:

e Yields for signal (Ng,), continuum (Ngz) and three B background classes (c=10, 11 and 19 defined
in Table [I).

e (' P-asymmetries for the continuum events.
e The global mean and slope(s), of the AE’ distribution for the TM-signal (continuum) events.

e Parameters which describe the shape and correlation of the NN output and the event location in the
Dalitz plot [Eq. (32)].

e The mean and widths of the function describing the mpgg distribution of the TM-signal events in
addition to the £ parameter of the Argus function describing the continuum mgg shape.

e Thirty-two isobar magnitudes and phases. There are 10 intermediate states (7 resonances and a non-
resonant term and two non-interfering D modes) and two Dalitz plots. We fix one reference magnitude,
that of BY — p~(770)K T and two phases for the latter and its conjugate. Therefore we end up with
18 magnitudes and 14 phases to be determined by the fit.
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VI. RESULTS

The maximum likelihood fit results in a B® — K+t7~ 70 event yield of Ngig = 4583 £ 122 events, where
the uncertainty is statistical only. When the fit is repeated starting from input parameter values randomly
chosen within wide ranges of one order of magnitude above and below the nominal values for the amplitudes
and within the [—m, 7] interval for the phases, we observe convergence toward four solutions with minimum
values of the negative loglikelihood function (NLL). The best solution is separated by 3.9 units of NLL from
the next best solution. The event yield we quote is for the best solution; the spread of signal yields between
the four solutions is less than 5 events. The fitted phases ®, ® and the C P-asymmetries Acp are given for
the best solution in Table [Vl

TABLE IV: Results of the best solution. The fractions are the C P-averaged isobar fractions (F'F}) defined with the
C P-asymmetries Acp in Section M [Eq. @)]. The phases ® for the B decays and ® for the B decays are measured
relative to B°(B°) — pTK*. The first error is statistical and the second is systematic.

Isobar Fraction (%) ) o Acp
o (TT0)K ™+ 13.60 & 1.24 + 0.60 0.00 (fixed) 0.00 (fixed) 0.14 4 0.06 + 0.01
p~ (1450) K+ 4.66 4 1.42 + 0.68 1.63 +£0.26 +0.12 1.63 +£0.26 +0.12 0.14 4 0.06 + 0.01
p~ (1700) K+ 1.16 4 0.69 & 0.26 0.52 + 0.40 £ 0.15 0.52 +0.40 £ 0.15 0.14 + 0.06 + 0.01
K*t(892)r~ 5.52 +0.59 + 0.18 0.74 +0.36 £ 0.14 0.37 + 0.36 £ 0.31 —0.30 +0.11 + 0.03
K*°(892)7° 4.53 +£0.57 £0.26 0.65 +0.29 £+ 0.10 —0.00 +0.33 + 0.10 —0.15 4 0.12 + 0.02
(Km)itm™ 23.60 + 1.18 & 1.70 —2.76 £ 0.25 4 0.08 —2.60 £ 0.30 &+ 0.22 0.07 4 0.05 + 0.01
(Km)gon® 11.90 + 1.11 + 1.46 0.37 + 0.26 + 0.38 —0.11 £0.27 +0.24 —0.16 £ 0.09 4 0.04
N.R. 5.90 + 0.93 + 0.80 1.00 + 0.24 +0.17 1.154 0.27 +0.18 0.07 £ 0.15 & 0.04
D°r0 20.90 + 0.85 + 2.66
D Kt 0.93 +£0.23 £+ 0.02

The Dalitz plot mass distributions in an enlargement of the low-mass resonance region (masses below
2.0 GeV/c?) are shown in Fig.[Bl. The p~, K*T, and K*? are clearly visible in the m,— 0, Mg+ 0, Myt
distributions respectively. We calculate a x? of 772 for 644 bins on the Dalitz plot where at least 25 events
are guaranteed to exist in each bin. The distributions of the discriminating variables (mgs, AE'and NN)
are shown in Fig. @ Fitted parameters are given for the four solutions in Table [Vl We observe that the
fit fractions and the C'P asymmetries are consistent within less than three standard deviations among the
solutions, though the phases differ substantially.
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TABLE V: Results of the four solutions of the fit. The fractions are the C P-averaged isobar fractions (_FFk) defined

with the C'P-asymmetries Acp in Section [l [Eq. (B))]. The phases ® for the B decays and @ for the B° decays are
measured relative to B°(B°) — pTr®. The uncertainties are statistical only.

Resonance Parameter Solution-I Solution-IT Solution-II1 Solution-I1V
A(NLL) 0.00 3.94 7.77 10.57
p~ (TTO)K™T FF (%) 13.60 & 1.24 13.70 &+ 1.25 13.20 £ 1.09 13.40 £+ 1.27
Acp 0.14 + 0.06 0.17 + 0.06 0.11 + 0.06 0.14 & 0.06
) 0 (fixed) 0 (fixed) 0 (fixed) 0 (fixed)
o 0 (fixed) 0 (fixed) 0 (fixed) 0 (fixed)
p (1450) KT FF (%) 4.66 £ 1.42 413 + 1.42 4.61 + 1.56 4.16 £ 1.61
Acp 0.14 £ 0.06 0.17 4 0.06 0.11 4 0.06 0.14 4 0.06
) 1.63 4+ 0.26 1.41 + 0.25 1.64 4+ 0.28 1.39 4+ 0.27
) 1.63 + 0.26 1.41 + 0.25 1.64 + 0.28 1.39 + 0.27
p~ (IT00)K T FF (%) 1.16 & 0.69 0.61 + 0.52 0.78 + 0.64 0.30 + 0.43
Acp 0.14 £ 0.06 0.17 4 0.06 0.11 4 0.06 0.14 4 0.06
) 0.52 + 0.40 0.42 + 0.51 0.38 + 0.53 0.07 + 0.78
) 0.52 & 0.40 0.42 4+ 0.51 0.38 4 0.53 0.07 &+ 0.78
K*(892)7~ FF (%) 5.52 + 0.59 5.54 + 0.61 5.92 + 1.21 5.88 + 0.63
Acp -0.30 + 0.11 -0.30 + 0.11 -0.21 + 0.11 -0.22 + 0.11
[ 0.74 + 0.36 0.66 + 0.36 -3.10 £ 0.37 3.09 + 0.36
) 0.37 & 0.36 2.58 + 0.36 0.36 4 0.36 2.61 &+ 0.35
K*Y(892)m° FF (%) 4.53 £ 0.57 4.61 £ 0.57 4.63 + 0.59 4.69 + 0.58
Acp -0.15 £+ 0.12 -0.16 £ 0.12 -0.15 £ 0.12 -0.15 £+ 0.12
) 0.65 & 0.29 0.58 4 0.30 0.34 4+ 0.30 0.25 4 0.30
o -0.00 4 0.33 0.24 + 0.35 -0.03 £ 0.34 0.19 + 0.35
(Km)gTn— FF (%) 23.60 £ 1.18 24.90 + 1.17 24.90 £+ 1.19 26.10 £ 1.16
Acp 0.07 £ 0.05 0.02 4 0.05 0.11 4 0.05 0.06 & 0.05
[ -2.76 £+ 0.25 -2.84 + 0.26 -0.50 + 0.32 -0.57 4+ 0.31
) -2.60 + 0.30 -0.50 + 0.31 -2.60 + 0.31 -0.45 + 0.31
(Kn)§Pn° FF (%) 11.90 + 1.11 17.80 + 1.24 16.60 + 1.09 22.80 & 1.17
Acp -0.16 £ 0.09 -0.43 £ 0.08 0.17 + 0.07 -0.14 £ 0.06
) 0.37 & 0.26 0.29 4+ 0.27 0.20 4 0.22 0.11 & 0.22
o -0.11 4+ 0.27 0.26 + 0.23 -0.12 £ 0.28 0.26 + 0.23
NR FF (%) 5.90 £+ 0.93 3.98 £ 0.81 5.40 £ 1.02 3.49 £+ 1.09
Acp 0.07 + 0.15 0.64 + 0.21 -0.04 £ 0.19 0.54 + 0.22
) 1.00 + 0.24 0.91 4 0.24 -0.93 + 0.26 -1.04 + 0.26
o 1.15 4+ 0.27 -1.22 £ 0.34 1.16 + 0.29 -1.21 4 0.34
D'n” FF (%) 20.90 + 0.85 20.80 + 0.85 20.70 4+ 0.93 20.60 + 0.86
D KT FF (%) 0.93 £+ 0.23 0.96 + 0.23 0.98 + 0.23 1.02 + 0.24
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VII. SYSTEMATIC UNCERTAINTIES

Variations around the nominal fit are tried to study the dominant systematic effects, summarized in Ta-
ble[VIl For each parameter of interest (FF, Acp, ®), the positive (negative) deviations from each effect are
summed in quadrature to obtain total upward (downward) systematic errors d4 (6_). Systematic effects are
studied by varying the number of resonances contributing to the signal model, the lineshape parameters of
the resonances in the signal model, the yields of the nominally fixed B-backgrounds, and the shape of the
continuum Dalitz PDF. The intrinsic bias of the fit as measured in MC studies, is also included as a source
of systematic error.

e To estimate the contribution of other resonances, we fit the on resonance data with extended sig-
nal models including one extra-resonance in addition to those in the nominal signal model. The
K3°(1430)7°, K31 (1430)7~, K*°(1680)7° and K**(1680)7~ have been added to the nominal model,
and fits with these resonances show some improvement in likelihood. In the best solutions obtained
with these extended models the addition resonances did not significantly interfere with those in the
nominal model. The variations of the physical parameters due to additional resonances are recorded
as Dalitz Plot Model uncertainties in Table [VIl

e The variations of the physical parameters of the resonances in the nominal signal model are recorded
as Lineshape systematic uncertainties.

e Variations of the PDF shape parameters are recorded as PDF Shape Parameter systematic uncertain-
ties. Specifically, mismodeling of the continuum square Dalitz plot PDF (Section V.B) is studied by
recreating the PDF with numerous smoothing parameters and varying the amount of B-background
subtracted from the mgg sideband by 50%. A small difference in the shape of the TM-signal NN
distribution between data and MC is also studied.

e To estimate the Fit Bias uncertainties inherent in our fit technique, we record the fitted biases and
spreads in fits performed on large Monte Carlo samples with both signal and background events
generated with their nominal PDFs.

e Each of the nominally fixed B-background yields is allowed to vary freely in a series of fits to data.
The variations of B-background yields are recorded as B-background systematic uncertainties.

VIII. SUMMARY

We have performed an amplitude analysis of the B® — K*7~ 7% decay. We have measured the CP-
averaged fit fractions, C'P-asymmetries and phases of the decay precesses to the intermediate states with
p~(TTO)K T, p~(1450) K+, p~ (1700)K+, K*(892)t 070 (Kn);T 70, We find a satisfactory solution
that provides a significant constraint on the phases of the resonances. For this solution, the CP asymmetries
are consistent with zero in all quasi two-body channels. Three further solutions were found, though all had
an NLL worse by 3.9 units, or more. Additionally, we measure the C P-averaged fit fractions for the decays

BY — ﬁowo — Kt 7% and B - DKt — Ktn—#0.



TABLE VI: Summary of systematic uncertainties.
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Resonance Fit Fraction (%) Acp o @
p (TTO)KT Dalitz Plot Model 0.500 0.003 Fixed Fixed
PDF Shape Parameters 0.224 0.005 Fixed Fixed
B Backgrounds 0.071 0.001 Fixed Fixed
Lineshapes 0.229 0.003 Fixed Fixed
Fit Bias 0.015 0.004 Fixed Fixed
Total 0.598 0.008 Fixed Fixed
p (1450)K T Dalitz Plot Model 0.560 - 0.060 0.060
PDF Shape Parameters 0.255 - 0.039 0.039
B Backgrounds 0.038 - 0.014 0.014
Lineshapes 0.232 - 0.088 0.088
Fit Bias 0.170 - 0.022 0.022
Total 0.680 - 0.116 0.116
p (1700) KT Dalitz Plot Model 0.070 - 0.077 0.077
PDF Shape Parameters 0.042 - 0.038 0.038
B Backgrounds 0.009 - 0.009 0.009
Lineshapes 0.216 - 0.120 0.120
Fit Bias 0.110 - 0.037 0.037
Total 0.256 - 0.152 0.152
K*T(892)7~ Dalitz Plot Model 0.070 0.020 0.112 0.260
PDF Shape Parameters 0.154 0.026 0.021 0.080
B Background 0.025 0.004 0.013 0.009
Lineshapes 0.030 0.006 0.061 0.147
Fit Bias 0.020 0.004 0.047 0.038
Total 0.175 0.034 0.138 0.312
K*°(892)7° Dalitz Plot Model 0.200 0.010 0.065 0.065
PDF Shape Parameters 0.128 0.005 0.020 0.031
B Background 0.028 0.002 0.015 0.012
Lineshapes 0.039 0.004 0.048 0.065
Fit Bias 0.087 0.005 0.046 0.012
Total 0.257 0.022 0.096 0.098
(Km)gt Dalitz Plot Model 1.200 0.009 0.050 0.190
PDF Shape Parameters 1.166 0.007 0.022 0.079
B Background 0.071 0.001 0.012 0.015
Lineshapes 0.166 0.004 0.047 0.121
Fit Bias 0.260 0.006 0.041 0.030
Total 1.703 0.014 0.084 0.218
(Km)5° Dalitz Plot Model 1.400 0.033 0.370 0.225
PDF Shape Parameters 0.173 0.016 0.056 0.032
B Background 0.071 0.005 0.025 0.016
Lineshapes 0.224 0.017 0.071 0.071
Fit Bias 0.300 0.003 0.044 0.009
Total 1.461 0.041 0.384 0.239
NR Dalitz Plot Model 0.240 0.017 0.119 0.110
PDF Shape Parameters 0.744 0.035 0.106 0.060
B Background 0.042 0.003 0.014 0.014
Lineshapes 0.134 0.019 0.067 0.117
Fit Bias 0.120 0.003 0.009 0.034
Total 0.803 0.044 0.174 0.175
D’x° Dalitz Plot Model 0.500 - - -
PDF Shape Parameters 2.606 - - -
B Background 0.150 - - -
Lineshapes 0.071 - - -
Fit Bias 0.073 - - -
Total 2.660 - - -
D KT Dalitz Plot Model 0.010 - - -
PDF Shape Parameters 0.015 - - -
B Background 0.002 - - -
Lineshapes 0.013 - - -
Fit Bias 0.001 - - -
Total 0.022 - - -
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