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We propose two distinct atom interferometer gravitational wave detectors, one terrestrial and an-
other satellite-based, utilizing the core technology of the Stanford 10m atom interferometer presently
under construction. Each configuration compares two widely separated atom interferometers run
using common lasers. The signal scales with the distance between the interferometers, which can be
large since only the light travels over this distance, not the atoms. The terrestrial experiment with

baseline ∼ 1 km can operate with strain sensitivity ∼ 10
−19

√
Hz

in the 1 Hz - 10 Hz band, inaccessible

to LIGO, and can detect gravitational waves from solar mass binaries out to megaparsec distances.
The satellite experiment with baseline ∼ 1000 km can probe the same frequency spectrum as LISA

with comparable strain sensitivity ∼ 10
−20

√
Hz

. The use of ballistic atoms (instead of mirrors) as iner-

tial test masses improves systematics coming from vibrations, acceleration noise, and significantly
reduces spacecraft control requirements. We analyze the backgrounds in this configuration and
discuss methods for controlling them to the required levels.
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I. INTRODUCTION

Gravitational waves offer a rich, unexplored source of information about the universe [1, 2]. Many phenomena can
only be explored with gravitational, not electromagnetic, radiation. These include accepted sources such as white
dwarf, neutron star, or black hole binaries whose observation could provide useful data on astrophysics and general
relativity. It has even been proposed that these compact binaries could be used as standard sirens to determine
astronomical distances and possibly the expansion rate of the universe more precisely [3]. Gravitational waves could
also be one of the only ways to learn about the early universe before the surface of last scattering. There are many
speculative cosmological sources including inflation and reheating, early universe phase transitions, and cosmic strings.
For all these applications, it is important to be able to observe gravitational waves as broadly and over as large a
range of frequencies and amplitudes as possible.

In this article we expand on a previous article [4], giving the details of our proposal for an Atomic Gravitational
wave Interferometric Sensor (AGIS). We develop proposals for two experiments, one terrestrial, the other satellite-
based. We will see that, at least in the configurations proposed here, it is primarily useful for observing gravitational
waves with frequencies between about 10−3 Hz and 10 Hz. In particular, the terrestrial experiment is sensitive to
gravitational waves with frequencies ∼ 1−10 Hz, below the range of any other terrestrial gravitational wave detector.
This arises in part from the vast reduction in systematics available with atom interferometers but impossible with laser
interferometers. The satellite-based experiment will have peak sensitivity to gravitational waves in the ∼ 10−3−1 Hz
band. The use of atomic interferometry also leads to a natural reduction in many systematic backgrounds, allowing
such an experiment to reach sensitivities comparable to and perhaps better than LISA’s with reduced engineering
requirements.

The ability to detect gravitational waves in such a low frequency band greatly affects the potential sources. Binary
stars live much longer and are more numerous at these frequencies than in the higher band around 100 Hz where they
are about to merge. Stochastic gravitational waves from cosmological sources can also be easier to detect at these
low frequencies. These sources are usually best described in terms of the fractional energy density, ΩGW, that they
produce in gravitational waves. The energy density of a gravitational wave scales quadratically with frequency (as
ρGW ∼ h2f2M2

pl). Thus, a type of source that produces a given energy density is easier to detect at lower frequencies
because the amplitude of the gravitational wave is higher. This makes low frequency experiments particularly useful
for observing cosmological sources of gravitational waves.

There are several exciting proposed and existing experiments to search for gravitational waves including broad-
band laser interferometers such as LIGO and LISA, resonant bar detectors [5, 6], and microwave cavity detectors [7].
Searching for gravitational waves with atomic interferometry is motivated by the rapid advance of this technology in
recent years. Atom interferometers have been used for many high precision applications including atomic clocks [8],
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metrology, gyroscopes [9], gradiometers [10], and gravimeters [11]. We consider the use of such previously demon-
strated technology to achieve the sensitivity needed to observe gravitational waves. Further, we consider technological
advances in atom interferometry that are currently being explored, including in the Stanford 10 m interferometer,
and the possible impact these will have on the search for gravitational waves.

The different sections of this paper are as independent as possible. In section II we give a brief description of atom
interferometry. In Section III we calculate the gravitational wave signal in an atom interferometer. In section IV we
discuss an experimental configuration for observing this signal on the earth and the relevant backgrounds. In section
V we give the setup and backgrounds for a satellite-based experiment. In section VI we give a brief summary of the
astrophysical and cosmological sources of gravitational waves that are relevant for such experiments. In section VII
we give a description of the projected sensitivities of the earth- and space-based experiments. In Section VIII we
compare this work with previous ideas on atom interferometry and gravitational waves and summarize our findings.

II. ATOM INTERFEROMETRY

We propose to search for gravitational waves using light pulse atom interferometry. In a light pulse atom interfer-
ometer, an atom is forced to follow a superposition of two spatially and temporally separated free-fall paths. This
is accomplished by coherently splitting the atom wavefunction with a pulse of light that transfers momentum to a
part of the atom. When the atom is later recombined, the resulting interference pattern depends on the relative
phase accumulated along the two paths. This phase shift results from both the free-fall evolution of the quantum
state along each path as well as from the local phase of the laser which is imprinted on the atom during each of the
light pulses. Consequently, the phase shift is exquisitely sensitive to inertial forces present during the interferometer
sequence, since it precisely compares the motion of the atom to the reference frame defined by the laser phase fronts.
Equivalently, the atom interferometer phase shift can be viewed as a clock comparison between the time kept by the
laser’s phase evolution and the atom’s own internal clock. Sensitivity to gravitational waves may be understood as
arising from this time comparison, since the presence of space-time strain changes the light travel time between the
atom and the laser.

A single phase measurement in an atom interferometer consists of three steps: atom cloud preparation, interferom-
eter pulse sequence, and detection. In the first step, the cold atom cloud is prepared. Using laser cooling and perhaps
evaporative cooling techniques [16], a sub-microkelvin cloud of atoms is formed. Cold atom clouds are needed so that
as many atoms as possible will travel along the desired trajectory and contribute to the signal. In addition, many
potential systematic errors (see Sections IVB and VB) are sensitive to the atom’s initial conditions, so cooling can
mitigate these unwanted effects. At the end of the cooling procedure, the final cloud has a typical density which is
low enough so that atom-atom interactions within the cloud are negligible (for example see Section V D of [13]). This
dilute ensemble of cold atoms is then launched with velocity vL by transferring momentum from laser light. To avoid
heating the cloud during launch, the photon recoil momenta are transferred to the atoms coherently, and spontaneous
emission is avoided [17].

In the second phase of the measurement, the atoms follow free-fall trajectories and the interferometry is performed.
A sequence of laser pulses serve as beamsplitters and mirrors that coherently divide each atom’s wavepacket and
then later recombine it to produce the interference. Figure 1 is a space-time diagram illustrating this process for a
single atom. The atom beamsplitter is implemented using a stimulated two-photon transition. In this process, laser
light incident from the right of Fig. 1 with wavevector k1 is initially absorbed by the atom. Subsequently, laser
light with wavevector k2 incident from the left stimulates the emission of a k2-photon from the atom, resulting in
a net momentum transfer of keff = k2 − k1 ≈ 2k2. These two-photon atom optics are represented in Fig. 1 by the
intersection of two counter-propagating photon paths at each interaction node.

There are several schemes for exchanging momentum between the atoms and the lasers. Figure 2(a) shows the case
of a Raman transition in which the initial and final states are different internal atomic energy levels. The light fields
entangle the internal and external degrees of freedom of the atom, resulting in an energy level change and a momentum
kick. As an alternative to this, it is also possible to use Bragg transitions in which momentum is transferred to the
atom while the internal atomic energy level stays fixed (see Fig. 3). In both the Raman and Bragg scheme, the two
lasers are far detuned from the optical transitions, resulting in a negligibly small occupancy of the excited state |e〉.
This avoids spontaneous emission from the short-lived excited state. To satisfy the resonance condition for the desired
two-photon process, the frequency difference between the two lasers is set equal to the atom’s recoil kinetic energy
(Bragg) plus any internal energy shift (Raman). While the laser light is on, the atom undergoes Rabi oscillations
between states |p〉 and |p + keff〉 (see Fig. 2(b)). A beamslitter results when the laser pulse time is equal to a quarter
of a Rabi period (π

2 pulse), and a mirror requires half a Rabi period (π pulse).
After the initial beamsplitter (π

2 ) pulse, the atom is in a superposition of states which differ in velocity by keff/m.
The resulting spatial separation of the halves of the atom is proportional to the interferometer’s sensitivity to grav-
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FIG. 1: A space-time diagram of a light pulse atom interferometer. The black lines indicate the motion of a single atom. Laser
light used to manipulate the atom is incident from above (light gray) and below (dark gray) and travels along null geodesics.
The finite speed of the light has been exaggerated.
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FIG. 2: Figure 2(a) shows an energy level diagram for a stimulated Raman transition between atomic states |1〉 and |2〉 through
a virtual excited state using lasers of frequency k1 and k2. Figure 2(b) shows the probability that the atom is in states |1〉 and
|2〉 in the presence of these lasers as a function of the time the lasers are on. A π

2
pulse is a beamsplitter since the atom ends

up in a superposition of states |1〉 and |2〉 while a π pulse is a mirror since the atom’s state is changed completely.

itational wave-induced strain along the direction of keff. After a time T , a mirror (π) pulse reverses the relative
velocity of the two components of the atom, eventually leading to spatial overlap. To complete the sequence, a final
beamsplitter pulse applied at time 2T interferes these overlapping components at the intersection point of the two
paths. In this work we primarily consider this beamsplitter-mirror-beamsplitter (π

2 −π− π
2 ) sequence [18], the simplest

implementation of an accelerometer and the matter-wave analog of a Mach-Zender interferometer.
The third and final step of each measurement is atom detection. At the end of the interferometer sequence, each
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FIG. 3: The atomic energy level diagram for a Bragg process plotted as energy versus momentum. The horizontal lines indicate
the states through which the atom is transitioned. By sweeping the laser frequencies the atom can be given a large momentum.

atom is in a superposition of the two output velocity states, as shown by the diverging paths at the top of Fig. 1.
Since these two states differ in velocity by ∼ keff/m, they spatially separate. After an appropriate drift time, the
two paths can be separately resolved, and the populations are then measured by absorption imaging. These two final
velocity states are directly analogous to the two output ports of a Mach-Zehnder light interferometer after the final
recombining beamsplitter. As with a light interferometer, the probability that an atom will be found in a particular
output port depends on the relative phase acquired along the two paths of the atom interferometer.

To explore the potential reach of AI-based gravitational wave detectors, we consider progressive phase sensitivities
that are likely to be feasible in the near future. Recent atom interferometers have already demonstrated sensor noise
levels limited only by the quantum projection noise of the atoms (atom shot noise) [19]. For a typical time–average

atom flux of n = 106 atoms/s, the resulting phase sensitivity is ∼ 1/
√

n = 10−3 rad/
√

Hz. For example, modern light
pulse atom interferometers of the type considered here achieve an atom flux at this level by periodically launching
∼ 106 atoms per shot at a repetition rate of ∼ 1 Hz. For our most aggressive terrestrial proposal, we assume quantum
projection noise–limited detection of 108 atoms per shot at a repetition rate of 10 Hz, implying a phase sensitivity of
3× 10−5 rad/

√
Hz. In the satellite-based proposal we assume 108 atoms per shot with a 1 Hz repetition rate, yielding

10−4 rad/
√

Hz.
Cold atom clouds with 108 to 1010 atoms are readily produced using modern laser cooling techniques [33]. However,

the challenges in this application are to cool to the required narrow velocity distribution and to do so in a short enough
time to support a high repetition rate. As discussed in Sections IVB and VB, suppression of velocity-dependent
backgrounds requires RMS velocity widths as small as ∼ 100 µm/s, corresponding to 1D cloud temperatures of
∼ 100 pK. The required ∼ 100 µm/s wide cloud could conceivably be extracted from a very large (& 1010 atoms) µK-
temperature thermal cloud by applying a highly velocity-selective cut[83], or by using evaporative cooling techniques.
In either case, low densities are desirable to mitigate possible systematic noise sources associated with cold collisions.

The repetition rate required for each proposal is a function of the gravitational wave signal frequency range that
the experiment probes. On earth, a 10 Hz repetition rate is necessary to avoid under-sampling signals in the target
frequency band of ∼ 1−10 Hz. The satellite experiment we consider is sensitive to the ∼ 10−3−1 Hz band, so a 1 Hz
rate is sufficient. However, in both cases, multiple interferometers must be overlapped in time since the duration of a
single interferometer sequence (T ∼ 1 s for earth, ∼ 100 s for space) exceeds the time between shots. Section V A3
discusses the logistics of simultaneously manipulating a series of temporally overlapping interferometers and describes
the implications for atom detection.

Sensor noise performance can potentially be improved by using squeezed atom states instead of uncorrelated thermal
atom ensembles [20]. For a suitably entangled source, the Heisenberg limit is SNR ∼ n, a factor of

√
n improvement.

For n ∼ 106 entangled atoms, the potential sensitivity improvement is 103. Recent progress using these techniques
may soon make improvements in SNR on the order of 10 to 100 realistic [21]. Even squeezing by factor of 10 can
potentially relax the atom number requirements by 102.

Another sensitivity improvement involves the use of more sophisticated atom optics. The phase sensitivity to
gravitational waves is proportional to the effective momentum ~keff transferred to the atom during interactions
with the laser. Both the Bragg and Raman schemes described above rely on a two–photon process for which [23]
~keff = 2~k, but large momentum transfer (LMT) beamsplitters with up to 10~k or perhaps 100~k are possible [22].
Promising LMT beamsplitter candidates include optical lattice manipulations [17], sequences of Raman pulses [23]
and multiphoton Bragg diffraction [22]. Figure 3 illustrates an example of an LMT process consisting of a series
of sequential two–photon Bragg transitions as may be realized in an optical lattice. As the atom accelerates, the
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resonance condition is maintained by increasing the frequency difference between the lasers.
Finally, we consider the acceleration sensitivity of the atom interferometer gravitational wave detectors proposed

here. The intrinsic sensitivity of the atom interferometer to inertial forces makes it necessary to tightly constrain many
time-dependent perturbing accelerations, since background acceleration inputs in the relevant frequency band cannot
be distinguished from the gravitational wave signal of interest. The theoretical maximum acceleration sensitivity of
the apparatus follows from the shot-noise limited phase sensitivity discussed above, combined with the well-known
acceleration response of the atom interferometer, φ = keffaT 2:

δa

a
=

δφ

φ
∼ 1/SNR

keffaT 2
=

(

1

keffaT 2
√

n

)

τ−1/2 (1)

where the total signal-to-noise ratio is SNR ∼ √
nτ for a detected atom flux of n atoms per second during an averaging

time τ . For the terrestrial apparatus we propose, the resulting sensitivity in terms of the gravitational acceleration

g of the earth is 4 × 10−16
(

1 s
T

)2
(

1000k
keff

) (

109atoms/s
n

)
1
2

g/
√

Hz. Likewise, in the satellite experiment the acceleration

sensitivity is 1 × 10−18
(

100 s
T

)2
(

100k
keff

)(

108atoms/s
n

)
1
2

g/
√

Hz. The sum of all perturbing acceleration noise sources

must be kept below these levels in order for the apparatus to reach its theoretical noise limit. Sections IVB and VB
identify many of these potential backgrounds and discusses the requirements necessary to control them.

III. GRAVITATIONAL WAVE SIGNAL

In this section we will discuss the details of the calculation of the phase shift in an atom interferometer due to a
passing gravitational wave. This calculation follows the method for a relativistic calculation discussed in [12, 13]. The
method itself will not be reviewed here, only its application to a gravitational wave and the properties of the resultant
phase shift will be discussed. For the rest of the paper, only the answer from this calculation is necessary. We will
see that the signal of a gravitational wave in the interferometer is an oscillatory phase shift with frequency equal to
the gravitational wave’s frequency that scales with the length between the laser and the atom interferometer.

Intuitively the atom interferometer can be thought of as precisely comparing the time kept by the laser’s clock
(the laser’s phase), and the time kept by the atom’s clock (the atom’s phase). A passing gravitational wave changes
the normal flat space relation between these two clocks by a factor proportional to the distance between them. This
change oscillates in time with the frequency of the gravitational wave. This is the signal that can be looked for
with an atom interferometer. Equivalently, the atom interferometer can be thought of as a way of laser ranging the
atom’s motion to precisely measure its acceleration. Calculating the acceleration that would be seen by laser ranging
a test mass some distance away in the metric of the gravitational wave (2) shows a similar oscillatory acceleration in
time, and this is the signal of a gravitational wave in an atom interferometer. This radar ranging calculation gives
essentially the same answer as the full atom interferometer calculation in this case.

A. Phase Shift Calculation

For the full atom interferometer calculation we will consider the following metric for a plane gravitational wave
traveling in the z-direction

ds2 = dt2 − (1 + h sin (ω(t − z) + φ0)) dx2 − (1 − h sin (ω(t − z) + φ0)) dy2 − dz2 (2)

where ω is the frequency of the wave, h is its dimensionless strain, and φ0 is an arbitrary initial phase. Note that this
metric is only approximate, valid to linear order in h. This choice of coordinates for the gravitational wave is known
as the “+” polarization in the TT gauge. For simplicity, we will consider a 1-dimensional atom interferometer with
its axis along the x-direction. An orientation for the interferometer along the x- or y-axes gives a maximal signal
amplitude, while along the z-axis gives zero signal.

We will work throughout only to linear order in h and up to quadratic order in all velocities. These approximations
are easily good enough since even the largest gravitational waves we will consider have h ∼ 10−18 and the atomic
velocities in our experiment are at most v ∼ 10−7. For simplicity we take ~ = c = 1.

The total phase shift in the interferometer is the sum of three parts: the propagation phase, the laser interaction
phase, and the final wavepacket separation phase. The usual formulae for these must be modified in GR to be
coordinate invariants. Our calculation has been discussed in detail in [13]. Here we will only briefly summarize how
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to apply that formalism to a gravitational wave metric. The space-time paths of the atoms and lasers are geodesics
of Eqn. 2. The propagation phase is

φpropagation =

∫

Ldt =

∫

mds (3)

where L is the Lagrangian and the integral is along the atom’s geodesic. The separation phase is taken as

φseparation =

∫

pµdxµ ∼ E∆t −~p · ∆~x (4)

where, for coordinate independence, the integral is over the null geodesic connecting the classical endpoints of the
two arms of the interferometer, and p is the average of the classical 4-momenta of the two arms after the third pulse.
The laser phase shift due to interaction with the light is the constant phase of the light along its null geodesic, which
is its phase at the time it leaves the laser.

We will make use of the fact that the laser phase in the atom interferometer comes entirely from the second laser,
the ‘passive laser’, which is taken to be always on so it does not affect the timing of the interferometer. Instead the
first laser, the ‘control laser’, defines the time at which the atom-light interaction vertices occur. For a more complete
discussion of this point, see Section 3 of [13].

In practice, we will consider the atom interferometer to be 1-dimensional so that the atoms and light move only in
the x-direction and remain at a constant y = z = 0. This is not an exact solution of the geodesic equation for metric
(2). In the full solution the atoms and light are forced to move slightly in the z-direction because of the z in gxx.
However the amplitude of this motion is proportional to h which will mean that it only has effects on the calculation
at O(h2). This was shown by a full interferometer calculation in two dimensions. It can also be understood intuitively
since all displacements, velocities, and accelerations in the second dimension are O(h). The separation phase is then
φseparation ∼ pz∆xz ∼ O(h2). The extra z piece of propagation phase is ∼ gzz∆z2 ∼ O(h2). Changes to the calculated
x and t coordinates and to gxx will also be O(h2) so propagation phase is only affected at this level by the motion
in the z direction. Finally, if the laser phase fronts are flat in the z dimension as they travel in the x direction then
there will be no affect of the displacement in the z direction. However the phase fronts cannot be made perfectly flat
and so there will be an O(h) effect of the displacement in the z direction times the amount of bending of the laser
phase fronts. This is clearly much smaller than the leading O(h) signal from the gravitational wave and so we will
ignore it since we are primarily interested in calculating the signal.

The lasers will be taken to be at the origin and at spatial position (D,0,0). We can make this choice because a
fixed spatial coordinate location is a geodesic of metric (2). Without loss of generality, we take the initial position of
the atom to lie on the null geodesic originating from the origin (the first beamsplitter pulse) with x = xA. Of course,
this means that xA is not a physically measurable variable but is instead a coordinate dependent choice. The results
are still fully correct in terms of xA and the interpretation will also be clear because the coordinate dependence only
enters at O(h). Since, as we will see, the leading order piece of the signal being computed is O(h), this ambiguity
can only have an O(h2) effect on the answer. We can ignore this and consider xA to be the physical length between
the atom’s initial position and the laser, by any reasonable definition of this length. Similar reasoning allows us to
define the initial launch velocity of the atoms at xA as the coordinate velocity vL ≡ dx

dτ

∣

∣

initial
. The ability to ignore

the O(h) corrections to the coordinate expressions for quantities such as the initial position and velocity of the atoms
relies on the fact that this is a null experiment so the leading order piece of the phase shift is proportional to h.

With the choices above we find the geodesics of metric (2) are given as functions of the proper time τ by

x(τ) = x0 + vx0τ + h



−vx0 cos (φ0 + t0ω)
√

η + vx
2
0ω

+
vx0 cos

(

φ0 + t0ω +
√

η + vx
2
0τω

)

√

η + vx
2
0ω

+ vx0τ sin (φ0 + t0ω)



 (5)

t(τ) = t0 +
√

η + vx
2
0τ +

hvx
2
0

(η + vx
2
0)





cos
(

φ0 + t0ω +
√

η + vx
2
0τω

)

− cos (φ0 + t0ω)

2ω
+ τ

√

η + vx
2
0 sin (φ0 + t0ω)



(6)

to linear order in h where η = gµν
dxµ

dτ
dxν

dτ is 0 for null geodesics and 1 for time-like geodesics. The leading order pieces
of these are just the normal trajectories in flat space.

Using these trajectories, the intersection points can be calculated and the final phase shift found as in the general
method laid out in [13]. Here the relevant equations are made solvable by expanding always to first order in h. Note
that here the use of the local Lorentz frame to calculate the atom-light interactions is unnecessary. The interaction
rules are applied at one space-time point so the local curvature of the space is irrelevant. Further, the choice of boost
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Phase Shift Size (rad)

4hk2
ω

sin2
`

ωT

2

´

sin
`

ω
`

xi −
D

2

´´

sin
`

φ0 + ω
`

xi −
D

2

´

+ ωT
´

3 × 10−7

−4hk2vLT sin
`

ωT

2

´

cos
`

φ0 + 2ω
`

xi −
D

2

´

+ 3ωT

2

´

3 × 10−9

4hωA

ω
sin2

`

ωT

2

´

sin
`

ωxi
2

´

sin
`

φ0 + ωxi
2

+ ωT
´

10−12

8hk2vL

ω
sin2

`

ωT

2

´

cos
`

ωxi
2

´

cos
`

φ0 + ωxi
2

+ ωT
´

10−14

TABLE I: A size ordered list of the largest terms in the calculated phase shift due to a gravitational wave. The sizes are given
assuming D ∼ xi ∼ 1 km, h ∼ 10−17, ω ∼ 1 rad/s, k2 ∼ 107 m−1, vL ∼ 3 × 10−8, and T ∼ 1 s.

(the velocity of the frame) can only make corrections of O(v2) to the transferred momentum, giving a O(v3) correction
to the overall velocity of the atom, which is negligible.

To define the lasers’ frequencies in a physically meaningful way as in [13], we take each laser to have a frequency,
k, given in terms of the coordinate momenta of the light by

(

gµνUµ
dxν

light

dλ

)∣

∣

∣

∣

xL

= k (7)

where Uµ =
dxµ

obs

dτ is the four-velocity of an observer at the position of the laser. The momenta of the light is then
changed by the gravitational wave as it propagates and the kick it gives to the atom is given by its momenta at the
point of interaction.

B. Results

Following the method above, the phase difference seen in the atom interferometer in metric (2) is shown in Table
I. As in Figure 1, the lasers are taken to be a distance D apart, with the atom initially a distance xi from the
left laser and moving with initial velocity vL. The left laser is the control laser and the right is the passive laser,
as defined above. The atom’s rest mass in the lower ground state is m, the atomic energy level splitting is ωa,
the laser frequencies are k1 and k2, and h, ω, and φ0 are respectively the amplitude, frequency and initial phase of
the gravitational wave. We will be considering a situation in which D ∼ 1 km is much larger than the size of the
interferometer region vrT ∼ 1 m.

The first term in Table I is the largest phase shift and the source of the gravitational wave effect we will look for
in our proposed experiment:

∆φtot = 4
hk2

ω
sin2

(

ωT

2

)

sin

(

ω

(

xi −
D

2

))

sin

(

φ0 + ω

(

xi −
D

2

)

+ ωT

)

+ ... (8)

This is proportional to k2, just as in the phase shift from Newtonian gravity [13]. This arises from the choice of laser
2 as the passive laser which is always on and laser 1 as the control laser which defines the timing of the beamsplitter
and mirror interactions. As shown in [13], the laser phase from laser 1 is zero and the main effect then arises from the
laser phase of laser 2 and so is proportional to k2. Under certain conditions, this term is proportional to the baseline
length, D, between the lasers (see Eqn. 9).

The effect of a gravitational wave is always proportional to a length scale. The second term in Table I is not
proportional to the distance D between the lasers, but is proportional to the distance the atom travels during the
interferometer, ∼ vLT . Thus it cannot be increased by scaling the laser baseline. Instead it depends on the size of
the region available for the atomic fountain, which is more difficult to increase experimentally. Thus this term will
likely be several orders of magnitude smaller than the first term in a practical experimental setup, as seen in Table I.
This is essentially the same term that has been found by previous authors (e.g. [27]). It can loosely be thought of as
arising from the effect of the gravitational wave on the atom’s trajectory, the effective ‘force’ on the atom. However
this is clearly coordinate-dependent intuition and there are certainly coordinate systems in which it arises from the
effect of gravity on the laser pulses. The real answer must come from a fully relativistic calculation. In any case, we
will not use this term for the effect in our proposed experiment as it is smaller than the first term.

The third term in Table I is essentially the same but with k2 replaced by ωa since it arises from the difference in
rest masses between the two atomic states. We are considering a Raman transition between two nearly degenerate
ground states so ωa ≪ k2. However for an atom interferometer made with a single laser driving a transition directly
between two atomic states, the k2 terms would be gone and the terms proportional to ωa would be the leading order
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phase shift. In this case, ωa would be the same size as the k of the laser in order to make the atomic transition
possible. Such a configuration may be difficult to achieve experimentally.

To understand the answer for the gravitational wave phase shift in Eqn. (8), consider the limit where the period of
the gravitational wave is longer than the interrogation time of the interferometer. Expanding Eqn. (8) in the small
quantities ωT , ωD and ωxi gives

∆φtot = hk2ω
2T 2

(

xi −
D

2

) (

sin (φ0) + ωT cos (φ0) −
7

12
ω2T 2 sin (φ0) + O(ω3T 3)

)

+ ... (9)

The phase shift is proportional to the distance of the atom from the midpoint between the two lasers. This had to be
the case because the leading order phase shift does not depend on the atom’s velocity, resulting in a parity symmetry
about the midpoint. The signal increases with the size of the interferometer and the interrogation time T . Of course,
as we see from Eqn. (8) this increase stops when the size and time of the interferometer become comparable to the
wavelength and period, 1

ω , of the gravitational wave. Note that in the intermediate regime where T > 1
ω > D then

we can expand in ω times the distances so

∆φtot = 4hk2

(

xi −
D

2

)

sin2

(

ωT

2

)

sin

(

φ0 + ω

(

xi −
D

2

)

+ ωT

)

+ ... (10)

When ωT ∼ 1, this is very similar to the phase shift in LIGO which goes as hkℓ.
Although we will not go through the details of the whole calculation here, we will motivate the origin of the main

effect, ∆φtot ∝ hk2(xi − D
2 ). In other words, we work in the limit of Eqn. 10 when ωT ≈ 1. We will be interested

in the case where the length of the atom’s paths are small compared to the distance between the lasers, vLT ≪ D
so the interferometer essentially takes place entirely at position xi. The main effect comes from laser phase from the
passive laser, hence from the timing of these laser pulses. The control laser’s pulses are always at 0, T , and 2T . As
an example, the first beamsplitter pulse from the control laser then would reach the atom at time xi in flat space
and so the passive laser pulse then originates at 2xi − D. However if the gravitational wave is causing an expansion
of space the control pulse is ‘delayed’ and actually reaches the atom at time ∼ xi(1 + h). Then the passive laser
pulse originated at ∼ (2xi − D)(1 + h). Thus the laser phase from the passive laser pulse has been changed by the
gravitational wave by an amount k2h(2xi −D). This is our signal. Although this motivation is coordinate dependent,
it provides intuition for the result of the full gauge invariant calculation.

Eqn. (8) is the main effect of a gravitational wave in an atom interferometer. Therefore, the signal we are searching
for is a phase shift in the interferometer that oscillates in time with the frequency of the gravitational wave. Note that
Eqn. (8) and all terms in Table I are oscillatory because φ0, the phase of the gravitational wave at the time the atom
interferometer begins (the time of the first beamsplitter pulse), oscillates in time. In other words, the phase shift
measured by the atom interferometer changes from shot to shot because the phase of the gravitational wave changes.

One way to enhance this signal is to use large momentum transfer (LMT) beamsplitters as described in Section II.
This can be thought of as giving a large number of photon kicks to the atom, transferring momentum N~k. This
enhances the signal by a factor of N since laser phase is enhanced by N . The phase shift calculation is then exactly
as if k of the laser is replaced by Nk.

As usual for a gravitational wave detector, this answer would be modulated by the angle between the direction of
propagation of the gravitational wave and the orientation of the detector. If the gravitational wave is propagating
in the same direction as the lasers in the interferometer there will be no signal (for the results above we assumed a
gravitational wave propagating perpendicularly to the laser axis). This is clear since a gravitational wave is transverse,
so space is not stretched in the direction of propagation.

IV. TERRESTRIAL EXPERIMENT

A. Experimental Setup

We have shown that there is an oscillatory gravitational wave signal in an atom interferometer. To determine
whether this signal is detectable requires examining the backgrounds in a possible experiment. Two of the most
important backgrounds are vibrations and laser phase noise. As experience with LIGO would suggest, vibrational
noise can be orders of magnitude larger than a gravitational wave signal. For an atom interferometer, laser phase
noise can also directly affect the measurement and can be larger than the signal. Reducing these backgrounds must
therefore dictate the experimental configuration.

After the atom clouds are launched, they are inertial and do not feel vibrations. The vibrations they feel while in
the atomic trap do not directly affect the final measured phase shift because the first beamsplitter pulse has not been
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FIG. 4: Figure 4(a) is a space-time diagram of two light pulse interferometers in the proposed differential configuration, as in
Figure 1.

Figure 4(b) is a diagram of the proposed setup for a terrestrial experiment. The straight lines represent the path of
the atoms in the two IL ∼ 10 m interferometers I1 and I2 separated vertically by L ∼ 1 km. The wavy lines represent the
paths of the lasers.

applied yet. Both vibrational and laser phase noise arise only from the lasers which run the atom interferometer. We
propose a differential measurement between two simultaneous atom interferometers run with the same laser pulses
to greatly reduce these backgrounds. In order to maximize a gravitational wave signal, these atom interferometers
should be separated by a distance L which is as large as experimentally achievable.

On the earth, one possible experimental configuration is to have a long, vertical shaft with one interferometer near
the top and the other near the bottom of the shaft. The atom interferometers would be run vertically along the
axis defined by the common laser pulses applied from the bottom and top of the shaft, as shown in Fig. 4(b). For
reference we will consider a L ∼ 1 km long shaft, with two IL ∼ 10 m long atom interferometers I1 and I2. Each atom
interferometer then has T ∼ 1 s of interrogation time, so such a setup will have maximal sensitivity to a gravitational
wave of frequency around 1 Hz. Because the two atom interferometers are separated by a distance L, the gravitational
wave signal in each will not have the same magnitude but will differ by ∼ hLω2T 2 as shown in the previous section.
Such a differential measurement can reduce backgrounds without reducing the signal.

One reason to use only 10 m at the top and bottom of the shaft for the atom interferometers themselves is to reduce
the cost scaling with length. There are more stringent requirements on the interferometer regions than on the region
between them. The interferometer regions should have a constant bias magnetic field applied vertically in order to fix
the atomic spins to the vertical axis. This bias field must be larger than any ambient magnetic field, and this, along
with the desire to reduce phase shifts from this ambient field (as will be seen later), requires magnetically shielding the
interferometer regions. Further, the regions must be in ultra-high vacuum ∼ 10−10 torr in order to avoid destroying
the cold atom cloud. At this pressure and room temperature the vacuum contains n ≈ 3 × 1012 1

m3 particles at an

average velocity of v ≈ 500m
s . The N2-Rb cross section is σ ≈ 4× 10−18 m2 [28]. The average time between collisions

is 1
nσv ≈ 200 s, so the cold atom clouds can last the required 1 to 10 s.
As discussed in section III, the signal in the interferometer arises from the time dependent variation of the distance

between the interferometers as sensed by the laser pulses executing the interferometry. The success of this measurement
strategy requires the optical path length in the region between the interferometers to be stable in the measurement

band. In order to detect a gravitational wave of strain hrms ∼ 10−19
√

Hz
(see section VII), time variations in the index
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FIG. 5: A diagram of several clouds of atoms being run through the atom interferometer sequence concurrently. The arrows
indicate the velocity of each cloud of atoms at a single instant in time. Earlier shots will be moving with more downward
velocity, allowing the clouds to be individually addressed with Doppler detuned laser frequencies.

of refraction η of the region between the interferometers, in the 1 Hz band, must be smaller than hrms. The index of
refraction of air is η ∼ 1 + 10−4

(

P
760 Torr

) (

300 K
τ

)

where P is the pressure and τ is the temperature. Time variations

δτ of the temperature cause time variations in the index of refraction δη ∼ 10−4
(

P
760 Torr

) (

300 K
τ

) (

δτ
τ

)

. The required

stability in η can be achieved if the region between the interferometers is evacuated to pressures P ∼ 10−7 Torr
(

0.01 K
δτ

)

with temperature variations δτ over time scales ∼ 1 second.
If the entire length L of the shaft can be evacuated to ∼ 10−10 torr and magnetically shielded then the atom

interferometers can be run over a much larger length IL ∼ L, yielding a larger interrogation time and greater
sensitivity to low frequency gravitational waves. The signal sensitivity is ∝ (L− 1

2gT 2)(ωT )2 for a gravitational wave

of frequency ω ≤ T−1. For such a low frequency gravitational wave, this is maximized when IL = 1
2gT 2 = 1

2L, so the
length of each interferometer should be chosen to be equal to half the distance between the lasers. In the case of a
1 km long shaft this would give an interrogation time of T ≈ 10 s so a peak sensitivity to 0.1 Hz gravitational waves.

In order to run an atom interferometer over such a long baseline, it is necessary to have the laser power to drive the
stimulated 2-photon transitions (Raman or Bragg) used to make beamsplitter and mirror pulses from that distance. It
is possible to obtain a sufficiently rapid Rabi oscillation frequency using a ∼ 1 W laser with a Rayleigh range ∼ 10 km
which is easy to achieve with a waist of ∼ 10 cm. This will be a more restrictive requirement for the satellite based
experiment and so will be considered in greater detail in Section VA1.

The atom interferometer configurations discussed here are maximally sensitive to frequencies as low as 1
T and lose

sensitivity at lower frequencies. However, the sensitivity is also limited at high frequencies by the data-taking rate,
fd, the frequency of running cold atom clouds through the interferometer. Gravitational wave frequencies higher than
the Nyquist frequency, fd

2 , will be aliased to lower frequencies which is undesirable since we wish to measure the
frequency of the gravitational wave. We will cut off our sensitivity curves at the Nyquist frequency. If only one cloud
of atoms is run through the interferometer at a time, the Nyquist frequency will be below 1

T . Thus it is important
to be able to simultaneously run more than one cloud of atoms through the same interferometer concurrently. Using
the same spatial paths for all the cold atom clouds is useful since otherwise DC systematic offsets in the phase of the
different interferometers could give a spurious signal at a frequency ∼ fd.

It is then necessary to estimate how high a data-taking rate is achievable. We will show that it is possible to
have multiple atom clouds running concurrent atom interferometers in each of the two interferometer regions. This
is possible because the atom clouds are dilute and so pass through each other and also because it is possible for the
beamsplitter and mirror laser pulses to interact only with a particular atom cloud even though all the atom clouds
are along the laser propagation axis. This is accomplished by Doppler detuning the required laser frequencies of each
atomic transition by having all the atom clouds moving with different velocities at any instant of time. We imagine
having different clouds shot sequentially with the same launch position and velocity, with a time difference 1

fd
< T

(see Figure 5). The atom clouds accelerate under gravity and so each successive atom cloud always has a velocity
difference from the preceding one of g

fd
. When a beamsplitter or mirror pulse is applied along the axis, it must be

tuned to the Doppler shifted atomic transition frequency. The width of the two-photon transitions that make the
beamsplitters and mirrors is set by the Rabi frequency and so can be roughly Ω−1 ∼ 104 Hz. Taking a laser frequency
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of 3 × 1014 Hz implies that the clouds must have velocities that differ by at least ∆v ∼ 104

3×1014 ≈ 3 × 10−11 ≈ 1 cm
s

in order for the Doppler shift to be larger than the width of the transition. In practice, every cloud besides the one
being acted upon should be many line-widths away from resonance which can be accomplished if g

fd
≫ 3 × 10−11.

While doppler detuning prevents unwanted stimulated transitions, the laser field can drive spontaneous 2-photon
transitions as discussed in subsection VA1. A significant fraction of the atoms should not undergo spontaneous
transitions in order for the interferometer to operate with the desired sensitivity. Using the formalism discussed in

subsection VA1, the spontaneous emission rate R is given by R ∼ 2Ω2
st

Γ I
Isat

where Ωst is the Rabi frequency of the

stimulated 2-photon transition, Γ is the decay rate of the excited state, I the intensity of the lasers at the location
of the atoms and Isat the saturation intensity of the chosen atomic states. With Ωst ∼ 2π

(

104 Hz
)

, lasers of waist

∼ 3 cm and power ∼ 1 W, atomic parameters (e.g. for Rb or Cs) Isat ≈ 2.5 mW
cm2 , and Γ ≈ 3 × 107 rad

s [33, 34] the

spontaneous emission rate is R ∼ (5 s)
−1

. These parameters will allow for the operation of up to ∼ 5 concurrent
interferometers using up to N ∼ 1000 LMT beamsplitters. This implies a data-taking rate of fd ∼ 5 Hz. This number
of course depends on the particular atomic species being used and the laser intensity. A more judicious choice of
atom species or increased laser power will directly increase the data-taking rate. Our only desire here is to show that
it should be possible to have a data-taking rate of fd ∼ 10 Hz. This is the number we will use for our sensitivity
plots. In the actual experiment, the data-taking rate will depend on many complex details, including the atom cooling
mechanism. There is a tradeoff between the rate of cooling and the number of atoms in the cloud. Here we only
assume that cooling can be done at this rate, if necessary with several different atomic traps, since this rate is not
drastically higher than presently achievable rates.

In order to detect a gravitational wave it is only necessary to have one such pair of atom interferometers. However,
it may be desirable to have several such devices operating simultaneously. Detecting a stochastic background of
gravitational waves requires cross-correlating the output from two independent gravitational wave detectors. Even
for a single, periodic source, correlated measurements would increase the confidence of a detection. Furthermore,
cross-correlating the outputs of independent gravitational wave detectors will help reduce the effects of backgrounds
with long coherence times. In addition, with three such single-axis gravitational wave detectors whose axes point in
different directions, it is possible to determine information on the direction of the gravitational wave source. Such
independent experiments could be oriented vertically in different locations on the earth, giving different axes. It
is also possible to consider orienting the laser axis of such a pair of atom interferometers horizontally, though to
maintain sensitivity to ∼ 1 Hz gravitational waves the atom interferometers themselves would still have to be 10
m long vertically. Such a configuration would still have the same signal, proportional to the length between the
interferometers, though some backgrounds could be different.

It may be desirable to operate two, non-parallel atom interferometer baselines that share a common passive laser
in a LIGO-like configuration. For example, one baseline could be vertical with the other horizontal, or both baselines
can be horizontal. Each baseline consists of two interferometers. The interferometers along each baseline are operated
by a common control laser. The passive laser is placed at the intersection of the two baselines with appropriate optical
beamsplitters so that the beam from the passive laser is shared by both baselines. As discussed in sub section IVB 2,
laser phase noise in this configuration is significantly suppressed.

B. Backgrounds

We consider the terrestrial setup discussed in the above section with two atom interferometers separated vertically
by a L ∼ 1 km long baseline. The interferometers will be operated by common lasers and the experiment will measure
the differential phase shift between the two atom interferometers. This strategy mitigates the effects of vibration
and laser phase noise. Based upon realistic extrapolations from current performance levels, atom interferometers
could conceivably reach a per shot phase sensitivity ∼ 10−5 rad. This will make the interferometer sensitive to

accelerations ∼ 10−15 g√
Hz

(

1s
T

)2
(Section VII). We will assume a range of sensitivities. In what follows, we will show

that backgrounds can be controlled to better than the most optimistic sensitivity ∼ 10−5 rad.
A gravitational wave of amplitude h and frequency ω produces an acceleration ∼ hLω2. With an acceleration

sensitivity of 10−15 g√
Hz

, the experiment will have a gravitational wave strain sensitivity ∼ 10−18
√

Hz
(1 km

L ). This sensitivity

will allow the detection of gravitational waves of amplitude h ∼ 10−22(4 km
L ) after ∼ 106 s of integration time (Section

VII). The detection of gravitational waves at these sensitivities requires time varying differential phase shifts in
the interferometer to be smaller than the per shot phase sensitivity ∼ 10−5. In particular, time varying differential
acceleration backgrounds must be smaller than the target acceleration sensitivity 10−15 g√

Hz
.

In addition to stochastic noise, there might be backgrounds with long coherence times in a given detector. Since
these backgrounds will not efficiently integrate down, the sensitivity of any single detector will be limited by the floor
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set by these backgrounds. However, as discussed in sub section IVA, it may be desirable to build and simultaneously
operate a network of several such gravitational wave detectors. The gravitational wave signal in a given detector
depends upon the orientation of the detector relative to the incident direction, the polarization and the arrival time
of the gravitational wave at the detector. If the detectors are sufficiently far away, then the gravitational wave signal
in the detectors are in a well defined relationship which is different from the contribution of backgrounds with long
coherence time. If the output of these detectors are cross-correlated, then the sensitivity of the network will be limited
by the stochastic noise floor. In the following, we will assume that such a network of independent gravitational wave
detectors can be constructed with their cross-correlated sensitivity limited by stochastic noise. We discuss these
stochastic backgrounds and strategies to suppress them to the required level.

1. Vibration Noise

The phase shift in the interferometer is accrued by the atom during the time between the initial and final beamsplit-
ters. In this period, the atoms are in free fall and are coupled to ambient vibrations only through gravity. In addition
to this coupling, vibrations of the trap used to confine the atoms before their launch will lead to fluctuations in the
launch velocity of the atom cloud. These fluctuations do not directly cause a phase shift since the initial beamsplitter
is applied to the atoms after their launch. However, variations in the launch velocity will make the atoms move
along different trajectories. In a non-uniform gravitational field, different trajectories will see different gravitational
fields thereby producing time dependent phase shifts. But, since these effects arise from gravitational interactions,
their impact on the experiment is significantly reduced. A detailed discussion of these gravitational backgrounds is
contained in subsection IVB 3.

The vibrations of the lasers contribute directly to the phase shift through the laser pulses used to execute the
interferometry. The pulses from the control laser (Section III) at times 0, T and 2T (Figure 4(a)) are common to
both interferometers and contributions from the vibrations of this laser to the differential phase shift are completely
cancelled. The vibrations of the passive laser (Section III) are not completely common. The pulses from the passive
laser that hit one interferometer (τa1 , τb1 , τc1 , τd1) are displaced in time by L from the pulses (τa2 , τb2 , τc2 , τd2) that
hit the other interferometer due to the spatial separation L between interferometers (Figure 4(a) ).

The proposed experiment relies on using LMT beamsplitters to boost the sensitivity of the interferometer. The
effect of a LMT pulse on the atom can be understood by modeling the LMT pulse as being composed of N (∼ 1000)
regular laser pulses. If the time duration of each regular pulse is greater than the light travel time L between the
two interferometers, then all but the beginning and end of each LMT pulse will be common to the interferometers.
The time duration of the pulses can be modified by changing the Rabi frequency of the transition of interest by
manipulating the detuning and intensity of the lasers from the intermediate state used to facilitate the 2-photon
Raman transitions. With Rabi frequencies ∼ 3 × 105 Hz (1 km

L ), the duration of a regular pulse is equal to the
distance between the interferometers. The beginning and end of the LMT pulse from the passive laser that hits one
interferometer is displaced in time by L from the pulse that hits the other interferometer. Vibrations δx of the passive
laser position in this time interval are uncommon and result in a phase shift ∼ kδx instead of keffδx. Contributions to
the phase shift from vibrations of the passive laser at frequencies smaller than 1

L are common to both interferometers
and are absent in the differential phase shift.

The net phase shift kδx is smaller than 10−5 if δx / 10−12 m (107m−1

k ). Here δx is the amount by which the passive
laser moves in the light travel time L between the two interferometers. A vibration at frequency ν with amplitude
a contributes to the displacement δx of the laser in a time L by an amount aνL. This displacement is smaller than

10−12 m if a <
(

10−12 m
νL

)

= 3× 10−7 m
(

1 Hz
ν

) (

1 km
L

)

. This can be achieved by placing the passive laser on vibration

isolation stacks that damp its motion below 10−7 m√
Hz

(

1 Hz
ν

)
3
2

(

1 km
L

)

. It is only necessary to damp the motion of the

lasers below this value in the frequency band 3 × 105 Hz
(

1km
L

)

& ν & 1 Hz. The high frequency cutoff is established

since contributions to the phase shift from vibrations at frequencies above 3 × 105 Hz
(

1km
L

)

are suppressed by the
size of the Rabi pulse. The low frequency cutoff arises since vibrations at frequencies below 1 Hz are irrelevant to the
detection of gravitational waves at 1 Hz.

While these vibrations may have long coherence times in a single gravitational wave detector, cross correlating
multiple detectors with different vibrational noise should allow these vibrations to be reduced to the stochastic floor.
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FIG. 6: Interferometer Response to laser phase noise in a single π

2
pulse. The yellow curve represents a differential measurement

strategy with L = 1 km and a Rabi period of 10−4 s. The blue is the same Rabi period but L = 1000 km. The red is
L = 1000 km and a Rabi period of 10−1 s. Sharp spikes in the response curves above the Rabi frequency have been enveloped.

2. Laser Phase Noise

The gravitational wave signal in the interferometer arises from an asymmetry in the time durations between the
first and second and between the second and third laser pulses. The interferometer is operated by pulsing the control
laser at equal time intervals. The corresponding pulses from the passive laser that interact with the atom must then
have been emitted at unequal time intervals since in the presence of a gravitational wave, pulses emitted at different
times travel along different trajectories [84]. The phase of the passive laser reflects this temporal asymmetry. This
phase is impinged on the atom during the interaction between the atom and the laser field producing a phase shift in
the interferometer (see Section III). Noise in the evolution of the laser’s phase will mimic a temporal variation and is
a background to the experiment. The pulses from the control laser are common to both interferometers. Noise in the
phase of this laser does not contribute to the differential phase shift as these contributions are completely cancelled.

The pulses from the passive laser that hit one interferometer (τa1 , τb1 , τc1 , τd1) are displaced in time by L from the
pulses (τa2 , τb2 , τc2 , τd2) that hit the other interferometer (Figure 4(a)). Since the pulses are not completely common,
phase noise in the passive laser will contribute to the differential phase shift. Phase noise in a laser operating at a
central frequency k during a time interval δT can be characterized as the difference δφ = φm − kδT where φm is the
phase measured after δT . The pulses from the passive laser that hit the two interferometers are separated in time
by L and phase noise of the laser during this period will contribute to the differential phase shift. An additional
contribution arises from the drift of the central frequency of the laser in the time T between pulses. A drift, δk, in
the central frequency of the laser between pulses changes the evolution of the laser phase mimicking a change in the
time of emission of the laser pulse. The pulses from the passive laser that interact with the two interferometers are
separated by a time L ≪ T . The contribution to the phase of these pulses from the frequency drift are common
except for the additional phase accrued by the laser during the time L. This additional phase δk L contributes to the
differential phase shift in the interferometer.

The proposed experiment relies on using LMT beamsplitters to boost the sensitivity of the interferometer. As a
proof of principle, we will model the LMT pulse as a sequential Bragg process. In other words, it is composed of N
(∼ 1000) of the regular laser pulses (those used to drive a single 2-photon Bragg transition) run consecutively with
no time delay between them. Each regular laser pulse transfers a momentum 2k to the atom resulting in an overall
momentum transfer keff = 2Nk. The phase of every laser pulse is registered on the atom, amplifying the phase noise
transferred to the atoms to

√
Nδφ ⊕ Nδk L (⊕ means add in quadrature). However, if the time duration of each

regular pulse is greater than the light travel time L between the two interferometers, then all but the beginning and
end of each LMT pulse will be common to the interferometers. This can be achieved by setting the Rabi frequency
of the transition to be . 1

L ∼ 3 × 105 Hz (1 km
L ). The Rabi frequency can be tuned by manipulating the detuning of

the lasers from the intermediate state used to facilitate the 2-photon Bragg transitions. The differential phase shift
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will then receive contributions from the phase noise in the beginning and end of each LMT pulse alone. For example,
if the light travel time L is equal to the 2-photon Rabi period, then only the first and last of the regular laser pulses
making up the LMT pulse will have uncommon phase noise, all the rest will give common phase noise to the two
interferometers which will cancel. In this case the laser phase noise would be reduced to

√
2δφ ⊕ 2δk L, independent

of N . This method for reducing the laser phase noise from an LMT pulse was discussed for a sequential Bragg process
as a demonstration, but similar ways of reducing the phase noise may exist for other LMT methods [85].

Low frequency phase noise is suppressed by the differential measurement strategy outlined above at frequencies
below ∼ 1

L . High frequency phase noise is reduced by averaging over the finite time length of the pulse, and will be
suppressed above the Rabi frequency. To see these reductions, the calculated atom response to phase noise is shown
in Fig. 6 for several different configurations (for a description of a similar calculation see [43], here we have also added
in a time delay due to the finite speed of light). With Rabi frequencies ∼ 3 × 105 Hz (1 km

L ), the contribution of the

laser phase noise to the differential phase shift is ∼ δφ ⊕ δk L. This phase shift must be smaller than 10−5.
δφ is the phase noise in the laser at frequencies ∼ 3 × 105 Hz (1 km

L ). This is smaller than 10−5 if the phase

noise of the laser is smaller than −140dBc
Hz at a ∼ 3 × 105 Hz (1 km

L ) offset. The δk L term is smaller than 10−5 if

δk / 10−9 m−1(1 km
L ) which requires fractional stability in the laser frequency ∼ 10−15(107m−1

k ) over time scales ∼ T .
These requirements can be met using lasers locked to high finesse cavities [44].

Another scheme that could be employed to deal with laser phase noise is to operate interferometers along two, non
parallel baselines that share a common passive laser in a LIGO-like configuration. For example, one baseline could be
vertical with the other horizontal, or both baselines can be horizontal. Each baseline consists of two interferometers.
The interferometers along each baseline are operated by a common control laser. The passive laser is placed at the
intersection of the two baselines with appropriate optical beamsplitters so that the beam from the passive laser is
shared by both baselines. The same pulses from the passive laser can trigger transitions along the interferometers in
both baselines if the control lasers along the two baselines are simultaneously triggered. The laser phase noise in the
difference of the differential phase shift along each baseline is greatly suppressed since phase noise from the control
laser is common to the interferometers along each baseline and the phase noise from the passive laser is common to
the baselines. The gravitational wave signal is retained in this measurement strategy since the gravitational wave will
have different components along the two non parallel baselines. As discussed in sub section VB 1, laser phase noise
along the two arms can be cancelled up to knowledge of the arm lengths of each baseline. With ∼ 10 cm knowledge
of the arm lengths, these contributions are smaller than shot noise if the frequency drift δk of the laser is controlled
to better than ∼ 104 Hz√

Hz
at frequencies ω ∼ 1 Hz.

3. Newtonian Gravity Backgrounds

The average gravitational field gL along the space-time trajectory of each atom contributes to the phase shift in
the interferometer. Each shot of the experiment measures the average phase shift of all the atoms in the cloud and
is hence sensitive to the average value (gavg

L ) of gL over all the atoms in the cloud. Time variations in gavg
L are a

background to the experiment. Seismic and atmospheric activity are the dominant natural causes for time variations
in gavg

L . The gravitational effects of these phenomena were studied in [29] and [30]. Using the interferometer transfer
functions evaluated in these papers, we find that time varying gravitational accelerations will not limit the detection

of gravitational waves at sensitivities ∼ 10−17
√

Hz
(1 km

L ) at frequencies above 300 mHz (Figures 7, 8). Human activity

can also cause time variations in gavg
L . Any object whose motion has a significant overlap with the 1 Hz band is a

background to the experiment. This background is smaller than 10−15 g√
Hz

if such objects (of mass M) are at distances

larger than 1 km
√

M
1000 kg .

The trajectory of the atom is determined by its initial position (RL) and velocity (vL). Variations in RL and vL

will change the trajectory of the atom. In a non-uniform gravitational field, different trajectories will have different
values of gL. The interferometer has to run several shots during the period of the gravitational wave source in order
to detect the time varying phase shift from the gravitational wave. The average launch position and velocity of the
atoms may change from shot to shot thereby changing the average gravitational field sensed by the interferometer.
These variations cause time dependent phase shifts. We estimate the size of these effects by writing gL in terms of
the length IL ∼ vLT of the interferometer as:

gL = g(RL) + ∇g(RL)vLT + . . . (11)

where g(RL) and ∇g(RL) are the gravitational field and its gradient at the initial position RL of the atom. gavg
L can

then be expressed in terms of the average initial position (Ravg
L ) and velocity (vavg

L ) of the atom cloud as:

gavg
L = g(Ravg

L ) + ∇g(Ravg
L )vavg

L T + . . . (12)
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FIG. 7: Interferometer Response to Time varying g (10 km Baseline)
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FIG. 8: Interferometer Response to Time varying g (1 km Baseline)

Shot to shot variations δRavg
L and δvavg

L in the average position and velocity of the atom cloud will result in acceler-
ations ∼ ∇gδRavg

L + ∇gδvavg
L T . These accelerations must be made smaller than 10−15 g√

Hz
.

The gradient of the Earth’s gravitational field in a vertical interferometer is ∇g ∼ GME

R3
E

. The corresponding

accelerations GME

R2
E

δRavg
L

RE
and GME

R2
E

δvavg
L

T

RE
are smaller than 10−15 g√

Hz
if δRavg

L and δvavg
L are smaller than 10 nm√

Hz
and

10nm/s√
Hz

respectively. δRavg
L and δvavg

L are caused by vibrations of the atom traps used to confine the atoms and

thermal effects in the atom cloud.
Vibrations of the atom traps are caused by seismic motion and fluctuations in the magnetic fields used to confine

the atoms. Seismic vibrations in the 1 Hz band have been measured to be ∼ 10 nm√
Hz

[31] at an average site on the

Earth. During noisier times, these vibrations may be as large as ∼ 100 nm√
Hz

[31]. Seismic vibrations of the trap are

therefore only marginally bigger than the 10 nm√
Hz

control required by this experiment and hence these vibrations can

be sufficiently damped by vibration isolation systems.
The magnetic fields used to trap the atom will fluctuate due to variations in the currents used to produce these

fields. The trap used in this experiment can be modelled as a harmonic oscillator with frequency ωT =
√

κ
MA

∼ 100 Hz

where MA is the mass of the atom and the “spring constant” κ is proportional to the (curvature of) applied magnetic
field. Fluctuations in the equillibrium position of this oscillator due to variations in κ are ∼ g

ω2
T

δκ
κ and these are

smaller than 10 nm√
Hz

if δκ
κ / 10−5

√
Hz

. Since κ is proportional to the applied current, fractional stability ∼ 10−5
√

Hz
in the

current source will adequately stabilize the equillibrium position of the trap.
The requirements on the control over the atom traps can be ameliorated by using a common optical lattice to
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FIG. 9: A space-time diagram of the double loop interferometer. The blue and green lines indicate the two halves of the wave
function after the initial beamsplitter. The dashed and solid lines represent the two internal states of the atom. The laser light
used to manipulate the atom is shown in dark gray. The speed of light has been exaggerated.

launch the atoms in both interferometers. The vibrations of the lattice will then be common to both interferometers
and the first non-zero contribution to the differential phase shift from the Earth’s gravitational field arises from the
quadratic gradient of this field. These contributions are smaller than 10−15 g√

Hz
if the vibrations of the lattice are

/ 10−4m√
Hz

in the 1 Hz band.

The average velocity of the atom clouds will change from shot to shot due to the random fluctuations in the thermal
velocities of the atoms. These variations are smaller than 10 nm/s if the average thermal velocity of each atom cloud
is smaller than 10 nm/s. In an atom cloud with ∼ 108 atoms, the average thermal velocity is smaller than 10 nm/s
if the thermal velocities of the atoms are ∼ 100µm/s. Such thermal velocities can be achieved by cooling the cloud
to ∼ 100 picokelvin temperatures. Similarly, the average position of the atom cloud changes from shot to shot due to
thermal effects. These fluctuations can be made smaller than 10 nm by confining the atoms within a region of size
100 µm.

The control required over the launch parameters of the atom cloud is directly proportional to the gravity gradient
∇g. Thus these requirements may be ameliorated by reducing the local gravity gradient. We estimated these controls
using the natural value of ∇g ∼ GME

R3
E

on the surface of the Earth. However for a ∼ 10 m atom interferometer, it may

be possible to reduce gravity gradients to ∼ 1% their natural value by shimming the local gravitational field using a
suitably chosen local mass density. The density of the Earth varies significantly with distance below its surface. The
average density of the Earth is ρ̄ ∼ 5.5 gm/cm3 while the average density of its crust is ρc ∼ 3 gm/cm3. The earth’s
gravitational field in a vertical interferometer inside the Earth’s crust can be modeled as arising from a sphere of radius
RE with average density equal to ρc and a point object of mass (4π

3 )(ρ̄ − ρc)R
3
E located at the center of the Earth.

The gradient of this field is ∼ G(4π
3 )(2(ρ̄ − ρc) − ρc) and the effect of this gradient can be cancelled by surrounding

the upper end of the interferometer by a sphere of radius ∼ 1 m and average density ∼ 2(ρ̄ − ρc) ∼ 5 gm/cm3 (see
also Section V of [13]). The demands on the launch parameters of the experiment can be relaxed to the extent to
which the local gravity gradient can be reduced. For example, if the gravity gradient in each interferometer is reduced
to a percent of its natural value, the experiment can reach the target sensitivity with 1 µm√

Hz
control over the average

position and 1µm/s√
Hz

control over the average velocity of the atom clouds in the 1 Hz frequency band.

The interferometer configuration discussed above executes its control pulses in the Mach-Zender sequence π
2 −π− π

2
with equal time between pulses. The interferometer can also be run in the π

2 −π−π− π
2 double loop configuration with

the atom spending a time 2T in the lower loop and a time (
√

5−1)T in the upper loop (Figure 9 with α =
√

5−1
2 ). In this

configuration, the phase shift from constant accelerations is retained while the contribution from linear acceleration
gradients is identically cancelled [23, 42]. In this case the only velocity-dependent contributions come from second
gradients of the gravitational field. Phase shift variations from shot to shot variations in the average velocity of the

atom cloud are then smaller than the requirement if this average velocity is controlled to better than 1 cm/s√
Hz

. Since this

configuration does not cancel constant accelerations, the average position of the atom clouds must still be controlled
to 10 nm in order to achieve target sensitivity. The gravitational wave signal in this configuration is ∼ keffhL(ωT )2

just like the Mach Zender interferometer. However, this interferometer has to run for a time (1 +
√

5)T instead of 2T
in order to resonantly couple to gravitational waves of frequency ω ∼ 1

T . With fixed total interferometer time, the
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FIG. 10: A space-time diagram of the triple loop interferometer. The blue and green lines indicate the two halves of the wave
function after the initial beamsplitter. The dashed and solid lines represent the two internal states of the atom. The laser light
used to manipulate the atom is shown in dark gray. The speed of light has been exaggerated.

Mach Zender configuration can probe lower frequencies than the double loop. It is therefore preferrable to run the
interferometer in the Mach-Zender configuration. The double loop configuration can however be used if the stringent
control over the average launch velocity of the atom cloud proves to be technically challenging. The double loop
configuration can also be run with the atom spending equal times in both loops (Figure 9 with α = 1) . Constant
accelerations do not contribute to the phase shift in this configuration [23, 42]. This sequence relaxes the control
required over the average launch position of the cloud but does not alleviate the control required over the average
launch velocity of the cloud.

In addition to the double loop configuration, the interferometer can also be operated with the pulse sequence
π
2 − π − π − π − π

2 with the time between the π
2 − π and π − π pulses in the ratio 1

1+
√

2
(Figure 10). In this

configuration, constant accelerations and time independent linear acceleration gradients do not contribute to the
phase shift [23, 42]. The first non-zero phase shift in such an interferometer comes from the quadratic gradient

∇(∇g) which produces an acceleration ∼ GME

R2
E

(
vavg

L T

RE
)2 in a vertical terrestrial interferometer. This acceleration is

orders of magnitude smaller than g and its linear gradient ∇g. Fluctuations of this acceleration due to variations
in the launch position and velocity of the atom clouds can be made smaller than 10−15 g√

Hz
with minimal control

over these parameters. For instance, the contribution from shot to shot variations in the average velocity of the

atom cloud are smaller than 10−15 g√
Hz

if these variations are smaller than 1 cm/s√
Hz

. The gravitational wave signal in

this multiloop configuration is ∼ keffhL(ωT )4. This interferometer is equally sensitive to gravitational waves at the
interferometer’s resonant frequency (T ∼ 1

ω ) as the double loop configuration considered earlier but its bandwidth is

suppressed by ∼ (ωT )2 relative to the double loop interferometer. Furthermore, this interferometer needs to run for

a time (4 + 2
√

2)T in order to resonantly couple to a gravitational wave of frequency ω ∼ 1
T . The triple loop can be

used if control over both the average launch position and velocity of the atom clouds becomes difficult.
The effects of position and velocity noise may be amplified due to the presence of local mass anomalies near the

interferometer. A local anomaly is a mass distribution near the interferometer whose field changes by O(1) over the
length of the interferometer. The phase shift from such an anomaly of mass M at a distance R / vRT from the
interferometer can be calculated using the methods of [13] and was found to be

∆φ ∼ keff

(

GM

(R vRT )

) (

1 −
(

vLT

R

))

T 2 + . . . (13)

where vL and vR = keff

matom
are the launch and recoil velocity of the atoms with vLT ≪ R. Time varying accelerations

from shot to shot variations in the average position or velocity of the atom cloud with respect to this anomaly are

smaller than 10−15 g√
Hz

if δRavg
L / 1 µm√

Hz

(

1000 kg
M

)

(

R
1 m

)2
and δvavg

L / 1µm/s√
Hz

(

1000 kg
M

)

(

R
1 m

)2
. The constraints on

launch position and velocity demanded by local mass anomalies are less stringent than the demands imposed by the
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Earth’s gravity gradient.
The time varying signal caused by a local mass anomaly is due to fluctuations in the relative position and velocity

of the atom cloud with respect to the anomaly. Since the fractional fluctuations in these quantities can be controlled

to ∼ 10−6
√

Hz
relatively easily, the anomaly must produce a relatively large gravitational field (∼ 10−9g) inside the inter-

ferometer in order for these position and velocity fluctuations to cause accelerations ∼ 10−15 g√
Hz

. The gravitational

field in the interferometer can be measured to 10−9g using conventional gravimeters enabling the detection of mass
anomalies of interest. The effects of these anomalies can then be minimized by strategically positioning mass sources
that shim the gravitational field in the detector.

The measurement of gavg
L can also fluctuate from shot to shot due to fluctuations δkeff in the frequency of the lasers

over the time scale of a second. The differential phase shift caused by this effect is δkeff∇gLT 2. Fractional stability
in the laser frequency ∼ 10−11

(

1 km
L

)

in the 1 Hz band is required to push this background below shot noise. The

experiment will employ lasers with fractional stability ∼ 10−15 to tackle laser phase noise. Hence this background
will be smaller than shot noise.

4. Timing Errors

The interferometer is initiated by the first π
2 pulse which hits the atom causing it to split into two arms, one moving

with the original launch velocity vL and the other with velocity vL + vR. The π pulse switches the velocities of the
arms after which the final π

2 pulse interferes the arms. An asymmetry δT in the time between the π
2 − π and π − π

2
stages of the interferometer results in the arms spending unequal times moving with velocity vL + vR, causing a phase
difference ∼ MvRvLδT = keffvLδT . In addition to the phase accrued by the atom as a result of time evolution, the
atom also picks up the average phase of the laser during the atom-laser interaction. The π

2 and π pulses consist of
N ∼ 1000 LMT pulses each of frequency k (keff = 2Nk). A timing error δT changes the average laser phase of each
LMT pulse by kδT resulting in a total phase shift ∼ NkδT = keffδT . The net phase shift contributed by timing errors
is then ∼ keffδT +keffvLδT . Differential measurement cancels the keffδT term and yields a phase shift keffδvLδT where
δvL is the difference between the launch velocities of the atom clouds. We assume the shutters that control the time
between the pulses can be operated with picosecond precision. With δT ∼ 10−12 s, this background can be made
smaller than shot noise by launching the atoms such that δvL < 1 cm/s.

Finally, variations in the overall interrogation time of the experiment cause a time varying phase shift ∼ keffgT δT
in each interferometer resulting in a differential phase shift keff∇gLTδT . With picosecond control over the shutters
and the interrogation time of the experiment, this effect is ∼ 10−16 g√

Hz
( L
1 km).

5. Effects of Rotation

For a laser fixed to the earth’s surface, there is a differential Coriolis acceleration ∼ ωEδv between the two atom
clouds where ωE is the angular velocity of the earth and δv is the difference between the transverse velocities of
the clouds. δv is caused by thermal effects and transverse vibrations of the trap used to prepare the atom clouds.
The statistical variation in the average thermal velocities of two atom clouds with ∼ 108 atoms at ∼ 100 picokelvin
temperatures is / 10−8 m/s. Thermal effects will cause δv to vary from shot to shot by 10−8 m/s. With ωE ∼ 10−4

rad/s, these thermal variations cause accelerations ∼ 10−13g which is larger than shot noise.
One way to control this problem is to servo the laser’s axis so that the axis remains non-rotating in an inertial

frame. In this case, the only residual backgrounds arise from errors δω in the servoing mechanism. The servoing

apparatus can operate with nanoradian precision. With δω ∼ 10−9 rad/s√
Hz

, the variations in the Coriolis acceleration

due to thermal effects are smaller than 10−15 g√
Hz

if δv / 10−5 m/s. The wobble δω of the laser’s axis also causes

a differential centrifugal acceleration L(δω)2 between the atom clouds. This acceleration is below 10−15 g√
Hz

if δω <

10−9 rad/s√
Hz

(1 km
L )

1
2 .

The proposed experimental setup involves two atom interferometers vertically separated by a length L ∼ 1 km
and run by a common laser. One interferometer will then be at a distance L from the laser. The atoms in this
interferometer will have a velocity ∼ Lω ∼ 10 cm/s( L

1 km ) perpendicular to the axis of the servoed laser due to the

rotation of the Earth. Since these velocities have to be smaller than 10−5 m/s to suppress Coriolis accelerations from
the jitter of the servoing apparatus, these atoms must be launched with a transverse kick that cancels the relative
velocity between the laser’s axis and the atom cloud to 10−5 m/s. These kicks could potentially be delivered using
an appropriately positioned laser. The vertical vibrations of this laser will cause fluctuations in the launch velocity
of the atom cloud leading to time varying accelerations as discussed in sub section IVB 3 and these vibrations must
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be appropriately damped. This transverse velocity could also be cancelled by locking both atom clouds in an optical
lattice and rotating the lattice itself to counter the rotation of the Earth.

The interferometer measures the component of ~g along the laser’s axis. Jitters δω in the laser’s axis will cause
differential accelerations ∼ ∇gL(ωET )(δωT ) and ∼ ∇gL(ωET )(δωET ). With nanoradian stability in δω, L ∼ 1 km
and T ∼ 1 s, the first term is smaller than 10−15 g√

Hz
. The second term is also smaller than 10−15 g√

Hz
since at 1 Hz,

δωE ≪ 10−7 rad/s√
Hz

.

The need to servo the lasers emerged from the demand to suppress Coriolis accelerations due to thermal fluctuations
in the atom cloud. The experiment can be performed without servoing the lasers if the interferometer is operated in
the multiloop configurations described in sub section IVB3. The Coriolis acceleration caused by a laser rotating with
a constant angular velocity and an atom cloud moving with a constant transverse velocity is constant. If the inter-
ferometer is run in the multiloop configurations, the phase shift due to this acceleration can be completely cancelled
eliminating the need to servo the laser. In the multiloop configuration, the interferometer has a smaller bandwidth
but has the same sensitivity to gravitational waves at its resonant frequency as the Mach Zender configuration. In
these multiloop configurations, rotational backgrounds arise due to instabilities δω in the rotation of the laser’s axis
leading to Coriolis and centrifugal accelerations ∼ δωδv + L(δω)2. These accelerations are smaller than 10−15 g√

Hz
if

δω / 10−9 rad/s√
Hz

.

Due to unavoidable misalignments, the earth’s gravitational field will have a component along the direction trans-
verse to the laser’s axis. This component will cause a differential velocity ∼ ∇gL sin(θ)T between the atom clouds
where θ is the angle between the local gravitational field and the laser’s axis. Jitter in the lasers’ axis causes an
acceleration ∼ δω∇gL sin(θ)T . The interferometer needs to be operated with θ ∼ 0.01(1 km

L ) for this acceleration to

be smaller than 10−15 g√
Hz

.

6. Effects of Magnetic Fields

A magnetic field B changes the energy difference between the hyperfine ground states in the m = 0 sublevel of the
atom by an amount αZCB2 where αZC is the Zeeman Clock shift of the atom. If the magnetic field varies by δB during
the course of the experiment, the energy difference between the atom states during the π

2 − π stage will be different
from the energy difference during the π − π

2 stage of the experiment. This produces a phase shift ∼ αZC B0 δB T

which must be smaller than the per shot phase sensitivity of the interferometer ∼ 10−5. With a bias field B0 ∼ 100
nT and αZC ∼ 1 kHz

G2 (for Rubidium), this phase shift can be made smaller than 10−5 rad if δB is smaller than 1
nT√
Hz

. Time varying magnetic fields in the interferometer are caused by time variations in the applied bias field and

the Earth’s magnetic field. The current source used to create the bias field may be made stable to 6 digits in the 1
Hz band, resulting in 1 Hz variations due to the 100 nT bias field smaller than 1 nT√

Hz
. Magnetic fields from external

sources like the Earth can be shielded to the required 1 nT√
Hz

level by following the techniques of [45].

V. SATELLITE BASED EXPERIMENT

The search for gravitational waves in the sub-Hertz band on the Earth is impeded by time varying local gravitational
fields due to seismic and atmospheric activity. Additionally, the atom interferometer is maximally sensitive to a
gravitational wave of frequency ω when the interrogation time T of the experiment is such that T ∼ 1

ω . Interrogation
times larger than 10 s are difficult to achieve in a terrestrial interferometer, since the atoms are in free fall. We are
thus lead to consider satellite-based interferometer configurations to search for gravitational waves in the sub-Hertz
band.

A. Experimental Setup

The atom interferometer configurations discussed in section III can be realized in a satellite experiment by using
two satellites (S1 and S2 in Figure 11) separated by a long baseline L. The satellites act as base stations to house the
interferometer hardware and execute interferometry along their common axis. As in the terrestrial interferometer, the
experiment measures the differential phase shift ∼ keffhL between two interferometers separated by L and operated
by common lasers in order to suppress backgrounds from low frequency vibrations and phase noise of the lasers. The
satellites could be placed in heliocentric or geocentric orbits.
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FIG. 11: The proposed setup for a satellite experiment. The dashed lines represent the paths of the atoms during the
interferometer sequence, S1 and S2 are the satellites. The gray lines represent the paths of the lasers along the axis between
the satellites. In practice it is desirable to have a third satellite in a LISA-like constellation with such a pair of interferometers
operated along each arm.

It is desirable to operate the atom interferometers outside the satellites. As we will show, this suppresses back-
grounds, resulting in significantly reduced satellite requirements. Importantly, it ameliorates the control required
over the position of the spacecraft. The gravitational force on the atom from the spacecraft will vary in time due
to uncontrolled motion of the spacecraft and will mimic a gravitational wave signal. If the atoms are far from the
spacecraft, the magnitude of this acceleration is reduced and makes the interferometer less sensitive to fluctuations
in the position of the spacecraft. Additionally this increases the available interferometer region, improving sensitivity
by allowing longer interrogation times and larger recoil velocities.

The two atom interferometers can be constructed by initially placing atoms a distance IL + d from S2 towards S1

(Figure 11) using laser manipulations. Similarly, a cloud from S1 can be brought a distance d towards S2. After the
clouds are appropriately positioned, the same laser pulses can be used to operate both interferometers. We will argue
(see Section VA2) that it should be possible to run the interferometer outside the spacecraft to distances ∼ 100 m.
With interrogation times T ∼ 100 s, the length of the interferometer region limits keff ∼ 109 m−1.

In order to detect a gravitational wave it is only necessary to have one such baseline containing a pair of atom
interferometers. However, it may be desirable to have a third satellite in a LISA-like constellation with a pair of
atom interferometers operated along each baseline. The addition of the third satellite provides another gravitational
wave channel. As discussed in sub section IVB, since the gravitational wave signal in each detector depends upon the
orientation of the detector relative to the incident direction and the polarization of the gravitational wave, the cross-
correlated sensitivity of the constellation will be set by the stochastic noise floor. The addition of the third satellite
can be useful in further suppressing laser phase noise (see Section VB 1). Additionally, independent correlated
measurements would increase the confidence of detection. Detecting a stochastic background of gravitational waves
requires cross-correlating the output from two independent gravitational wave detectors. Furthemore, with three such
single-axis gravitational wave detectors whose axes point in different directions, it is possible to determine information
on the direction of the gravitational wave source.

The signal in the interferometer is directly proportional to the size of the baseline L and the effective momentum keff

transferred by the atom optics. The transfer of a large momentum will impart a large recoil velocity to the atom. The
operation of the interferometer with a large recoil velocity requires the interferometer region IL to be long and hence
the limit on IL imposed by the satellite will limit keff. The detection of a time varying signal from a gravitational
wave of frequency f requires a data taking rate fd & 2f . As discussed in sub section IVA, this requires the operation
of concurrent atom interferometers along the common satellite axis. In the following, we examine the limits imposed
on these quantities in a satellite experiment.

1. Baseline Limit from Atom Optics

Gravitational wave experiments benefit from long baselines since the signal increases linearly with the baseline.
The most stringent limit on the baseline is imposed by the need to drive the atomic transitions that create the
beamsplitter and mirror pulses using a laser that is a large distance away on the far satellite. The laser field from the
nearby satellite can be intense, but at large distances the laser field from the far satellite will necessarily spread and
lose intensity.

To find this limit, consider an atom in the presence of the laser field from the nearby satellite with intensity In and
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from the far satellite with intensity If . The Rabi frequency Ωst of stimulated 2-photon transitions in Fig. 2(a) is [32]

Ωst =

∣

∣

∣

∣

〈e|d ·En|1〉〈e|d · Ef |2〉
2∆

∣

∣

∣

∣

≈ Γ2

4∆

√

InIf

I
(e1)
sat I

(e2)
sat

(14)

where ∆ is the detuning from the intermediate state |e〉 and Γ is the decay rate of the excited state. The saturation

intensity, Isat is defined by I

I
(e1)
sat

= 2
(

Ωe→1

Γ

)2
where Ωe→1 is the resonant two-level Rabi frequency between the excited

state and state |1〉 [32]. Note that Isat is an atomic property independent of laser intensity. For simplicity we assume

that the decay rate and dipole matrix element are independent of the choice of state |1〉 or |2〉, i.e. I
(e1)
sat ≈ I

(e2)
sat .

The intensity If of the far satellite decreases as the baseline is increased, decreasing Ωst. The width of the 2-photon
atomic transition is set by Ωst and if Ωst becomes too small, the transitions can become very velocity selective due
to Doppler detuning. To avoid loss of SNR, the initial thermal velocity spread of the atoms must be smaller than
the velocity selection imposed by Ωst. Thus the lowest attainable temperature sets a lower limit on Ωst. With cloud
temperatures ∼ 0.1 nK, the Rabi frequency Ωst must be & 2π

(

102 Hz
)

.
To maximize sensitivity, a significant fraction of the atoms should not undergo spontaneous 2-photon transitions

during the time the atom is in the presence of the light. A spontaneous 2-photon transition can occur when one laser
field (in practice the more intense one) drives the atom up to the intermediate state and this state then decays due
to spontaneous emission. In this case the atom gets a momentum kick in an arbitrary direction and will be lost from
the interferometer. The spontaneous transition rate due to the near laser is [33, 34]

R =
Γ
2

In

Isat

1 + 4
(

∆
Γ

)2
+ In

Isat

. (15)

The detuning can be eliminated using Eqn. (14). The total time for which the the atom is in the presence of the
light must be smaller than 1

R . Since we wish to use LMT beamsplitters that deliver N photon kicks to the atom, the

atom will be in the presence of the transition light for time ∼ N
Ωst

. The need to suppress spontaneous emission yields

R . Ωst

N .

With stimulated Rabi frequency Ωst ∼ 2π
(

102 Hz
)

and spontaneous emission rate R ∼ (10 s)
−1

, we find that

baselines L ∼ 103 km can be achieved with lasers of waist ∼ 0.5 m and power ∼ 1 W. We have assumed atomic
parameters (e.g. for Rb or Cs) λ ≈ 1 µm, Isat ≈ 1 mW

cm2 , and Γ ≈ 3 × 107 rad
s [33, 34], thus requiring a detuning

∆ ≈ 20 GHz to reach this limit. This configuration would allow the interferometer to use N ∼ 100 LMT beamsplitters.
This is the main limitation on the distance between the satellites. Improvements on this limit, either through higher
laser power, an optimized choice of atom transitions or improved cooling techniques that can allow the transitions to
proceed at smaller Rabi frequencies should allow direct enhancements in the final sensitivity.

2. Environmental Constraints on the Interferometer Region

The length of each interferometer must be at least vrT (where vr is the recoil velocity of the atom) since the two
arms of the interferometer will separate by vrT during the course of the experiment. The recoil velocity vr is equal

to
(

keff

Ma

)

, where keff is the momentum transfered to the atom and Ma is the mass of the atom. For a fixed length IL,

an interrogation time T requires vr < IL

T . Since the signal scales linearly with keff, we would like to make IL as large
as possible. If the atom trajectories are restricted to lie within the spacecraft, then IL has to be smaller than the
typical dimensions of spacecraft ∼ 1 m. The atom interferometer requires the laser and the atom source be placed
inside the satellite, near their power sources. However, the diffuse atom cloud trajectories that form the arms of the
interferometer need not be inside the satellite.

Collisions of the atoms with stray particles are the major problem posed by the environment to the atom inter-
ferometer. These collisions cause decoherence and atoms that undergo such interactions cannot engage in quantum
interference. Collisions are therefore not a source of noise since they do not cause phase shifts. However, by knocking
atoms away from the atom cloud, collisions reduce the number of atoms available to do the experiment, thereby
decreasing the sensitivity of the instrument.

Solar photons are a source of decoherence. The interaction cross section of the photon with the atom is appreciable
only if the frequency of the photon is within the width of an atomic transition. For example, for Rubidium the most
important transition in this band is the 780 nm line with a width of a few MHz. At a distance of 1 AU, the solar
spectral intensity around 780 nm is ∼ 1 W

m2 nm . Thus the intensity within the atomic linewidth is ∼ 10−5 W
m2 . The
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number density of photons within this line is then n ∼ 105 m−3. The resonant photon-atom scattering cross section
is σ ∼ λ2 = (780 nm)2. The mean photon scattering rate for an atom in the sun’s light is then nσc ∼ 10 s−1. This
is a severe limit on the possible interrogation time for the atom interferometer and so must be avoided. There are
several possible solutions.

Satellite experiments like the James Webb Space Telescope (JWST) mission rely on the use of large ∼ 200 m2

ultra-light sunshields (∼ 2.5 kg) to protect the satellite from solar radiation. These shields can reduce the solar
intensity from ∼ 1000 W

m2 to ∼ 10 mW
m2 [35, 36]. The decoherence time scale due to the residual solar flux is ∼ 10−4 s−1

which is significantly longer than the time scales of interest to this experiment. In this case the size of the shield
would be one limit on the size of the atom path. Another possibility is to place the satellites in a lunar or geocentric
orbit. If the experiment is done in such an orbit, then the satellites will spend an order one fraction of the time on
the dark side of the moon/earth where there is no problem (a similar estimate for a 300 K blackbody spectrum gives
a very low scattering rate). This leads to an order one loss of duty cycle and a small loss of statistical sensitivity. It
might also be possible to perform the experiment farther from the sun to reduce the solar intensity, though this would
presumably increase the difficulty and expense while still limiting interrogation times.

The environment outside the satellite is dominated by the solar wind composed of protons and electrons with a
number density ∼ 107 particles

m3 moving at velocities ∼ 500 km/s. The typical interaction cross-section of these particles

with the atom is ∼ 10−18 m2 leading to mean collision times ≫ 103 s. The local environment near the spacecraft is
less pristine than the space vacuum due to emissions from the spacecraft. In order to make use of the local space
environment to run the interferometer, the craft must be designed so that such emissions are not in the direction of
the atom trajectories.

The atom will be subjected to the interplanetary magnetic field if the experiment is done outside the spacecraft.
In order to suppress phase shifts from magnetic fields, the atom must be placed in a magnetically insensitive m = 0
state in the direction set by the field. The Rabi frequency of the atomic transition is set by the internal state of
the atom and the laser must be tuned to match this frequency. Since, in the random interplanetary magnetic field,
the atom’s spin precesses rapidly, the spin of the atom will change as the direction of the magnetic field changes. If
the direction of the magnetic field changes over the length of the interferometer, the atom will evolve away from the
original m = 0 state. The laser’s frequency is however tuned to the original m = 0 state. The interaction between the
laser and the atom will excite, for example, m = ±1 states along the new axis of quantization. Pollution into these
states will cause phase shifts that are a background to the experiment.

The interplanetary planetary magnetic field at 1 AU is ∼ 5 nT and has a correlation length ∼ 0.01 AU. The drift
in the direction of the field is smaller than 5◦ over 10 minutes during an average time interval but can be as large as
10◦ over 10 minutes during noisier times [70]. The phase shift due to these direction changes in the magnetic field are
smaller than the shot noise requirements of this experiment (see sub section VB 5). In addition to this slow drift, the
magnetic field also exhibits sharp discontinuities in its direction. These sharp directional discontinuities are separated
by periods of an hour [70] and are not a problem to an interferometer with interrogation time smaller than 100 s. The
direction of the magnetic field in the interferometer region can be further stabilized by attaching a permanent magnet
to the spacecraft, coaxial to the atomic trajectory. A bar magnet of size 1 m × 10 cm × 10 cm with magnetization
∼ 107 A/m can provide magnetic fields ∼ 20 nT out to distances ∼ 100 m. This field is larger than the interplanetary
magnetic field ∼ 5 nT and can enhance the stability of the direction of the magnetic field in the interferometer. The
experiment relies on differential measurement strategies which requires both interferometers to be operated by the
same set of lasers. The correlation length of the interplanetary magnetic field is significantly larger than the baseline
L ∼ 103 km of this experiment. With the addition of the ∼ 20 nT bias field, the magnetic field direction in the two
interferometers can be sufficiently aligned to enable the same lasers to operate both interferometers.

The torque on the spacecraft from the action of the interplanetary magnetic field on the external magnet is ∼ 10−4

Nm, which is of the same order of magnitude as the torque produced by solar pressure on the satellite. Since the
forces on the spacecraft due to the external magnet are comparable to the force from solar pressure, the addition of
the magnet will not significantly alter the dynamics of the spacecraft control system. With the addition of the bias
field from the permanent magnet, the interferometer can be run over at least IL ∼ 100 m. Interferometer lengths
longer than 100 m may be achievable when the interplanetary magnetic field is quiet.

The hardware required to measure the phase shift in the interferometer has to be housed in the spacecraft. A
normalized measurement of the phase shift is done by counting the number of atoms in each final state of the atom
after the interferometer pulse sequence. If the experiment is performed outside the spacecraft, the counting must be
performed with detectors located on the spacecraft. Remote detection of an atom in a given internal state can be
done using absorption imaging wherein a light beam, whose frequency is tuned to an atomic resonance accessible from
the internal state of interest, is pulsed from one spacecraft to the other. The atoms that are in the internal state of
interest will absorb these photons. A photodetector on the other spacecraft will measure the change in the intensity
of the initial beam measuring the number of absorbed photons and hence the number of atoms in the internal state
of interest.
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The absorption detection technique must be sufficiently sensitive to detect the required phase sensitivity ∼ 10−4

(see section VII) of this experiment. With Na ∼ 108 atoms in the cloud, a phase sensitivity ∼ 10−4 requires the
detection scheme to measure changes in the number as small as

√
Na ∼ 104 atoms. The absorption cross-section of

the atom with the resonant laser light of wavelength λ is σabs ∼ λ2 ∼ (1µm)2. If the detection is done over a period

δτ , then the total number of photons scattered by
√

Na ∼ 104 atoms is Ns ∼
√

Na

(

If

k

)

σabsδτ where k ∼ 10−19 J

is the energy of the detection photon. This number must be larger than the photoelectron shot noise ∼
√

(

If

k

)

Aδτ

over the detection area A. The size of the detection area (e.g. the size of a lens) must be as big as the typical size

of the atom clouds used in this experiment A ∼ (10 cm)
2
. With these parameters, a satellite experiment with a

baseline L ∼ 103 km and a detection laser with intensity ∼ 10−8 W
cm2 laser and a ∼ 1 m waist housed on the distant

satellite can image the atom cloud with the necessary precision in a detection time δτ ∼ 0.1 s. Each atom undergoes
(

If

k

)

σabsδτ ∼ 102 absorptions during this imaging time. Since the atom undergoes rapid spontaneous emission

upon excitation, absorption imaging must be performed between atomic states that have ∼ 100 cycling transitions to
prevent loss of atoms through spontaneous emission into other atomic states.

These arguments suggest that it should be possible to run the interferometer outside the spacecraft to distances
∼ 100 m.

3. Limit on Data Taking Rate

The detection of a time varying signal from a gravitational wave of frequency f requires a data taking rate fd & 2f .
As discussed in sub section IVA, this requires the operation of concurrent atom interferometers along the common
satellite axis. Concurrent operation of atom interferometers requires that the laser fields that trigger interferometry
in one interferometer not cause transitions in the other interferometers in the common beam axis. This can be
achieved by launching the interferometers with different launch velocities so that the interferometers are all doppler
detuned from one another. The width of a 2-photon transition is equal to the Rabi frequency Ωst of the transition.

Two interferometers are doppler detuned if the relative velocity between them is ∼ 10−4 m/s
(

Ωst

2π (102 Hz)

)

. While

doppler detuning prevents unwanted stimulated transitions, the laser field can drive spontaneous 2-photon transitions,
as discussed in subsection VA1. Following the discussion in subsection VA1, the spontaneous emission rate is
R ∼ (10 s)

−1
in a configuration with baseline L ∼ 103 km, with ∼ 1 W lasers and stimulated Rabi frequency Ωst ∼

2π
(

102 Hz
)

. The operation of q concurrent atom interferometers with transition times ∼ N
Ωst

requires q N
Ωst

/ 1
R . With

the beam parameters described above, we can operate q ∼ 10 concurrent interferometers.
The interferometers will be operated outside the satellites with the phase shift in each interferometer measured

through absorption detection. The process of measuring the phase shift in one interferometer through this technique
should not affect the other interferometers operating in the beam line. This can be achieved by initially performing
a velocity selective stimulated Raman transition that takes the atom state at the end of the interferometer (the
‘interferometer state’) into another long lived ground state of the system (the ‘detection state’), detuned from the
original interferometer state. The phase shift can be measured by imaging the detection state. For example, in
Rubidium, the hyperfine interaction splits the ground state into states separated by ∼ 2π (6.8 GHz). One of these
states could be used to run the interferometer (the interferometer state) and velocity selective stimulated Raman
transitions can be used to populate the other state (the detection state) prior to detection. A Rabi frequency
∼ 2π

(

102 Hz
)

for this stimulated Raman process can be achieved through laser and beam features described in the

preceding paragraph. The spontaneous emission rate induced by this process is then ∼ (10 s)
−1

which is not a problem
for the operation of the interferometers since this light will be on for only ∼ 0.01 s during detection. The spontaneous
emission rate for the atoms in the interferometer state due to the ∼ 10−8 W

cm2 detection light tuned to the detection

state is ∼
(

105 s
)−1

and is also not a problem for the experiment.

With this configuration, the data taking rate fd can be . 1 Hz
(

10 s
T

)

where T is the interrogation time of the
experiment, limited by spontaneous emission caused by the laser light used to operate the interferometers. This is
the main limitation on the data taking rate of the experiment. Improvements on this limit, either through higher
laser power, an optimized choice of atom transitions or improved cooling techniques that can allow the transitions to
proceed at smaller Rabi frequencies should allow direct enhancements to this rate.
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B. Backgrounds

Our configuration consists of two satellites in orbit separated by L ∼ 103 km. The satellites act as base stations
and run the atom interferometers along their axis using common laser pulses. With a stabilizing magnetic field & 20
nT provided by a permanent magnet housed in the spacecraft, the satellite environment permits the operation of
the atom interferometer out to distances IL ∼ 100 m from the satellite and for interrogation times ∼ 100 s. Prior to
launch, the atoms are positioned at distances d ∼ 30 m and d+IL from their base stations S1 and S2 respectively using
laser manipulations (Figure 11). The atoms are then launched with a common launch velocity and the interferometry
is performed using common laser pulses.

The differential acceleration caused by a gravitational wave of amplitude h and frequency ω is hLω2 causing a phase
shift keffhLω2T 2. A L ∼ 103 km long baseline interferometer can detect gravitational waves of amplitude h ∼ 10−23

with ∼ 106 s of integration time if it is sensitive to accelerations ∼ 10−19g( ω
10−2 Hz )

2. The strain sensitivity of such a

configuration would be ∼ 10−20
√

Hz
. The proposed experiment could reach target sensitivity using 200k LMT beamsplitters

and atom statistics phase sensitivity 1√
Na

∼ 10−4 using ensembles of Na ∼ 108 atoms and interrogation times T ∼ 1
ω .

Phase shifts from noise sources must be made smaller than 10−4. In particular, acceleration backgrounds should be
less than ∼ 10−19g( ω

10−2 Hz )
2. We will assume that a LISA-like three satellite atom interferomter constellation is

placed in orbit. As discussed in sub section V, the cross-correlated sensitivity of the gravitational wave channels thus
produced is limited by the stochastic noise floor. Thus we can assume that the noise in the entire set of detectors
is stochastic, even if certain noise sources have long correlation times in any individual detector. In the following,
we discuss these stochastic noise sources and strategies to suppress them to the level required to detect gravitational

waves with strain sensitivity ∼ 10−20
√

Hz
in the 10−2 Hz - 1 Hz band.

1. Vibrations and Laser Phase Noise

Vibration and laser phase noise issues were discussed in Section IVB. The solutions proposed to address these
issues in the terrestrial interferometer can also be used for the space based experiment. Following the analysis in that
section, contributions from the vibration of the lasers to the phase shift are smaller than shot noise if these vibrations

are smaller than 10−5 m√
Hz

(

10−2 Hz
ν

)
3
2

(

103 km
L

)

at frequencies 300 Hz
(

103km
L

)

& ν & 10−2 Hz.

Additionally, in space, an alternate strategy to handle laser phase noise is to use the same passive laser to run
interferometers along two non parallel baselines in a LISA-like three satellite configuration. Each baseline consists of
two interferometers. The interferometers along each baseline are operated by a common control laser. The passive
laser is placed at the intersection of the two baselines with appropriate optical beamsplitters so that the beam from
the passive laser is shared by both baselines. The same pulses from the passive laser can trigger transitions along
the interferometers in both baselines if the control lasers along the two baselines are simultaneously triggered. The
laser phase noise in the difference of the differential phase shift along each baseline is greatly suppressed since phase
noise from the control laser is common to the interferometers along each baseline and the phase noise from the passive
laser is common to the baselines. The gravitational wave signal is retained in this measurement strategy since the
gravitational wave will have different components along the two non parallel baselines.

The contribution to the differential phase shift along each baseline due to a drift δk in the frequency of the laser is
suppressed by the arm length of the baseline (see Section IVB). The residual contribution of this frequency drift to
the difference of the differential phase shift along each baseline is δkδL where δL is the difference in the length of the
two baselines. The effect of this contribution can be cancelled to the extent to which the arm length difference δL is
known. With ∼ 1 m knowledge of the arm lengths, these contributions are smaller than shot noise if the frequency
drift δk of the laser is controlled to better than ∼ 104 Hz√

Hz
at frequencies ω ∼ 10−2 Hz. In addition to this effect,

differences δT between the timing of the control lasers that operate the interferometer will also change the phase of
the passive laser that is imprinted along the interferometers in the two baselines. The phase shift due to this effect
is ∼ δkωδTL. With δk . 104 Hz√

Hz
at frequencies ω ∼ 10−2 Hz, this phase shift is smaller than the per shot phase

sensitivity 10−4 of this experiment if the two control lasers are synchronized with δT . 100µs.
In addition to classical sources of phase noise discussed above, the quantum nature of the laser field will contribute

to noise in the imprinted phase. This quantum noise was computed in [75] and was found to be ∼ 1√
Nγ

where Nγ is

the total number of photons that form the coherent state of the laser field. The interferometers in this experiment are
operated with ∼ 1 Watt lasers with transition times ∼ 10−2 s leading to Nγ ∼ 1017. Phase noise in the interferometer
from the quantum nature of light is negligibly small.
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2. Newtonian Gravity Backgrounds

The gravitational field of the satellite will cause a phase shift in the interferometer. Since the gravitational field of
the spacecraft changes by O(1) over the length of the interferometer, the spacecraft is a local mass anomaly of mass
M at a distance dI / vRT from the interferometer (subsection IVB 3) . The phase shift in the interferometer due to
the spacecraft is given by [13]

∆φ ∼ keff

(

GM

(dI vRT )

) (

1 −
(

vLT

dI

))

T 2 + . . . (16)

when the launch velocity vL of the atom cloud satisfies vLT ≪ dI and the recoil velocity vR is such that dI / vRT .
The relative distance between the spacecraft and the atom will change due to random motions of the spacecraft.

Additionally, the average initial position of the atom clouds with respect to the spacecraft will also change from shot
to shot due to thermal variations in the atom clouds and vibrations of the trap. A variation δR in this distance
due to these effects will cause an acceleration ∼ GM

dI vRT
δR
dI

. This acceleration is smaller than ∼ 10−19g( ω
10−2 Hz)

2 if

δR(ω) / 10 µm√
Hz

( ω
10−2 Hz)

3
2 ( dI

30 m)2(1000 kg
M ). With Na ∼ 108 atoms, shot to shot variations in the central position of

the atom clouds due to thermal fluctuations can be made smaller than 10 µm√
Hz

by confining the atoms within traps of

size ∼ 1 cm
√

Na

108 . The atom trap and the spacecraft must be engineered so that their vibrations at frequency ω are

smaller than 10 µm√
Hz

( ω
10−2 Hz)

3
2 ( dI

30 m )2(1000 kg
M ).

The average launch velocity vL of the atom cloud will change from shot to shot due to thermal variations in
the atom clouds. These variations δvL will change the trajectory of the atoms in the gravitational field of the
spacecraft. Due to the non-zero gradient of this field, these trajectories will experience different gravitational fields
resulting in time varying accelerations ∼ GM

dI vRT
δvLT

dI
. This acceleration is smaller than 10−19g( ω

10−2 Hz )
2 if δvL(ω) /

100 nm/s√
Hz

( ω
10−2 Hz)

5
2 ( dI

30 m)2(1000 kg
M ). The atom cloud used in this experiment will contain Na ∼ 108 atoms. Thermal

fluctuations in the average velocity of this cloud are smaller than 100 nm/s√
Hz

if the cloud is cooled to temperatures

∼ 100 pK
√

Na

108 . Thus the thermal velocity of the atoms do not limit the detection of gravitational waves in the

frequency band and sensitivities of interest in this paper.
We note that the control over the position and velocity of the spacecraft required by this experiment are weaker

than the requirements of the LISA mission. LISA’s inertial masses need to be placed inside the spacecraft since these
masses must be shielded from the external environment. This increases the gravitational force of the spacecraft on
the inertial masses making the inertial masses more sensitive to fluctuations in the position of the spacecraft. In
the atom interferometer, the inertial atoms do not require the protection of the spacecraft and the experiment can
be performed at distances dI ∼ 30 m from the spacecraft thereby decreasing the gravitational acceleration of the
atoms by a factor of 104 relative to LISA [81]. The decreased gravitational acceleration makes the interferometer less
sensitive to vibrations of the spacecraft.

3. Timing Errors

The effect of asymmetries in the time between the π
2 −π and π− π

2 pulses were discussed earlier under backgrounds
for the terrestrial interferometer. A timing error δT causes a differential phase shift ∼ keff∆vLδT where ∆vL is the
relative launch velocity between the atom clouds. This phase shift must be smaller than the per shot phase sensitivity
of the instrument ∼ 10−4. With picosecond control over δT , this background is smaller than shot noise if the atoms are
launched such that ∆vL < 10 cm/s. If the spacecrafts are in solar orbits separated by a distance L ∼ 103 km, then the
relative velocity between the spacecrafts is ∼ 10 cm/s( L

103 km ). But, this velocity is transverse to the interferometer
baselines and hence the atoms can be launched with relative velocities smaller than 10 cm/s along the baseline.

4. Effects of Rotation

The angular velocity of one spacecraft relative to the other is equal to its orbital angular velocity ωS ∼ 10−7 rads/s
around the sun at ∼ 1 AU. The atom clouds are also in orbits around the sun and will therefore rotate around the
passive laser housed in the spacecraft S2 with the same angular velocity ωS . The laser axis will always be kept along
the line between the satellites. If this axis rotates with angular velocity ωS, transverse velocities vT of the atom cloud
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result in Coriolis accelerations ∼ ωSvT . In an atom cloud with Na ∼ 108 atoms cooled to 100 pK
√

Na

108 temperatures,

the average transverse velocity of the clouds will change from shot to shot by ∼ 10−8 m/s. These thermal variations
cause accelerations ∼ 10−16g which are higher than the required ∼ 10−19g( ω

10−2 Hz)
2 acceleration tolerance of this

experiment.
This problem can be tackled by fixing the direction of the laser’s axis with respect to an inertial reference. The

Coriolis acceleration due to the thermal velocity vT ∼ 10−8 m/s of the atom cloud is smaller than the shot noise
10−19g( ω

10−2 Hz)
2 of this experiment if the residual rotational velocity δω of the laser axis is smaller than 10−10 rads/s.

Control over the rotation axis at the level of 10−14 rads/s has been achieved [69]. However, if the laser axis is inertial,
the satellite at distance L away from it will have a transverse velocity LωS ∼ 10 cm/s

(

L
103 km

)

with respect to the
laser axis. The residual rotational velocity δω of the laser axis couples to this transverse velocity and causes a Coriolis
acceleration ∼ LωSδω which is smaller than 10−19g( ω

10−2 Hz)
2 if δω is smaller than 10−17 rads/s

(

L
103 km

)

. The
control required over the rotation axis can however be relaxed by applying forces on one satellite while using the other
as an inertial reference to cancel the relative rotation between them. The gravitational tidal force on the satellites

due to the Sun is ∼ 10−4 N
(

M
1000 kg

)

(

L
103 km

)

while the force on the satellites due to solar radiation pressure ∼ 10−5

N. These forces are small enough to be compensated by FEEP and colloid thrusters [81]. The application of these
forces cancels the relative transverse velocity between the laser’s axis and the distant satellite. The residual transverse
velocity vT of the atom clouds due to their thermal velocity and vibrations of the atom trap can also cause Coriolis

accelerations. If the atoms are cooled to ∼ 100 pK
√

Na

108 temperatures, their thermal velocities are smaller than 10−8

m/s. The Coriolis acceleration is then smaller than 10−19g( ω
10−2 Hz )

2 if δω is controlled better than 10−10 rad/s and

the transverse vibrations of the atom clouds are smaller than 10 nm/s ( ω
10−2 Hz)

2.
In addition to the Coriolis acceleration, any instability δω in the laser’s angular velocity (e.g. in the rotation servoing

mechanism) causes a differential centrifugal acceleration ∼ L(δω)2. This acceleration is smaller than 10−19g( ω
10−2 Hz )

2

if δω / 10−11 rad/s√
Hz

√

(103 km
L )( ω

10−2 Hz)
1
2 at frequency ω. The control over the rotation of the laser’s axis can be

potentially further relaxed by tuning the radius of curvature of the laser beam. Since the atom senses the local phase
of the laser beam, the atoms will not sense rotations of the laser’s axis if the phase fronts are appropriately curved.
If the radius of curvature R of the beam is equal to the distance L between the atom and the laser then the atom
is insensitive to centrifugal accelerations ∼ L(δω)2. The control over the rotation of the laser’s axis can be relaxed
to the extent to which the radius of curvature of the beam at the distant interferometer can be tuned to equal the
distance between that interferometer and the laser. The differential setup proposed in this experiment requires one
interferometer to be close to the laser at a distance IL ∼ 100 m while the other is at a distance L ∼ 103 km. The
centrifugal acceleration of the atoms near the laser will produce accelerations ∼ IL (δω)

2
. These accelerations set the

minimal control required over the laser’s rotation to δω / 10−9 rad/s√
Hz

√

(100 m
IL

)( ω
10−2 Hz)

1
2 .

In this configuration, due to the finite radius of curvature of the laser beam, the interferometer is sensitive to
transverse vibrations of the lasers. The effects of these vibrations on the two interferometers will not be entirely
common if the radii of curvature of the laser beams that interact with the two interferometers are not equal. The

phase shift from a transverse vibration δy to a single interferometer is ∼ keff
δy2

R where R is the radius of curvature of
the beam. This phase shift can be made smaller than shot noise even without relying on common mode cancellation

by damping the transverse vibrations of the laser below 100µm
√

R
103km over the frequencies of interest.

The need to reference the axis of the laser to an inertial reference emerged from the demand to suppress Coriolis
accelerations due to the thermal velocity of the atom cloud. Another way to deal with this problem is to operate
the interferometer in the multiloop configurations described in sub section IVB3. The Coriolis acceleration caused
by a laser rotating with a constant angular velocity and an atom cloud moving with a constant transverse velocity is
constant. The phase shift due to such a constant acceleration is completely cancelled in these multiloop configurations.
In this configuration, the interferometer has a smaller bandwidth but has the same sensitivity to gravitational waves
at its resonant frequency as the Mach Zender configuration.

Rotational backgrounds in this multi-loop setup can be controlled by servoing the laser to track the rotation of the
satellites. An instability δω in the angular velocity of the axis will cause a centrifugal acceleration L (δω)2. Moreover,
the transverse velocity vT of the atom cloud caused by the thermal velocity of the atom and vibrations of the trap used
to confine the atoms will cause accelerations δωvT . These backgrounds can be made smaller than 10−19g( ω

10−2 Hz )
2

by making δω smaller than 10−10 rads/s as discussed earlier in this section.
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5. Effects of Magnetic Fields

A time variation δB in the magnetic field B0 produces a phase shift ∼ αZCB0δBT in the interferometer as discussed
in sub section IVB6. This phase shift must be smaller than 10−4. Time variations in the interplanetary magnetic

field at ∼ 1 AU have been measured to be ∼ 0.1 nT√
Hz

(10−2 Hz
ω ) [47]. The applied bias magnetic field B0 is ∼ 100 nT

over the interferometer region IL and αZC ∼ 1 kHz
G2 (for Rubidium). With these values, αZCB0δBT ∼ 10−5 for T / 100

s.
Note this is true only if the atom interferometer is operated using Raman transitions, so the atom is in different

internal levels during the course of the interferometer. This phase shift will be absent if the interferometer is operated
using Bragg transitions, since the phase accrued along each arm is the same. However, there will still be a phase shift
that goes like ∼ αZC∇ (B0δB) (vRT )T .

The atoms are in magnetically insensitive (m = 0) states and they move through a non-uniform magnetic field.
The gradient ∇B of the magnetic field causes a force ∼ αZCB∇B on the atom due to the second order Zeeman effect.
The atom experiences a gradient ∇B ∼ 100 nT

30 m from the external bias magnet in the configuration considered in this

experiment. With this gradient, time variations δB ∼ 0.1 nT√
Hz

(10−2 Hz
ω ) [47] in the interplanetary magnetic field cause

accelerations ∼ 10−19g which is equal to the shot noise requirement of the experiment. The time varying acceleration
caused by fluctuations in the position of the bias magnet are smaller than ∼ 10−19g if these fluctuations are smaller
than ∼ 1 mm√

Hz
in the 10−2 Hz band.

The atom is placed in a m = 0 state with respect to the external magnetic field at the start of the interferometer to
minimize the effects of accelerations from time dependent magnetic fields. The Rabi frequency of the atomic transition
is set by the internal state of the atom and the laser is tuned to match this frequency. Changes to the direction of the
external magnetic field during the interrogation time of the experiment are adiabatic compared to the rapid precession
rate of the atom’s spin. If the direction of the magnetic field changes, the quantization axis of the atom’s spin will
track this direction change. Since the laser is tuned to the original m = 0 state, the atom-laser interaction will excite
m = ± 1 states along the new axis of quantization. The phase shift from these states is a background.

The m = ±1 components developed by the atom as a result of a misalignment by an angle θ between the magnetic
field and the quantization axis are proportional to sin(θ). The probabilities induced by this mixing are therefore
proportional sin2(θ). The contributions of this mixing to the phase shift in the interferometer are smaller than 10−4

when θ / 10−2. The direction of the interplanetary magnetic field was characterized by [70]. During an average time,
the drift in the direction of the magnetic field was found to be smaller than 5◦ over 10 minutes. In the presence of
a ∼ 100 nT bias field over the interferometer region, these angular variations of the ∼ 5 nT interplanetary magnetic
field will change the overall direction of the magnetic field in the interferometer by less than 10−2 in 100 seconds.

The above arguments indicate that the effects of time varying interplanetary electromagnetic fields on the atom
interferometer are naturally small and close to the shot noise floor of the experiment. The effects of these fields can be
additionally suppressed to the extent to which these fields can be measured. The response of the atom interferometer
to a given electromagnetic field is determined by known quantities like the magnetic moment of the atom and its
polarizability. Since these quantities are known to several digits, a measurement of the electromagnetic fields will
enable us to predict the effect of these fields on the atom interferometer. These effects can then be subtracted out
from the measured phase shift.

We note that the effects of electromagnetic forces on the atom interferometer are significantly suppressed compared
to their effects on LISA’s inertial test masses. Spurious electromagnetic forces on the test masses due to charge
transfer between the test masses and the satellite environment is a major background for LISA. The test mass
acquires a random charge from its environment and its response to time varying electromagnetic fields cannot be
predicted even if the electromagnetic fields themselves are measured. Since the atom interferometer is operated using
magnetically insensitive atomic states, electromagnetic forces on the atom are greatly diminished. The response of
the atom interferometer to electromagnetic fields can be predicted to the extent to which these fields are measured
providing additional immunity to the atom interferometer from time varying electromagnetic fields.

6. The Radius of Curvature of the Beam

The temperature of the atom cloud will cause the atom to have thermal velocities along the direction transverse to
the laser fields propagating along the interferometer axis. This velocity will cause the atoms to move in a direction
transverse to the laser beam. Owing to the finite radius of curvature R of the beam, an atom that is slightly off-axis

by δy from the center of the beam will see an additional phase keff( δy2

R ). With Na ∼ 108 atoms in the cloud, shot

to shot variations in this phase are ∼ 1√
Na

keff( δy2

R ) and these must be smaller than ∼ 10−4. With thermal velocities
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∼ 100µm/s, the maximum transverse distance travelled by the clouds is δy ∼ 1cm over an interrogation time T ∼ 100

s. The phase shift 1√
Na

keff( δy2

R ) is then smaller than 10−4 if the radius of curvature R of the beam is greater than

∼ 100 km
(

109 m−1

keff

)

.

7. Blackbody Clock Shift

Black body radiation shifts the hyperfine transition frequency of the atom by ∼ 10−4 Hz
(

τ
300 K

)4
[72]. The ambient

temperature τ at 1 AU is ∼ 300 K. Time variations δτ in the temperature of the interferometer region during the

interrogation time T of the experiment will change the hyperfine transition frequency by δν ∼ 4×10−4 Hz
(

τ
300 K

)4 (

δτ
τ

)

causing a phase shift δν T ∼ 10−2
(

τ
300 K

)4 (

δτ
τ

) (

ω
10−2 Hz

)

. This phase shift is smaller than 10−4 if the temperature

fluctuations δτ in the frequency band ω are smaller than ∼ 1 K
(

ω
10−2 Hz

)

. Time dependence in the temperature of
the interferometer is caused by variations in the solar output and fluctuations of the spacecraft temperature. Time
variations of the solar output typically occur over the time scale of a day at distances ∼ 1 AU[73]. The solar output
changes by ∼ 1 Watt during this period leading to a temperature change ∼ 0.05 K in the time scale of a day. These
variations are therefore not a problem for the interferometer.

The effects of the thermal variation of the satellite on the interferometer are suppressed since the interferometer is
operated at a distance dI ∼ 30 m away from the satellite. Temperature variations of the satellite at frequency ω have

to be larger than ∼ 10 K
(

ω
10−2 Hz

) (

dI

30 m

)
1
2 in order to change the temperature of the interferometer region by 1 K.

The spacecraft receives heat from the Sun and the solar wind. As discussed above, variations in the solar output are
small over the time scale of interest. The solar wind is composed of 2 keV protons and electrons with density ∼ 5

cm3

moving at speeds ∼ 400 km/s. The change in temperature of the satellite from an order one change in the flux of the
solar wind is ∼ 1 mK. The environment of the satellite will therefore not cause its temperature to fluctuate at levels
of interest to this experiment.

The satellite will also establish a spatial thermal gradient over the interferometer region due to its shadow. This
spatial gradient will contribute to the phase shift in the interferometer. The natural time scale for the variation of
this phase shift is equal to the orbital period of the satellite ∼ 1 year and is therefore not a problem for the current
experiment. Time variations of this spatial gradient are also created by random motions of the satellite during the
interrogation time of the experiment. However, these motions need to be well controlled to suppress Newtonian
gravity backgrounds which are much larger than the small phase shift produced by the spatial thermal gradient. The
variations in this phase shift due to the residual random motions of the spacecraft will therefore be smaller than shot
noise.

C. Comparison with LISA

The detection of gravitational waves requires techniques that are sensitive to the miniscule effects of gravitational
waves and can simultaneously suppress noise in the measurement bandwidth to permit the extraction of the signal. The
atom interferometer configurations discussed in this paper can probe the same frequency spectrum as satellite based
light interferometers like LISA with comparable sensitivity (see Section VII). However, as discussed in subsection
VB, these configurations may naturally permit significant suppression of several serious backgrounds faced by LISA,
see Table II.

LISA aims to detect gravitational waves by measuring the relative distance between two inertial proof masses
separated by an arm length ∼ 5 million kilometers. Position noise of these masses is a background for LISA. The
significant gravitational coupling between random motions of the satellite and the proof mass is a dominant cause of
this position noise. In order to sufficiently suppress this noise, LISA requires satellite position control at ∼ 1 nm√

Hz
in

its measurement bandwidth [81]. However, as argued in subsections VA 2 and VB 2, since the atom interferometer
can be operated outside the satellite over a ∼ 100 m region from the satellite, the effects of position noise of the
satellite on the interferometer are significantly suppressed. For gravitational wave sensitivity similar to LISA, our
atom interferometer setup would require satellite position control at ∼ 10 µm√

Hz
in the measurement bandwidth.

In addition to random motions of the satellite, spurious electromagnetic forces on the LISA proof mass also con-
tribute to its position noise. These forces are caused by direct collisions between the proof mass and the background
gas and due to charge accumulation on the proof mass from interactions with cosmic rays and the solar wind. The
test mass acquires a random charge from its environment and its response to time varying electromagnetic fields
cannot be predicted even if the electromagnetic fields themselves are measured. Since the atoms are neutral and the
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Attribute AGIS LISA

baseline 103 km 5 × 106 km

satellite control (at ∼ 10−2 Hz) 104 nm√
Hz

1 nm√
Hz

laser frequency control (at ∼ 10−2 Hz) 104 Hz√
Hz

1 Hz√
Hz

rotational control (at ∼ 10−2 Hz) 10−2 nrad√
Hz

1nrad√
Hz

electromagnetic forces atoms neutral, EM forces naturally small, cosmic ray charging of proof mass

predictable response to measured EM field

collisions with background gas delete atoms, not a noise source cause acceleration noise

TABLE II: A comparison between specifications for a three satellite AGIS configuration that could potentially allow comparable
sensitivity to LISA, and the LISA requirements. There are many caveats and details that cannot be captured in a table and
are discussed in Sections VB and VC and in the LISA papers (see e.g. [81, 82]).

atom interferometer is operated using magnetically insensitive (m = 0) states, electromagnetic forces on the atom
clouds are naturally small. The response of the atom interferometer to electromagnetic fields can be predicted to
the level at which these fields are measured. This provides additional immunity from time varying electromagnetic
fields. Collisions of the atoms with background particles from the solar wind or cosmic rays lead to particle deletion
from the cloud and not charging of the cloud. These deletions result in a minor reduction in the sensitivity (for
interrogation times . 1000 s) but do not cause phase shifts to the remaining atoms and hence are not a background
for this experiment.

Laser phase noise is another major background for gravitational wave detectors. This noise can be suppressed by
the simultaneous operation of interferometers along the arms of a three-satellite constellation. In this configuration,
the effects of laser phase noise are cancelled up to knowledge of the arm lengths (see subsection VB1). Both LISA and
the atom interferometer can benefit by exploiting this idea. However, due its long (∼ 5 million km) arm length, LISA
faces unique challenges in determining the absolute distance between its satellites [79, 80]. Owing to these difficulties,
LISA requires control over the frequency drift of its lasers at ∼ 1 Hz√

Hz
at 10−2 Hz. The atom interferometer setup

considered in this paper can reach sensitivities comparable to LISA with significantly smaller arm lengths ∼ 103 km.
The compactness of this baseline might allow for the determination of the arm lengths of the atom interferometer
constellation with better precision than LISA. If these arm lengths are known to within ∼ 1 m, our experiment can
reach sensitivities similar to LISA with control over laser frequency ∼ 104 Hz√

Hz
at 10−2 Hz.

The atom interferometer setup discussed in this paper might significantly relax the requirements on several major
backgrounds faced by light interferometers like LISA while achieving comparable sensitivity. We have attempted to
consider the relevant backgrounds introduced by the atom interferometer setup in section VB and show that they
could be controlled with practical technology in a realistic setup. Since many of these backgrounds require careful
engineering, further study is necessary. However, the experiment appears to be feasible and exciting enough to merit
more serious consideration.

VI. GRAVITATIONAL WAVE SOURCES

There are many known and potential sources for gravitational waves from astrophysics and cosmology. Here we will
discuss only a few, including the well-known compact object binaries, which give a coherent oscillatory gravitational
wave signal, and more speculative cosmological sources, which give a stochastic background of gravitational waves.
There are many reviews of this subject that discuss other sources including gamma-ray bursts, supernovae, and
spinning neutron stars (see, for example, [2, 49]).

A. Compact Object Binaries

One of the most promising sources of observable gravitational waves is a binary star where both components
are compact objects such as white dwarfs, neutron stars, or black holes [2]. These compact binaries emit strongly
in gravitational waves because they contain large mass stars relatively close to each other. The amplitude of the
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gravitational waves emitted is

h ∼ Gµ
(GMΩ)

2
3

r
∼ (GM1)(GM2)

rR
(17)

where M1,2 are the masses of the components, M = M1 + M2 and µ = M1M2

M are the total and reduced masses, R
is the radius of the binary, Ω is the orbital frequency of the binary, and r is the distance from the binary at which
the wave is observed. As neutron stars and white dwarfs are both roughly 1 solar mass, M⊙, we will primarily be
interested in compact binaries composed of two 1 M⊙ mass components as sources. The amplitude of the emitted
gravitational waves then depends only on the orbital period and the distance to the star. For a binary with Ω = 1 s in
our galaxy we expect h ∼ 10−18, in our local cluster h ∼ 10−21, and in a Hubble volume (i.e. out to redshifts z ∼ 1)
h ∼ 10−23.

The main frequency component of the emitted gravitational wave is at twice the binary’s orbital frequency, ω ∝ 2Ω
[50]. This is clear for equal mass stars, and can also be seen for unequal masses from the fact that gravitational
radiation arises from the second time derivative of the quadrupole moment of the binary.

Near the end of its life, the dominant energy loss mechanism for a compact binary is gravitational radiation. As
a compact binary loses energy, the stars spiral inward, increasing the orbital frequency. This can bring the emitted
gravitational waves into the observable part of the spectrum for gravitational wave detectors. This process ends when
the two compact objects collide. Thus, the highest gravitational wave frequency emitted depends on the radii of the
compact objects. A neutron star binary can reach frequencies of over 100 Hz while a white dwarf binary can only
reach roughly 0.5 Hz before collision. The power emitted in gravitational waves is P ∼ M2

planckh
2. Because this power

depends mainly on a few variables like the masses and orbital period of the binary, the inspiral of a compact binary
near the end of its life is consistent and predictable and therefore so is the waveform of the emitted gravitational
waves. Using the power emitted in gravitational waves, the remaining lifetime of a compact binary is [50]

τ ∼ 1

50Gµ(GM)
2
3 Ω

8
3

. (18)

As the orbital frequency increases, the rate of energy loss increases and the remaining lifetime decreases rapidly. This
means that at any given Ω most of the remaining life of the binary will occur near that frequency.

There are thus two main advantages to being able to observe gravitational waves at lower frequencies. First, the
population of binary stars that are potentially observable is increased, both because new classes of stars such as
white dwarf or high-mass black hole binaries are observable and because a greater fraction of any given class, such as
neutron star binaries, is at lower frequencies than at higher ones. Indeed, for a gravitational wave detector such as
LISA which can observe waves with frequencies as low as 10−3 Hz, the large number of white dwarf binaries creates a
stochastic background of gravitational waves for the detector in this frequency band [71]. Second, a lower frequency
binary has a longer time left to live which increases the observation time and thus the sensitivity of the detector for
this source.

B. Stochastic Sources

In addition to a large number of white dwarf binaries, several potential cosmological sources can produce a stochastic
background of gravitational waves including inflation and reheating, a network of cosmic strings, or phase transitions
in the early universe.

A period of inflation can produce a fairly flat (scale-invariant) stochastic gravitational wave background [48]. This
could be as high as ΩGW(f) ≈ 10−13, as limited by the COBE bound [67], though slow-roll inflation models probably
give a smaller value and a tilted spectrum [49]. This is fairly difficult for planned experiments to detect, but reheating
after inflation can give a more peaked spectrum of gravitational waves with a higher value of ΩGW. For example,
reheating after hybrid inflation [51] or preheating [52, 53], can give a spectrum of gravitational waves with ΩGW several
orders of magnitude higher than that from the period of inflation itself. The frequency of the peak is model-dependent,
proportional to the scale of reheating. It probably lies within a range from roughly 1 Hz to 109 Hz. There is then a
possibility that this enhanced strength of gravitational waves from reheating will allow a detection by interferometers.
There are also other possibilities such as pre-big bang [54] or extended [55] inflation that can lead to much higher
values of ΩGW(f) in the phenomenologically interesting frequency range for interferometers.

A first-order phase transition in the early universe can produce gravitational waves through bubble nucleation and
turbulence [56, 68]. The frequency of the gravitational waves today is given by redshifting the frequency at which
they were produced, which is proportional to the Hubble scale at the phase transition. There are, however, significant
uncertainties in the calculations of these frequencies (see [49]). The best expectation is that a phase transition at the



32

electroweak scale is likely to produce gravitational waves with a frequency today in a range near 10−3 Hz. Earlier
phase transitions at higher temperatures produce gravitational waves with proportionally higher frequencies. In some
models with new physics at the weak scale [61], including some supersymmetric [60] and warped extra-dimensional
[62] models, the electroweak phase transition can produce gravitational waves with very large ΩGW, well above the
threshold for detection by atom interferometers.

A network of cosmic strings produces a stochastic background of gravitational waves from vibrations of the strings.
Cusps and kinks in the strings produce bursts of gravitational waves which could be seen individually or as a stochastic
background. Unfortunately, even in the simplest models there are large uncertainties in the calculation of the formation
and subsequent gravitational radiation of such string networks. Thus, it is very difficult to get a precise prediction
from theory about the strength of gravitational waves coming from a network of cosmic strings. Using the current
understanding of cosmic string networks, the sensitivities of atom interferometers on earth and in space to a stochastic
gravitational wave background (see Figs. 15 and 16) could allow detection of cosmic strings with Gµ ∼ 10−8 to 10−11

(µ is the string tension) or lower, depending on the sensitivity achieved and the uncertainties in the cosmic string
calculations. For a recent review of this subject see for example [66].

There are many other possible sources for gravitational waves from fundamental physics in the early universe
including Goldstone modes of scalar fields [63], or radion modes and fluctuations of our brane in an extra dimensional
scenario [64, 65]. There are also other astrophysical sources that may lead to an interesting stochastic gravitational
wave background (for a review see [49]).

The possibility of accessing these cosmological and astrophysical sources makes gravitational waves a very interesting
avenue for exploring the universe and probing fundamental physics. Indeed, observing gravitational waves could be
one of our only ways of getting information about the universe before the last scattering surface.

VII. SENSITIVITIES

In this Section we find projected sensitivity curves for the terrestrial and satellite experiments. There is always
significant uncertainty in projecting the sensitivity of a proposed experiment. We have attempted to give a range of
sensitivities to show more conservative and more aggressive assumptions about what may be experimentally achievable.
There is also some uncertainty in these sensitivity curves because we have not attempted to perform a careful statistical
study of the exact sensitivity for a particular configuration. Especially in the case of the stochastic gravitational wave
background, this can make important differences that have been worked out carefully be many authors for laser
interferometers. We leave such considerations to future work.

A. Binary Sources

The inherent limit on the sensitivity to a gravitational wave due to shot noise can be found from Eqn. (8). This
limit, equivalently the power spectrum of the shot noise in the experiment hn(f), is shown in Figure 12 for an example
configuration, as described in Sections VA or IVA. Here we have taken the two atom interferometers to be a distance
L = 1 km apart, with interrogation time T = 1 s, 100~k LMT beamsplitters, and a per shot phase sensitivity of
10−5 rad. We have also assumed a data-taking rate of 10 Hz. The plot is cutoff at the Nyquist frequency of 5 Hz.
There would in actuality be some sensitivity to higher frequencies but they will be aliased to look like lower frequencies
potentially also leading to confusion with backgrounds.

At low frequencies the sensitivity rises as f−2 as is clear from Eqn. (9). For higher frequencies, the sensitivity
flattens out because a longer interrogation time does not increase the response of the interferometer once it is longer
than the period of the gravitational wave T > f−1. The sensitivity then reaches it’s maximum when sin2

(

ωT
2

)

= 1,
i.e. when there are an odd number of periods of the gravitational wave in the entire time 2T of the interferometer.
This agrees with the intuition that the interferometer is sensitive to changes in the relative timing of the laser pulses
caused by the stretching of the metric and therefore maximally sensitive when there is the greatest change in the
distance to the laser (the clock) between each successive laser pulse. The singularities come at frequencies which are
integral multiples of f = T−1, when an integral number of periods of the gravitational wave fit in the interrogation
time T . A longer interrogation time for the experiment then does not actually lower the curve in Figure 12. Instead
it slides the curve left, lowering the frequency at which the maximum sensitivity is reached. Of course, a larger length
L or larger beamsplitters improves the entire sensitivity curve linearly. We have cut off the sensitivity curve above
the Nyquist frequency. In reality there will be a slightly more gradual loss of sensitivity before this frequency and
even some sensitivity to higher frequencies, although they will be aliased. Assuming a constant number of atoms per
second that can be cooled and run through the interferometer, a faster data-taking rate does not improve sensitivity. It
would merely improve the high frequency cutoff. Thus it seems unnecessary to strive for a data-taking rate faster than
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FIG. 12: An example sensitivity curve to a gravitational wave of frequency f . It is a shot noise power spectrum in the response
of the atom interferometer to a gravitational wave of amplitude h. Here we have taken the two atom interferometers to be a
distance L = 1 km apart, with interrogation time T = 1 s, 100~k LMT beamsplitters, a per shot phase sensitivity of 10−4 rad,
and a data-taking rate of 10 Hz.

Setup L keff T IL Phase Sensitivity fd

Terrestrial 1 1 km 1.6 × 109 m−1 1.4 s 10 m 10−4 rad 10 Hz

Terrestrial 2 4 km 1.6 × 1010 m−1 4.5 s 100 m 10−5 rad 10 Hz

Satellite 1 100 km 1.6 × 109 m−1 10 s 100 m 10−4 rad 1 Hz

Satellite 2 103 km 3.2 × 109 m−1 100 s 200 m 10−4 rad 1 Hz

Satellite 3 104 km 1.6 × 109 m−1 100 s 100 m 10−5 rad 1 Hz

TABLE III: The experimental parameters chosen for the benchmark sensitivity curves in Figures 13 and 14. The phase
sensitivity is the per shot sensitivity. L is the length of the baseline, fd is the data-taking or shot repetition rate, keff is the
effective momentum transfer of the beamsplitters, T is the interrogation time of each shot, IL is the length of each interferometer
region.

O(10 Hz). The sensitivity would also decrease as the frequency of the gravitational wave approached the light travel
time (or really the gravitational wave travel time) across the whole experiment, namely L. However this frequency
is much higher than the frequency of maximal sensitivity for an atom interferometer. This would not be true for
a light interferometer where the light travel time across the device is also the time length of a ‘shot’, the analogue
of the interrogation time. For example, this explains why LISA loses sensitivity above ∼ 0.05 Hz while the atomic
interferometer’s sensitivity curve remains flat (see, for example, Figure 13).

The projected sensitivities for two possible configurations of the proposed earth-based experiments are shown in
Figure 13. The choice of experimental parameters for these two configurations, shown in Table III, is meant to
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FIG. 13: The projected sensitivity of our proposed terrestrial experiments (red curves) to a gravitational wave of frequency
f . The choices of experimental parameters for these two configurations are shown in Table III. These are only projected shot
noise power spectra in the response to a gravitational wave of amplitude h. They do not include other backgrounds, since as we
have argued, these may be reduced below shot noise. Possible sources are shown. Expected noise curves are shown for initial
LIGO and LISA.

illustrate the range of possible sensitivities that could be achievable. These are the envelopes of curves similar to the
one in Figure 12. We have chosen to remove the singularities that appear in Figure 12 to emphasize the frequency
scaling for a general AI detector. In an actual experiment, the entire area of the envelope curve can be swept out
by increasing the interrogation time T by a factor of roughly two. The sensitivities plotted are only the inherent
sensitivity of the atom interferometer, i.e. the power spectra of the expected shot noise. We have argued in Section
IVB that other backgrounds are smaller than this level. The one exception is time-varying gravity gradient noise
and so the sensitivity curves are shown dashed below the frequency at which we expect gravity gradient noise to
become the dominant noise source (see Figures 7 and 8). The upper sensitivity curve assumes a L = 1 km distance
between two 10 m atom interferometers, with, therefore, an interrogation time of T = 1.4 s. Each interferometer
has 100~k LMT beamsplitters, a per shot phase sensitivity of 10−4 rad, and a data-taking rate of 10 Hz. The more
aggressive curve assumes L = 10 km, 1000~k LMT beamsplitters, 100 m interferometers with T = 4.5 s, a per shot
phase sensitivity of 10−5 rad and the same data-taking rate. The curves are cut off at the Nyquist frequency. The
sensitivity of initial LIGO [37] and the projected sensitivity of LISA [38] are also shown.

Figure 14 shows the projected sensitivities for three possible configurations of the proposed satellite experiment,
with parameters shown in Table III. The most conservative curve assumes L = 100 km, 100~k LMT beamsplitters,
T = 10 s, per-shot phase sensitivity of 10−4 rad and data-taking rate of 10 Hz. The middle curve is the same except
it assumes L = 104 km, 100~k LMT beamsplitters, and T = 100 s. The most aggressive curve assumes the same
length, beamsplitters, and interrogation time as the middle curve but assumes an extra factor of 10 in the per shot
phase sensitivity, either from a larger number of atoms or from squeezed states.
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FIG. 14: The projected sensitivity of our proposed satellite experiments (blue and purple curves) to a gravitational wave of
frequency f . The choices of experimental parameters for these three configurations are shown in Table III. These are just
projected shot noise power spectra in the response to a gravitational wave of amplitude h. Possible sources are shown. Expected
noise curves are shown for initial LIGO and LISA.

B. Stochastic Gravitational Wave Backgrounds

With two gravitational wave detectors (each consisting of two atom interferometers as in Figures 4 and 11) it is
possible to cross-correlate the measurements and obtain sensitivity to a stochastic background of gravitational waves.
As is standard, the sensitivity to such gravitational waves is shown in Figures 15 and 16, plotted in the variable

ΩGW(f) =
f

ρc

dρGW

df
(19)

where ρc is the critical energy density of the universe and ρGW is the local energy density in gravitational waves.
These curves follow from the standard analysis, so we plot the 95% confidence limit on the spectrum of stochastic
gravitational waves. Following [39] (but see also [40, 41]) we estimate this limit by

ΩGW(f) =
πc2f3

ρcG|γ (~x1, ~x2, f) |

√

2

τint∆f
(1.645)h2

n(f) (20)

where τint is the total time length of the experiment, γ is a geometric factor taking into account the positions of the
detectors which we take equal to its maximum value 8π

5 (it will probably be slightly smaller in a real configuration),
and hn is the power spectrum of the noise in the gravitational wave detector as plotted for example in Figure 12.
To produce the curves in Figures 15 and 16 we use the hn from Figures 13 and 14, respectively. As is standard, we
assume a τint ∼ 1 yr integration time for the experiment. This is only a benefit if two detectors can be cross-correlated.
Otherwise, the sensitivity to a stochastic background is no better than the noise on each shot and it is only possible
to place limits on and not to detect such a background.
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FIG. 15: The projected sensitivity in ΩGW of our proposed Earth based experiments (red curves) to a stochastic background
of gravitational waves. These curves only take into account shot noise. The limit from LIGO Science Run 4 and the projected
limits from initial and advanced LIGO are shown [57]. The limits from BBN [58] and the CMB [59] apply to the integral of
the stochastic gravitational wave background over frequency. The possible region of gravitational waves produced by a period
of inflation (not including reheating) is shown. The upper limit on this region is set by the COBE bound [67]. The gray band
shows a prediction for the stochastic gravitational wave background from extragalactic white dwarf binaries; its width shows
an expected error [71].

It is advantageous to measure at lower frequencies to gain sensitivity in the variable ΩGW because it scales favorably
with low f . Further, there is a cutoff in γ and thus the sensitivity when the two gravitational wave detectors are father
apart than the wavelength of the gravitational waves, f−1. For frequencies below O(10 Hz) this is not a problem for
our detectors, but for LIGO this is an issue. The sensitivity of LIGO to stochastic gravitational waves is reduced
because of the large distance between their two detectors, ∼ 3000 km [40].

There is predicted to be a stochastic background of gravitational waves from the large number of galactic and
extragalactic close binaries, mainly white dwarf binaries. There are significant uncertainties in the calculation of the
spectrum from this source due to uncertainty in stellar population models. Figures 15 and 16 show one prediction
[71] for this background with the approximate uncertainty represented by the size of the band. This background
is reduced to some extent by the ability to measure and subtract known binary sources. It can limit the ability of
gravitational wave detectors to see other, cosmological sources of gravitational waves in this low frequency band.

1. New Physics Signals

Figure 17 shows several possible new physics sources of gravitational waves. An example spectrum from the TeV
scale phase transition in RS1 taken from [62] is shown to illustrate roughly what the spectrum from an electroweak
scale phase transition might look like. It shows a peak at frequencies around 10−2 Hz and can certainly be strong
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FIG. 16: The projected sensitivity in ΩGW of our proposed satellite experiments (blue and purple curves) to a stochastic
background of gravitational waves. These curves only take into account shot noise. The limit from LIGO Science Run 4 and
the projected limits from initial and advanced LIGO are shown [57]. The limits from BBN [58] and the CMB [59] apply to the
integral of the stochastic gravitational wave background over frequency. The possible region of gravitational waves produced
by a period of inflation (not including reheating) is shown. The upper limit on this region is set by the COBE bound [67].
The gray band shows a prediction for the stochastic gravitational wave background from extragalactic white dwarf binaries; its
width shows an expected error [71].

enough to be visible in these interferometric detectors. Of course there is much model dependence in this spectrum;
for example, only a first order weak scale phase transition will produce gravitational waves at all.

Two example spectra are shown for cosmic strings with tensions Gµ = 10−10 and 10−16 from [76]. It is important to
note that not only is there model dependence in the spectrum from cosmic strings, but there is also much uncertainty
in the calculation and so these should probably be considered to be upper limits on the spectrum of gravitational
waves from such cosmic string networks. However, given these optimistic assumptions, it may be possible to detect a
network of cosmic strings with tension as low as Gµ = 10−16 using these interferometers. This is becoming limited
by the white dwarf background, whose calculation itself has large uncertainties.

The region labeled ‘inflation’ in the figure is really the upper limit on the possible inflation spectrum assuming it
is perfectly flat from the low frequency CMB bound. However, realistic models of inflation give Ω . 10−15 in our
frequency band with the highest values of Ω from the highest scale models of inflation. Low scale inflation models will
not directly give observable gravitational wave spectra, but could give observable gravitational waves from reheating
(see e.g. [52]).
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FIG. 17: The same plot as in Figures 15, 16 with possible new physics sources of stochastic gravitational waves. The green
curve corresponds to an example spectrum of gravity waves from a TeV scale phase transition, in this case in RS1 [62]. The
dark purple lines correspond to one prediction for a network of cosmic strings with tensions Gµ = 10−10 and 10−16 (with
α = 0.1 and γ = 50) [76]. Note that these have large uncertainties and may be optimistic assumptions.

VIII. CONCLUSION

A. Comparison with Previous Work

Previous studies on the role of atom interferometers in gravitational wave detection concluded that they would be
of limited use in probing the gravitational wave spectrum. Our proposal differs significantly from these efforts owing
to the central role played by light pulse interferometry in our setup.

The work of [15], [24] and [25] used material mirrors like diffraction gratings to execute the interferometer. The
gravitational wave signal in the configurations considered in these papers is ∼ khd where k is the momentum of the
atom, h the amplitude of the gravitational wave and d the distance between the mirrors. It is experimentally difficult
to make the distance between these mirrors bigger than ∼ 1 m. Even if the distance between the mirrors were to
be increased, the experiment would still be difficult since the separation between the two arms of the atom’s wave
function must also be equally scaled. These considerations forced the authors to conclude that an unrealistic atom
flux would be needed to see a gravitational wave. The use of material mirrors suffers from the additional drawback
that the mirrors would be subject to vibration noise. The mirrors would have to be placed on vibration isolation
stacks so this interferometer would be subject to the same limitations as light based interferometers like LIGO.

The work of [26] and [27] described atom interferometers which used light pulse interferometry. However, these
authors did not consider the effect of the gravitational wave on the light pulses used to execute the interferometry.
Without this effect, the phase shift in the interferometer is ∼ khd where d is the separation between the two arms of
the interferometer (see discussion in Section III B). Since the separation between the two arms of the interferometer
cannot be easily scaled, these authors were also forced to consider unrealistic atom fluxes. Moreover, these papers



39

did not discuss strategies to handle crucial backgrounds to gravitational wave detection like vibration and laser phase
noise.

In this paper, we point out that the effect of the gravitational wave on the light pulses used to execute the
interferometer is crucial and can be easily scaled to increase the signal. When the interferometer is operated by a
laser at a distance L, a gravitational wave of amplitude h causes a phase shift ∼ khL. This signal increases as long
as L is smaller than the wavelength of the gravitational wave. Unlike the separation between the two arms of the
atom’s wave function, the distance between the atom and the laser can be easily scaled. With L ∼ 10 km, the signal
in this interferometer is 104 larger than the signal in the configurations previously considered. In addition to boosting
the signal, the configuration considered in this paper offers an effective way to deal with vibration and laser phase
noise. By using the same laser to run two widely separated interferometers and measuring the differential phase
shift between the two interferometers, this setup drastically suppresses the effects of vibrations and laser phase noise.
Our setup thus achieves a large, scaleable enhancement in the signal while simultaneously suppressing backgrounds
thereby making it possible to search for gravitational waves with current technology.

The SAGAS [74] project that uses atom interferometry and ion clock techniques to explore gravity in the outer solar
system was proposed. SAGAS will improve current bounds on stochastic gravitational waves in the frequency band
10−5 Hz − 10−3 Hz but is not expected to be sensitive to known sources of gravitational radiation. In contrast, our
proposal will search for gravitational waves in the 10−3 Hz− 10 Hz band at sensitivities that can detect gravitational
waves from expected sources.

B. Summary

We have proposed two experiments, terrestrial and satellite-based, to observe gravitational waves using atom
interferometry. Both experiments rely on similar underlying ideas to achieve a large, scaleable enhancement to the
gravitational wave signal while naturally suppressing many backgrounds. A differential measurement is performed
between two atom interferometers run simultaneously using the same laser pulses. The lasers provide a common ‘ruler’
for comparison of the two interferometers. The distance between the interferometers can be large because only the
light travels over this distance, not the atoms. The signal still scales with this distance and so can be competitive with
light interferometers. In a sense, the atom interferometers are the analogue of the mirrors in a light interferometer
and it is the distance between them that determines the size of the signal.

Further, many backgrounds are naturally suppressed by this method. Laser phase noise, which must be cancelled
between the two arms of a light interferometer, is here cancelled by the differential measurement between the two atom
interferometers. Since this subtraction is between two interferometers along the same laser axis with only vacuum
in between, vibrations of the lasers (and any optics) are cancelled as well. The atoms themselves, the analogues
of the mirrors in a light interferometer, are in free fall and are unaffected by vibrations. This removes one of the
major backgrounds which prohibits terrestrial light interferometers from achieving sensitivity to lower frequencies. For
example, Advanced LIGO will lose sensitivity below ∼ 10 Hz due to direct (non-gravitational) coupling to vibrations
(see e.g. [30]). Similarly, in the satellite-based experiment the atoms can be far from the satellite, greatly reducing
the engineering requirements on the control of the satellites. Satellite position control and laser noise are two of
the major hurdles for an experiment such as LISA. For similar gravitational wave sensitivity, these requirements are
significantly reduced for our atom interferometer proposal.

Of course, new backgrounds may enter in an atomic experiment. We have attempted to consider all the relevant
backgrounds and show that they are controllable with practical technology in a realistic setup. Many backgrounds
will require careful engineering, just as for any gravitational wave detector. We are certainly not experts in every
relevant area of expertise necessary for such experiments, but this experiment seems possible and exciting enough to
merit more serious consideration.

An interesting consequence of having a differential measurement between two interferometers along the same baseline
is that this setup would have sensitivity to scalar-type perturbations, that would, for example, change the length of
the perimeter of the LISA triangle [86]. LIGO lacks sensitivity to these signals since two perpendicular laser arms
are used to remove backgrounds including laser phase noise. Our setup confers sensitivity to overall changes in the
length of a single arm since each arm is a laser phase noise free combination. In LISA these Sagnac channel events
would be vetoed. One interesting signal of this type would arise from large mass dark matter particles passing near
the detector [77, 78].

There are many avenues for improvement of these proposals in the future. The atom statistics may be improved
with improved cooling techniques, ultimately limited only by the limit on the density of the cloud from atom-atom
interactions and on the total number of atoms from opacity of the cloud. The use of squeezed atom states may also
allow significant improvements in atom statistics beyond the standard quantum limit. Improved sensitivities could
also come from better classical and atom optics including multi-photon LMT beamsplitters, higher laser powers and
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larger laser waist sizes. There may also be clever ideas for improved atomic systems, for example which suppress the
spontaneous 2-photon transition rate without suppressing the stimulated rate. It is difficult to predict what advances
will be made in the future. Nevertheless, the rapid advance of atom interferometry motivates us to consider a range
of sensitivity curves that illustrate the possibilities not just for current but also near future technology.

The proposed gravitational wave detectors may allow the observation of low frequency sources in the band 10−3 −
10 Hz. This is a very exciting range for astrophysical and cosmological sources. Compact binaries including black
holes, neutron stars, and white dwarfs live for a long period in this band. Such low frequencies also allow enhanced
sensitivity to a stochastic background of gravitational waves. Many cosmological sources arising from physics beyond
the Standard Model could be present in this range including inflation and reheating, early universe phase transitions,
or cosmic strings. The observation of gravitational waves has the potential to reveal significant information about
new physics at both the shortest and longest length scales.
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