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ABSTRACT

A possible phase transition in liquid He3 has been Iinvestigated
theoretically by generalizing the Bardeen, Coopeg and Schrieffer equations
for the transition temperature in the manner suggested by Cooper, Mills,
and Sessler. The equations are transformed into a form suitable for
numerical solution and an expression is given for the transition temperature
at which liquid He3 will change to highly correlated phase,

Following a suggestion of Mottelson, it is shown that the phase
transition is a consequence of the interaction of particles in relative
D-states.

The predicted value of the transition temperature depends on the
assuned form of the effective single-particle potential and the interaction
between He3 atoms, The most important aspects of the single-particle
potential are related to the thermodynauic properties of the liquid just

above the transition temperature. Two choices of the two-particle interaction,
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consistent with experiments, yield a sscond-order transition at a
temperature between approximately %%é%&oﬂ and 0.1° K. The

highly correlated phase should exhibit enhanced fluidity.

This reseerch was supported in part by the National Science

Foundation and in part by the U, S. Atamic Energy Commisslon.

Permanent address: Department of Physics, The Ohio State University,

Columbus, Ohio.
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I. INTRODUCTION

Quantum fluids have been the object of inbtense experimental and
theoretical investigation for many years. At low temperatures, both the
boson liquid Heh and the fermion system of electrons in metals exhibit
a phase transition to a superfluid state but, for the rare isotope of
helium, HeB, which liquefies at 3.2O K, no phase transition has been
observed above 0.085O K - the lowest temperature at which experiments

have been performed,

3 as a fluid

Indeed, Landau and his schooll describe liquid He
which has a "Ferml type spectrum) which is tantamount to assuming that the
system does not exhibit a phase transition to a highly correlated state.

Recently, an extension2 of the successful theory of superfluidity

of electronsB’4 indicated that liquid He3 was unlikely to exhibit a

phase transitioq’although this possibility was not demonstrated conclusively
within the scope of the theory. In the present paper, the pgs

theory at nonzero temperaturs is generalized in the manner suggested by

CMs and it is shown that this theory does in fact predict a phase

3

transition for liquid He” at a temperature which should be attainable
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experimentally. The essential point is that the equations, which arise
in the theory, possess D-state solutions but not the S -state solutions
which had been sought previously without success,

A brief description of the theory and the associated thermodynamics
is given in Section II and, in Section III, the problem is expressed in
a form suitable for numerical calculation. The resuits are presented in

Section IV and discussed in Section V.

II BASIC EQUATIONS AND THERMODYNAMICS

In the second quantjization notation, the Hamiltonian H for

P L T O S oy 1 N -
Ui LOLULVID inay Ve wWillLvuell db

vk S cT b o) T ) (12113,

Y C by ,07;)&(/53,53))
(1)

where (/T—(‘é;.‘y:) and C{,é,’ )_{_f:’) are respectively the creation
andapihilation operators for a particle of momentum i ic_ and spin direction
I. The thermodynamic properties of the system are to be calculated from

the entropy é} and the free energy ,.I'; of the system,
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In the method of BCS, F 1s evaluated in an ensemble of wave

functions of the type

X,H/ C&:”) é\fﬁcuum. (=)

£'(4)

H&l-& #é: C——:é.,l« C’}L"’ (3)

L ad

.g', , lﬂ and - specify states occupied by ground pairs, excited pairs,

é &
and single particles respectively and (E") indicates either}a, T or é f,, The

wave function i is norimalized by requiring

cp = (1-4g) "
pL = #h ,

and ,X,,A ,which is real positive and less than unity, is to be determined

U
=
N
©

by minimizing F. The wave functions of Eq.(2) allow a quite detailed
treatment of the interactions between particles of equal and cpposite

momenta which are thoughtto be responsible for the phase transition.
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Introducing the distribution function,§£ for the system, it

can be shown, in the manner of BCS, that

Soad Ai{ For Do $1 + (1= S47) 2 (- 5}5))3 (5)

E: 2 g [EAa][ S+ (1-234) 4y |

+J§7& Up o[t #2380 | 3y (-2 50) 4]

-]

X [(»-1%4, V(1-254 )]J (ph-p)

_TS (&)

where T 1is the temperature, k 1s Boltzmann's constant ,/( the

chemical poter t‘l nd

Upe -(/xm'umz L) - (AT, 81 |4 £T)
[vlht -4 = (AT, -4 |v)-4Y, if\

\‘/!;2'4/2;/ = [’g—f. "é’\’/ /'V‘/ 1'/;/1 J"'{%/ ) - (”é’lr.:—‘é“!' I’V'["é-/\L, élf)’
(7)
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Introducing the definitions

e ¢ P4
L= T 0-46)] (oasg)e P, @

7

FhY=~ & Vo L(4), 17)

e b0 v £ Ui Trtaidle]
(Io)

Ed) = [ﬁ”[{z,) + F"‘@] /L ()

it is easy to show that on minimizing F

F with respect to 94[& s 44,};

-~
and -S‘A s we find that, except for the normal state,
Pp =~ U (1)

Y o= T lE(A) ’ (12)
& .Q,/‘B' |
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&

R~ Elb)
p A EBED) Sy
55 [ééA) 4&/ i

withé” 1/kT, and n  =n integer.
there 1s a phase transition if there is a value /é?
(4)

for which s. (9, (13, and(2 h!havc a nontrivial solutlon JL
the

whenever /A > A .and no solution ctherwise, T, = !/%4 is
(2 7 e 1= AP

transition temperature.

/g&h,is that value o%/ég for which the equation

(L)= -y Zok e E"")zv,,g, ST

= T gth) =

has a solution. This equation may be obtained from Eqgs. (1) and
QA) by putting F(k) = 0 in E(k). Equation (15) may then have a
nontrivial solutionj{‘({é) which is made identically zero by the

normalization required by Eq.(@.

J be seen that Eq. @ﬁh when transformed to coordinate space,

T4 .47
S9N Fl WL LA
con posuess solutions if \/z’;'%f/ Ls the (formal) Fourier transform
of s singular poltentiail, I, however, LJ] £ ﬁ,/ is the (formal)
i D A

- . . . . 4 o2 .
Fourder transform of a singular potential, then E’(&g) defired in Eq.
. . . ¢ N . n 1

Qﬁ$w1ll be infinite in pgeneral., A more elaborate theory is necessury to

circunvent this difficulty and, in the manner of CMS, we anticipate the
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result of such a theory by introducing the single-particle energies

-L[ 46,) and writing

elh) = e (h)-, (1¢)

and thez%é:-e(l:#)follows from the requirement that the number of particles
correspond to a Ferml momentum JEJ%F: .

The form Ofﬂié)iﬁ not to be calculated here but is to be
determined from other conslderations. However, it is clear from Eq.(l@
that the value of Kgc, is strongly dependent on the properties of 4Z,féb))
and, indeed, it will be shown in the next section that the derivative
ofllﬂé)at the Fermi surface is of dominant importance in this connection
but that the result is insensitive to the other detailed properties of
elh) .

We shall now show that the value of A'@’("!"'}/J #53, L’@;:LF is
determined by the specific heat of the liquid just above the transition
so that, since \K%Eléé/ is the only other assumed quantity in Eq.{liL
the value ofi§&= will be made to depend on two empirically determinable

factors.

Using Egs. (5) and (lB_), thie specific heat C is given by

a=y

C= T I‘"”‘

e e akg 5 B -9 [E°8) e E)TEY

d

(17)
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Above the transition temperatures & (k)= & (k) and the righte

hand side of Rq. (17) may be evaluated in the usual way (see)esg., Mayer

5\ and it is found that

and Mayer )

S /.
C.> BT ke dely) + o(r) s

s
157
A/ g
Sl 22 ,-?-':
& : : id .
[C is the specified he forﬁ L/;l. e., for the normal fluld:]

Thus, for sufficiently low temperatures, Cﬂ is a linear function of T,
and this relationship holds down to the trursition temperature. Now,the

properties of the normal fluid do not undergo any discontinucus change at

LéO ) s0 that

L in £ (f/&) = L— b < {'[“> “?N‘ ‘l-” 44, .
ﬁ ;“bﬁo— ,é -".“ﬁr/§*:/+

wg%f,, obtained for
T

: . R \ .
//3_, £ /’-@»a in the solution of Iq. (15 for A = /3. -
goaney S fomr ""“

f which extend down

The experiments of Brewer, Daunt,and Sreedhar
10 : s ; . .
to 0.08% K; show that the suacific heat has become a linear function of
temperature which extrapolates to zero at absolute zero, If CF is

the specific heat of an ideal Fermi Gas and C0 is the observed specific

heat then it is found that
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Co
Ce

-~ 2.00 * ,05, (%)

If we define the effective mass m>k at the Fermi surface to
be given by

4+ L | delh) (2-0)

n ] ﬁ;—aﬁp

then it is clear from Eq. (18) that, for small..r‘,

Cmn rm’.} (;l))
Cr ™

which implies that we must use a single-particle spectrum with effectlive

mass of 2m at the Fermi surface.

Finally, Eq.gralnay be used to obtain an expression for the
discontinuity of the specific heat which is the difference between the
specific heat (cK) of the highly correlated state (f°€£§:§£§c4> and
that (cn) of the normal state (for/éétaééo).

2
Neglecting terms of order T, we find’at the transition temperature,



- 12 - UCRL-9067

(22)

whereg is the angular average of F/,é) %%{Q evaluated at l-é,’:: ‘AF’

and/é :‘:/@a,

III EXPRESSIONS FOR THE TRANSITION TEMPERATURE AND TH:I SPECIFIC HEAT

DISCONTINUVITY

1. Rearranyement of the Equations

Whené[{@ has a given form, Eq. (15} becomes a linear integral
equation which may be separated into a set of equations each referring
to a definite angular momentum ,{Z . (The formal manipulation is precisely
the same as that used to separate the Schrddinger equation.)

CMS sought £ = & solutions of Eq. @A) (withé-?; £2 ) and showed
that it was unlikely that such solutions of that equation (and hence of
q. (}.5‘) existed, Indeed this conclusion is confirmed by the numerical
work described later.

However, it was suggested by Dr. B. Mottelson (private communication)
that there might be an ,Q, = 2 solution, The plausibility of this suggestion
may be seen atonce from the results of Emerg-7 who showed that a sufficient

condition for the existence of a solution of 15q.{l5) is that the phase
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shift in the solution of the corresponding Schrddinger equation (with

angular momentum L and with kinetic energy _Q_,(l@,)> should be positive at the

Fermisurface and that the energy gap increases as the phase shift increases,

liow the free-space shift58 for the H83 at k‘F are =61

for,@ = 0, -2° for,é =1, +19° for,@ =2 and +11° for .= 3. liigher

O

angular momentum states show a steady decrease in phase shift as ,EL
increases, In L(h) the effective mass is 2n  at the Fermi -~urface
and 1s everywhere greater than or sequal to m. This 1s equivalent
to strengthening the potential and suggests that there should be a
phase transition for L w2 and,e = 3, possibly forL= 1 but
probably not for.ﬂ = 0, The largest transition temperature should be
obtained for,f, = 2, These qualitative conslusions are born out by our
numerical results and the predicted transition temperature corresponds
to the calculated D-state valus. (It shoula be noted that, since the
.e-=2 and,e = 3 phase shifts are so nearly equal, changes in the conventional
two~particle potential could result in the largest transition temperaturefs
arising for L =13)

Consequently, we seek a D-state solution of Eq. (15)
although forA)/é(_, the solution of the nonlinear equation QJQ has a
much more complicated angular dependence) which becomes more nearly pure
D-state as/é-—é/éb .

In Dirac's notation, the nonangular part, I.Z> , of Eq. (15) for

.»e =2 ) satisfies

IZ>=—-@’U"IZ>, (13)

where
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o

el Y b EIR)
:—L° 013,6 g’ '«L Z"
e W g b B b Zih) X [24)
o

and

ChhS = Aa 3’1 [bA),

Jl {ﬁ/‘,) being the spherical Bessel function of order 2.
The most obvious method of solving Eq.(?})would be to introduce
an eigenvalue;KQQ):nultiplying G and to determine the value A?c. of
LY /
%}_ for which one eigenvalue go[/éG) =] . 1t turns out, however,
that these are several negative eigenvalues of smaller magnitude than
;i o) 2nd this fact makes it difficult to determine ;lo with sufficient
accuracy. Consequently we rewrite the criterion determining/éb in a
more convenient form which also displays in a most striking way the
sensitivity of/gb to JL(A&) and to the two-particle potential,

Dafine

¢S = [£:> — G, vl gD, [ 25)

where

Then from Egs. @3 snd (04

/ YA ; 1 ff',
(’ "L”) > - ‘\_ ,‘i *’ U I 7
T
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Lolrly > = Lbplrl¥> — Lyl vGov | FS.
(27)

Thus) defining

L(ch = :7;"” AA

¥o -

we find from Eq. (27 that

| 29
L[é°> = = Lff /V‘I/aF> ! C )

provided LZ) is not identically zero, i.e. a highly correlated state
must exist. The evaluation Oféc_ now rests upon the determination of the
integral in Eq. (28)and the solution of the inhomogeneous integral equation
(25);which is not beset by the nunerical difficulties associated with the
solution of the eigenvalue equation (19 The numerical procedures used to
ovtein £ || £>>  are described in Appendix I

2, FEvaluation of Llﬁo)
==

In this section we describe the evaluation of L(;_BC) in
the effective mass approximation. This approxinmation is quilte good) since

the integral in Iq. (28) is most sensitive to the values of (k) for k
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near to kF. The modifications of the result are guoted in Section IV

for the specific forms of LZ.(k) which are used. Thus we take
2 42
L UL) = M (30)

Then for /éc_ large there exists a ¥ such that both

£ pe L4 > 1,

T&o.'m.

and LBD
IE“AF / 4 l;
so that L( é‘ ) may be approximated by
Ae -k oo
_’
2 A ” a%,
Lcé"): LE ) j.%, - 7t bE_LF
- P> 'ﬂF "‘k T AP
AF?E
ht
T S m ;L,;"r “F/"> by 32)
}-</ l/a

The third integral on the right-hand side of Eq. (32) has been evaluated by
BCS (for large E c) and it is found that (the value of K not appearing

in the result):
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-y p [ 2238 VtL*AF;é;co\
LB = T oE \ T ) (23)

e

s0 that

_aag Lhe X A Ap
‘&Tt‘, -'\2‘ g 7’;’;&"%’{; P {2’Ivléi’:> (.34)

in the effective mass approximation, A more careful evaluation of
L(éc ) shows that the effective mass at the Fermisurface appears in
the result Just as in Eq.(}jL and that a more general form of &Z.(k}
away from k‘F merely alters the factor 2,28 slightly, to give a small
change in the transitlon temperature (since as will be seen in Section
I'v;‘("ﬁ {vi kp:) scarcely depends on the finer details of £.(k) J,

Eq. fél;} shows the precise manner in which ‘l‘c is determined by
m (which is an experimentally determined property of £(k) ) and by
@! v kF>3 which is calculated for the experimentally determined

interaction and which is very insensitive tc the value of E e (see

PBopendix I) .

3. Specific-Heat Discontinuity

To calculate the specific-heat discontinuity given by Eq. {22}
we rearrange Eq. 'iLL;‘ by the method used in this section to transform Egqg. (15‘

To first order in Fz(}i) it is found that
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&R —
Ly BhrpgEd) ; (35)

perr

. (4 Ly tvlbey

where

%
Egy= | e+ F) | (3¢4)

I“U(?k) being the angular average of Fz'(ig,‘P:, It is shown in Appendix I that,
for/é very large, the right-hand side of Egq. @5:) is independent of ,é to

a very good approximation. Thus the derivative of the left-hand side of
Eq.(}ﬁyﬁih respect to /éé is approximately zero, For F(k) small, it

makes an appreciable change in E(k) for k near to KF only. Consequently
we replace F(k) by F(k.) for all k. With these approximations, the
expression for éé;_ F?léé%%) i85 independent of the form of the interaction

v and has been evaluated by BCS. It is found that

L"rm ﬁllz.; ffl{é/’) = ig‘a;" ) @7)
poge

provided that F(k) is mot idemtically zero for ll{/j = kF’ [For further

discussion see Appendix II.J The left-hand side of Eq. Q?) is equal to

—«~£ in Eq. (2_22>}so that
4 0
/e 2/

{ A
C. =4 Cn (32)

-

at the transition temperature.
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IV RESULTS

l. One-and Two-Body Potentials

The transition temperature has been evaluated for two choices of
L2 (k) and of v in order to determine the sensitivity of the result
to the assumptions,
The first form of v(r) is a Lennard-Jones 6-12 potential with

parameters determined by de Boex?
Ao \ ' Ao\
vir)= Vo {_(‘73‘ — (75‘) ) (39)

with V_ = 10.22°K, r, = 2.869 &°, This potential is presumably the best

0 0

now available in that it has been fitted to a wide range of experimental
1

data in the low temperature region'o

As an alternative, the Yntema-Schneider potential

— ~Y.824 "9?7 >
Y = 7250 Z‘Iloo e — I/:_;H - 1q | L

has been used (r is measured in A”). This interaction has not been studied

in the quantum-mechanical region although it is known to have too little

attraction by at least lO%,lo
For & form of £. (k), we have used the results of Brueckner
12,13

and Gamnmel. Their potential does not include rearrangement energiles

which, on nuclear matter, have an appreciable effect. Consequently, we
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have taken their potential for a particle excited from the Fermi surface
(f = 1.0; see Ref. 12) and kept the same general shape whilst altering the
scale so that AL(kF) is equal to the mean binding energy, and also requiring

the effective mass at the Fermi surface to be 2.0 rather than 1.82

which was obtained.12 A good approximation tothe curve was found to be given

by the following analytic function?

£ — 0,632 + 0,50 45 Jor 04hlo.q

£ ) hinoys vloslh—03)  Sov 0ifd]13,

2. 9

do
&
i

Sor 19134 A

()

g
)

t‘

®

1

-1
and KF‘ has been taken as 0.8 A° ™.

where k dis in units of AO

Calculations were also performed with no single-particle potentia%)iﬁg

| P ,
e ()= L, (42

The value of l(‘égc) for £.(k) given by Eq.(éé)is determined

by putting m =m in Eq.(ﬁj, For £ (k) given by Eq.(37)

2o R Fad N
ey = B2 4 [LEZ E40A) (o
7"""‘F i,

v

with m = 2m., Thus the more complicated potential of Eq. 1) simply
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causes a factor 1'5%_-,_83 0.69 in the expression (BL) for TC.

2. The Trensition Temperature

The results of the numerical calculations are summarized in Table I,
The Schrgdinger' equation has alsc been used to evaluate th}'/é}:>
(see Appendix I). It can be seen in Table I that L_Q_” v k) is not
sensitive to (i) the influence of the exclusion principle (¢ f. first and
second entries for A_({_I'V') 14,F>> or (+i) to the disp:sive effect of
£ (k) (cf. the second and third entries for 42 | v| V‘F> ). The
dispersive effect would be important, however if ‘V"/A,) were a hard core
plus attraction . At the same time, since kTc depends exponentially or
LQ l v' kF>,there is an order-of-magnitude difference between the

corresponding values of ch.
V DISCUSSION

The values of T, for n' =m indicate the sensitivity of T,
to the slope of €.(k) at the Fermi surface. A change in the specific=
heat curve at low temperatures could change the experimental value of
m* and thus have a large effect on the calculated value of Tc'

The results indicate a considerable sensitivity to the assumed
form of v(r), the m&e between J  obtained from the 6-12
potential and the ¥ntema-Schncider potential being entirely consistent with

the ddcfferent D-state scattering which they predict.lh
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't should be noted that these potentials are primarily obtained
from the second virial coefficient which depends on the scattering for all
angular momentum states and does not determine the potential accurately for
any one angular momentum state. Certainly a small change in the potential
could have a large effect on Tc without causing an appreciable change in
the calculated value of the second virial coefficient.

Probably the best value of Tc which we can quote at present 1is
0.11°% which is obtained using the (adjusted) Brueckner and Gammel
potential(Eqs.égg andégj) and the 6-12 potential of de Boer (Eq°é32»°

This value for the transition temperature lies in the region where
no transition has beenobserved experimentally. However, this result does
not necessarily imply a contradiction beween the theory and experiment, since
it has been shown that a small change in the two-body potential or in the
low-temperature specific heat (in the normal state) can have a rather
large effect on the predicted value of the transition temperature.

At the same time, it is true that the validity of the theory
depends on the assumption that the normal fluid can be described as a
system of weakly interacting quasiparticles, It is possible that the
temperature at which this description becomes good is somewhat lower than
our best predicted value of Tc' In this connection it is important
to note the linear behaviour of the specific heai6 and the rapid increase
of the self-diffussion coefficientlé at low temperatures. These
experiments lend strong support to the increasing validity of the quasi-
particle description of the nom:l fluid, at decreasing temperatures.

Ve

have not investigated in this paper, the properties of the
highly correlated phase other than to calculate the discontinuity in the
spacific heat., There are, however, many properties of the state which should

be subject to experimental investigation. In particular, there should be
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interesting spatially dependent properties acsociated with orientation of
the liquid, as well as striking effects in the magnetic susceptibility.
The excitation energy near ths Fermi surface is given by
2lF (5)) for l5] = kF. Yince F(k) is a function of the direction of
k, 4t will be zero for some directions unless, when F(E) is expanded in
spherical harmonics, the spherically symmetric part is dominant. i;The
angular average of the non-spherically-symmetric part is zero:) This is
certainly not the case near to /é.c) where the D-state solution dominates,
and seems to be unlikely fogéi:vé% o although the essentlal non-linear
character of Eq.Qﬂ)makes it difficult to make a precise statement.
In these circumstances the highly correlated phase is expected to
exhibit a strongly enhanced fluidity with a viscosity which decreases

with fluid velocity. However, perfect superfluidity should not be observed.
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APPENDIX I
Numerical Frocedures

To evaluate zqgl v) ké> s the coordinate space representative
of Eq.{2$1wuasolved numerically using the IBM 704 at the Computer
Center of the University of California in berkeley, and a program written
by means of the FORTRAN II systenm,
For very small transition termperatures,’zg o is large and the
/hyperbolic tangent in Eq. (26>differs froi unity only for k very near

to k Thus, since the kest of the integrand in £q. {26 is non-pingular

FI
near kF, the exact value of 1@ o is unimportant in the evaluation of
()\.16—9 ‘}vl> (provided Ec is large) and taxlh(l/Z)é € (k) may be
replaced by unity for this purpose.

In coordinate space, Eq.(?ﬂ becomes

Play= s 4 Julhph) = S b’ (Al & 187y W) gl) (A1)

(o4
This equation was solved by replacing the integral by a Gaussian quadrature

approximation, the ensuing set of linear inhomogeneous equations being solved
by means of a library subrcut_’me‘,:L5

For the quadrature, the range of integration was broken into three
parts bounded by a3 £ b4 c g d in each of whicn an pl-point Gaussian
quadrature formula was used. The best locations of a, b, cyand d were
determined by trial. The values used were a = 1,0 1 (since _@(r) was
essentially zero at this point), b = 1.997 4° (since v(r) ﬁ(r) had
its maximun at this point so that the greatesi number of Gauss points fell
into the region in which v(r) #(r) was ravidly verying), ¢ = 3.5 A-o(results

were insensitive tc this value) and d = 7.0 & (increasirg d beyond this



_ 26 - UCR L-9067

value caused no change in Lm v ka owing to the short range of v(r) ).

The difference in Lg] v kp> for n, = 10 and ny = 16 was

1
1%.
To evaluate ZA |6 MI> write
AL G S = 6 4!y + 6 (B 4) 1A2)
where
(bh (Ao h) o Lhpa) 1o lhed) | 4247
‘ — A
G’ {}IJA )z *’.’%Ljép @FA) (ér.,/,l) jz_ [/éf/i/) o /A’FA) ) A )/‘.I

L

(A3)

where éz,_ ("!%p/t\ and Por [4{«{;::4.) are spherical Bessel

functions of order 2 ),

and
Vel
r, 0. . e . .
(. (4,41 = %LSJ,{L Ay L;, [?ﬁ&)éh,{&/é)wd,_ /ﬁFA}&!L/.ﬁ,,&’J

e

\{ < ‘ - R )
/ 7 ! 3 A
{L‘!’,\}-’(fl !{fi;: ‘”‘) { ~‘ "" - J‘(,‘ : "'-“Vfri §° ) .
AN b= diedT Sy \ 7uee e jE
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In this form, the integral over k could be terminated at

k=¥=14.5 A° -1 with good accuracy and the integral evaluated by

an nz-point Gaussian quadrature in each of the ranges 0 & kélgr and
kF 4k&K - (kF = 0.8 20! ). Changing n, from 6 to 10 caused a
1/2% change in L@} v| kF> . The integral /@] v} k) was performed by

a 3nl—point Gauss quadrature formula,

The time required to solve the problem with ny = 16 and n, = 10
was approximately 30 minutes. Of course this time could have been reduced
considerably by decreasing the number of Gauss points in the regions in
which the integrand was varying slowly. However,since so few different
values of L_Q[ v ka were required;the total computer time was less than
would have been used by economizing trials.

The calculations werc expected to be sensitive to the singular
regions of v(r) which becomes sharply repulsive near r = 2,56 A°.

If v(r) had been a hard core plus outside attraction v\r-)uj’(r-) would
have had a ¥ -function behaviour at the core. In fact v(rz_(r) did

not vary too sharply in thev core region and the accuracy of the solution
in this region was checked (%) by changing ) from 10 to 16 and

(1) by putting G2(r,r1) = (0 so that the problem reduced to the
Schrodinger equation for which an approximate analytic solution could be
obtained in the region in which v(r) was repulsive. The programming
accuracy and, to some extent, the numerical accuracy were checked by
evaluating the Schrtdinger equation phase shifts (tan EﬂF z - Lglv | kF> )

and comparing them with the known values,
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APPENDIX II

Solutions Below the Transition Teannerature

In this paper we have not solved the non-linear equaﬁionCUQ
which describes the correlated state, but have only examined the linear
equation’iﬁ}fbr the transition temperature, which is thus independent of
the nature of the non-linear solution. However, the predicted properties
of the correlated state,such as the specifiCaheat discontinuity at the

transition temperature and the flow properties, depend explicitly upon the

There exists a solution F(E) to the non linear equation which
is non-zero for ‘5' = kF’ for at least some directions. For this
solution the coefficients A?Jg in the trial function 1%“ are discontinuous
functions of angle for L51= kE . We know of no reason to impose the
requirement that ‘35 be continuous, but observe that ¥ would be continuous
if F(k) were identically zero for I x|= kp . There appears to be a
solution of the nonelinear equation of this nature, which would imply a
zero energy gap, a consequent reduction in the specific~heat discontinuity
at the transition temperature,and an increase in viscosity in the correlated
state. Ve reject this solution however, in favor of the solution with
F{E} non-zero for Lg1= kF, since the latter gives a lower value for

the free energy at any teuaperaturs.
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CAPTION

Table I Values ofésf}!q}’[é%q. 25, 26\and the t rgnsition temperature,
— . 7

for various input functions.



Two-Body Potential

TABLE I

l—x‘éf:
Single-Particle Potential jm/plvifd

L( éc ) Bvaluation , '.I‘C0

4
!
{

6-12 (Bq. 39)

|

None (Eq. 42)

]
!

Schrvdinger Equation 3.14 m?m = 2.00 (Eq. 34) 1.0
None (Eq. 42) 451 m/a=2.00 (Eq. 34)  0.35
B. and G. (Eq. 41) 5.4€ w' fa = 2.00 (Eq. 3L) 0.16
m/a = 1,00 (Eq. 3L) 0.C0L5
B. and G. (Fq. 43)  0.11
Y-S (Bq. 4O) one (Eq. 42) B & ” ot
Schrodinger Equation BT o n/mo=2.00 (Eg. 34) 5635 ,
, .9t - . 0:&&/{
B. and G. (E3. 41) W67 n/n o= 2.00 (Bg. 34) Q.0012
556 B anac. (Do 43) | BibR-

>N

L9061



This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-

mission, nor any person acting on bLehalfl of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained 1in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages rtesulting from the use of any infor-
mation, apparatus, method, or process disclosed 1in
this report.

As used in the above, "person acting on behalfl of the
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.



