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ABSTRACT

A possible phase transition in liquid He3 has been investigated

theoretically by generalizing the Bardeen, Coope~ and Schrieffer equations

for the transition temperature in the manner suggested by Cooper, Hills"

and Sessler. The equations are transformed into a form suitable for

n~~erical solution and an expression is given for the transition temperature

at which liquid He3 will change to highly correlated phase.

Following a suggestion of Hottelson, it is shown that t.he phase

tr3l1sition is a consequence of the interaction of particles in relative

D-states.

The predicted value of the transition temperature depends on the

assu.~()d form of the effective single-particle potential and the interaction

behJoen He3 atoms. Th8 most important aspects of the single-particle

potential are related to the thermodyn~ilic properties of the liquid just

above the transition te;nperature. THO choices of the h,o··particle interaction,



oonsiutent with e.xperiments~ yield a second-order transition at a

1 n I '1/ 0 , 0 1° K Thtemperature bt:tween approximAte y ~.l\ and ~ 0 e

highly correlated phase should exhibit enhanced fluidity~
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Quant~~ fluids have been the object of intense experimental and

theoretical investigation for many years. At low temperatures, both the

boson liquid He4 and the fermion system of electrons in metals exhibit

a phase transition to n superfluid state but, for the rare isotope of

helium, He3, which liquefies at 3.20 K, no phase transition has been

observed above 0.085° K - the lOH8st temperature at which experiments

have been performed.

Indeed, Landau and his schooil describe liquid He3 as a fluid

which has a "Fermi type Gpectrum~1 which is tantamount to assuming that the

system does not exhibit a phase trwlsition to a highly correlated state.

Recently, an extension2 of the successful thwry of superfluidity

of electrons3,4 indicated that liquid He3 was unlikely to exhibit a

phas~ transitio~ although this possibility was not demonstrated conclusively

Within the scope of the theory. In the present paper, the BCS

theory at nonzero temperature is generalized in the manner suggested by

eMs and it is sho~~ that this theory does in fact predict a phase

for liquid He3 at a temperature which should be attainable
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experimentally. The essential point is that the equations p which arise

in the theory, possess D-state solutions but not the S -state solutions

which had been BOUght previously without success.

A brief description of the theory and the associated thermodynamics

is given in Section II and, in Section III, the problem is expressed in

a form suitable for numerical calculation. The results are presented in

Section IV and discussed in Section V.

II BASIC EQUATIONS AND THERNODl'NAMICS

In the second quantjzation notation, the Hamiltonian H for

a 5YSt~ll of fenn10ns may be written as

H~ ~
!o-_J-

where GT(!J q-) are respectively the creation

andamihilation operators for a particle of ;nomentum 11 k and spin direction....,..

cr. The thennodJrnamic properties of the system are to be calculated from

the entropy S and the free energy F of tile system.
~ --
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In the method of BCS$

functions of the type

F is evaluated in an en8~ble of wave--

x1r
!'1LJ)

(:1-J

l D.1. d i
~ J II, ana A-' speolfy states occupied by groun pa rS J excited pairs"

and single particles respectively and (~") indicates either.-!i' tor -& ~.f". The

wave function T is normalized by requiring

'/.

~A - (J -1,4,) ~ ;-.....,

./l V.. .i.!/-! l'P
I-! - A .e.,- ..,..,; .,J

and t~ ,which is real positive nnd less than unit~ is to be determined

by minimizing F. The wave functions of Eq. (2) allow a quite detailed-
treatment of the interactions between particles of equal and opposite

momenta which are thoughtto be responsible for the phase transition.
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Introducing the distribution function,~~ for the system, it
..,

can be shown, in the manner of SCS, that

£~-:>.1 fri:5-~(L-h'tD-t~")4D-+l/)1 (Jj
-

and

£ ~ 2. f [~l1-;-&J [ f{ +- (1- :l.'F:~J 19 J
---

t !~\! U-!J' ( t! +-U-:>.f! \14][fgr (J-J.t!,)l!,]
-/-

where T is the temperature, k is Boltzmann I s constant,.A the

chemical potential, and

U~J4' =( ~1: !1111T I /:: t J ~'t) - (~IJ -&/1' /'V-J-4/ 1: {r)
+ (~ t ~ f!,1 l, J tr ).& t

J
_ ..4 I~) - CAr, --4 ~"'- Ir J-11 ~j 4tJ j"
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I~ i 16:
.!(·(d,.[-l~C,-lA:)J D-~}-4)~ - I If?j

P(!);: - it V-&~/ J..(J/j, ('lJ

--
if.&J;; ~ t1. -;!!: of--/J.~ U~J~' [ -t-4/ fU-;l.f.#/)lpl

-- lID)

II..

ErA l= fft>-[i) + peA)] :

it is easy to show that on minimizing!. with respect to 9f. ' l!, J

and *1 ,\-Ie find that, except for the normal state,
..-

(f!l )
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..<Ii thl. '" l/kT ~ and n

:i~;y:,.~1 ~;1. t: (~)
-'_.'."'~<'''_.__ '''~'''._' T '~__~~'''_-e·._>... _

[:: r&)

E:.D integer.

there is a phase transition if there is a value ~

for which E:q s. (cj~ (l~~ imd (11.,) have a nontrivial solution

'.;henever A "> A_ .and no solution otherwise, I - II~A is theI..:':: ,.. /:::::<-$/ 1(.,.. ..../ ""Fe..

tra.nsition temperature.

~e- is that value a fl--. for which the equation

~~l J~ /?c_
~ (.~)

has a solution. This equation lIlay be obtainod from Eq sO (;LJ.) and

Q..4) by pu.tting F(1s) co 0 in E(~). Equation (15) may then have a

nontrivial solution.-V_ {fJ which is made identically zero by the

nonn·:e.lization required by Eq. (9).

Ls the (fonna.l) Fourier transform

If, hc.)\.;ev~jr,

F'cnn'icr tram;foX111 of a singular potential, then

is the (formal)

defire d in Eq.

~~will be infinite in General. A more elaborate theory is necess~ry to

c:ir',;U'::lvent this difficul ,mel} in the m(Lnn,~r of CHS j 1t:e anticipate the
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result of such a theory by introducing the s:Lngle-particle energles

~(~) and writing

UbI

and the~::=:.e(4=)folloW8 from the requirement that the number of particles

correspond to a Fermi momentum :t-kp .
The fonn of~~)is not to be calculated here but i8 to be

determined from other considerations. However, it is clear from Eq. (15)

that the value of (1e.,., is strongly dependent on the properties of ~ [./z.,),
IDld, indeed, it will be shown in the next section that the derivative

of~l!)at the Fermi surface is of dominant importance in this connection

but that the result is insensitive to the other detailed properties of

VJe shall now show that the value of d.e,fAVella., L~::kF is

detennined by the specific heat of the liquid just above the transition

so that, since V,,- -6./ is the only other assUJlled quantity in Eq. {15),
.....-J ........

thQ value of 1-31"_ .Jill be made to depend on bvo empirically determinable
f--

factors.

Using Eqs. (5) and (l~), the specific heat C is given by

c= T

(J7 )
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Above the transition temperature, E (k)"" ~ (k») and the right-

hand side of Eq. (17) may be evaluated in the usual way (see, e. g., Hayer

and Mayer5»and it is fowld that

+-

~n is the specified heat for~ Lj?e- - ~.e~) for the normal fluid J.
Thus, for sufficiently low tanperatures, C is u linear function of T,

fl

and this relationship holds down to the trJnsiUon temperature. Now,. the

properties of the normal fluid do not undergo any discontinuous change at

pc- ) so that

42., (ll.,) o..JI l

Consequently we may use the value of obtained for

which extend down

for ,,i~ -; J.!l ~ c/... J....,
r--' I~

bsreedhal)

t:i /,1 -in +l->,o c"l,,+;nn "P 'c" (IS)/.::!. ::= /';.) e- ~.. u,,~ U~-L.<'<"'.J..VH V.J,. cO'{o " /)

The experiments of Brewer, Daunt/and

to O.OW
o

K
J

show that the s '),,~cific heaL ha.s become a linear function of

temperature which extrapolates to zero at absolute zero. If is

the specific heat of an ideal Fenni Gas Pind C
1
) is the observed specific

heat then it is found that
-'



:2.. < 0 () ..± tl OS .

:>:;:

If we define the effective mass m at the Fermi ~urface to

be given by

UCRL-9067

(1'1)

Ir (;2..0)

then it 1a clear from Eq. (18) that, for small T ,

which implies that we must use a single-particle spectrum with effective

mass of 2m at the Fermi surface.

Finally, Eq. (1~ ffib.y be us ed to obtain an expression for the

discontinuity of the specific heat which is the difference between the

specific heat (cK) of the highly correlated state (for~>~~ and

that (cf1,) of the normal state (for~.4f?.~).

Neglecting terms of order T2, we find,at the transition temperature~
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where ~ is the angular average of

and~ ~Ie" .
evaluated at II!: I.:: hp

III EXPRESSIONS FOn THE TIUd~SITION TEHPEHATllRE AND TIE SPECIFIC HEAT

DISCO!l;TINtiITY

1. Rearra.ngement of the Equations

When El/,..J has a given form, Eq. (15) becomes a linear integral

equation which may be separated into a set of equations each referring

to a definite angular momentum £. (The formal manipulation is precisely

the Barne as tha t used to separate the Schrodinger equation.)

CHS sought )~.-::::. tJ solutions of Eq. '\14) (\dth/-S-) C'O ) and showed

that it was unlikely that such solutions of that equation (and hence of

Eq. (15) existed. Indeed this conclusion is confirmed by the numerical

work described later.

However, it was suggested by Dr. B. Mottelson (private communication)

that there miGht be an..t == 2 solution. The plausibility of' this suggestion

may be seen atonce from the results of Erner;)'? who shm-Jed that a sufficient

condition for the existence of a solution of ;~q. (15) 2_S that the phase
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shift in the solution of the corresoondin~ Schrodin~8r enuation (with-- - - - "... . - '-' .- - - - - .. -II,,-' . . '"1. -. - _.. - , - - -

angular momentum JL and with kinetic energy L(4~ should be positive at the

Fermi sur face and that the energy gap increases as the phase shift increases.

Now the free-space 8hifts8 for the He3 at ~F are _610

for 1- '" 0, _20 for 1.. :=1, +19
0 for JZ. =2 and +110 for.£.,= 3. Higher

angular momentum states show a steady decrease in phase shift as L
increases. In ~l~) the effective mass is

and is everywhere ,1reater than or equal to

2m at the Fermi -urface

m. This is equivalent

to strengthening the potential and suggests that there should be a

phase transition for L =2 and J., ... 3, possibly for L "" 1 but

probably not fori CI O. The largest transition temperature should be

obtained for~ ... 2. These qualitative conslusions are born out by our

numerical results and the predicted transition temperature corresponds

to the calculated D-state value. (It shoula be noted that, since the

~=2 and~ c 3 phase shifts are so nearly equal, changes in the conventional

two~particle potential could result in the largest transition temperature's

arising for -e "" 3.)

Consequently, we s~oek 8. D-state solution of Eq. (15)

D-state

although for ~>~(., the solution of the nonlinear equation Q.4) has a

much more complicated angular dependenc6
i

which becomes more nea.rly pure

as ft~~c..'

In Dirac I::; notation, the nonangular part, l ~>, of Eq. (1$ for

1- =2) satisfies

where
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6 /J~)
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if". (.hll,) being the spherical Bessel function of order 2.

The most obvious method of solving Eq. (23}would be to introduce

an eigenvalue Ay3) multiplying G and to determine the value ~e" of

;§. for which one eigenvalue ). 0 ~"') ~ J • It turns out I however I

that these are several negative eigenvahe s of smaller magnitude than

A. )and this i'act makes it difficult to determine A(J with sufficient
_0

accura.cy. Consequently we rewrite the criterion determining~ Go- in a

more convenient form which also displays in a most striking way the

sensitivity ofj}£- to ..e. (.Ie,) and to the two-particle potential.

Define

where

I
::::-

If

, ')
Then from Eq s. 1.23; " ,; ," ..)".I,e, Iv:.'



- 15 - UCRL-9067

Thus, defining

Q'O

L{~G-) ==t )M-
o

we find from Eq. ~7) that

)

J

provided ~> is not identically zero) i.e. a highly correlated state

must exist. The evaluation of~c now rests upon the determination of the

integral in Eq. (28)and the solution of the inhomogeneous integral equation

(25),which is not beset by the n~nerical difficulties associated with the

solution of the eigenvalue equation ~~. The numerical procedures used to

obtain t..J:.. JV-J ~F> are described in Appendix I.

2. Evaluation of b l;§..c.;)

In this section we describe the evaluation of L(~c) in

the effective mass approx.imation. This approxir.lation is quite goodJ 8ince

the integral in Eq. (28) is most sensltive to the values of ..e. (k) for k
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near to k
F

, The modifications of the result are quoted in Section IV

for the specific forms of ..!l..(k) which are used" Thus we take

(3o)

Then for ftc.

and

large there exists a If such that b:> th

J 11 - t FILL J:I

so that L( /!!e) may be approximated by

•

The third integral on the right-hand side of Eq. (;32) has been evaluated by

BCS (for large ~ c) and it is found that (the value of Ii not appearing

in the result):



80 that
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t~t,) ::=

- 17 -

()
....'V1'\...
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in the effective mass approximation. A more careful evaluation of

L( f}.c. ) show.s that the effective mass at the Fermi surfacE' appears J.n

the result just as in Eq. 0~, and that a more general form of .e.. (k)

away from ~ merely alters the factor

change in the transition temperatur~

2.28 slightly, to give a small

(since as will be seen in Section

r~ Li. ,v i Kj;;1 > scarcely depends on th e finer details of ..e... (k) ) c

Eq. Q4) shows the precise manner in which T
c

is determined b,Y

*m (Which is an exper:urentally determLned property of .£(k») and by

(1.1 v I ~» which is calculated for the experimentally determined

interaction and which is v ery insensitive tc the value of ~ c (see

Rppendix I) •

2- SpeCific-Bent Discontinuity

To calculate the specific-heat discontinuity given by Eq. {?~

we rearrange Eq. 0-4) b;y the me thod used in this section to transform Eq. (15).

To first order in F2(~) it is found that
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where

~lv !{.-A_E_~~~J__ _-
g (12~)

_:1. Z. • 'Z.
Flk) being the aneu1ar average of F{!;.:f':J.9 It is shovtn in Appendix. I that)

for /? very large, the right-hand side of Eq. 05).:ta independent of ~_ to

a very good approximation. Thus the derivative of the left-hand side of

Eq. (35) with respect to If}:!... is approximatel:,?, zero. For F(k) small, it

makes an appreciable change in E(k) for k near to 1<F only. Consequently

we replace F(k) by F(k
f

) for all k. With these approximations, the

expression for -/g- F l.i-lp) i5 independent of the form of the interaction

v and has been evaluated by BeS. It is found that

j

provided that F(~) is not identically zero for I~J = kFo [For further

discussion see Appendix IIJ The left.. hand side of Eq. (37) is equal to

r_ \
\..38)

at the transition temperature.
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IV RESULTS

1. One-and Two-Body Potentials

UCRL-9067

The transition temperature has been evaluated for two choices of

Jt (k) and of v in order to detennine the sensitivity of the result

to the assumptions.

The first form of vCr) is a Lennard-Jones 6-12 potential with

parruneters determined by de Boer 9
)

with a
A • This potential is presumably the best

now available in that it has been fitted to a wide range of experimental

10
data in the low temperature region"

As an alternative, the Ynterna-Schneider potential

has been. used (r is measured in AO). This interaction has not been studied

in the quantum-mechanical region :llthough it is known to have too little

attraction by at least 10%,10

For il fonl1 of ~ (k), we have used the results of Brueckner

and Gamrnel. 12,lJ Their potential does not include rearrangement energies

which, on nuclear matter, have an appreciable effect. Consequently, we
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have taken their potential for a particle excited from the Fermi surface

(f = 1.0; see Ref. 12) and kept the s~ue general shape whilst altering the

scale so that ...e,(kf') is equal to the mean binding ener~~ and also requiring

the effective mass at the Fe~ni Surface to be 2.0 rather than 1.8~

which was obtained. 12 A good approximation tofue curve was found to be given

by the following analytic function:

l
. 1

J.'1/31.. h..

-1
where k is in units of AO and ~F has been taken as 0.8 AO -1.

Calculations were also perfonued with no single-particle potential i~.
) .

'i'he value of L(;Q c) for e. (k)
~{-

by putting '1l '" m in Eq. (3~. For .e.(k)

given by Eq. (28) is determined

giLven by Eq. (:3'V,

.".
~_..-zi\.-

4~­

with HI ;; 2m. Thus the more complicated potential of Eq. (41) simply
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causes a factor I,sJ{,1.g= 0,61 in the expression (34) for

~. The Transition Temperature

T .c

UCRL-9067

The results of the numerical calculations are smillnarized in Table I.

The Schrodinger equation has also been used to evaluate L..t. JVl.kp>
(see Appendix. I). It can be seen in Table I that '(~l v I k"F') is not

sensitive to (-l) the influence of the exclusion principle (c~f. first and

aecond entries for "!£. I 11'") It,F» or (ii.) to the disp:,'"sive effect of

~ (k) (d. the second and third entries for L..~ 1 v IlfT '> ). The

dispersive effeot would be important" however if V-/J,,) were a mrd core

plus attraction At the salUe time" since kTc depends exponentially aT'

L./~. 1 v J k"p '), there is an order-of-magnitude difference between the

corresponding values of kTc '

V DISCUSSION

The values of T
(;

if
for m ::: m indicate the sensitivity of

to the slope of €.(k) at the Fermi surface. A change 1.11 the specific-

heat curve at low temperatures could change the experimental value of

m &ld thus have a large effect on the calculated value of T •c

form of

The results

v(r)" the

indicate a sPnsiderab1e sensitivity to the aS6illUed

t::ti;/-nu.~
elence between I obtained from the 6-12c

potential and the Yntema-Schncider potential being entirely consistent with

the~t D-state scattering which they predict. 14
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It should be noted that these potentials are prliuarily obtained

from the second virial coefficient which depends on the scattering for all

illlgular mom8ntum states and does not determine the potential accurately for

anyone illlgular momentum state. Certainly a small change in the potential

could have a large effect on Tc without causing an appreciable change in

the calculated value of the second virial coefficient,

Probably the best value of Tc which we can guote at present is

t'\

O.llv1\ which is obtained using the (adjusted) Brueckner and GaJOmel

potential (Egs. fbi) and (~~) and the 6-12 potential of de Boer {Eq• (;39).

This value for the transition temperature lies in the region where

no transition has been ob served experimentally. However, ttl.is result does

not necessarily linply a contradiction boween the theory and experimen~ since

it has been shown that a small change in the two-body potential or in the

low-temperature specific heat (in the normal state) can have a rather

large effect on the predicted value of the transition temperature.

At the same tL~e, it is true that the validity of the theory

depends on the assumption that the normal fluid can be described as a

system of weakly interacting quasiparticles. It is possible that the

temperature at which this description becomes good is somewhat lower than

our best predicted value of Tc • In this connection it is importa.nt

to nota the linear behaviour of the specific heai6 and the rapid increase

of the self-diffusoion coefficient16 at low temperatures. These

experiments lend strong support to the incre3.sing validity of the quasi-

particle description of the norm,-:l fluid, at decre2sing temperatures.

the properties of the

hiGhly correlated phase other than to calculate the discontinuity in the

specific heat. There ar~ however, m~ny properties of the state which should

be subject to experimental investigo.tion. In particular, there should be
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interesting spatially dependent properties aGsociated wHh orientation of

the liquid, as well as striking effects in the magnetic susceptibility.

The excitation energy near the Femi surface 1s given by

2lF (~») bince F(k) is a function of the direction of-
k, it will be zero for same directions unle~s, when F(k).... is expanded in

spherical haFUlonics, the spherically symmetric part is dominant. (The

angular average of the non-spherically-s~runetricpart is zero0 This is

certainly not the case near to ~a) where the D-state solution dominates>

and seems to be unlikely for~)~ c although the essential non-linear

character of EQ.(14)makes it difficult to make a precise statement.

In these circumstances the highly correlated phase is expected to

exhibit a strongly enhanced fluidity with a viscosity which decreases

with fluid velocity. However, perfect 5uperfluidity should not be observed.
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To evaluate L..¢I v 1 k
F

,> , the coordinate space representative

of Eq. (2.5) was solved numerically using the IBM 704 at the Computer

Center of the University of California in Berkeley, and a program written

by means of the FORTRAN II system.

For very small transition termperatures, ~ c is large and the

hyperbolic tangent in Eq. ~6)di£fers froi'l unity only for k very near

to k
F

• Thus, since the ..est of the integrand in Eq. (?6) is non-pingular

near ~, the exact value of !: (; is unimportant in the evaluation of

/A.I G- 1A') (prOVided b. is large) and tank, (1/2) ~ G_. (k) may be
,~t=c ~

replaced by unity for this purpose.

In coordinate space, Eq. (25) beco:nes

Cf}A) =- -It.i' J., j .. l/,pA) - ) ~I (-\.1 6-0 lA-I> -v-{A'l.lIA.'J • V~ I)
o

This equation was solved by replacing the integral by a Gaussian quadrature

approximation, the ensuing set of linear inhomogeneous equations being solved

by means of a library subroutine. 15

For the quadrature, the range of integration was broken into three

parts bounded by a ~ b ~ c ~ d in each of Mlich an Pl-point Gaussian

quadrature formula was used. 'The ber,t locations of a, b, c) and d were

determined by trial. The values used vlere a = 1.0 A0 (since ¢(r) was--
essentially zero at this point), b =~ 1. 997 A

0
(since v( r) 1( r) had

its maximum at this point so that the greiltes'v nwnb.:::r of Gauss points fell

into the region in "ihich vCr) ¢(r)
t1

C = 3.5 A (results

were insensitive to this v2.lue) and d = 7. 0 il~ (increasi ng d beyond this
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value caused no change in Lt.l v 1k
F
,> owing to the short range of v(r) ).

The difference in ~~l vi kF~ for n1 = 10 and n1 = 16 was

1%.

To evaluate L.A lC....C1 l,~'> write

where

A )~I
.J

where ~2- lJtpA\ and 1LJ- l-ftFA.)
functions of order 2 )J

and

are spherical Bessel

o

J
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In this form, the integral over k could be terminated at
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with good accura.cy and the integral evaluated by

an n
2
-point Gaussian quadrature in each of the ranges and

\. ~ k LV. ('k == 0 8" Ao~] ,
.l'f- -2. F' ).

1/2% change in L.jj 1v l v. ~>
- r

Changing D2 from 6 to 10 caused a

Tnr; integral L¢ l v J kp) was performed by

a 3nl-point Gauss quadrature formula.

The t::L'll0 required to solve the problem with n = 16
1 and n == 102

was approximately 30 minutes. Of course this t~ne could hav~ been reduced

considerably by decreasing the number of Gauss points in the regions in

which the integrand was varying slowly. However) since so few different

values of L$,.I v \ kt;> '7 were required; the total computer time was less than
...

would have been used by economizing trials.

The calculations were expected to be sensitive to the singular

regions of v(r) which becomes sharply repulsive near

If vCr) had been a hard core plus outside attraetion v(r) r(r) •. _•• ,...J
WUU,.LU

have had a ! -function behaviour at the core. In fact v(r ~(r) did

not vary too sharply in the core reGion and the accuracy of the solution

in this region was checked (i) by changing h
l

from 10 to 16 and

(ii) by putting so that the problem reduced to the

Schr·odinger equation for which an approx.imate analytic solution could be

obtllined in the region in which v(r) was repulsive. The programming

accuracy and, to some extent, the n~~crical accuracy were checked by

evaluating the Schrodinger equation pha.se shifts (tan§lf::- -itlv 1kF> )
and comparing them with the known values.
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Solutions Below the Transition'l'e:nnerature

In this paper we have not solved the non~linear equation(14)

which describes the correlated state, but have only examined the linear

equation Q~for the transition temperature, which is thus independent of

the nature of the non~linear solution. However, the predicted properties

of the correlated state) such as the specific-heat discontinuity at the

transition temporaLure and the flovl properties, depend explicitly upon the

solution

There exists a solution F(~) to the non linear equation which

is non-zero for I~J = k
F

, for at least some directions. For this

solution the coefficients

functions of angle for

LJ1_ k- in the trial function T are discontinuous

He know of no reason to impose the

requirement that ~ be continuous, but observe that -it would be continuous

if F(k) were identically zero for- I~I= YF • There appears to be a

solution ;)f the non"'linear equation of this natUl'e, which would imply a

zero energy gap, a consequent reduction in the specific-heat discontinuity

at the transition t~uperature,and an increase in viscosity in the correlated

state. We reject this solution/however, in favor of the solution with

F(l;) non-zero for 1~\ = kF, since the latter gives a lO\rier value for

the free energy at any temperature.
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Table I Values of t..r...P. h,r/.k)£..q. 25, 26) and the transition temperature,
~ pI'\. /

for various input functions.



TABLE I

1- :f;,'4./t F i
'1"'lo-Body Potential I Single- Particle PCitentiall~lv1~

\ ~.
6-12 (Eq. 39) None (Eq. 42)

Schr~dinger Equation 3.14

L( j}t., ) Evaluation

~

m/m = 2.00 CEq. 34)

T (l

c

1.0

None (Eq. 42) 4.51 m*/m = 2.00 (Eq. 34) 0.35

Y-S (Eq. 40)

B. and G. CEq. 41)

None (Eq. 42)
Schrodinger Equation

B. and G. (E1. 41)

5.46 m*bn = 2.00 (Eg. 34) 0.16
~

m;'~ = 1.00 (Eq. 34) 0.0045

B. and G. (Fg. 43) 0.11

J?il( .-.l1- C),/lf
"-7.Q3 m.l/-u = 2.00 (Ea. 3h) .g.031' __~

* O(dC/~
~7 n/m = 2.00 (Eg. 34) o.o~

'j~ .,j-z, B. and G. (Eq. 43) ~ ~b~'

I
UJ
i\.)
I

c:
CJ
~
t-'
I

-..D
C'
0'
-J
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