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The three-dimensional particle-in-cell (3-D PIC) simulation code WARP is used to study positron
confinement in antihydrogen traps. The magnetic geometry is close to that of a UC Berkeley
experiment conducted, with electrons, as part of the ALPHA collaboration [W. Bertsche et al., AIP
Conf. Proc. 796, 301 (2005)]. In order to trap antihydrogen atoms, multipole magnetic fields are
added to a conventional Malmberg-Penning trap. These multipole fields must be strong enough to
confine the antihydrogen, leading to multipole field strengths at the trap wall comparable to those of
the axial magnetic field. Numerical simulations reported here confirm recent experimental
measurements of reduced particle confinement when a quadrupole field is added to a
Malmberg-Penning trap. It is shown that, for parameters relevant to various antihydrogen
experiments, the use of an octupole field significantly reduces the positron losses seen with a
quadrupole field. A unique method for obtaining a 3-D equilibrium of the positrons in the trap with
a collisionless PIC code was developed especially for the study of the antihydrogen trap; however,

it is of practical use for other traps as well.

I. INTRODUCTION

Recent experimentsl‘2 have created antihydrogen by in-
jecting cold antiprotons into a positron plasma confined in a
Malmberg—Penning?’ trap. The positrons are trapped axially,
between two ring electrodes, and radially, by a strong axial
magnetic field. These electric and magnetic fields do not con-
fine the charge-neutral antihydrogen. Currently, it is thought
that the only practical method of confining diamagnetic an-
tihydrogen atoms is accomplished within a magnetic field
minimum. The simplest field geometry that creates a mag-
netic field minimum employs two magnetic mirrors and a
quadrupo]e,4’5 the so-called loffe-Pritchard trap.6 Clearly,
these additional fields must not degrade the confinement of
the charged positrons and antiprotons from which the antihy-
drogen is synthesized. However, recent experiments7’8 have
shown that plasma confinement is sharply degraded by the
superposition of weak quadrupole fields onto low solenoidal
fields (0.004—0.15 T). This effect was attributed to resonant
particle transport.7 Nonetheless, a single-particle model sug-
gested that if the resonances can be avoided, there would be
no significant loss.”

The early experiments7’8 used weak fields, though at ra-
tios of multipole-to-solenoidal fields strength appropriate for
antihydrogen experimentation. It had been hoped that plasma

losses would be tolerable in the strong solenoidal fields used
in current antihydrogen experiments. However, it is likely
that trapping antihydrogen requires large quadrupolar fields.
Even with a quadrupolar field large enough to create a 1 T
field increase between the trap center and the trap wall, the
well depth will only be ~0.7 K for ground state antihydro-
gen. Evidence suggests that antihydrogen is formed with a
kinetic energy significantly higher than this; in this case,
such shallow wells will trap only a small fraction of the
antihydrogen. Further experiments conducted using large so-
lenoidal and quadrupolar fields have confirmed that applica-
tion of the quadrupole field degrades the charged particle.m
These experiments showed that, for a wide range of system
parameters, the quadrupole leads to fast ballistic loss of par-
ticles along field lines that intersect the confining wall of the
trap.

Quadrupole fields increase linearly with r; i.e., the dis-
tance from the trap axis. Consequently, the field from the
quadrupole is significant, even near the axis, and the positron
and antiproton plasmas currently in use are unavoidably sub-
ject to this field. Accordingly, it has been suggested“ that the
quadrupole be replaced by a higher order multipole. The
near-axis field of a higher order multipole will be signifi-
cantly lower than the field of a quadrupole with the same



strength at the wall. Thus, the positron plasma, centered on-
axis, would be subject to much lower perturbing fields, while
the antihydrogen would be confined, albeit at a larger radius
than in quadrupole confinement, by the multipole. With this
motivation, a trap in which the quadrupole is replaced by an
octupole has been proposed and studied experimental]y.12‘l3
The use of a higher multipolar field in order to prevent high
losses was reported recently; it was shown that, indeed, a
sextupole field" provides plasma confinement for time
scales consistent with the production of antihydrogen.

Numerical investigations of particle confinement in anti-
hydrogen traps are not performed easily. As the magnetic and
electrostatic self-fields are not axisymmetric, the simulations
must be fully three-dimensional (3-D). Furthermore, the
characteristic time scales are widely separated: the positron
cyclotron period is of order ~10-30 ps; the positron axial
end-to-end bounce time is several microseconds; the positron
plasma column E X B rotation time is several tens of micro-
seconds; and the diffusive loss time scale is seconds or more.
Nonetheless, we have performed useful studies of confine-
ment properties, using the three-dimensional particle-in-cell
(PIC) simulation WARP."” The simulations were performed
with magnetic field strengths close to those of an
experimentm conducted at UC Berkeley as part of the
ALPHA %% antihydrogen collaboration.

In these studies, we have found that there is a character-
istic critical radius for the initial plasma column, simply de-
termined by the field geometry, beyond which particles are
rapidly lost. This critical radius depends only on the order of
the multipole and on a geometrical and field factor
(B,L)/(BgR,,), where R,, is the radius of the trap at the wall,
L is the length of the plasma (L depends on the plasma pa-
rameters and on the electrostatic configuration), B,, is the
value of the multipole field at the wall, and By is the axial
magnetic field strength. We find, as expected, that the critical
radius, for parameters relevant to antihydrogen experiments
is larger for an octupole trap when compared to a quadrupole
configuration.

The WARP" code includes external magnetic and electric
field elements and was originally designed for heavy ion
beam simulations. It incorporates a special mover that allows
the use of a time step that is larger than the cyclotron period,
while still allowing for proper calculation of the orbital
motion."® In strongly magnetized plasmas, typical of antihy-
drogen experiments, the motion is primarily determined by
the guiding center dynamics. WARP simulations can be run
interactively, allowing, for example, switching from a two-
dimensional to a three-dimensional field solver during a
simulation run.

We have performed two types of simulations. In order to
estimate the critical radius, it is sufficient to consider simu-
lations in which the positrons are injected into the trap, fol-
lowed by rapid ramping of the multipole. These injection
simulations reproduce analytical estimates for the ballistic
loss of positrons along field lines. Additional physics was
included in simulations that start from a plasma that is ini-
tially trapped and in global thermal equilibrium. These simu-
lations used multipole ramp times longer than the E XB ro-
tation period. The critical radius is close to that obtained with

injected plasmas, but the details of the plasma distribution
were somewhat different in the equilibrium simulations.

These simulations are the first 3-D PIC simulations that
simulate a non-neutral plasma equilibrium in an antihydro-
gen trap. Furthermore, the method developed here, enables
the study of the plasma properties in other trap configura-
tions, either for the various antihydrogen experiments or for
other non-neutral plasma traps.

Recent experimental results agree well with the fast bal-
listic process estimates that we show in our simulations.'*"
Further processes dictated by much slower time scales are
more complicated to study. Although relatively large time
steps have been used, the simulation is much too slow to
mimic the experimental conditions precisely. In particular,
practical multipole coils are ramped on over several seconds,
a time much longer than it is feasible to model. In the ex-
periment, the plasma temperatures are, typically, close to
4.2 K, resulting in much shorter Debye lengths and much
thinner plasma edges than what we can model in our simu-
lations. Moreover, the simulation particles suffer ill-
understood numerical collisions (i.e., there is a lack of
knowledge of the effective characteristic parameters and op-
erator of the collisions that depend on different nonphysical
simulation parameters). Thus, for the purpose of studying
realistically all types of transport processes that may occur,
the numerical collisions are not useful since they do not
properly model physical collisions. Furthermore, the numeric
collisions require the use of a large number of macroparticles
in order to avoid numerical heating.

However, the establishment of an initial local thermal
equilibrium plasma makes use of the numerical collisions, as
discussed in detail elsewhere.'”*® Thus, a new method has
been developed19 that permits computing a positron equilib-
rium inside an antihydrogen trap or other non-neutral plasma
traps.”

The paper is organized as follows. In Sec. II, trap geom-
etry and magnetic field lines are discussed and an analytical
expression for the critical radius is given. In Sec. III, we
present a description of the injection and equilibrium simu-
lations and of the corresponding trap parameters. We also
outline the method for obtaining computational equilibria de-
tailed elsewhere.'® In Sec. IV, we present results from injec-
tion simulations, and, in Sec. V, results are given for simu-
lations with plasmas initially in thermal equilibrium. Note
that the multipole ramp times used in Sec. V are longer than
the E X B rotation time. A discussion is provided in Sec. VI

Il. TRAP GEOMETRY AND MAGNETIC
FIELD LINES

A schematic of the Berkeley quadrupole experiment]0 is
shown in Fig. 1. Electrons injected from a negatively biased
cathode (not shown in the schematic), entered the confine-
ment region, and reflected from a negatively biased electrode
at the opposite end of the trap. The confined plasma was
created by a negative voltage applied to an electrode near the
filament. The electrons were initially trapped with energies
of a few electron volts, and subsequently cooled, via syn-
chrotron emission, to the wall temperature 4 K. At this point,
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FIG. 1. (Color online) Schematics of an antihydrogen trap consisting of a
Penning-Malmberg trap with multipole fields for radial confinement of an-
tihydrogen. The mirror coils are shown for completeness, but were not in-
cluded in the present simulations.

either a quadrupole or octupole coil was energized, and the
plasma losses, if any, were observed.

The magnetic flux tube generated by a solenoid is a
simple cylinder; multipole fields distort the field lines. For a
quadrupole, the magnetic field is given by B=B,(r/r,)
X[—cos(29)f—sin(20)b], @ is the azimuthal angle, and the
flux tube distorts such that a tube of circular cross section at
the plasma center (z=0) maps into ever more elongated el-
lipses. The ellipses at negative z are rotated by /2 with
respect to the corresponding ellipses at positive z. In general,
field lines move radially and azimuthally. However, two field
lines, at O=+ /2, move only radially outward with increas-
ing z, following a curve given by

r=ryexp(az), (1)

where a=B,,/ByR,,. Here, z is the axial position and r the
radial position along this field line, which has an initial ra-
dius ry at z=0. Two other field lines, at =0, 7, move radi-
ally inwards, following

r=ryexp(— az). (2)

Figure 2 shows these field lines: An octupole field is given
by B=B,(r/ r,)’[—cos(46)f—sin(46)8], and its flux tube
(which has a circular cross section in the center) transforms
into a four-lobed cylinder. Purely radial field lines satisfy

FIG. 2. (Color online) Magnetic field lines in a combined quadrupole and
solenoidal field, and schematic plasma cross sections in three axial planes.

r= ___’"0___2_. (3)
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For a quadrupole, the general expression for the radius, i.e.,
r(z), and angle 6(z) of a field line that passes through
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6(z) = tan~'[tan(6p)e>*].

The field lines asymptote towards @==xr/2 for positive z,
and for negative z, towards =0, 7. At these angles, the field
lines are radially directed.

The solenoidal fields used here are strong (~few Torr),
such that the positrons follow guiding center orbits. Thus,
positrons near §=+ /2 and drifting towards positive z, will
hit the trap wall if r(+L/2) exceeds the wall radius where L
was defined previously. Likewise, positrons near #=0, 7 and
drifting towards negative z will hit the trap wall if r(—L/2)
exceeds the wall radius. We define the critical radius r.(6) as
the radial position of a positron initially at z=0, and at an
angular position 6 such that its trajectory intersects the trap
wall at either z=+L/2 or at z=—L/2; r(6) can be found by
solving Eq. (4) for ro.

Since the critical radius depends on the angle, the shape
of the plasma in the center of the trap will no longer be
circular. The critical radius r,(6), will be smallest for &,
=0, /2, m, and 3w/2, and largest for 6,.,=m/4, 37/4,
Sar/4, and 77r/4. At large L, the ratio between the largest to
the smallest r, is \/5 This is the same ratio as that of the
diagonal to the side of a square; indeed, the shape of long
plasmas subject to a quadrupole will approximate a square
with corners at /4, 37/4, 57/4, and 71r/4. The sides of the
square will be closest to the center at 0, /2, 7, and 37/2,
where the multipole field lines are purely radial. The lower
bound for the average critical radius 7, is given by r;(6pin)
which can be written as

alL
Teq=R, exp| - > ) (5)

This formula results from substituting z=L/2 into Eq. (1).
The corners of the center square remain sharp only if the
positrons cannot cross field lines. In reality, E X B drifts from
the plasma self-field and from the axial confinement fields
cause the positrons to rotate around the trap axis. Even if a
positron is on one of the corner 6, field lines, it will soon
drift onto the more severely clipped field lines at 6. Simu-
lations confirm that this rotation smooths the corners of the
square. Thus, Eq. (5) gives an excellent overall estimate of
Teq- A similar argument yields

R,

Teo= m (6)

for the critical radius in an octupole field.



Equations (5) and (6) illustrate an advantage of octupole
field traps, as compared to quadrupolar field traps. Because
B,, and B, add in quadruture, B,, must exceed By to make a
deep well. Moreover, electrostatics constraints make it diffi-
cult to trap a plasma that is shorter than the wall radius R,,.
Thus, the scaling parameter oL will necessarily be close to
unity, and perhaps be substantially greater than it. The quad-
rupole critical radius becomes exponentially small as aL in-
creases and the plasma must have a very small radius, if it is
to survive. In contrast, the octupole critical radius decreases
quite slowly with @L and is always larger than the quadru-
pole critical radius.

lll. DESCRIPTION OF THE SIMULATIONS

We performed two types of WARP simulations: injection
and equilibrium simulations.

A. Injection simulations

In these simulations, the left-most electrode was
grounded, allowing positrons to stream into the trap from the
cathode. After the density in the trap stabilized, the potential
on a grounded electrode near the cathode was raised to create
an electrostatic well and trap most of the positrons. The pos-
itrons phase-mix in longitudinal phase space as they move in
the external potential and self-fields; however, circulating
electrostatic structures may remain.”"** The multipole is not
turned on until the simulations show significant phase mix-
ing. The initial distribution thereby obtained is neither a glo-
bal nor a local thermal equilibrium; the numeric collisions do
not adequately mix particles across radial field lines. The
plasmas are not even in local thermal equilibrium (LTE)
along field lines; there is an overabundance of superthermal
particles. (LTE here means that the particle velocity distribu-
tion has no net axial motion, is Maxwellian along field lines,
and the density distribution obeys the Boltzmann relation in
the self-consistent electrostatic field.) However, as discussed
later, simulating plasmas initially in equilibrium is computa-
tionally more challenging, and the injection simulations pro-
vide a faster method for obtaining some of the important
physical quantities of the system (e.g., r,).

B. Equilibrium simulations

While more computationally expensive, equilibrium
simulations are more realistic. We have developed a new and
unique method for obtaining a 3-D computational equilib-
rium of non-neutral plasma inside a trap especially for the
antihydrogen study. The numerical techniques used to obtain
the proper numerical equilibrium, which are in local thermal
equilibrium (LTE) along the field lines, are discussed in de-
tail in a separate paper19 and used elsewhere to study thermal
equilibrium in non-neutral plasma traps with magnetic
mirrors.”’

We here outline briefly the method. The new procedure
follows a multistage approach. It requires a priori knowledge
of the equilibrium of the trap in the absence of the slowly
ramped multipole field elements. Starting from an idealized
approximation of the equilibrium configuration in a coarse

representation at lower dimensionality, the numerical param-
eters are slowly (almost adiabatically) modified toward a de-
tailed solution of the full three-dimensional configuration.
We use large-weight macroparticles and large time steps in
the initial stages in order to obtain both, high numerical noise
and rapid computational relaxation toward temporary and ap-
proximate equilibria. With this computational equilibrium,
we can proceed to find the unknown equilibria in the pres-
ence of external fields by slowly ramping them.

In the antihydrogen trap study in order to initialize the
plasma in the WARP code, an appropriate LTE density distri-
bution was solved for with a code that solves the Boltzmann
equation and Poisson equations self—consistently.” Particles
were loaded into the trap according to this LTE distribution,
with a Gaussian velocity distribution function centered about
v=0, and with the appropriate temperature.

Both simulations use similar electrode structures: the
grounded electrode wall radius is R,,=2.3 cm, the central
electrode is 7.0 cm long, and the end-electrode lengths are
2.0 cm for the injection simulations and 3.0 cm for equilib-
rium simulations. The plasma length is approximately 6 cm;
the exact length depends on the particle velocities, the radial
positions, and the electrode voltages. Both simulations use
the same solenoidal field, namely, By=1 T, as well as the
same multipole field strength at the electrode wall: B,,/B,
=1.7. Both types of simulations yield similar results. Further
details concerning the simulations are provided in their re-
spective sections.

IV. INJECTION SIMULATIONS

In the injection simulations, positrons are emitted from a
source biased to 5 V; and they acquire velocities in the trap
of about 108 cm/s. The number of simulation particles is in
the range of 10°~10° (depending on the initial plasma col-
umn size); there are about 40-70 real particles per macropar-
ticle and several tens of particles per cell. Typical round-trip
times are on the order of 0.15-0.2 us. The grid spacing in
all dimensions (unless stated differently) is 0.1 cm. The time
step is Ar=10"'"s, or about three gyration periods. The
plasma density is ~10° 1/cm® and several initial radii of the
plasma column are considered in the range of r,
=0.2-1.2 cm.

Figure 3 shows a typical plasma evolution in a ramped
quadrupole field. Plasma is continuously injected into the
trap until, at 0.2 ws, the electrode near the injection is
ramped, and the electrostatic well is fully established at ¢
=0.4 us. The plasma injection then ends, and only the
trapped plasma remains in the simulation. Beginning at ¢
=0.5 us, a multipole (quadrupole or octupole) is ramped on
over a period of 0.5 us. At 1 us, the multipole attains its
final value of B,,=1.7 T at the trap wall.

The plasma state is shown in Fig. 3 at for t=0.6 us
[(a)—(c)], t=1 ws [(d)—(f)], and =3 us [(g)—(i)]. The effects
of the quadrupole are evident. Initially, the plasma is circular
near the axial center of the trap and becomes ellipsoidal at
the axial edge. The ellipses at each end of the plasma are
rotated by /2 with respect to each other, leading to the
asymmetry visible in the x-z space, as shown in Figs. 3(a),



3(d), and 3(g). Excluding the E X B rotation, as the quadru-
pole field is ramped, positrons attached to field lines that hit
the confining wall are lost. This loss is responsible for the
square shape of the plasma at z=0, as seen in Fig. 3(e). The
square has diagonals that are rotated by 7/4 with respect to
the ellipses at the edge (as predicted in the discussion of Sec.
1I). Further shape deformation occurs as remaining positrons
undergo axial bouncing, and some E X B rotation; slow par-
ticles on undesirable field lines eventually leave the system.
This is seen in Fig. 3(h), where the plasma has evolved to a
diamondlike shape. Equation (4) predicts the elongated ellip-
tical transverse shape of the plasma at its axial extremities
[Figs. 3(c), 3(f), and 3(i)]. In Sec. V, it will be shown that
ramping times that are slow compared to the E X B rotation
time yield more rounded profiles at the plasma center.

At =3 us, most of the positrons have been lost along
field lines that intersect the confining wall. The final plasma
size, i.e., 0.2—0.3 cm, is of the order of the critical radius, as
shown below.

As shown in Fig. 4, losses are dramatically lower for an
octupole and the plasma radius is significantly larger, than
for a quadrupole field. Figure 5 shows the advantage of oc-
tupole traps through a graph of the number of simulation
particles as a function of time for three cases: an octupole
with initial plasma radius of r,=1.2 cm; an octupole with an
initial plasma radius of r,=0.98 cm; and a quadrupole with
an initial plasma radius of r,=1.2 cm. At first (<0.1 us),
the number of particles increases rapidly, as positrons are
emitted from the source and fill the trap. The number then

FIG. 3. (Color online) Quadrupole in-
jection simulation results at t=0.6 us
[(@—(c)] and r=1 s [(d)-~(D)], and ¢
=3 us [(g)-(1)] for an initial plasma
radius of 1.2 cm. All plots have par-
ticles superimposed on a color map of
the electrostatic potential. In (a), (d),
and (g), particles are plotted z-x plane
at y=0. That is, the potential is plotted
at y=0 and all particles are projected
along the y coordinate. In (b), (e), and
(h), the transverse (x,y) position of
particles in the center of the plasma (at
the region z=-0.1 cm to z=0.1 cm)
are plotted with the potential at z=0.
Plots (c), (f), and (i) are similar to (b),
(e), and (h), but with the transverse
cross section at one edge of the plasma
(z=3 cm). At t=3 us, most of the
positrons have been lost.

decreases, for 0.1 <t<<0.4 us, by approximately 25%, as the
trap length is effectively shortened by application of the elec-
trostatic barrier near the injection region. At t=0.4 us, the
positron source is abruptly turned off, leading to a small
downward jump in the positron number (these correspond to
the few particles adjacent to the electrode, which are not
trapped by the barrier). The multipole is ramped on begin-
ning at 1=0.5 us, and particles are lost quickly after the criti-
cal radius becomes smaller than the plasma radius (at about
t=0.65 us for the quadrupole and 7=0.8 us for the r,
=1.2 cm octupole). At t=1 us, the multipoles are fully ener-
gized, and the fast ballistic loss ceases. Measurement of the
plasma radius at the plasma axial center, as well as calcula-
tion of the critical radius as indicated in the next paragraph,
yields a critical radius of the octupole of roughly 1 cm, while
the quadrupole critical radius is approximately 0.2 cm.
Particles continue to be lost, though, in both the injection
and equilibrium simulations, at a much lower rate, after the
multipole reaches its maximum at 1 ws. This is caused by
two effects. A few particles start with such a low axial ve-
locity that they simply take a long time to leave the trap.
More importantly, some particles are lost as they drift from
those field lines on which they do not experience large radial
excursions onto field lines on which radial excursions may
take them to the wall. Finally, numeric collisions cause slow
cross-field transport from confined to unconfined trajectories.
The detailed treatment of slow multipole ramping in an-
tihydrogen traps, while important, requires very long simu-
lations as well the inclusion of collisions and cyclotron



damping. Study of these effects is outside the scope of the
present paper.

From the initial number (N;) and final number (N;) of
particles in the trap, we can calculate an effective “final”
plasma radius: 7y=r,VN//N;. Roughly, a plasma that started
with this final radius would not suffer ballistic loss after the
application of the multipole field. If the critical radius is
greater than the initial radius, rp>re then particles will be
lost, and the final radius will equal the critical radius: 7r=r.
If, however, the initial radius is less than the critical radius,
no particles will be lost, and 7;=r),. Figure 6 shows 7; plotted
as a function of the initial plasma radius for the quadrupole
and octupole cases. As expected, the quadrupole final radius
is pinned at about the critical radius of 0.20 cm. The octu-
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FIG. 5. Number of particles as a function of time for quadrupole and octu-
pole cases. Different initial plasma radii of 1.2 and 0.98 cm are indicated.

FIG. 4. (Color online) Octupole injec-
tion simulation results are plotted at ¢

=0.6 ps [(a)~(c)] and =3 us [(d)~(f)]
for an initial plasma radius of 1.2 cm.
No substantial loss is evident. Sub-
plots are the same as in Fig. 3.

pole final radius equals the initial radius, until it exceeds the
critical radius of about 1 cm.

If we use a multipole ramping time that is substantially
slower than the bounce time, the plasma particles will always
be in rough equilibrium with the current value of the field as
the field is ramped. By measuring the number of trapped
particles, i.e., N(B,,), as a function of the instantaneous mul-
tipole field B,, at the wall, we can study the dependence of
the critical radius on the multipole field strength. In Fig. 7,
we show results for a simulation with a multipole ramp time
of 3 us (instead of 0.5 us used earlier). We plot the critical
radius as function of quadrupole and octupole field strength

at the wall [rg(B,)=r,N(B,)/N;]. The simulation results
confirm the analytical estimates of the critical radius. We
find, for both the octupole and quadrupole cases, that the
numerical results agree well with the analytical estimate,
where r, is calculated, from Egs. (5) and (6) at z=L/2
=2.9 cm. The critical radius at B,,=1.7 T is 0.99 cm for an
octupole and 0.25 cm for a quadrupole (close to, but some-
what larger than the values obtained in the faster ramping

1.2 ——
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FIG. 6. (Color online) Final radius [r/= \/(Nf/N,-)rIZ,] as a function of the
initial radius.
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FIG. 7. (Color online) Numerical and analytical critical radius as a function
of the magnetic field for (a) quadrupole and (b) octupole fields. In order to
have more data for the octupole case, we start with a plasma with r,
=1.6 cm while, for the quadrupole, we start with r,=1.2 cm. r. is calculated
at z=L/2=2.9 cm.

case). Thus, 16 times fewer particles remain in the trap with
the quadrupole than with the octupole.

In addition to the injection runs presented here, we also
considered injection simulations into a trap with pre-existing
quadrupole or octupole fields. The critical radius can be cal-
culated from the particle loss (after the potential wall of the
trap has been established), and, for both quadrupole and oc-
tupole, they agree with the analytical expectations from Egs.
(1) and (3) (for a quadrupole and an octupole, respectively)
when z is replaced by z=L, rather than z=L/2 [yielding
equivalent expressions to those of Egs. (5) and (6)]. In this
case, the critical radius is smaller and the difference between
the quadrupole and octupole case is even more pronounced.

V. EQUILIBRIUM SIMULATIONS

Due to superconducting technology limitations, multi-
pole coils cannot be ramped on in less time than a few sec-
onds. Since this time is much slower than the plasma colli-
sion time, it is expected that the plasma will remain in LTE
during the ramping process. As noted earlier, our simulations
are far too computationally intensive to run for this length of
time. Nor can the simulations be run at plasma temperatures
as low as typical for proposed antihydrogen experiments. At
the experimental temperatures of 7= 0.5 meV, and at densi-
ties of n=~2X 107 cm™, the Debye length is about 30 um.
The simulation would need a comparable grid size of at least
100 times finer resolution in the axial coordinate and would

t=10us
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FIG. 8. (Color online) Equilibrium simulation results at times ¢=35, 6, 8, and
10 us for a quadrupole, with initial plasma radius r,=10 mm and a multi-
pole ramp time of 3 us. The plots on the left show the particle distribution,
projected onto the x-z plane, with the electrostatic potential superimposed.
The charge density contours are shown on the right-hand side plots.

be prohibitively expensive. Consequently, we use positron
temperatures of T=1 eV, and a maximum density of about
n=2x%10" cm™.

The rapid loss of particles from an equilibrium plasma
with a 1 c¢m initial radius is shown in Fig. 8. The quadrupole
is turned on at =5 us, and the ramping time of the quadru-
pole is 3 us. At t~6.5 us, particles begin to escape the trap.
At 8 us, the multipole field reaches its final value, and the
density profile is strongly eroded. By 10 us, the fast loss of
particles has ceased. In Fig. 9, we plot the field lines and
density contour (color map) when the quadrupole is at its
final value. The plasma profile follows the field lines; how-
ever, this run is performed for a ramp time that is fast com-
pared to E X B rotation, so particles do not cross the field
lines.

We now describe simulations in which the multipole is
ramped slowly, compared to the E X B rotation period. The
simulations start from the same equilibrium (T=1 eV, n
~2x 10" cm™) as in the previous section. The multipole is
turned on at 5 us, and is ramped over 60 us (as opposed to
3 us). For a flat-top plasma, the E X B rotation frequency
can be estimated as w:%p(r)/ gyB, leading to a period of
~30 us. However, the symmetry of the field lines repeats
after a quarter of a rotation for a quadrupole, and repeats
after an eighth of a rotation for an octupole. Therefore, the
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FIG. 9. (Color online) Quadrupole magnetic field lines and positron density
color map with contour as seen when the multipole has reached its final
value (r=8 us).

ramping of the multipole occurs over about 16 “effective”
E X B rotation periods. (In the injection simulations, the den-
sity was about ten times lower and therefore the rotation time
was about 300 us.) We first consider the case of a quadru-
pole. After ramping the multipole, the simulation continues
until 450 ws. In Fig. 10, we show the positron transverse
distribution at times =65 and 450 us (left and right plots,
respectively). We see both a fast loss of particles, leading to
Fig. 10(a), and a continuing loss, leading to the smaller dis-
tribution in Fig. 10(b). As the plasma in the equilibrium run
further evolves, its shape becomes a rounded square, as ex-
pected, due the azimuthal drifts. Final dimensions of the
plasma approach, approximately, those expected from the
field line analysis, and the loss rate becomes small. For the
quadrupole case, the longer ramp time does not improve the
already poor plasma confinement.
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FIG. 10. (Color online) Positron phase space at the center of the plasma for
two cases: Slow-ramping equilibrium simulation when the multipole field
reaches its maximum (t=65 us), on the left; slow-ramping simulation at ¢
=450 us, on the right.

We now consider, for the same parameters, the octupole
case. The results are shown in Fig. 11, where the transverse
cross section is plotted at t=220 us [Fig. 11(a)], and a den-
sity contour plot is shown on the right [Fig. 11(b)]. The
density plot was obtained by averaging the distribution over
the ~10° (0.1 us) time steps preceding r=220 us. The
plasma is stable, with a radius of 1 cm. While particles are
lost in the corresponding injection runs (see Fig. 5) for an
initial radius that is slightly larger than the critical radius, no
particles are lost in the equilibrium run. This is due to the
rotation drift, which is seen to increase the critical radius
slightly.

VI. DISCUSSION

We have performed the first 3-D PIC simulations of the
confinement of the particles in an antihydrogen trap. These
Malmberg-Penning traps have a superimposed multipole
magnetic field so that they can simultaneously confine
charged particles (positrons and antiprotons) and neutral par-
ticles (antihydrogen). The parameters used in the studies are
close to those of a Berkeley experiment, which models the
positron confinement in such a trap using electrons. The
simulations show that confinement is degraded when a quad-
rupole field is employed. This is consistent with previous
analytical estimates as well as with the experimental
results.'® However, confinement in an octupole field is mark-
edly improved. The primary loss mechanism on the time
scales accessible with our code is due to the ballistic loss of

FIG. 11. (Color online) Simulation for
an equilibrium simulation with a
slowly ramped octupole and for r,
=1 cm at t=220 us. (a) Particle posi-
tions in x-y space and the potential
color map. (b) Color map of the den-
sity profile in the x-z plane at y=0.



particles along field lines that intersect the trap wall. The
simulations confirm that there is a critical initial plasma ra-
dius below which ballistic loss does not occur. This critical
radius found in the simulations agrees well with that esti-
mated analytically. The critical radius depends directly on
the order of the multipole and on a geometrical and field
factor. It also depends on the effective length of the plasma
which depends on the details of the electrostatic trap (for
example, the shape of the external potential) and plasma pa-
rameters. For trap parameters used in the present work (ap-
propriate to the ALPHA antihydrogen experiments), the
number of trapped particles is larger by a factor of 16. In
fact, the recent experiments confirm the fast ballistic loss
process and the superiority of the octupole field over a quad-
rupole field for the positron confinement, thus, being consis-
tent with the present simulations.'*"* Furthermore, since the
parameters used here are practical to many antihydrogen ex-
periments, the results are relevant to these experiments as
well. This suggests that the positron confinement will be im-
proved by using a high multipolar magnetic field rather than
a quadrupole in many experiments. Indeed, the use of a sex-
tupole field has been already tested in an experiment with
electrons motivated by antihydrogen trap experimems.14

The averaging from EXB rotation yields a more
rounded profile, since particles cross the field lines as they
rotate. We also find a small increase in the critical radius.

These simulations use plasma densities similar to those
in the proposed experiments; however, computational limita-
tions require warmer plasmas and faster ramping than
planned for the experiments. The WARP particle mover prop-
erly calculates the various drifts (e.g., the E X B drift and the
grad B drift) without resolving the cyclotron motion and,
thus, without having to use correspondingly small time steps.
Even so, equilibrium simulations with slow multipole ramp-
ing are relatively long.

Because of the computational limitations, and because
WARP does not, at present, model real collisions or cyclotron
cooling, we cannot use WARP to study the diffusive loss that
we expect will dominate the plasma dynamics at long time
scales. Future work may study these effects either with
WARP, or a combination of WARP and codes that model the
dynamics of test particles in the three-dimensional equilibria
found by WARP. It is expected that the diffusive losses will be
high for particles close to r,, since these particles need only
diffuse for a short distance to field lines that intersect the
wall, and not across the longer distance to the wall found in
the absence of the multipole field. Thus, r, likely sets an
effective aperture for the plasma. Finally, the WARP simula-
tions developed here are unique and first of their type and
enable the study of the equilibria and evolution of non-
neutral plasmas in traps with a collisionless PIC code. They
can be used to simulate other trap configurations as well as a
wide range of three-dimensional physics in non-neutral plas-

mas, such as field misalignments and asymmetric confining
potentials.
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