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Transverse resistive wall instabiiity in the two-beam accelerator

David H. Whittum and Andrew M. Sessler

Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720

V. Kelvin Neil

Lawrence Livermore National Laboratory, University of California, Livermore, CA 94550

The transverse resistive wall instability in the Two-Beam Accelerator (TBA) is investigated

analytically and numerically. Without any damping mechanism, we find one to four e-folds in 100 m,

depending on the design. It is found that Landau damping, due to energy spread within a beam slice, is

not effective, due to rapid synchrotron oscillations in the FEL ponderomotive well. Damping due to an

energy sweep along the beam is also considered and it is found that a small variation in energy along

the beam, decreasing from head to tail, can significantly reduce growth. We conclude that the resistive

wall instability is not a severe design constraint on a TBA.

I. INTRODUCTION

The next generation of linear colliders will require accelerating gradients of

100 MeV1m or more to achieve TeV energies in a machine of reasonable length.1,2

Such a gradient corresponds to an rf power of more than 100 MW produced per

meter. A number of additional considerations, including the high luminosity

requirement, alignment tolerances, bunch length requirements, final focus criteria,

and rf breakdown thresholds conspire to constrain the range of operating

frequencies for such a linac to 10-30 GHz.1,3 In this range of frequency, the free

electron laser (FEL) and the relativistic klystron (RK) have demonstrated the power

levels required,4,S and they have been proposed as microwave power sources for a

TeV collider,6,7 in a configuration dubbed the "Two-Beam Accelerator" (TBA).

In the TBA, a mildly relativistic, high current electron beam is transported

through perhaps one-hundred FEL wigglers or RK cavities. This "drive" beam is

alternately reaccelerated by induction cells, and deaccelerated through its interaction

with the RK or FEL units. The microwave power is extracted and coupled into a

slow-wave structure where it accelerates an extremely relativistic, low current

electron beam. The conceptual layout of a single period of an FEL/TBA is depicted in

Fig. 1.
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Because of reacceleration, the TBA is capable of approaching 100% efficiency

of conversion of beam power into rf power. It is this high efficiency, in addition to

the practicality of using a proven power source, which motivates the TBA concept.

However, there are a number of problems which arise due to reacceleration. These

problems include drive beam loading due to the longitudinal wake of the induction

cells,8 rf phase-control,9 rf extraction,IO and transverse beam break-up (BBU) of the

drive beam. Beam break-up is driven by the transverse wake of the induction cells,l1

and the wake of the resistive surfaces on the beam line (the pipe wall and the

wiggler magnet pole faces).l2

All of these issues have been addressed in detail elsewhere, except for the

transverse resistive wall instability, the subject of this paper. In Sec. II we describe

the model we use to study the instability, and we derive analytic results. In Sec. III,

numerical results are exhibited, and, in Sec. IV, conclusions are offered. Detailed

calculations are relegated to Appendices A and B. Table I lists the parameters we will

consider for numerical examples.

II. TRANSVERSE RESISTIVE WALL INSTABILITY

A relativistic electron beam injected off-axis into a beamline will have an

electrostatic dipole moment. The axial current associated with this dipole moment

will couple to the axial electric fields of the various structures along the beamline.

The associated transverse Lorentz force will give a kick to beam slices to the rear,

displacing them farther off-axis. In this way, an instability obtains.

This "cumulative" beam break-up instability is described by an equation of

the formI3

(1)

where 1:=t-z/vv indexes beam slices, vz-c is the axial beam velocity, and c is the

speed of light. The integral extends from 1:'=0 (the beam head) to 1:'=1:. The beam tail

is located at 1:=1:m , with 1:m the pulse length. Beam electrons remain at a fixed 1:, as

they advance in z, down the beamline.

The beam current is I(1:) and will be assumed constant in 1: ("d.c. beam").l4

IA =mc3 / e-17 kA is the Alfven current, where m is the electron mass and -e is its

charge. W(1:-1:'), the wake potential,lS is the Green's function which determines the
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Lorentz force on an electron at a distance vzt from the beam head, as it arrives at z.

This Lorentz force is due to the electric and magnetic fields generated by beam

segments to the front --- Le., with t'< t.

The term in the integrand is given by

1 N
S(t',z) = N 1 ~ i( t',z)

i=l , (2)

where the index i labels the N macroparticles (used to model beam electrons

numerically) located at the same t and z. ~i(t,Z), 'Yi(t,Z), and k~i(t,Z) are, respectively,

the transverse displacement, Lorentz factor, and betatron wavenumber of the i-th

macropartide. (For a cold beam, where N=l, ~I is just the beam centroid and will be

denoted ~.) Wiggler focussing is assumed.l 6 The sum on the right side represents an

average over the N macropartides located in the slice at t and z, and is proportional

to the dipole moment of the axial current density.

Bodner, et al.,17 have shown that, for a beam propagating down a smooth

cylindrical pipe of radius b, with walls of conductivity, cr, the wake potential is given
byI8

(3)

where tD=41tcrb2/ c2.

This wake drives the "resistive wall instability" and arises from the diffusion

of the dipole component of the beam magnetic field into the pipe. Caporaso, et al.,19
have shown that, for a cold beam (N=l), the solution for the beam centroid is given
asymptotically by,

e(t) 1 .
~(t,z) = r::- V3 exp (YR)sm(~z+ Y r)

V 31t (A/2)

where
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and

(AI 2)4/3
y =1. (AI 2)2/3+ ..J3 _2(A)2

R 2 kz 3 kz '
13 13

(A/2)4/3
Y __ 1. 13 (A/2)2/3 _ 21t

r- 2 V .J kz +3'
13

(
I ) 1/2

A= rIA (1t
t

cr) (k~3).

(5)

(6)

This result assumes a constant beam energy, betatron wavelength, and pipe radius.

In addition, in Eq. (5), certain corrections have been added to the result of Ref. 19, as

derived in Appendix A.

The initial condition assumed in deriving Eqs. (4)-(5) is a unit displacement at

z=O, Le., ~(z=o,t)=e(t), where e is the step function. A typical solution for ~(t,z), is

depicted in Fig. 2, for b=1 em. The envelope of ~, will be denoted X, and the

maximum of X, over all t, at the TBA exit (z=zm) will be referred to as the growth.

Growth for z=100 m and a range of pipe radii is depicted in Fig. 3.

For simple estimates, growth may be taken to vary approximately as X-exp

(z/Lg)2/3, with20

(7)

From Eq. (7) it is evident that growth depends critically on the pipe radius, b, (the

number of e-folds varies as 1Ib2 ). This may also be seen by comparing Figs. 4(a) and

4(b), which depict ~(t,z) for b=l em and b=O.5 em.

Evidently, control of BBU favors the largest b possible. On the other hand, b is

constrained by the Halbach limit21 which requires a narrow wiggler pole gap. (When

the pole separation is large, the wiggler magnetic field strength is diminished.) Thus

typical TBA designs10 assume b in the range of 1 to 2 em. From Eq. (4), this

corresponds to BBU growth in the range of 4.5 to 0.5 e-folds, and this is acceptable.

However, this analytic result will be modified by variations in energy within a beam

slice, along the beam, and along the beamline. The need to incorporate such

complicating effects motivates the numerical work of the next section.
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III. NUMERICAL RESULTS

In this section, we examine numerical results from the code, "RWALL",

which solves Eq. (1).22 Numerical data are represented in Figs. 5-8 by solid dots and

are interpolated smoothly. Each dot corresponds to one RWALL run and represents

the maximum over all 't, of the centroid envelope, at z=100 m. In general, y may

vary according to

(8)

Eq. (10) states that the y of the i-th macroparticle within the beam slice at 't, at

position z, is given by the average beam y at z, y(z), plus a term corresponding to

variation within a beam slice, along the beam, and along the beamline, 0Yi('t,Z). Four

types of y variation are of interest in a TBA.

A. Variation in y due to reacceleration

The behavior of Y(z) in the TBA will be roughly a sawtooth. This is because

energy is extracted over a TBA period, L - 1.3 m, via the FEL interaction, and then

restored to the beam in a much shorter length of order millimeters to centimeters in

crossing the induction cell gap. Y(z) is then modelled, for 0 < z < L, by

(9)

and this is extended periodically, with period L, and is independent of 'to

Growth for (y++y_)/2 = 20, with several different values of !:J.y=y+-y_, and with

0Yi('t,Z)=O, is depicted in Fig. 5. For example, for .1y=l, corresponding to a 5% sweep in

y through each period, growth is 4.51 e-folds, rather than 4.46, corresponding to a

decrease in Lg by 1.5 % from 10.6 m to 10.4 m. Although the effect of this periodic

variation in y is to increase growth, the increase is fairly negligible, and we will hold

Yconstant in Z for the remaining examples.

B.Spread in y within a beam slice
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High current electron beams typically have some spread in energy within a

beam slice. Such a spread in y within a beam slice may be modelled by

(10)

where t!J.y denotes the spread in values of y and the <Pi are phases distributed

uniformly from -n to n. t!J.yand <Pi are independent of 't and z, so that 0Yi('t,Z) is also

independent of 't and z. This spread in Y results in a spread in betatron periods

among the macroparticles composing one beam slice. The centroid displacements of

these macroparticles oscillating with different periods will then add incoherently in

the wakefield driving term on the right side of Eq. (1) (phase-mixing). Intuitively,

one expects that significant damping of growth will occur, provided the phase

mixing occurs in less than a growth length. If t!J.k/k is the fractional spread in

betatron wavenumbers and Lg is the growth length, the condition for phase-mix

damping is then t!J.k/k-t!J.y/"(>1/kLg.

This simple estimate agrees qualitatively with Fig. 6, which depicts resistive

wall growth, with Landau damping. Evidently, even a small spread in energy can

virtually eliminate growth. However, these considerations neglect the effect of

synchrotron motion.

c. Synchrotron oscillations in y
As the FEL signal power grows, electrons become trapped in the

"ponderomotive well" of the signal field, and oscillate longitudinally, much as in

an rf linac.23 We model this synchrotron motion numerically by assuming all

electrons are deeply trapped in the ponderomotive well and have a constant
synchrotron period, so that

0Yi('t,Z) =t!J.y sin(k
synch

Z+ <p) , (11)

where ksynch=2n/Asynch,24 and t!J.y is the spread in values of y. <Pi is the initial

synchrotron phase (at the wiggler entrance) of the i-th macroparticle and the <Pi are

distributed uniformly from -n to n. Again, t!J.yand <Pi are independent of 't and z, so

that 0Yi('t,Z) is independent of 't, but oscillates in z, with period Asynch' If the

synchrotron oscillations are rapid on the A~ scale, then, on average, all particles will

experience the same phase advance. Intuitively, one expects in this case that phase-

6



mixing will be negligible and that growth will not be damped. This effect was first

investigated analytically by Takayama,12 and is confirmed by Fig. 7, which depicts

growth versus synchrotron period.

In Appendix B, we show that the condition for effective Landau damping

with synchrotron motion is that t1:y/y be an appreciable fraction of AI3/Asynch.25 This

cannot be satisfied for typical TBA designs, since FEL efficiency requires a small

spread in y, within a slice, while its utility as a microwave source depends on a high

output power, and therefore a short Asynch (typically, AI3/Asynch > 50%).

D. Sweep in yalong the beam

Previous work on energy and ponderomotive phase evolution through

multiple TBA periods9 indicates that a sweep in energy along the beam may arise in

a natural way, due to variation in current along the beam. We model such a spread

in y along the beam by

oy('t,Z) = /1y ( :m - ~) , (12)

where /1y is the variation in y from head to tail. Thus 0Yi( 't,z) is constant in z, but

varies linearly in 'to Such a sweep in energy was first considered by Balakin,

Novokhatsky and Smirnov (BNS) as a means of reducing growth of the beam break

up instability in linear accelerators.26 For the long pulse considered here, this sweep

produces phase-mixing from head to tail. Intuitively, one expects that phase-mixing

in less than a growth length will reduce growth. This condition is /1y/y>1/kLg.

This expectation is confirmed in Fig. 8. A 2% sweep in y along the length of

the beam, decreasing toward the tail, reduces the growth from 4.5 e-folds to 2.3,

corresponding to an increase in the growth length, Lg of 180%, from 10.5 m to 29.4

m. The dramatic effect of energy sweep is further illustrated by comparison of Figs. 9

and 2.

A striking feature of the BNS effect is the asymmetry in /1y, first noted in Ref.

26. Growth is markedly reduced when the beam head is higher in energy than the

tail (/1y<O). For /1y>0 growth actually increases for some range of z. Physically, this

effect arises from a partial cancellation (reinforcement) of the wake driving term by

the relativistic mass shift due to energy sweep, when /1y<O (/1y>0) . However, for

larger z, phase-mixing dominates, and growth will be reduced regardless of the sign
of /1y.27
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In contrast to the condition for effective Landau damping, the condition for

reduction in growth due to energy sweep is not stringent. In principle, BNS

damping is achievable in an FEL, without degradation of efficiency. This may be

understood by noting that the FEL instability is electromagnetic, and travels at a

high group velocity, slipping little from a fixed beam slice. However, the resistive

wall instability is cumulative, with zero group velocity. Efficiency of the FEL

interaction depends on the quality (small energy spread) of the beam slice. The

efficiency of the resistive wall instability depends on the quality and coherence of

transverse motion of the beam as a whole. For the FEL, the effect of a sweep in

energy is merely to cause the beam slices to sample different parts of the gain curve.

IV. CONCLUSIONS

From these examples, it is clear that the periodic variation in y due to

reacceleration will have little effect on resistive wall growth. In addition, the effect

of Landau damping will be negligible due to rapid synchrotron motion. However,

BNS damping does offer the possibility of reducing growth significantly. Further

work is required to determine realistic energy sweeps consistent with the

longitudinal dynamics of the FEL.

On the other hand, even without BNS damping, growth is tolerable, if non

negligible. For typical designs, we can expect from one to four e-folds in 100 m,

depending largely on the pipe radius. BNS damping will reduce this even further.
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APPENDIX A:

ASYMPTOTIC GROWTH OF THE TRANSVERSE RESISTIVE WALL INSTABILITY

In Eq. (5), certain corrections have been added to the result of Ref. 19. In this

Appendix, these corrections are derived. The motivation for this calculation is a

discrepancy uncovered in comparing the numerical results of RWALL, and the

analytic results of Ref. 19.

We begin with Eq. (10) of Ref. 19, the exact solution of Eq. (1), for the wake of

Eq. (3),

i-

1 J 1~(t,z) =8 (t) 41ti dp P {exp (f+) + exp (L)}
-ioo (A.l)

where p is the Laplace transform variable conjugate to t, and the contour is to the

right, in the complex p-plane, of all poles of the integrand. Other notation is

f±(p) =pA 2 ± iBg(p) ,

g(p) ~ J1- Bp2'/2 '

B= ~z,
(A.2)

and A is defined in Eq. (6).

We proceed to calculate the integral of Eq. (A.1), using steepest descents. We

set f'±(p)=O to find the stationary points, pr,

(A.3)

or

(AA)
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where, r= exp(i1t/3), exp(-i1t/3) and exp(i1t). Eq. (AA) is a sixth-order polynomial for

Pr1/ 2. We approximate the roots by expanding them in the small parameter

E=(4A)2/3/B. This expansion converges provided £«1, which is always true for

sufficiently large z, since E varies as z-1/3. However, it is necessary to keep terms

through the third order in £, as will become apparent shortly.

Iteration of Eq. (AA) gives

(A.5)

where e=E/r1/ 2=±Eir. Only the roots p±, corresponding to r=exp(±i1t/3) contribute to

the steepest descent calculation. We use the contour of Fig. 3, Ref. 19, and obtain

(A.6)

where Jl(P±)=(1t - arg f"(P±) )/2, or Jl(p+)=21t/3 and Jl(pJ=1t/3.

We substitute Eq. (A.6) into Eq. (A.l) and take all quantities to lowest order in

E, except in the exponent. Eq. (A.l) becomes,

SCt) 1/22
4

/.3 {
~('t,z)=-4. 1t exp[f+(p)+ i1t/3] +exp[L(p)+i1t/3]

1t 1 31 /2 A 1/3

~ + exp [C(p-) + i21t/3] + exp [L(p-l + i21t/3]}

,

where,

10
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A 2/3 r4·
f., (p.,> ~C2-) t-fa1+ 3 exp [ja ,,,/3]

~ iO'lE ~xp [ :,.... 1[/3] 5 ",2 + f' - -2-c -lv 2 - 1'2<:. ...J
, (A.8)

with O'l=±l, 0'2=±1.

Evidently, we may drop the last two terms in Eq. (A.B), if we are interested

only in the leading order growth in

In(~) ;::, Z2,8 { 1 + O( Z;/3) + o (z;,8 ) + ...}
, (A.9)

and this is the approximation of Ref. 19. However, to accurately estimate the

absolute magnitude of ~, we must keep the Z1/3 and constant terms in the exponent.

The final result is, after some algebra,

e('t) 1 .
~('t,z) = ~ V3exP (YR)sm(~z+YI)

V 31t (A/2)

where

4/3

Y =l(A/2)2/3+ V3 (A/2) _2(A)2
R 2 kz 3 kz 'f3 f3

correction

4/3

Y =- ~ V3 (A/2f/3 _ (A/2) + 21t
I 2 kf3z 3'

correction

(A.10)

(A.ll)

Eqs. (A10) and (All) are just Eqs. (4) and (5). The uncorrected result of Ref. 19 is

compared to the numerical result in Fig. Al (a), and the corrected result is compared

to the numerical result in Fig. Al (b). Evidently the corrections are significant and

produce good agreement with the numerical result.
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To clarify the origin of these corrections, we consider the solution to Eq. (1) in

the absence of energy spread, or acceleration

I W(P)}I-
I A Yk~

(A.12)

where W(p) is the Laplace transform of the wake (the "impedance"). The

approximation of Ref. 19 corresponds to an expansion of the square root keeping

only the term of first order in W. (This is equivalent to the strong focussing

approximation). In general, this is accurate only in the sense that the ratio of the

logarithm of the analytic amplitude to the logarithm of the actual amplitude

approaches 1 for large z. For full accuracy (so that the ratio of the amplitudes

converges) more terms must be kept. For example, for W(p) DC p-r, [r-1+1] terms must

be kept for full accuracy, where [x] is the greatest integer less than or equal to x. In the

case that r-1+1 is an integer, the last term will be independent of z.
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APPENDIXB:

EFFECT OF SYNCHROTRON MOTION ON LANDAU DAMPING

In this Appendix, the condition for effective Landau damping in the presence

of synchrotron motion is derived. We start from the Eq. (1) and express the center of

mass displacement of the i-th macroparticle, ~i' in terms of a complex amplitude or

eikonal, Xi,

(B.1)

We assume that the synchrotron oscillations are not fast on the scale of a betatron

wavelength ksynch<kp, and that the growth length satisfies Lg > Ap. (the "strong

focussing" approximation). In this case, the macroparticle eikonal Xi varies slowly

on the Aj3length scale and satisfies

2 ir oko iJ~i (t,z) = LIds' W (t- t') ( Xjet' ,z)exp(iI(1<.; - kpi) dz'))
J (B.2)

where <>j indicates an average over j. Since kPi does not vary in 't, we may Laplace

transform in 't to find

(B.3)

Next, we replace the discrete index i, with a continuous phase variable <1>, in which

particles are uniformly distributed and take kp(<I»=ko+~ksin(koz+<I»,

abbreviating ksynch by ks. Equation (B.3) then reduces to
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It

~XZi (Z,<I» = 1 I W 21n fd<l>'X(z,<I>')
o 2 i 'Yok 0 I A -It

-> exp (iI &(sin (k,z' + <1>') - sin (k.z' + ~» dz'J
, (BA)

where the variable, p, is suppressed for brevity, and we have used the fact that k~'Y=

ko 'Yo is the same for each particle.16 Eq. (BA) then simplifies to

It

~XZi (z,</» = 2' 1 k : w -f- fd<l>'X(z,</>')
o 1 'Yo 0 A n -It

(
.l1k . (ksZ)(. (ksZ ') . (ksz »))

~exp 21~sln 2 SIn -2-+<1> -SIn 2+</>

Expanding X in a Fourier series in </>,

X(Z,</» =L y m(z) exp (i m</»
m

it is straightforward to show that the Fourier coefficients Ym satisfy,

(B.5)

(B.6)

dy m ( 1 I ) (kz)W L
n

Jm(Tl) In(Tl) y n(z)exp i (m - n)~2S
dz 2i 'Yoka I A , (B.7)

where Tl=2(l1k/ks)sin(ksz/2).

Next, we specialize to the case ksz» 1. In this limit, the harmonics Ym are

decoupled, due to the rapid rotation in phase represented by the ksz term in Eq. (B.7).

Since Ym~O«YO at z=O, the Ym~O are small for all z and

Yo(Z) = Yo(0)exP (2' 1 k : W Jdz'J~(2~ Sin(k2Z») J
1 'Yo 0 A so

Assuming l1k/ks«l, this simplifies to

(B.8)

(B.9)
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Noting that X - Yo , the solution for the envelope of the centroid motion is,

(B.lO)

and the p-dependence has been restored for darity.

From Eq. (B.lO), it is evident that the cold-beam steepest descents calculation

for the amplitude X(t,z) goes through, yielding the usual asymptotic growth, except

that z/Lg is replaced by z/L'g where

L = L 1

g g l-(~Y
(B.ll)

with Lg as defined in Eq. (7).

This result is quite general and applies to BBU due to an arbitrary wake.
Growth as computed from Eq. (4), with Lg' substituted for Lg, is depicted in Fig. Bl,

together with the numerical data. Agreement is good, with a noticeable discrepancy

as As approaches L, and the ksz » 1 approximation breaks down.
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15Alexander W. Chao, Physics of High Energy Particle Accelerators, AlP Conf. Proc. No. 105, edited by

Melvin Month (AlP, New York, 1983), pp. 353-523. W is "Wl ", and 't is "z/c" in this reference.

16kjF:21t1AI3' where AI3=21t(mc2/e)(y/Bw) and Bw - 3 - 6 kG is the peak wiggler field. In practical units,

AI3(cm)-15.2 y/Bw(kG).

17S. Bodner, V. K. Neil, and L. Smith, Particle Accelerators 1, 327 (1970).

18This result assumes that the pulse length does not exceed the time for the magnetic field to diffuse

through the pipe wall. This constrains the wall thickness, d» (c2-rm /4(J)1/2_1O-2em.

19G.J. Caporaso, W.A. Barletta, and V.K. Neil, Particle Accelerators 11, 71 (1980).

2°ln practical units, with E=mc2y,

1/2 1/2 3

Lg "" 1. 90 ml( 1 kA)( 50 r6) (' ~ )' ( E )' l/~) l/ l...!!!.)'
I 't 1xlO sec-I 1 MeV 1 an A~
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21K. Halbach, Journal de Physique, 44, 211 (1983).

22RWALL divides the beam into a finite number (typically, forty) of slices in 't", and populates each

slice with N macroparticles. For Sec. III A and III 0, N=I, while for Sec. III B and III C, N=36. The code

makes use of a fourth-order gaussian integration in s tailored to the singular integrand, and a fourth

order Runge-Kutta advance in z. As a benchmark, evolution of a fifty nanosecond beam through one

hundred betatron wavelengths, with 3000 numerical steps in z, takes 12.7 minutes on a VAX 8650, with

a total error, compared to the "exact" asymptotic result, of under 0.3%, after 4.5 efolds.

23N.M. Kroll, P.L.Morton, and M.N. Rosenbluth, IEEE J. Quant. Elec. QE-17, 1436 (1981).

24The synchrotron period is determined from A..ynch=21t1ksynclv where

k synch = k w

and aw=(eBw/mc2)/kw-6.6 10-2 "-w(cm)Bw(kG). The dimensionless rf vector potential, as, is related to

the microwave power by P/Po=(n/2)(ab/A/)as2, where Po=m2cS/ e2 = 8.7 GWand As is the signal

wavelength - 1 - 3 em. For P=1 GW, and the parameters of Table 1, as-3xl0-2 and Asynch-2.2 m. The

spread in energy within the ponderomotive bucket is of order L1y-(wasaw/ckw )1/2.

25The result of Ref. 12 and that of Appendix A differ in their range of validity. The result of Appendix

A assumes ks<k13, while that of Ref. 12 assumes k.>2k13 .

26V. E. Balakin, A. V. Novokhatsky, and V. P. Smirnov, Proceedings of the 12th International

Conference on High-Energy Accelerators, edited by F.T Cole and R. Donaldson (Fermi National

Accelerator Laboratory, Batavia, Illinois, 11-16 August 1984), pp. 119-120.

27It should be added that, for the resistive wall wake potential, energy sweep does not produce true

damping. The evolution of the centroid passes through a transient period in which the amplitude

actually decreases over some range of z (see Fig. 9). Thereafter, oscillations are asymptotically

unbounded, although they grow at a slower rate. D.H. Whittum, "BNS effect for transverse beam

break-up of an unbunched beam", (unpublished).
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FIG.t. One superperiod of an FEL Two-Beam Accelerator.

FIG. 2. Center of mass displacement versus 't and z, with no energy spread, for b=1 cm.

FIG. 3. Resistive wall growth at z=100 m, versus pipe radius, with y constant within the beam and in z.

FIG. 4. Center of mass displacement versus 't and z, with no energy spread, for (a) b=1 cm and (b) b=0.5

cm, for O<z<lO m.

FIG. 5. Resistive wall growth at z=100 m, for a sawtooth variation (due to reacceleration) in the

average y, from y+ to y_, with (y++yJ/2=20, for several values of !'J.y/y=(y+-yJ/20. Evidently, periodic

acceleration and decceleration increases growth, albeit only slightly.

FIG. 6. Resistive wall growth at Z=100 m, versus dY/y, the fractional spread in y within a beam slice.

The reduction in growth illustrates the effect of Landau damping.

FIG. 7. Resistive wall growth at z=100 m, versus Asynch, with a spread in y within a beam slice, !'J.y/y =1 %.

The lack of damping at shorter Asynch illustrates the deleterious effect of rapid synchrotron motion.

FIG. 8. Resistive wall growth at z=100 m, versus dY/y, the fractional spread in 'Yalong the beam. The

reduction in growth illustrates the BNS effect.

FIG. 9. Envelope of the rms center of mass displacement, with BNS damping, corresponding to dy/y= 

4.0%, (an rms sweep of about -1%), to be compared to Fig. 2.

FIG. At. Comparison between analytic and numerical results for asymptotic growth of the resistive

wall instability, at z=100 m, (a) without the corrections indicated in Eq. (A.ll) and (b) with the

corrections.

FIG. Ht. Comparison between analytic and numerical results for the effect of synchrotron motion on

Landau damping of the resistive wall instability. This is Fig. 7, with the analytic result superimposed.
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Table L PEL TBA design parameters considered for the examples.

Aw=wiggler wavelength - 27 crn

Ap=betatron wavelength - 1 rn

Asynch=synchrotron period - 2 rn

I=bearn current - 3 kA

(J=wall conductivity - 1x1017 sec1

b=pipe radius - 0.5 - 2 crn

y=E/rnc2 - 20

"em=pulse length - 50 ns

2 m =overall TBA length-100 rn

L=TBA period length - 1.30 rn
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