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Abstract

Linear equations of motion are derived that describe small-amplitude cen-
troid oscillations induced by displacement and rotational misalignments of the
focusing solenoids in the transport lattice, dipole steering elements, and initial
centroid offset errors. These equations are analyzed in a local rotating Larmor
frame to derive complex-variable “alignment functions” and “bending functions”
that efficiently describe the characteristics of the centroid oscillations induced
by mechanical misalignments of the solenoids and dipole steering elements. The
alignment and bending functions depend only on properties of the ideal lattice
in the absence of errors and steering and have associated expansion amplitudes
set by the misalignments and steering fields. Applications of this formulation
are presented for statistical analysis of centroid deviations, calculation of actual
lattice misalignments from centroid measurements, and optimal beam steering.
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1. Introduction

Solenoidal focusing is employed in a variety of ion and electron beam trans-
port applications such as ion beam driven experiments in warm dense matter[1],
intense electron beams for driving flash x-ray radiography[2], and electron cool-
ing for hadron beams[3, 4]. Such applications typically require precise control of
the beam centroid to: control the placement of the beam spot on target, main-
tain alignment of the beam with the field in cooling applications, and control a
variety of deleterious processes that are enhanced with increasing amplitude of
centroid oscillations in the machine. Effects enhanced include nonlinear image
charges and currents, applied field nonlinearities, and corkscrew effects[5, 6].
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When image and nonlinear effects are negligible, the transverse centroid orbit
of a solenoidally focused beam can be decomposed into two parts: an overall
angular “Larmor” rotation about the solenoidal field with a rate of angular
phase accumulation proportional to the axial field[7, 8, 9], and superimposed,
x-y plane-decoupled betatron oscillations[10, 7, 11] within the local rotating
frame. These combined effects can result in laboratory-frame centroid orbit
oscillations with intricate structure.

The centroid oscillations are driven by mechanical alignment errors of the
solenoids in the focusing lattice. To leading order, displacement and rota-
tional misalignments of the solenoids generate driving dipole terms that bend
an aligned centroid orbit away from the design axis of the machine[12]. The
direction that the bending dipole fields act depend on the (typically random)
orientation of the misalignments encountered. In the absence of corrections,
this tends to increase the centroid oscillation amplitude in a random walk sense
proportional to the square root of the number of misaligned solenoids traversed.

Transverse steering corrections of the beam centroid in solenoidal transport
systems can be challenging due to the x-y plane coupling of the centroid or-
bit and typically limited provision for steering and diagnostics in the lattice.
Steering dipoles inserted in the lattice typically act with fixed orientation in the
laboratory frame and misalignment driven centroid oscillations (if not physi-
cally removed) will further accumulate in any solenoids placed between steering
dipole pairs necessary to synthesize a correction.

Using an analogy to the “dispersion” function employed to characterize
single-particle orbit changes in a lattice in response to momentum spread[10, 9],
complex-variable “alignment functions” and “bending functions” are derived
that characterize the small-amplitude evolution of the centroid orbit in response
to alignment errors and applied dipole steering fields. The centroid orbit is ex-
panded in terms of the alignment and bending functions superimposed on the
ideal centroid orbit in the absence of errors or steering. The alignment and
bending functions are defined in a manner where they can be calculated based
only on properties of the ideal, perfectly aligned lattice and the expansion am-
plitudes relate to the misalignments and steering fields. This formulation gives
insight on the structure of the centroid orbit and is applied to develop proce-
dures to steer the centroid and to calculate solenoid misalignment parameters
using measured centroid data and thereby enable optimal centroid correction
procedures.

The organization of this paper is the following. Fields of a misaligned
solenoid and a dipole steering element of a transport lattice are first charac-
terized in Sec. 2. These field descriptions are employed in Sec. 3 to derive
linear equations of motion describing the beam centroid. The centroid orbit is
systematically expanded in terms of alignment and bending functions which de-
scribe the centroid response to system misalignments and dipole steering fields.
Applications of this centroid expansion are presented in Sec. 4 to develop pro-
cedures to steer the beam centroid and to calculate actual lattice misalignment
parameters. Finally, concluding discussions in Sec. 5 outline limitations of the
methodology and readily achievable generalizations.
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2. Solenoid and dipole field models

We consider the magnetic field B(x) of an individual solenoid magnet used
for beam focusing. The solenoid is oriented along the longitudinal z-axis with
z = 0 corresponding to the axial mid-plane of the magnet and is assumed
invariant under azimuthal rotations about the z-axis. Consistent with the static,
vacuum Maxwell equations, the magnetic field can be expanded in terms of the
on-axis axial field of the solenoid Bz0(z) ≡ Bz(x⊥ = 0, z) and the transverse
coordinate x⊥ = xx̂ + yŷ as[11, 12]

B⊥(x) =
1

2

∞
∑

ν=1

(−1)ν

ν!(ν − 1)!

∂2ν−1Bz0(z)

∂z2ν−1

( |x⊥|
2

)2ν−2

x⊥,

Bz(x) = Bz0(z) +

∞
∑

ν=1

(−1)ν

(ν!)2
∂2νBz0(z)

∂z2ν

( |x⊥|
2

)2ν

.

(1)

For small transverse excursions in x⊥, only leading order terms in the expan-
sion (1) are retained giving

B⊥ = −1

2

∂Bz0(z)

∂z
x⊥,

Bz = Bz0(z).
(2)

Note that the field specified by Bz0(z) in the truncated expansion (2) is diver-
gence free, satisfying ∇ · B = 0.

The function Bz0(z) is set by the magnet design and the corresponding field
description in Eq. (2) is ideal in the sense that it does not take into account
effects such as leads and construction errors that can break azimuthal symmetry.
In a realistic beam transport system, the magnet will be placed in a lattice with
finite displacement and rotational mechanical alignment errors. We choose to
first characterize magnet displacements and then rotations within the displaced
coordinate system. For present purposes, the natural coordinate system of the
ideal magnet is denoted with primes. The ideal field of the solenoid is denoted as
B′(x′), which is specified by the function B′

z0(z
′) via Eq. (2) with all coordinates

and fields primed.
First, the geometric center of the magnet is translationally displaced by

∆ = ∆xx̂ + ∆yŷ + ∆z ẑ relative to the laboratory frame, giving

x′ = x − ∆, (3)

and
B(x) = B′(x − ∆). (4)

This geometry is sketched in Fig. 1(a).
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Figure 1: A misaligned solenoid is described by a two-step transformation of an ideal solenoid.
First, translation of center by ∆ (a), and then a rotation (b) of the axis of symmetry in the
translated system. For clarity, a pure transverse translation (∆ = ∆xx̂ + ∆yŷ) is illustrated.

Next, rotational misalignments of the solenoid are accounted for by a second
active transformation step where a rotation matrix is applied to the displaced
coordinate system as illustrated in Fig. 1(b). Before the rotation, unit vectors in
the displaced coordinate system defined by Eq. (3) are parallel to the laboratory
frame system (i.e., x̂′ = x̂, etc.). Employing spherical coordinates, the solenoid
axis of symmetry ẑ′ is actively rotated through a polar angle φ and an azimuthal
angle θ. Consistently, ẑ′ is projected into the laboratory frame as

ẑ′ = sinφ cos θx̂ + sinφ sin θŷ + cosφẑ. (5)

The rotation that defines the orientation of the ideal solenoid axis, ẑ′, can be
thought of as a right-handed rotation through the angle φ about an axis specified
by the unit vector

ŝ = − sin θx̂ + cos θŷ. (6)

All the vectors v in the translated system can be transformed to the rotated
(primed) system of the ideal solenoid by by applying the Rodrigues’ Rotation
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Formula
v → v′ = cosφv + (v · ŝ)(1 − cosφ)ŝ − sinφ(v×ŝ). (7)

Using this formula, the unit vectors x̂′ and ŷ′ are projected into the laboratory
frame as

x̂′ = (cosφ cos2 θ + sin2 θ)x̂ + (cosφ− 1) sin θ cos θŷ − sinφ cos θẑ.

ŷ′ = (cosφ− 1) sin θ cos θx̂ + (cosφ sin2 θ + cos2 θ)ŷ − sinφ sin θẑ.
(8)

Applying Eqs. (3), (5), and (8), the transform relating coordinates (x) of
the laboratory frame and the translated and rotated system of the ideal magnet
(x′) can be expressed in matrix form as

x′ = R · (x − ∆), (9)

where R is the orthogonal rotation matrix

R ≡





cosφ cos2 θ + sin2 θ (cosφ− 1) sin θ cos θ − sinφ cos θ
(cosφ− 1) sin θ cos θ cosφ sin2 θ + cos2 θ − sinφ sin θ
sinφ cos θ sinφ sin θ cosφ



 . (10)

Consistent with the azimuthal symmetry of the ideal solenoid in the primed
system, note that the rotation matrix R does not address azimuthal rotations
of the solenoid about z′. The magnetic field B′ of the ideal solenoid can be
consistently expressed in the laboratory frame as,

B′(x′) = R · B(x), (11)

or equivalently as
B(x) = RT · B′(x′). (12)

Here we employed R−1 = RT for the orthogonal matrix R,where R−1 and RT

denote the inverse and transpose matrices of R.
For small angular misalignments of the solenoid, |φ| ≪ 1, and sinφ and

cosφ can be expanded to leading order as cosφ ≃ 1 and sinφ ≃ φ. Denoting
transverse rotation parameters

Θx ≡ φ cos θ,

Θy ≡ φ sin θ,
(13)

the rotation matrix R in Eq. (10) is given approximately by

R ≃





1 0 −Θx

0 1 −Θy

Θx Θy 1



 . (14)

This approximation of R results in a loss of exact orthogonality of the matrix,
which will effectively cause small violations of ∇ · B = 0 in the field model.
The angle parameters Θx and Θy can be geometrically interpreted as small
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angle rotations in the (y − ∆y)–(z − ∆z) and (x− ∆x)–(z − ∆z) planes of the
translated coordinate system. In this sense the angles Θx and Θy represent skew
angles of transverse angular misalignments.

Using Eq. (14), the coordinate transformation in Eq. (9) can be written in
component form as

x′ = x− ∆x − Θx(z − ∆z),

y′ = y − ∆y − Θy(z − ∆z),

z′ = z − ∆z + Θxx+ Θyy.

(15)

Similarly, the field transform (12) in component form is

Bx = B′
x + ΘxB

′
z,

By = B′
y + ΘyB

′
z,

Bz = B′
z − ΘxB

′
x − ΘyB

′
y.

(16)

Inserting the ideal solenoid field description in Eq. (2) (change all field compo-
nents and coordinates to primed) in Eq. (16), and then applying the coordinate
transform (15) in the result, the field in the laboratory frame can be expressed
as

Bx = −
1

2

∂B′

z0(s)

∂s
[x− ∆x − Θx(z − ∆z)] + ΘxB

′

z0(s),

By = −
1

2

∂B′

z0(s)

∂s
[y − ∆y − Θy(z − ∆z)] + ΘyB

′

z0(s),

Bz = B
′

z(s) +
1

2

∂B′

z0(s)

∂s
Θx[x− ∆x − Θx(z − ∆z)] +

1

2

∂B′

z0(s)

∂s
Θy[y − ∆y − Θy(z − ∆z)].

(17)
Here, s = z′ = z − ∆z + Θxx+ Θyy is the axial coordinate.

The laboratory frame expression (17) for the fields of the translated and
rotated solenoid will be applied to derive linear equations of motion in Sec. 3.
In this context, both the transverse coordinate excursions in x and y and the
misalignment parameters ∆x, ∆y, ∆z, Θx, and Θy are expected to be small.
Therefore, Eq. (17) can be Taylor expanded in all small quantities and second-
order (i.e, terms proportional to ξη, with ξ and η each representing one of the
expanded transverse coordinates or the misalignment parameters) and higher-
order terms can be dropped. Carrying out this procedure, we calculate the
leading order magnetic field for a misaligned solenoid as

Bx(x) = − 1

2

∂Bz0(z)

∂z
(x− ∆x − Θxz) +Bz0(z)Θx,

By(x) = − 1

2

∂Bz0(z)

∂z
(y − ∆y − Θyz) +Bz0(z)Θy,

Bz(x) =Bz0(z) −
∂Bz0(z)

∂z
∆z.

(18)

Here, we have eliminated the primes in the function Bz0(z), which we hence-
forth take to be the function defining the ideal, aligned solenoid. Equation (18)
represents the leading-order field of an ideal solenoid described by Eq. (2) which
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is transversely misaligned with displacement parameters ∆x, ∆y, ∆z, and ro-
tational parameters Θx and Θy. Equation (18) shows that the misalignments
generate z-varying transverse dipole fields in addition to an effective shift in the
longitudinal field component.

In addition to beam focusing solenoids, the lattice may also contain steering
dipoles to enable bending of the centroid in the x- and y-planes to steer the
centroid back on-axis. To model a steering dipole that generates a field primarily
along the x-axis, we simply take

Bx(x) = Bx(z) (19)

with Bx(z) a prescribed function set by the geometry and excitation of the
dipole. An analogous description is taken for dipoles that generate a field ori-
ented along the y-axis. Axial field components associated with the z-variation
are neglected. Because the dipoles are generally of limited strength and are
intended to weakly bend the centroid trajectory to correct for small misalign-
ment induced centroid excursions, effects of mechanical misalignments of the
dipole on the centroid can typically be neglected as higher-order when deriving
centroid equations of motion.

3. Centroid model

We consider a beam composed of charged particles of mass m and charge q
and abbreviate the phase-space coordinates of the transverse beam centroid as

x ≡ 〈x〉⊥,
y ≡ 〈y〉⊥,

x′ ≡ 〈x′〉⊥,
y′ ≡ 〈y′〉⊥.

(20)

Here, primes denote derivatives with respect to the axial coordinate s of the
centroid in the lattice (not to be confused with the coordinate transforms used
only in Sec. 2) and 〈· · · 〉⊥ denotes a statistical average over the transverse
phase-space of the beam. The transverse centroid slice propagates with rigidity
[Bρ] = mγbβbc/q, where c is the speed of light in vacuo, and βb = const and γb =
√

1 − β2
b are the axial relativistic factors of the coasting centroid. Neglecting

radiation effects, and image charge and current forces, the transverse equations
of motion of the centroid x⊥(s) = x(s)x̂ + y(s)ŷ evolving in a magnetic field
B(x) can be expressed within the paraxial approximation as[11, 9]

x′′ = − By
[Bρ]

+
Bz
[Bρ]

y′,

y′′ =
Bx
[Bρ]

− Bz
[Bρ]

x′.

(21)

The focusing lattice is formed from a linear superposition of (possibly mis-
aligned) focusing solenoids and ideal steering dipoles. Consistent with Eq. (2),
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the solenoids have ideal (meaning with no mechanical misalignments and perfect
axisymmetry) axial field

Bz(s) =

Ns
∑

j=1

BsjFsj(s− sj), (22)

and ideal transverse field

B⊥(s) = Bx(s)x̂ +By(s)ŷ = −1

2

Ns
∑

j=1

BsjF
′
sj(s− sj)x⊥. (23)

Here, j = 1, 2, · · · , Ns is the solenoid index, Bsj is the peak axial field of jth
solenoid, Fsj(z) is the axial fringe function of the jth solenoid with normalization
chosen such that Fsj(0) = 1, s = sj is the axial center of the jth solenoid in the
focusing lattice, and F ′

sj(s − sj) = ∂Fsj(z)/∂z|z=s−sj . The lattice can include
several types of solenoids because the functions Fsj(z) can be different for every
solenoid (j). If the lattice is periodic, then all Fsj are identical, and the centers
sj are uniformly spaced. For an ideal, linear solenoid, the function Fsj depends
only on geometric parameters of the solenoid and the strength Bsj is set by the
current excitation in the solenoid coil.

Using a similar notation to that employed for the solenoids, x-plane dipole
fields for beam steering are linearly superimposed and are denoted by

Bx(s) =

Nx
∑

j=1

BxjFxj(s− sj). (24)

Here, Nx is the number of x-field dipoles, Bxj is the peak field of the jth dipole,
Fxj(s) with Fxj(0) = 1 is the fringe function of the jth dipole, and sj is the axial
center of the jth dipole. Note that sj can refer to the center of the jth solenoid
or dipole, with the distinction being clear from the context of the fringe function
Fsj or Fxj referencing the center. An expression analogous to Eq. (24) applies
to y-field dipoles for beam steering. The x-field dipoles bend the centroid in the
y-plane, and the y-field dipoles bend the centroid in the x-plane.

To describe the applied fields of a lattice with misaligned solenoids, we mod-
ify Eqs. (22) and (23) consistent with the expression in Eq. (18). These mis-
aligned solenoid fields and the x- and y-plane dipole fields [see Eq. (24)] are lin-
early superimposed and inserted in the centroid equations of motion (21). Terms
generated that are proportional to ∆zx

′ and ∆zy
′ are neglected as higher order.

The resulting linear particle equations of motion can be expressed in complex
form as

z
′′

+ i

0

@

Ns
X

j=1

SjFsj

1

A z
′

+ i

0

@

Ns
X

j=1

Sj

2
F

′

sj

1

A z =i

Ns
X

j=1

»

Sj

2
F

′

sj∆j +
Sj

2
F

′

sjΘj(s− sj) + SjFsjΘj

–

+ i

Nx
X

j=1

DxjFxj −

Ny
X

j=1

DyjFyj .

(25)
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Here, i =
√
−1, z ≡ x+ iy is the complex coordinate of the centroid,

∆j ≡ ∆xj + i∆yj ,

Θj ≡ Θxj + iΘyj ,
(26)

are complex displacement and rotational misalignment parameters of the jth
solenoid of the lattice, and

Sj ≡
Bsj
[Bρ]

, Dxj ≡
Bxj
[Bρ]

, Dyj ≡
Byj
[Bρ]

, (27)

are scaled solenoid (Sj) and dipole (Dxj and Dyj) strength parameters. In
Eq. (25) and henceforth we make notational abbreviations such as Fsj ≡ Fsj(s−
sj), F

′
sj ≡ ∂Fsj(z)/∂z|z=s−sj . Underbars are also employed to distinguish

complex-valued quantities from real-valued quantities.
If the misalignment parameters ∆j and Θj are known or negligible (i.e.,

∆j ≃ 0 and Θj ≃ 0), then the equation of motion (25) can be integrated in
s from specified initial (s = si) conditions z(si) = x(si) + iy(si) and z′(si) =
x′(si) + iy′(si) to calculate the evolution of the centroid orbit in z-z′ phase-
space. Note that there is no dependence of the leading-order orbit described
by Eq. (25) on the longitudinal displacement misalignments ∆zj of the solenoid
magnets.

The equation of motion (25) can be expressed in simplified form by trans-
forming to “Larmor” frame undergoing a local s-varying transverse rotation[7,
8, 9]. We denote coordinates in the Larmor frame with tildes and take

z = z̃eiψ̃(s), (28)

where ψ̃(s) is a real-valued phase-function that specifies the angle of rotation.
Using this rotational transform and taking

ψ̃′ = −1

2

Ns
∑

j=1

SjFsj (29)

leads to a simplified expression of the equations of motion (25) in the Larmor
frame,

z̃′′ + κ̃z̃ = i

Ns
∑

j=1

[Sj
2
F ′
sj∆j +

Sj
2
F ′
sjΘj(s− sj) + SjFsjΘj

]

e−iψ̃

+ i

Nx
∑

j=1

DxjFxje−iψ̃ −
Ny
∑

j=1

DyjFyje−iψ̃.
(30)

Here,

κ̃(s) ≡ 1

4





Ns
∑

j=1

SjFsj(s− sj)





2

(31)
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is the lattice focusing function in the Larmor frame. Equation (31) can be
equivalently expressed as κ = (kL)2, where kL = qBz(x⊥ = 0)/(2γbβbmc) is
the Larmor-frame focusing wavenumber. Without loss of generality, we take a
reference angle ψ̃(si) = 0, and the solution to Eq. (29) for ψ̃ is

ψ̃(s) = −1

2

Ns
∑

j=1

Sj
∫ s

si

ds̄ Fsj(s̄− sj). (32)

Phase-space coordinates of the centroid in the laboratory and Larmor frames
are related by

z = z̃eiψ̃,

z′ =
(

z̃′ + iψ̃′z̃
)

eiψ̃,
(33)

with the inverse transform

z̃ = ze−iψ̃,

z̃′ =
(

z′ − iψ̃′z
)

e−iψ̃.
(34)

These transforms are applied with ψ̃′ and ψ̃ specified by Eqs. (29) and (32). To
solve for the centroid evolution in the Larmor frame, ψ̃ is specified in Eq. (32)
and Eq. (30) is integrated from the initial (s = si) conditions

z̃(si) = z(si),

z̃′(si) = z′(si) − iψ̃′(si)z̃(si).
(35)

The initial angle z̃′(si) in Eq. (35) has been compensated due to the local
rotation of the Larmor frame even though ψ̃(s = si) ≡ 0.

Direct integration of the linear, complex-form centroid equations of motion
for misaligned solenoids will not, in general, be possible either in the laboratory
frame [see Eq. (25)] or in the Larmor frame [see Eq. (30)] because the displace-
ment and rotational misalignment parameters ∆j and Θj of the solenoids are
not a priori known. However, the dependence of the equations on the misalign-
ment parameters is linear. This linearity can be exploited to define auxiliary
complex “alignment” functions that characterize changes in centroid properties
under general small-amplitude misalignments. This development is analogous to
the usual construction of the “dispersion” function used to characterize changes
in single-particle orbit properties within a periodic lattice due to small devia-
tions in particle momentum[10]. The alignment functions are more complicated
than the dispersion function because each focusing optic can be individually
misaligned in both a translational and rotational sense and the centroid is also
Larmor rotating in the solenoidal focusing system. Analogously to the case of
the alignment functions, “bending” functions will also be introduced to exploit
the linearity of the equations in the the steering dipole strength parameters Dxj
and Dyj .
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To solve the Larmor-frame centroid equation of motion (30) for general mis-
alignments we expand the linear orbit as follows. First we resolve the solution
z̃ as

z̃(s) = z̃h(s) + z̃p(s),

z̃′(s) = z̃′h(s) + z̃′p(s),
(36)

where z̃h(s) is the general solution to the homogeneous (zero misalignments)
equation of motion

z̃′′h + κ̃z̃h = 0, (37)

and z̃p(s) is any particular solution to Eq. (30) with z̃ = z̃p. Equation (37)
describing z̃h is the usual Hill’s equation[10, 9] describing single-particle orbits in
complex form and Eq. (30) for z̃p corresponds to Hill’s equation on the LHS with
misalignment and bending driving terms on the RHS. In this formulation we are
free to simplify the choice of initial conditions in the solution of the particular
solution for z̃p because the homogeneous solution z̃h can assume the necessary
modified initial conditions to obtain the correct solution for z̃ = z̃h+z̃p. Without
loss in generality, the linearity of the particular solution can be further exploited
to expand z̃p(s) as

z̃p =

Ns
∑

j=1

(

∆jD̃j + ΘjR̃j

)

+

Nx
∑

j=1

DxjB̃xj +

Ny
∑

j=1

DyjB̃yj ,

z̃′p =

Ns
∑

j=1

(

∆jD̃
′

j + ΘjR̃
′

j

)

+

Nx
∑

j=1

DxjB̃
′

xj +

Ny
∑

j=1

DyjB̃
′

yj ,

(38)

Here, D̃j is a “displacement alignment function” satisfying

D̃
′′

j + κ̃D̃j =
i

2
SjF ′

sje
−iψ̃, (39)

subject to the initial (s = si) conditions D̃j(si) = 0 = D̃
′

j(si), R̃j is a “rotational
alignment function” satisfying

R̃
′′

j + κ̃R̃j =
i

2
SjF ′

sj(s− sj)e
−iψ̃ + iSjFsje−iψ̃, (40)

subject to the initial (s = si) conditions R̃j(si) = 0 = R̃
′

j(si), and B̃xj and B̃yj
are the x- and y-field steering dipole “bending functions” satisfying

B̃
′′

xj + κ̃B̃xj = iFxje
−iψ̃,

B̃
′′

yj + κ̃B̃yj = −Fyje−iψ̃,
(41)

subject to the initial (s = si) conditions B̃xj(si) = 0 = B̃
′

xj(si) and B̃yj(si) =

0 = B̃
′

yj(si). Generally, outside of simple limiting cases, Eqs. (39)–(41) will
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need to be integrated numerically. There are j = 1, 2, · · · , Ns complex-
valued displacement and rotational misalignment functions D̃j(s) and R̃j(s)
– one each for every solenoid. Each complex-valued function represent two
real-valued functions through it’s associated real and imaginary components.
Unfortunately, this complexity is necessary because each solenoid has two dis-
placement (∆j = ∆x + i∆y) and two rotational (Θj = Θx + iΘy) misalignment
parameters which can, in the small-amplitude approximations made, influence
the centroid in an independent way. Similarly, there are j = 1, 2, · · · , Nx and
j = 1, 2, · · · , Ny complex-valued bending functions B̃xj and B̃yj that repre-
sent the action of the x- and y-field component steering dipoles. The LHS of
Eqs. (39)–(41) are expressions of Hill’s equation in the Larmor frame and the

complex exponential factors e−iψ̃ in the RHS terms project bending dipole fields
arising from solenoid misalignments [Eqs. (39) and (40)] and steering dipoles
[Eq. (41)] into the Larmor frame. The linear structure of the equations has
been exploited to separate amplitudes of solenoid misalignment errors (∆j and
Θj) and the steering dipole strengths (Dxj and Dyj) from the corresponding
alignment and bending functions as defined. This separation is analogous to
the one employed in usual definitions of momentum spread related “dispersion”
functions[10, 9] and allows isolation of factors contributing to the evolution of
the beam centroid.

Because zero value initial conditions imposed on the solenoid alignment func-

tions and the dipole bending functions (i.e., all D̃j , D̃
′

j , R̃j , R̃
′

j , B̃xj , B̃
′

xj , B̃yj ,

B̃
′

yj zero at s = si), the initial conditions of the homogeneous solution z̃h to
Eq. (37) must absorb any initial centroid misalignment, i.e.,

z̃h(si) = z̃(si),

z̃′h(si) = z̃′(si).
(42)

The homogeneous phase-space solution to Eq. (37) consistent with these initial
conditions can be expressed in terms of a transfer map as[10, 9]

[

z̃h(s)
z̃′h(s)

]

=

[

C̃(s|si) S̃(s|si)
C̃ ′(s|si) S̃′(s|si)

]

·
[

z̃h(si)
z̃′h(si)

]

. (43)

Here, C̃(s|si) and S̃(s|si) are real-valued cosine- and sine-like principal orbit
functions that satisfy the Hill’s equation

F̃ ′′ + κ̃F̃ = 0, (44)

with F̃ = C̃(s|si) or S̃(s|si) satisfying the initial conditions C̃(si|si) = 1 =
S̃′(si|si) and C̃ ′(si|si) = 0 = S̃(si|si). The C̃ and S̃ are real-valued functions
because the real and imaginary components of z̃h are decoupled in Eq. (44). As
with the alignment functions, both C̃ and S̃ depend only on the ideal lattice
structure and are independent of any misalignments. The solution in Eq. (43)
represents the solenoid oscillation in the ideal system from the initial condi-
tions (42) in the absence of any solenoid misalignments (i.e., ∆̃j = 0 = Θj) or
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dipole steering corrections (i.e., Dxj = 0 = Dyj). In general, the cosine- and

sine-like solutions C̃ and S̃ must be numerically calculated. However, for lat-
tices with piecewise constant κ̃, the solutions can be analytically calculated in
terms of standard special functions[10, 11, 9]. Because the decoupled real and
imaginary components of z̃h = x̃h + iỹh satisfy the same Hill’s equation (43)
(i.e., x̃′′h+ κ̃x̃h = 0 and ỹ′′h+ κ̃ỹh = 0), the usual Courant-Snyder and Wronskian
invariants of the equation[10, 13, 9] can be individually applied to both x̃h and
ỹh to better understand properties of the homogeneous solution z̃h.

The homogeneous and particular solution expansion can be applied to ex-
press phase-space coordinates of the centroid at axial location s as

z̃(s) = z̃(si)C̃(s|si) + z̃′(si)S̃(s|si) +

Ns
∑

j=1

[

∆jD̃j(s) + ΘjR̃j(s)
]

+

Nx
∑

j=1

DxjB̃xj(s) +

Ny
∑

j=1

DyjB̃yj(s),

z̃′(s) = z̃(si)C̃
′(s|si) + z̃′(si)S̃

′(s|si) +

Ns
∑

j=1

[

∆jD̃
′

j(s) + ΘjR̃
′

j(s)
]

+

Nx
∑

j=1

DxjB̃
′

xj(s) +

Ny
∑

j=1

DyjB̃
′

yj(s).

(45)

This Larmor-frame expansion of the centroid solution can be projected back to
the laboratory frame using the transformation in Eq. (33) to obtain

z(s) = z(si)[C̃(s|si) − iψ̃(si)S̃(s|si)]e
iψ̃(s)

+ z
′

(si)S̃(s|si)e
iψ̃(s)

+

Ns
X

j=1

h

∆jD̃j(s) + ΘjR̃j(s)
i

e
iψ̃(s)

+

Nx
X

j=1

DxjB̃xj(s)e
iψ̃(s)

+

Ny
X

j=1

DyjB̃yj(s)e
iψ̃(s)

,

z
′

(s) = z(si)[C̃
′

(s|si) − iψ̃
′

(si)S̃
′

(s|si) + iψ̃
′

(s)C̃(s|si) + ψ̃
′

(si)ψ̃
′

(s)S̃(s|si)]e
iψ̃(s)

+ z
′

(si)[S̃
′

(s|si) + iψ̃
′

(s)S̃(s|si)]e
iψ̃(s)

+

Ns
X

j=1

h

∆jD̃
′

j(s) + ΘjR̃
′

j(s)
i

e
iψ̃(s)

+ iψ̃
′

(s)

Ns
X

j=1

h

∆jD̃j(s) + ΘjR̃j(s)
i

e
iψ̃(s)

+

Nx
X

j=1

DxjB̃
′

xj(s)e
iψ̃(s)

+ iψ̃
′

(s)

Nx
X

j=1

DxjB̃xj(s)e
iψ̃(s)

+

Ny
X

j=1

DyjB̃
′

yj(s)e
iψ̃(s)

+ iψ̃
′

(s)

Ny
X

j=1

DyjB̃yj(s)e
iψ̃(s)

.

(46)

Here we have also employed Eq. (35) to express the initial conditions z̃(si) and
z̃′(si) in the laboratory frame.

4. Applications of centroid expansion

The utility of the centroid expansion derived in Sec. 3 is illustrated by formu-
lating algorithms to: statistically analyze centroid oscillations in response to an
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ensemble of errors (Sec. 4.1), calculate actual solenoid misalignment parameters
based on experimental measurements of the centroid (Sec. 4.2), and optimally
manipulate the beam centroid using dipole steering fields (Sec. 4.3). In these ap-
plications, a machine operating point refers to a distinct set of solenoid strengths
{Sj} [see Eq. (27)].

4.1. Statistical Analysis of Expected Centroid Oscillations

The centroid expansion (46) can be applied with zero steering terms (i.e.,
Dxj = 0 = Dyj) to efficiently calculate initial centroid errors tolerances [i.e.,
the range of z(si) = x(si) + iy(si) and z′(si) = x′(si) + iy′(si)] and mechanical
alignment tolerances of the solenoids (i.e., the range of ∆j = ∆xj + i∆yj and
Θj = Θxj+iΘyj) necessary to keep centroid excursions within specified bounds.

The principal orbit functions (C̃ and S̃) and the alignment functions (D̃j and

R̃j) need only be calculated once for the operating point of the ideal machine
lattice. Because the Larmor transformation back to the laboratory frame do
not the magnitude of the centroid excursions [i.e., |z| = |z̃|, see Eq. (33)], max-
imum excursions can be calculated directly from the Larmor-frame expression
in Eq. (45).

Distributions of initial centroid and alignment parameters can be taken such
as uniform or, more realistically, truncated Gaussian distributions, and then
the corresponding distribution of centroid excursions is obtained directly from
Eq. (46). If more realistic, truncated error distributions are employed (e.g.,
distributions with finite upper bound errors such as truncated Gaussian or uni-
form distributions), then maximum centroid excursions can be calculated as a
function of s to bound conceivable centroid evolutions. Maximum excursions
coupled with rms measures of expected statistical ensemble excursions can pro-
vide a good understanding of likely, uncorrected centroid excursions and the
buildup of oscillation amplitudes as more misaligned elements are traversed. If
the error distributions are statistically independent with zero mean value, then
contributions to the rms deviations calculated over the statistical ensemble will
add in quadrature (i.e., statistical average x2 can be calculated from statistical
average x2 due to displacements only, plus statistical average x2 due to rotations
only, ...). This can be exploited to help understand the relative importance of
error classes (e.g., displacement or rotational solenoid misalignments) contribut-
ing to expected centroid excursions.

4.2. Calculation of Lattice Misalignment Parameters

The centroid coordinates x, x′, y, and y′ are typically only measurable at a
limited number of diagnostic locations with fixed axial coordinates in the lattice.
For a given machine operating point, one full centroid phase-space measurement
at a single diagnostic location provides four independent numbers. This data is
insufficient to uniquely constrain the misalignment parameters of Ns solenoids
“upstream” of the measurement because the j = 1, 2, · · · , Ns solenoids have
4Ns misalignment parameters ∆j = ∆xj + i∆yj and Θj = Θxj + iΘyj and there
are (possibly) four parameters associated with any initial centroid offset [i.e.,
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nonzero components of z(si) = x(si) + iy(si) and z′(si) = x′(si) + iy′(si)], if
unknown. However, sufficient independent data at a single diagnostic location
can be generated by varying the machine operating point. Changes in operating
point are effected by varying the scaled solenoid strengths Sj = Bsj/[Bρ] by
either adjusting field strengths Bsj of the solenoids or by adjusting the particle
rigidity [Bρ] via variations in the kinetic energy or changing the particle species.

With sufficient measurement data measured for constraint, the expansion in
Sec. 3 can be applied to calculate the misalignment data. We illustrate this with
a simple illustrative example that can be straightforwardly modified to apply to
other situations. Assume that dipole steering is not employed (Dxj = 0 = Dyj)
and there is a single diagnostic location at s = sm where all four centroid co-
ordinates x, y, x′ and y′ can be measured. The measured centroid data is
transformed into the Larmor frame using Eq. (34). Centroid phase-space mea-
surements are made at s = sm for N sets of independent solenoid strengths Sj
that are sufficiently different to result in significant centroid variations between
operating point measurements relative to measurement uncertainties. We em-
ploy a superscript k = 1, 2, · · · , N to denote quantities associated with the
N sets of solenoid strengths and abbreviate expressions following patterns such
as z̃km ≡ z̃k(sm). The Larmor frame centroid expansion (45) and Eq. (35) (to
express the initial conditions in the laboratory frame) can be applied to arrange
the centroid measurement data (z̃km and z̃′km), alignment function values at the

measurement point (D̃
k

jm and R̃
k

jm), unknown initial centroid [zi(si) = zi and
z′(si) = z′i with si < sm], and misalignment parameters (∆j and Θj) in matrix
form as















z̃1m
z̃′1m
z̃2m
z̃′2m
.
.
.

z̃Nm
z̃′Nm















=



















(C̃1
m − iψ̃′1

i S̃
1
m) S̃1

m D̃
1
1m · · · D̃

1
Nsm

R̃
1
1m · · · R̃

1
Nsm

(C̃′1
m − iψ̃′1

i S̃
′1
m) S̃′1

m D̃
′1
1m · · · D̃

′1
Nsm

R̃
′1
1m · · · R̃

1
Nsm

(C̃2
m − iψ̃′2

i S̃
2
m) S̃2

m D̃
2
1m · · · D̃

2
Nsm

R̃
2
1m · · · R̃

2
Nsm

(C̃′2
m − iψ̃′2

i S̃
′2
m) S̃′2

m D̃
′2
1m · · · D̃

′2
Nsm

R̃
′2
1m · · · R̃

2
Nsm

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

(C̃Nm − iψ̃′N
i S̃Nm) S̃Nm D̃

N

1m · · · D̃
N

Nsm
R̃
N

1m · · · R̃
N

Nsm

(C̃′N
m − iψ̃′N

i S̃′N
m ) S̃′N

m D̃
′N

1m · · · D̃
′N

Nsm
R̃

′N

1m · · · R̃
N

Nsm



















·

























zi
z′i
∆1
∆2

.

.

.
∆Ns
Θ1
Θ2

.

.

.
ΘNs

























.

(47)
We express this equation in abbreviated form as

Z̃ = Ã · D. (48)

Here, Z̃ is a complex-valued vector of length 2N composed of measured cen-
troid data for the operating point sets, Ã is complex-valued matrix of dimension
(2N)×(2Ns+2) composed of principal orbit and alignment functions evaluated
at the measurement plane for the excitation sets, and D is a complex-valued
vector of length 2Ns + 2 composed of the unknown initial centroid complex
coordinates in the laboratory frame and the unknown solenoid misalignment
parameters. The notation ψ̃ki ≡ ψ̃k(si) denotes the initial Larmor phase asso-
ciated with the kth set of solenoid strengths at s = si. It should be stressed
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that Eq. (47) should only be applied in situations where the initial centroid
conditions zi and z′i do not vary with the N sets of solenoid strengths. This
generally requires that the initial condition at s = si be upstream of the axial
fringe fields of the solenoids analyzed and that none of the solenoid strengths
upstream of s = si are varied in changing the operating points.

If 2N = 2Ns+2 and the N data points represent independent sets of solenoid
strengths Sj , then the matrix system is square and can be uniquely solved for
the vector of initial centroid offsets and solenoid misalignment parameters D as

D = Ã
−1 · Z̃. (49)

Here, Ã
−1

is the inverse matrix of Ã. If 2N > 2Ns + 2, then the measurement
data will overconstrain D. If measurements are reliable, the overconstrained
data is consistent to small measurement uncertainties. In such cases, a singular
value decomposition (SVD) can be applied to generate a pseudo-inverse of Ã

for the overconstrained system[14]. The solution for D in this case is given

by Eq. (49) with Ã
−1

calculated employing SVD constructs. The solution so
defined represents the correct solution for the measurement data in a minimum
least-square error sense[14].

If the initial centroid is aligned at s = si, then the components of D asso-
ciated with the initial centroid offset and the components of Ã associated with
the principal orbit functions (i.e., C̃1

m, S̃1
m, etc.) can be removed to simplify

the formulation. Such a case applies if si corresponds to a location where the
centroid was last corrected to measurement accuracy, or where the centroid is
by definition aligned (for example, if the centroid emerging from an injector is
used to define the machine centerline).

In a long lattice with many focusing elements, large numbers of centroid
measurements will be necessary to sufficiently constrain D. Reducing the size
of the problem generally increases the accuracy that the misalignment parame-
ters are found. This follows because lesser number of parameters result in a more
simple correlation of variations in measured centroid coordinates with variations
in the machine operating point. The problem size can be reduced by turning
off (Sj 6= 0) the maximum number of solenoids possible in the lattice to remove
them from the inversion. After the misalignments of the excited solenoids are
determined, the solenoids first turned off can be energized and (to the extent
possible) solenoids previously energized can be turned off and the process re-
peated to determine the remaining misalignment parameters. Such procedures
can be limited though due to the need to maintain transverse beam confinement
within the machine aperture. Use of “pencil” type beams with small transverse
extent produced via aperturing or a special injector can aid in reducing the
number of solenoids that must be energized to maintain confinement.

4.3. Centroid Steering

If the misalignment data determined using the procedures outlined in Sec. 4.2,
the lattice can be corrected to null the centroid phase-space coordinates x, x′,
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y, and y′ by physically moving the solenoids (realigning) to correct the mechan-
ical alignment errors. Alternatively, or in addition to this, if sufficient numbers
of steering dipoles are placed in the lattice, their strengths Dxj and Dyj can
be set to correct (null) the centroid phase-space errors errors at specified axial
positions in the lattice or to purposefully steer the centroid off-axis consistent
with he needs of specific applications. Generally, at least two axially sepa-
rated dipoles acting in each independent transverse plane (four total correction
dipoles) will be necessary to place in the lattice upstream of the axial location
where centroid steering is needed. More dipoles allows flexibility in tuning (see
later discussions). Generally, steering dipoles should be placed before, but axi-
ally close to the position where the corrections are needed to avoid accumulation
of further errors. Iron-free designs of steering dipoles can have radially nested
coils to produce superimposed x- and y-field components in one element and
thereby reduce the number of steering modules necessary to insert in the lat-
tice. Because centroid oscillations tend to grow in amplitude in a random walk
sense (i.e., with the square root of the number of focusing solenoids traversed),
correcting the centroid at regular intervals helps to control the amplitude of
centroid excursions. Effective control of amplitude growth also suppresses non-
linear effects (images and applied fields) that scale with centroid amplitude to
improve the validity of the linear model.

The centroid expansion (46) can be applied to efficiently calculate dipole
strengths Dxj and Dyj needed to steer the beam centroid. As with the case
of the calculation of misalignment parameters outlined in Sec. 4.2, details of
steering procedures vary strongly with the specific lattice and application in
question and it is not practical to cover all possibilities. Therefore, we outline
several examples to illustrate typical correction procedures. It is straightforward
to adapt these procedures to address specific lattices and applications of interest.

Consider a specific machine operating point and the case where the phase-
space of the centroid is measured at a single diagnostic location at s = sm.
Denote the measured, complex-form phase-space coordinates in the absence of
steering fields (Dxj = 0 = Dyj) by zm = x(sm) + iy(sm) and z′m = x′(sm) +
iy′(sm) and corresponding “target” complex-form phase-space coordinates at
s = sm by zt and z′t. The measured and target centroid coordinates transformed
to the Larmor frame are denoted z̃m, z̃′m, and z̃t, z̃

′
t. Assume that there are two

(j = 1, 2) steering dipoles with axial location sj < sm placed in each plane with
fields oriented along the x- and y-axes and that the centroid is to be steered
from the measured to the target values at s = sm by setting the dipole strengths
Dxj and Dyj accordingly. Equation (45) is applied to this situation to obtain

z̃m = z̃(si)C̃(sm|si) + z̃′(si)S̃(sm|si) +

Ns
∑

j=1

[

∆jD̃j(sm) + ΘjR̃j(sm)
]

,

z̃′m = z̃(si)C̃
′(sm|si) + z̃′(si)S̃

′(sm|si) +

Ns
∑

j=1

[

∆jD̃
′

j(sm) + ΘjR̃
′

j(sm)
]

,

(50)

and, assuming that the misalignment and initial condition do not change with
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with the Dipole steering fields (i.e., z̃m and z̃′m constants),

z̃t = z̃m +

2
∑

j=1

DxjB̃xj(sm) +

2
∑

j=1

DyjB̃yj(sm)

z̃′t = z̃′m +

2
∑

j=1

DxjB̃
′

xj(sm) +

2
∑

j=1

DyjB̃
′

yj(sm)

(51)

Using this result, the equations of constraint are then separated into real (Re[· · · ])
and imaginary (Im[· · · ]) parts and expressed in matrix form as




Re[B̃x1(sm)] Re[B̃y1(sm)] Re[B̃x2(sm)] Re[B̃y2(sm)]

Re[B̃
′

x1(sm)] Re[B̃
′

y1(sm)] Re[B̃
′

x2(sm)] Re[B̃
′

y2(sm)]

Im[B̃x1(sm)] Im[B̃y1(sm)] Im[B̃x2(sm)] Im[B̃y2(sm)]

Im[B̃
′

x1(sm)] Im[B̃
′

y1(sm)] Im[B̃
′

x2(sm)] Im[B̃
′

y2(sm)]



 ·
[

Dx1
Dy1
Dx2
Dy2

]

= −
[

Re[z̃t − z̃m]
Re[z̃′t − z̃′m]
Im[z̃t − z̃m]
Im[z̃′t − z̃′m]

]

,

(52)
which we abbreviate as

B̃ · D = −∆̃Z. (53)

Here, B̃ is the real matrix of dimension 4×4 composed of the real and imaginary
parts of the complex bending functions evaluated at s = sm, D is a real vector
of length 4 composed of (unknown) steering dipole strengths necessary to zero
the centroid, and ∆̃Z is a real vector of length 4 composed of the real and
imaginary parts of the difference between target and measured complex centroid
coordinates in the Larmor frame evaluated at s = sm. Equation (53) can be
uniquely solved for the unknown steering strengths D as

D = −B̃−1 · ∆̃Z, (54)

where B̃−1 is the inverse matrix of B̃.
Steering dipole strengths Dxj and Dyj set according to Eq. (54) with z̃t =

0 = z̃′t will zero the centroid at s = sm. Because ∆̃Z reflects centroid evolution
due to alignment errors of any solenoids placed between or after the dipole
steering elements, the correction does not neglect the accumulation of additional
errors that the centroid experiences after the deflections associated with the first
steering elements in the correction pairs are applied. In this sense the correction
can be regarded as optimal. If more than two dipoles per plane are employed to
correct the centroid, then a similar analysis as presented above applies, but the
steering dipole amplitudes will not be fully constrained for a unique solution.
This residual freedom in the steering amplitudes can be exploited to reduce
the magnitude of required steering fields |Bxj | and |Byj | and/or limit centroid
excursions while undergoing steering corrections.

If the misalignment parameters are known, then the formulation above can
be applied with z̃m and z̃′t given by Eq. (50) rather than experimental mea-
surements. In this case the equation can also be applied at arbitrary values
of axial coordinate s downstream of the steering dipoles (i.e., sm → s with
sm > sj). This result can also be applied to efficiently calculate the range of
steering strengths (Dxj and Dyj) necessary to correct expected distribution of
mechanical alignment (∆j and Θj) and initial centroid [z̃(si) and z̃′(si)] errors.
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5. CONCLUSIONS

A linear, small-amplitude description of centroid orbit was derived to expand
the centroid orbit in terms misalignment and steering driven terms superimposed
on the ideal centroid evolution in the perfectly aligned system. Properties of this
expansion were exploited to formulate efficient procedures for optimal centroid
steering corrections and calculation of system (beam and solenoid) misalignment
parameters based on usual experimental centroid measurements.

Procedures formulated will typically require shot-to-shot reproducibility of
the system. Also, misalignment properties of the system from any mechanical
motion of lattice components must evolve slowly over the time that the correc-
tion procedure is carried out. Accuracy of the corrections can be expected to
decrease if centroid orbit excursions reach a large fraction of the magnet aper-
tures due to nonlinear applied field and image charge forces not included in the
model becoming stronger. Corrections can be applied iteratively to reduce such
effects and improve accuracy.

Analogous procedures to those developed here can be more simply formu-
lated and applied to quadrupole transport lattices due to the lack of x-y cou-
pling in the ideal lattice. The model presented can also be applied to systems
with acceleration if results are interpreted in terms of appropriate canonical
variables[9]. Errors in solenoid and dipole strength, or equivalently the cen-
troid rigidity, result in more substantial changes in analysis. Models presented
are presently being applied to analyze the solenoidal transport lattice in the
Neutralized Drift Compression Experiment at the Lawrence Berkeley National
Laboratory[1]. Results obtained will be reported in future work.
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