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Three-dimensional analysis of free-electron laser performance

using brightness scaled variables

M. Gullans,∗ G. Penn,† J.S. Wurtele, and M. Zolotorev
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

(Dated: June 11, 2008)

A three-dimensional analysis of radiation generation in a free-electron laser (FEL) is performed
in the small signal regime. The analysis includes beam conditioning, harmonic generation, flat
beams, and a new scaling of the FEL equations using the six-dimensional beam brightness. The
six-dimensional beam brightness is an invariant under Liouvillian flow; therefore, any nondissipative
manipulation of the phase-space, performed, for example, in order to optimize FEL performance,
must conserve this brightness. This scaling is more natural than the commonly-used scaling with the
one-dimensional growth rate. The brightness-scaled equations allow for the succinct characterization
of the optimal FEL performance under various additional constraints. The analysis allows for the
simple evaluation of gain enhancement schemes based on beam phase space manipulations such
as emittance exchange and conditioning. An example comparing the gain in the first and third
harmonics of round or flat and conditioned or unconditioned beams is presented.

PACS numbers: 41.60.Cr

I. INTRODUCTION

The three dimensional linear theory of the free-electron
laser (FEL) has been studied by numerous authors, and
has recently been the subject of a comprehensive re-
view [1] of the literature. Early studies examined optical
guiding [2, 3], but did not include the important effects of
betatron motion and energy spread, and were restricted
to round beams. The formalism used here is based on
the work of Xie and co-workers [4], who developed a
variational formalism, based on the linearized Maxwell-
Vlasov equations, for FEL gain analysis. The formalism
requires integration over the unperturbed characteristic
orbits which includes the full three-dimensional wiggler-
averaged electron motion, and uses dimensionless vari-
ables scaled with the one-dimensional FEL growth rate.
The most common application of this approach is a nu-
merical parameter [5] fit to the FEL gain in terms of nor-
malized emittance and energy spread. In this paper, we
use a similar approach, but normalize the equations to a
gain length that arises naturally from the six-dimensional
beam brightness. In our analysis, we simultaneously in-
clude harmonic generation [6], round or flat beams [7, 8],
and conditioned beams [9, 10].

The design optimization of an FEL requires the con-
sideration of many tradeoffs between parameters for the
electron beam and the undulators. Innovative ideas have
been considered to enhance gain, for example, harmonic
cascade FELs [11], amplification of seed pulses from laser-
based harmonic generation, beam bunching [12], and
beam conditioning. To achieve very short wavelengths,
it may be more practical to extract a harmonic of the
resonant wavelength rather than increase the beam en-
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ergy or shrink the undulator period to reduce the reso-
nant wavelength itself. By introducing beam condition-
ing [9], a correlation between electron energy and trans-
verse amplitude, the negative impact of large transverse
emittance can be drastically reduced. Choices of elec-
tron beam parameters, such as current, energy spread,
transverse emittances and beta functions, can drasti-
cally affect performance. Phase space manipulations such
as bunch compression, conditioning, and emittance ex-
change can enhance performance but cannot increase the
six-dimensional beam brightness. Thus, scaling the FEL
equations by the beam brightness yields a convenient
framework for evaluating the efficacy of these manipu-
lations.

In Sec. II, the methods and formalism are introduced
and in Sec. III, the dispersion relation in an integral form
is derived. In Sec. IV, one-dimensional limits for the FEL
gain are derived, and in Sec. V the flat beam limit is
defined and example solutions are presented for various
FEL configurations.

II. METHODS AND FORMALISM

As a starting point, we begin with the linear integral
Eq. (1), which describes the small signal evolution of laser
propagation in a high-gain FEL with arbitrary odd har-
monics, h, of the resonant wavelength of a planar un-
dulator. The dispersion relation is derived in Ref. [13]
from an initial value formulation of the Maxwell-Vlasov
system for the radiation field and the electron beam start-
ing in the small signal regime, in which Vlasov equation
is solved to first order by integrating over unperturbed
orbits.
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Thus, the starting point for our analysis is

( ∇2
⊥

2hk1
+
iqh
2L

)

A(x) − 4ik2
uρ

3
1D

hk1

(

ah
a1

)2 ∫ ∞

−∞
d2p

×
∫ ∞

−∞
dηFh(x,p, η) = 0,

(1)

where Fh is an eigenfunction for the perturbed distribu-
tion function in the linear regime:

Fh = hk1
∂f0
∂η

∫ 0

−∞
ds e−iµhseihψ0(s)A [xβ(s)] , (2)

which is taken to evolve with distance as e−iµhzFh.
Here, f0 is the unperturbed electron distribution func-
tion, xβ(z) is the unperturbed orbit of an electron with
initial coordinates x, p. The dimensionless, complex-
valued growth rate, qh, of the radiation power is related
to the eigenvalue µh by

µh = iqh/2L+ ku∆νh. (3)

Specific choices for the length scale L which is used to
define the dimensionless qh will be presented in Sec. III.
The power gain length, LG, can be expressed in terms of
this scale length by

qr ≡ Re(qh) = L/LG.

The detuning ∆νh = (ω − hω1)/ω1, where ω1 = ck1,
k1 is fixed by the resonance condition k1 = 2γ2

0ku/(1 +
a2
u), ku = 2π/λu, and au is the normalized undulator

strength.
The effective coupling strength of the electron motion

to the hth harmonic is, for h odd, given by the usual
Bessel function factor

ah = au(−1)(h−1)/2
[

J(h−1)/2(hξ) − J(h+1)/2(hξ)
]

, (4)

where ξ = a2
u/2(1 + a2

u). A particle with zero transverse
amplitude has an average angle of au/γ0, where mec

2γ0

is the electron energy, me is the electron mass, c is the
speed of light, and au = eBrmsλu/2πmec is the normal-
ized strength of the undulator; here, Brms is the rms
value of the undulator field on axis. The average beta
functions are denoted by βx,y and the focusing strengths
by kβx,y = 1/βx,y. A(x) is the scaled transverse profile
of the slowly varying monochromatic laser field, Eh, such
that

Eh(x, z, t) = −4hk1γ0mec
2

√
2 eah

A(x)eqhz/2Lei(kz−ωt). (5)

In writing Eq. (1), we used the ρ1D-parameter [14],

ρ1D =

(

πa2
1rene

4γ3
0k

2
u

)1/3

≃
(

a2
1I/IA

8γ3
0k

2
uσxσy

)1/3

, (6)

where ne is the peak electron density on axis and re =
e2/4πǫ0mec

2 is the classical electron radius; alternatively,

this expression is given in terms of the instantaneous cur-
rent, I, and the Alfvén current IA = ec/re ≃ 17.045 kA.
The definition of ρ1D in terms of current and the rms
transverse beam sizes, σx and σy , assumes a Gaussian
transverse profile.

The unperturbed orbits for the longitudinal coordi-
nate, ψ = (k1 +ku)z−ωt, and the transverse phase space
coordinates, x and p, in the integral over past orbits in
Eq. (2) are given by

ψ0(s) = [2kuη − k1(Jx/βx + Jy/βy)] s, (7)

xβ(s) = x cos(kβxs) +
px
kβx

sin(kβxs), (8)

yβ(s) = y cos(kβys) +
py
kβy

sin(kβys). (9)

The longitudinal momentum, η = (γ − γ0)/γ0, appears
differently from the other phase space coordinates in
Eq. (2) because dη/dz is already first order in the field [1].

We assume the beam is initially unbunched and
matched to the undulator channel so that f0 takes the
form

f0(η,J⊥) = f⊥(J⊥)f‖(η|J⊥),

where the transverse action, assuming a constant beta
function in both directions, is given by Jx = (x2 +
p2
x/k

2
βx)kβx/2, and similarly for Jy. In this discussion we

have not assumed a round beam, thus almost doubling
the number of beam parameters but maintaining enough
generality for us to include flat beams in our analysis.

As in previous three-dimensional, analytic treatments
of high-gain FELs, we assume that the focusing system
is characterized by a constant beta function in both di-
rections. Fortuitously, this approximation is justified for
x-ray FELs when the cell length of the quadrupole lattice
used for external focusing is much shorter than the aver-
age beta function [15, 16]. This analysis is for a planar
undulator; the case of a helical undulator only requires
an appropriate change in the definition of ah.

III. DERIVATION OF THE DISPERSION

RELATION WITH AN ARBITRARY SPATIAL

SCALE

We now specify the unperturbed electron distribution
functions

f‖(η|J⊥) =
1√

2π ση
e−(η−κxJx−κyJy)2/2σ2

η , (10)

f⊥(J⊥) =
σxσy

2πεxεy
e−(Jx/εx+Jy/εy), (11)

so that f0(η,J⊥) = f⊥(J⊥)f‖(η|J⊥). Here Jx,y are the
transverse actions and κx,y are arbitrary conditioning pa-
rameters. The average values of Jx,y in a beam are equiv-
alent to the geometric emittances, εx,y.

Before introducing the brightness scaling, we continue
using our unspecified length scale, L, which will be
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used to reduce longitudinal length scales to dimension-
less form. We define the scaled variables τ = s/2L,
X = x/σx, Xβ = xβ/σx, and κ̄x = κx/κ

∗
x where

κ∗x = k1/2kuβx is the ideal conditioning parameter (in
terms of maximizing the growth rate) in the 1D, cold
beam limit (see Sec. IV). The following derivation closely
follows that of Ref. [5, 7], where a similar analysis is per-
formed for an unconditioned beam. First we insert the
conditioned distribution into the dispersion relation to
arrive at

(

ℓdx
2h

∂2

∂X2
+
ℓdy
2h

∂2

∂Y 2
+ iqh

)

A(X)

=

∫ ∞

−∞
d2XβΠ(X,Xβ)A(Xβ),

(12)

where

Π(X,Xβ) =

∫ 0

−∞

C(L) τdτ eθ−ϕx−ϕy

2π sin(
√
ℓdxℓεxτ) sin(

√

ℓdyℓεyτ)
,

θ = (qh − iℓω)τ − (hℓγ)
2τ2/2,

ϕx = (1 + ihℓεx(1 − κ̄x)τ)

×
X2 +X2

β − 2XXβ cos(
√
ℓdxℓεxτ)

2 sin2(
√
ℓdxℓεxτ)

,

(13)

and where we have introduced the scaled parameters:

ℓdx =
2L

k1σ2
x

ℓεx = 2Lk1
εx
βx

ℓγ = 4Lkuση ℓω = 2Lku∆νh.

All of these definitions are identical for the y direction
with x replaced by y. These parameters are scaled by 2L
just as we scaled the original integration variable, s, in
the integral over unperturbed orbits, yielding a dimen-
sionless growth rate qr = 2L Imµh [see Eq. (3)].

The pre-factor, C(L), in Eq. (13), also explicitly de-
pends on the choice of scale length, and can be expressed
as

C(L) = 2L
a2
h

2hk1

I/IA
εnxε

n
yσγ

h2ℓγ
√

ℓεxℓεy, (14)

where the normalized emittances are εnx,y = γ0εx,y, and
similarly we can define εnz = σγσz , where σγ = γ0ση and
σz is the bunch length, which is assumed to be much
longer than a cooperation length. The fraction in C(L)
which depends on the current is proportional to the peak
phase space density in that slice of the beam, and is re-
lated to the 6D beam brightness which may be defined
as

BN ≡ 8γ0k
2
uρ

3
1D

rea2
1

γ0

σγ

√

βx
εnx

βy
εny

=
I/ec

εnxε
n
yσγ

≃ Ne
εnxε

n
yε
n
z

, (15)

where the last equality only applies for a flat current
profile. The dimensions of BN are inverse volume, while

scaling the current to the Alfvén current is equivalent to
taking reBN which yields an inverse area.

To help understand Eq. (12), it is useful to note that

Jx
εx

=
X2 +X2

β − 2XXβ cos(
√
ℓdxℓεxτ)

2 sin2(
√
ℓdxℓεxτ)

.

The six (or, for a round beam, four) L-scaling parameters
are the minimum number of parameters needed to scale
the FEL equations; however, it is also possible to define

ℓβx ≡ 2L/βx =
√

ℓdxℓεx (16)

and, similarly, ℓβy. Thus, there is ambiguity over which
combinations of beam parameters to use in defining the
dimensionless variables. We chose the ℓε and ℓd param-
eters, instead of a combination involving the ℓβ parame-
ters, because the ℓd parameters are good measures of the
strength of diffraction and are closely related to the trans-
verse mode size, while the ℓε parameters measure the an-
gular spread of the beam similarly to how it appears [1] in
the single-particle equation governing the ponderomotive
phase, ψ = (k1 + ku)z − ω1t,

dψ/dz = 2kuη − k1 (Jx/βx + Jy/βy) . (17)

The remaining two parameters, ℓγ and ℓω, are natural
measures of the uncorrelated energy spread and the de-
tuning, respectively.

Examining Eq. (14), we observe that the only re-
maining dependence on beam properties outside of
the already-defined L-scaling parameters occurs within
C(L). The scale length L must be chosen carefully in
order to cancel out this dependence, but there are many
ways to do this. We define the “brightness length” as

1

LB
≡ a2

h

2hk1

I/IA
εnxε

n
yσγ

, (18)

and for clarity denote the dimensionless scaled parame-
ters which result from choosing L = LB as bd,ε,γ,ω. The
pre-factor then becomes

C(LB) = 2hbγ
√

hbεxhbεy . (19)

One interesting feature of LB is that, being proportional
to the beam brightness, most beam manipulations will ei-
ther preserve this value or slightly lengthen it due to non-
linear effects, with the notable exception of beam cooling.

We remark that by using the 1D scaling length L =
L1D ≡ 1/2

√
3kuρ1D, instead of L = LB, we recover es-

sentially the same scaling introduced in [5] with

C(L1D) =
(

2/
√

3
)3

h (ah/a1)
2
. (20)

When using this scaling, we will follow the notation of [5]
and denote the scaling parameters as ηd,ε,γ,ω. The only
differences from our L1D-scaling parameters and the cor-
responding parameters used in [5] is that, going from [5]



4

to our scaling, ηd becomes 4ηd and ηγ becomes 2ηγ . In
general, the only manifestations of the different choices
of L appear in the pre-factor, C(L). This remains true
in the various limits we obtain of Eq. (12) as well. Note
that both choices of scaling parameter reduce the dis-
persion relation to functions of the previously defined
scaling parameters, plus some dependences on the har-
monic number which can also be scaled away if preferred.
The major difference is that the prefactor is constant for
the L1D-scaling case while L1D itself is sensitive to the
amount of beam compression, whereas in the LB-scaling
case the prefactor includes a functional dependence and
LB is independent of the beam compression.

It remains to deal with the transverse derivatives in
Eq. (12) by introducing the Fourier transform pair

Â(ξx, ξy) =
1√
2π

∫ ∞

−∞
d2X A(X)e−iX·ξ, (21)

A(X,Y ) =
1√
2π

∫ ∞

−∞
d2ξ Â(ξ)eiξ·X . (22)

Equation (12) then turns into the integral equation

A(ξ) =

∫ ∞

−∞
d2ξ′ T (ξ, ξ′)A(ξ′), (23)

where we have dropped the hats and introduced the ker-
nel

T (ξ, ξ′) = 2h2bγ
√

bεxbεy

∫ 0

−∞

τdτ e(qh−ibω)τ−(hbγ)2τ2/2

iqh − bdx

2h ξ
2
x −

bdy

2h ξ
2
y

×
∏

ℓ=x,y

exp(− ξ2ℓ +ξ′2ℓ −2ξℓξ
′

ℓ cos(
√
bdℓbεℓτ)

2[1+ihbεℓ(1−κ̄ℓ)τ ]
)

√
2π [1 + ihbεℓ(1 − κ̄ℓ)τ ]

.

Note that Eq. (19) has been used and LB has been cho-
sen as the scale length. This integral equation can be nu-
merically solved for the growth rate, qh, and the Fourier
transformed transverse mode profile, A(ξ), thereby giv-
ing an exact solution to the FEL initial value problem for
the hth harmonic in the linear regime, assuming the un-
perturbed electron distribution is given by Eqs. (10) and
(11). This has been performed by Xie [5] for a round, un-
conditioned beam at the fundamental wavelength, where
it is found that the transverse profile of the fundamental
mode, i.e., the mode with the highest growth rate, often
has a Gaussian form similar to that of the electron beam.

The details of solving Eq. (23) are given in Ap-
pendix A. One way to visualize the results is to fix
the emittance and beam brightness and vary the beta
function and energy spread, while continuously adjust-
ing the detuning to its optimal value. Ideally, this situa-
tion would be experimentally accessible using a method
such as enhanced self-amplified spontaneous emission
(ESASE) [12]. In this case, we choose to replace bd with
the parameter bβ = 2LB/β, noting that bε/bd = k2

1ε
2

is fixed and bd = b2β/bε. Here, we solve the full vari-

ational equations (see Appendix A), while in the ap-
propriate limits one can also use the fitting formula for

bβ= 2 L
B
 / β

b γ
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FIG. 1: Contour plot of dominant growth rate for fixed emit-
tance and fixed beam brightness.

the gain length developed by Xie in [5]. The results are
shown in Fig. 1. There is a global optimum because in-
creasing the β function at fixed emittance decreases the
current density, while decreasing the β function shrinks
the spot size so that eventually angular spreads in the
beam and diffractive effects overwhelm the advantage of
an increasing current density. Also shown are points cor-
responding to the Linac Coherent Light Source (LCLS)
design, ESASE on the LCLS, and the optimal gain for a
fixed emittance. The parameters for LCLS used here are
a beam energy of 13.64 GeV, peak current of 3400 A,
normalized emittance of 1.2 micron, energy spread of
1.47 MeV. The undulator period is 3 cm, the rms undula-
tor parameter is 2.47, the output wavelength is 0.15 nm,
and the corresponding brightness length LB = 0.513 m.
The beta function is chosen to be 18 m. The ESASE case
has current and energy spread that are 10 times larger
than the LCLS design, and the beta function is reduced
to 4 m. These beta functions give optimal results for
the corresponding emittance, energy spread, and bright-
ness. The LCLS FEL would have a shorter gain length
if higher energy spread and smaller beta function were
possible while preserving the nominal emittance at 1.2
micron, with the gain length improving from 4.5 m to
an optimum of 1.8 m. Note that because of the scaling
parameter definitions, reducing the beta function also in-
creases the parameter bε. In Sec. IV, we will show that
if we consider substantially larger emittance and energy
spread, the calculated gain length can improve even more
and become close to the brightness scaling length, LB.
It is crucial to remember that this is at fixed brightness,
so that the beam current is not fixed, and becomes ex-
tremely large at the optimum. In practice, this indicates
that the limits on current set by the desire to preserve
beam brightness during beam propagation and acceler-
ation in the face of effects such as coherent synchrotron
radiation (CSR) and wakefields are, in turn, limits on
FEL performance. Furthermore, note that the benefits
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to LCLS of ESASE operation are only significant when bβ
(and thus bε) is increased to allow for tighter beam focus-
ing. Otherwise, ESASE will increase the energy spread
and not enhance the gain (i.e., move vertically in Fig. 1
to a less desirable operating point).

IV. ONE-DIMENSIONAL LIMITS

The one-dimensional limit is found by first assuming
symmetry in the two transverse planes (bεx = bεy and
κ̄x = κ̄y), taking the transverse profile to be of the form
A(X) = Am(R)eimϕ. By integrating over the polar an-
gle, ϕ, one arrives at a brightness-scaled version of the
integral equation found in Ref. [13], modified to include
conditioning by the presence of the (1 − κ̄) factors as
they appear in Eq. (23). Next, the desired limit is ob-
tained by taking, at fixed brightness, both bd’s to zero in
Eq. (23); physically, this corresponds to the limit of an
infinite beam spot size with finite current density, and
forces all modes to have a degenerate growth rate given
by

qh + i2h2bγbε

∫ 0

−∞

τdτ e(qh−ibω)τ−(hbγ)2τ2/2

1 + ihbε(1 − κ̄)τ
= 0. (24)

This limit becomes a good approximation when bd ≪ |qh|
and bβ =

√
bdbε = 2LB/β ≪ 1, such that the kernel of

Eq. (23) becomes a convolution operator, i.e.

T (ξ, ξ′) = T (ξ − ξ′), (25)

implying that we can inverse Fourier transform Eq. (23)
and A(X) becomes a multiplier on both sides of the equa-
tion.

The first condition, bd ≪ |qh|, translates as LG ≪ ZR,
where LG is the power gain length and ZR is the Rayleigh
range of a mode with a cross-sectional area equal to the
beams, meaning that within a gain length most possi-
ble modes stay confined to the core of the beam. The
second condition that LG ≪ β means that the betatron
oscillation is slow compared to a gain length so that the
betatron mixing can be ignored. If both these conditions
are met, the system becomes one-dimensional because it
behaves like multiple local FELs that do not couple to
each other. This is the reason for the degeneracy of the
modes in this limit.

We begin by examining Eq. (24) in the case of a cold
beam, where the energy spread and angular spread are
sufficiently small that they have no impact on the gain
length. Because the 6D phase space volume shrinks to
zero in this limit, which at fixed brightness corresponds
to zero particles, the brightness scaling is a less natural
choice. Thus, for this limit only we shall employ the
L1D-scaling introduced in [5]. In this scaling, we use the
four parameters ηd = 2L1D/k1σ

2
x, ηε = 2L1Dk1ε/β, ηγ =

4L1Dkuσγ/γ0, and ηω = 2L1Dku∆νh. The dispersion

relation in the 1D limit takes the form

qh + iC(L1D)

∫ 0

−∞

τdτ e(qh−iηω)τ−(hηγ)2τ2/2

1 + ihηε(1 − κ̄)τ
= 0, (26)

where C(L1D) = (2/
√

3)3h(ah/a1)
2.

If ηε = 0 and ηγ = 0, then we recover the well known
1D cubic equation [14]

qh(qh − iηω)2 − iC(L1D) = 0. (27)

An interesting feature of this equation is that it also ap-
plies in the case where ηγ = 0 and κ̄ = 1, i.e.κ = k1/2kuβ,
regardless of the value of ηε. This coincidence is an ex-
pression of the physical fact that with zero energy spread
and in the absence of transverse variations in the radia-
tion field, conditioning completely removes the longitu-
dinal spread in ponderomotive phase that accumulates
due to the varying betatron trajectories of the electrons.
Furthermore, it can be shown that ∂qr/∂κ̄|(κ̄=1,ηω=0)= 0
so that in this limit the natural conditioning parame-
ter, κ = k1/2kuβ, maximizes the growth rate. In Ap-
pendix B, the case of a conditioned beam with large emit-
tance but zero energy spread is analyzed by going back
to the variational equations while using the L1D-scaling.

If we revert to scaling by LB, the cold beam limit be-
comes

qh(qh − ibω)2 − i2h2bγbε = 0. (28)

Thus, we find that the cold beam limit in this scaling re-
quires linearizing the dispersion relation by keeping the
factors bγ and bε outside of the integral in Eq. (24), and
approximating them as zero only within the integral. In
this cold beam limit, the the scaled growth rate will be
proportional to (bγbε)

1/3 so long as diffraction remains
unimportant. This scaling isolates the effect of the re-
duction in current that is associated with reducing the
energy spread and emittance for fixed brightness.

We now consider warm beams, where bε and bγ are
large. For parameters such that the diffraction terms
are still negligible, the growth rates for different trans-
verse modes remain degenerate. In this regime, the main
impact of large emittance on the dispersion relation is
through introducing additional variations in the longitu-
dinal velocity. We first rescale the integration variable in
Eq. (24) to zb ≡ hbcετ to obtain

q + 2i
bγ
bcε

∫ 0

−∞

zbdzb e
(q/hbc

ε−ibω/hb
c
ε)zb−(bγ/b

c
ε)2z2b/2

(1 − κ̄)(1 + izb)
= 0,

(29)

where bcε ≡ bε(1 − κ̄) represents the effective angular
spread of the beam. Now we define the ratios

Γ ≡ bγ/ |bcε| =
2kuσγ

k1εn |1 − κ̄| /β , (30)

Ω ≡ −bω/hbcε = − ku∆ωh/ω1

hk1ε(1 − κ̄)/β
, (31)
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and assume |q| ≪ hbcε, while keeping Γ and Ω of order
unity. This corresponds to a transversely warm beam,
with at most imperfect conditioning. The result is a
closed expression for the gain:

q = 2iΓ

∫ ∞

0

zbdzb e
−iΩzb−Γ2z2b/2

|1 − κ̄| (1 − izb)
. (32)

As the resulting |q| has a global upper bound propor-
tional to 1/ |1 − κ̄|, the above approximation is consis-
tent so long as bγ |1 − κ̄| ≫ 1. For an unconditioned
beam, Eq. (32) is still a fair approximation for bγ ∼ 1.
The failure of this limit to apply for ideal conditioning
(κ̄ = 1) is related to the fact that the angular spreads
which result from high emittance and small β function
do not significantly degrade FEL performance for a con-
ditioned beam, and, as a result, the β function is not
subject to any lower bound. Note that this approxima-
tion cannot be extended in a consistent way to the case of
a fixed, finite bd, corresponding to fixing the spot size of
the beam, but only works in the regime where diffraction
is unimportant.

Now, by maximizing the real part of the RHS of
Eq. (32) with respect to Γ and Ω we essentially find the
maximum possible growth rate for a given brightness,
undulator, and target wavelength. The results, including
their scaling with the conditioning parameter, are

qopt ≈ (0.92 + 0.56 i)/|1 − κ̄|,
Γopt ≈ 0.60, Ωopt ≈ 1.3.

(33)

The power of these simple relations is illustrated by tak-
ing LCLS parameters for the energy spread and emit-
tance. The value of Γopt implies that the beta function
would be optimized at ∼ 25 m, which is close to the
design beta function.
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FIG. 2: Growth rate for fixed brightness as a function of
emittance after optimizing over the energy spread. The effect
of diffraction is assumed to be negligible.
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FIG. 3: Growth rate for fixed brightness as a function of en-
ergy spread and emittance parameters. The effect of diffrac-
tion is assumed to be negligible.

Apart from the exceptional case of perfect condition-
ing, the conclusion that the growth rate is bounded is
unsurprising; however, this analysis reveals that the pri-
mary condition for achieving a short gain length is high
brightness rather than low emittance. If one can increase
the emittance at fixed brightness (which requires increas-
ing the current) while also optimizing the energy spread,
then we see from Fig. 2 that the FEL performance actu-
ally improves to an asymptotic value, that is

lim
bε→∞

qr(bε,Ω,Γ) > 0, (34)

for some values of Γ and Ω. Furthermore, the maximum
growth rate occurs in this asymptotic regime. This sug-
gests that all the negative effects of a warm beam are
captured by scaling the growth rate with LB. Increasing
the phase space volume at fixed brightness adds enough
current to produce an overall positive effect (though with
diminishing returns). In effect, the requirement for small
emittances in practical systems derives from external
constraints on the beam current rather than by the na-
ture of the FEL interaction itself. The full dependence of
the growth rate on bε and bγ in the limit when diffraction
is negligible is shown in Fig. 3, for fixed brightness and
with no beam conditioning.

We can make some sense of this asymptotic result by
considering the phase equation, Eq. (17), and noting
that increasing the beam phase space volume at fixed
brightness amounts to stacking beams in phase space so
that we continually populate the “conditioned” region of
phase space where dψ/dz ≈ 0. The optimal value of Γ
then measures the relative strength of the two terms in
Eq. (17) by specifying how phase space should be dis-
tributed to minimize the effect of dephasing across the
beam.

The growth of the optimal detuning in proportion to
the angular spread is expected because a more accurate
resonance condition takes into account the effect of the
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betatron motion on the parallel velocity, so that

λ =
λu
2

(

1 + a2
u

γ2
+

2Jx
βx

+
2Jy
βy

)

, (35)

〈λ〉 =
λu
2

(

1 + a2
u

γ2
0

+
4ε(1 − κ̄)

β

)

. (36)

This further implies that the assumption |∆ωh/ω1| ≪ 1
eventually breaks down; however, this should occur long
after we are in the asymptotic region where we can ignore
the q dependence in the integral in Eq. (29).

Another observation is that the optimal detuning
changes with conditioning parameter, to lower frequen-
cies for κ̄ < 1 and to higher frequencies for κ̄ > 1. This
can be seen from Eq. (36) and reflects the fact that the
average longitudinal velocity normally decreases with in-
creasing emittance, but for strong enough conditioning it
increases.

We end our analysis of the one-dimensional limit by
describing the behavior of the growth rate in various
regimes. When both bε|1 − κ̄| ≪ 2 and bγ ≪ 1, the

growth rate is given by LB/LG = [(3
√

3/4)h2bεbγ ]
1/3.

For the case h = 1, this is equivalent to LG = L1D,
the standard cold beam limit, but expressed in terms
of the brightness scaling parameters. For a fixed, small

bε < 2/|1 − κ̄|, the growth rate scales like b
1/3
γ for small

bγ , reaches a peak value at bγ ≈ 1.2 and then for large
bγ scales as 1/bγ . For a fixed, small bγ < 1, the growth

rate scales like b
1/3
ε for small bε, reaches a peak value

at bε ≈ 2/|1 − κ̄|, and then decreases roughly inversely
with bε. Note that the ratio of these two optimal val-
ues found by scanning in either parameter, bγ ≈ 1.2 and
bε ≈ 2/|1 − κ̄|, defines the same ratio Γopt ≈ 0.6 as found
for the warm beam limit.

When both bε and bγ are much larger than 1/|1 − κ̄|,
the optimum growth rate is LB/LG ≃ 0.92/|1 − κ̄| and
occurs whenever the ratio Γ is approximately 0.6. In
the more general warm beam limit, the growth rate is
a function of Γ and κ̄; when Γ ≫ 1 and bγ ≫ 1, we

find that LB/LG ≃
√

2πe−1/2/(Γ|1 − κ̄|) ≃ 1.52 bε/bγ,
even for small bε. For small Γ, we estimate the growth
rate as scaling roughly like Γ/|1 − κ̄|, although the warm
beam approximation requires bγ ≫ 1, so the emittance
parameter would have to be extremely large.

V. ALTERNATIVE FEL OPTIONS

We now consider various alternative FEL options be-
sides using a conventional beam distribution operating at
the fundamental resonant frequency. Specific examples
are calculated to illustrate the contrast between condi-
tioned and unconditioned beams, and to explore the pos-
sibilities for running an FEL at a higher harmonic of the
resonant frequency. Before introducing these results, we
first define the flat beam limit as an extreme contrast to
the typical round beam profile used in FELs. Flat beams

are an additional option which might be useful in manag-
ing wakefield effects or for use with small-gap undulators.
A flat beam has sufficient asymmetry in the two trans-
verse planes that it is possible for diffraction to be negli-
gible in one plane but still significant in the other plane.
This corresponds to the formal limit where bdx goes to
zero while bdy remains nonzero and finite. A flat beam
can be created via transverse emittance exchange, and in
our example we take a fixed four-dimensional transverse
phase space volume for the beam: εxεy = (constant). In
this case the brightness, BN , remains constant, so that
LB remains constant. The difficulty of achieving a fo-
cusing system that has vastly different beta functions in
each direction and, simultaneously, keeps the beam sta-
ble, leads us to assume that βx ∼ βy. Therefore, given
that bβ =

√
bεbd = 2LB/β, we find that bβy ∼ bβx, al-

though bdx ≪ bdy. This ordering only allow us to assert
that the first condition for mode degeneracy in the x di-
rection is satisfied, and so the flat beam approximation
also requires that we drop the betatron mixing effect in
the x direction. This is justified for two reasons, first be-
cause it has a negligible impact on the growth rate (15%
in the most extreme case for a round beam according to
Appendix B) and secondly because bβx ≪ bεx so that
the effect is largely overwhelmed by the effect of angular
spread in the beam (unless we condition in that plane).

In this approximation, the kernel of Eq. (23) takes the
form

T (ξ, ξ′) = Tx(ξx − ξ′x)Ty(ξy , ξ
′
y).

After assuming A(ξ) = Ax(ξx)Ay(ξy), the integral over
ξ′x turns into a convolution. This implies that, just like
the 1D limit, after Fourier transforming Eq. (23) back in
the x direction, Ax(X) is a multiplier on both sides of
the equation. Consequently, the ξx dependence can be
integrated out of T to obtain the 1D integral equation

Ay(ξy) =

∫ ∞

−∞
dξ′y TF (ξy, ξ

′
y)Ay(ξ

′
y), (37)

with the kernel

TF =
2h2bγ

√

bεxbεy

iqh − bdy

2h ξ
2
y

∫ 0

−∞

τdτ e(qh−ibω)τ−(hbγ)2τ2/2

√

[1 + ihbεx(1 − κ̄x)τ ]

×
exp(− ξ2y+ξ′2y −2ξyξ

′

y cos(
√
bdybεyτ)

2[1+ihbεy(1−κ̄y)τ ] )
√

2π [1 + ihbεy(1 − κ̄y)τ ]
.

A sampling of results for a soft x-ray FEL is shown in
Fig. 4, with all 3D effects included. The FEL design in
these cases is for a fundamental wavelength of 3 nm, an
undulator period of 1 cm, and an average beta function
of 3 m. The electron beam has a 0.5 micron normal-
ized emittance, a 300 A peak current, and a 200 keV
energy spread. The flat beam examples have an emit-
tance ratio of 100 and the same emittance product. The
beam can be either flat or round, and conditioned or un-
conditioned, and the extracted wavelength can either be
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FIG. 4: Dependence of the the growth rate on the undulator
parameter au (and hence beam energy) for various configura-
tions of a soft x-ray FEL at 3 nm with 1 cm undulator period.
Configurations vary between round or flat beams, beams with
or without conditioning, and extraction of the fundamental or
the third harmonic.

the 3 nm fundamental or the third harmonic at 1 nm.
Larger undulator parameters correspond to a larger res-
onant beam energy, and the range of 1 < au < 3 shown in
the figure corresponds to beam energies between 0.9 and
2.1 GeV. These examples serve to illustrate a few scaling
properties of the gain length. Conditioned beams exhibit
a small penalty in going from round to flat beams, while
unconditioned beams have a larger discrepancy in per-
formance. For higher harmonics to work near optimum
requires au ≥ h; for conditioned beams, different har-
monics have similar gain lengths when au is sufficiently
large. For designs that are already optimized for uncon-
ditioned beams, the benefit of switching to conditioned
beams is typically modest, with a reduction in gain length
that is rarely greater than 25%; however, even in these
cases beam conditioning allows for relaxed values of au
and emittance, and is also favorable to the extraction of
higher harmonics.

VI. CONCLUSION

FEL performance has been analyzed in terms of new
scaling parameters, where the gain length is measured
against a length scale that is inversely proportional to
the beam brightness. This gives a measure of the po-
tential of an FEL which is independent of most electron
beam manipulations except for beam cooling. We used
this formalism to study conditioned beams, to compare
round and flat beams, and to take various limits includ-
ing cold beams, FELs where diffraction is negligible, and
the 1D limit. The limit of large emittance and energy
spread has also been studied, yielding an asymptotic so-

lution which approaches the theoretical maximum growth
rate as emittance is increased for fixed brightness. The
optimal configuration is for a fixed ratio of the scaling pa-
rameters related to energy spread and emittance. Thus,
the conventional wisdom that emittance limits FEL per-
formance is not accurate, and in practice the inability
to achieve brightness-limited performance is the result
of other effects that constrain the peak electron current,
such as wakefields and CSR.

We have also studied the effectiveness of ESASE or
bunch compression, where the peak current is amplified
in proportion to the energy spread. It is shown that the
combination of transverse and longitudinal compression
can significantly enhance the FEL gain, even when either
technique alone does not improve performance. These
beam manipulations are fairly straightforward, involving
bunch stacking in phase space or bunch compression. We
have shown that more complex techniques such as beam
conditioning and emittance exchange can also greatly im-
prove FEL performance. However, although such ma-
nipulations are Hamiltonian, technologies to implement
them are unproven, and their costs and benefits should
be compared with those of damping rings, which directly
improve the beam brightness.

It is hoped that the methods discussed here will sim-
plify the process of FEL optimization and will suggest
new operating regimes. For example, beam condition-
ing is also shown to be useful in allowing for very small
beta functions where the angular spread would otherwise
reduce the growth rate. Thus, beam conditioning may
be used to work around limitations in the gain length
that result from constraints on the beam current. As
beam brightness is a technologically limited input, the
demonstration of a minimum gain length directly related
to beam brightness should provide a useful yardstick for
characterizing FEL performance.
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APPENDIX A: VARIATIONAL

APPROXIMATIONS

To actually solve the dispersion relation, Eq. (23), and
calculate growth rates it is convenient to use the varia-
tional method developed by Xie [5, 7]. We do this for an
elliptical beam by assuming

A(ξ) ∝ e−ξ
2

x/4αx−ξ2y/4αy , (A1)

where αx,y are variational parameters which are cho-
sen to maximize qr (the real part of qh and thus the
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scaled growth rate). Some physical aspects of this
mode which can be related to α are the Rayleigh range,
ZR = (LB/bd)Re(1/α), and the radius of curvature of
the phase fronts, R = LB/(bd Imα).

After integrating both sides of Eq. (23) against A(ξ)
and applying the variational conditions δqh/δαx = 0 and
δqh/δαy = 0, we arrive at the following set of equations

F1(qh,α) ≡ iqh
4
√
αxαy

− bdx
8h

√

αx
αy

− bdy
8h

√

αy
αx

−
∫ 0

−∞

2h2bγ
√

bεxbεy τdτ e
f1

√

f2xf2y
= 0,

(A2)

F2(qh,α) ≡ ∂F1

∂αx
= − iqh

8αx
√
αxαy

− bdx
16h

√
αxαy

+
bdy

16hαx

√

αy
αx

+

∫ 0

−∞

h2bγ
√

bεxbεy τdτ f3xe
f1

f2x
√

f2xf2y

= 0, (A3)

and

F3(qh,α) ≡ ∂F1

∂αy
= 0. (A4)

The function F3(qh,α) is of the same form as F2 with
x replaced by y. Apart from scaling parameters to the
brightness length, LB, and including conditioning and
odd harmonics, these equations are of the same form as
they appear in [7].

The same method can be applied to the equation ob-
tained from the flat beam approximation, Eq. (37), in
which case we find similar variational equations:

F1(qh, αy) ≡
iqh

2
√
αy

−
bdy

√
αy

4h

−
∫ 0

−∞

2h2bγ
√

bεxbεy τdτ e
f1

√

f2y[1 + ihbεx(1 − κ̄x)τ ]
= 0,

(A5)

and

F2(qh, αy) ≡
∂F1

∂αy
= − iqh

4α
3/2
y

− bdy
8h

√
αy

+

∫ 0

−∞

h2bγ
√

bεxbεy τdτ f3ye
f1

f
3/2
2y

√

1 + ihbεx(1 − κ̄x)τ
= 0.

(A6)

In both cases,

f1 = (qh − ibω)τ − (hbγ)
2τ2/2

f2x = [1 + ihbεx(1 − κ̄x)τ ]
2 + 4α[1 + ihbεx(1 − κ̄x)τ ]

+ 4α2 sin2(
√

bdxbεxτ),

f3x = 4[1 + ihbεx(1 − κ̄x)τ ] + 8αx sin2(
√

bdxbεxτ),

and the definitions are again the same for the y direction
with x replaced by y. The round beam equations can be
obtained from Eqs. (A2) and (A3) by removing the x and
y dependence from the parameters.

APPENDIX B: THREE-DIMENSIONAL EFFECTS

IN FELS DRIVEN BY CONDITIONED BEAMS

As electrons undergo betatron oscillations in the wig-
gler, this additional motion across the transverse radia-
tion mode influences their interaction with the radiation
field. This effect is included in the Maxwell-Vlasov anal-
ysis through the integral over past orbits [13] in Eq. (1);
however, in previous treatments of beam conditioning it
has been largely ignored. In this section we shall char-
acterize the degradation in FEL gain caused by this ef-
fect by considering an “ultra-conditioned” beam defined
to be the limit, for a conditioned beam with κ = κ∗,
as the emittance goes to infinity, while the beta func-
tion goes to zero, and the spot size, which scales as their
product, remains constant. Note that optimal detuning
stays bounded in this case despite arbitrarily large angu-
lar spreads, unlike the situation in Sec. IV, because the
effect of conditioning is to put particles with large angles
in resonance. For simplicity, we assume a round beam.

Although this ultra-conditioned limit can be taken at
any point in the analysis, it is convenient to do it after
the variational approximation. In order to take the limit,
we set the energy spread to zero and use the fact that
the integral over past orbits becomes the derivative of a
Laplace transform of a periodic function. In this case
the first variational equation, the dispersion relation for
a Gaussian mode, takes the form

iq

4α
− ηd

4h
− d

dq̄

∫ ∞

0

C(L1D) dτ e−q̄τ

1 + 4α+ 4α2 sin2(ηβτ)
= 0, (B1)

where q̄ ≡ q − iηω and ηβ ≡ √
ηεηd = 2L1D/β. Here

we use the L1D-scaling because we have set the energy
spread to zero and, as a result, the brightness scaling is
less convenient. After several manipulations of Eq. (B1),
including breaking the integral into periods of the sin
function, taking the β function to zero, and reevaluating
the derivative, we arrive at the new set of variational
equations

iq

4α
− ηd

4h
+

C(L1D)

2π(q − iηω)2

∫ 2π

0

dτ

1 + 4α+ 4α2 sin2 τ
= 0,

(B2)

− iq

4α2
− C(L1D)

2π(q − iηω)2

∫ 2π

0

(4 + 8α sin2 τ)dτ

(1 + 4α+ 4α2 sin2 τ)2
= 0.

(B3)

These equations are valid when β ≪ LG, where LG
is the gain length, and ηd ≪ ηε, which is why we call
this the ultra-conditioned limit. By solving Eqs. (B2)
and (B3) in the case where diffraction is weak, i.e., small
ηd, we find that the growth rate (at optimal detuning) is
decreased by ∼ 15% compared to a zero emittance beam
with ηε = 0. For diffraction-dominated or pencil beams,
i.e., large ηd, the inclusion of this effect has a negligible
impact on the growth rate.
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We remark that the inclusion of this betatron mixing
effect in general results in an ideal conditioning parame-
ter greater than the value κ∗ = k1/2kuβ predicted from
the 1D, cold beam limit. However, it is a small correction
so we shall not carry out a full analysis here.

Ultimately, this analysis characterizes the effects of this
betatron mixing up to the order we have represented the
betatron motion in the Vlasov equation. Refs. [17] and
[15] contain detailed discussions of how conditioning is
affected by higher order, oscillatory terms in the FEL
equations arising from the use of strong focusing. In par-
ticular, they add the requirement to our analysis that

LC ≪ β in order to avoid deleterious effects from these
higher-order terms, where LC is the cell length of the
quadrupole lattice used for external focusing; thus, the
ultra-conditioned limit is only applicable when

LC ≪ β ≪ LG. (B4)

However, as long as LC ≪ β, we have established an
upper bound on the degradation (15%) that this betatron
mixing effect has on a conditioned beam as compared to
a zero emittance beam.
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