
Exact solution of the envelope equations for a matched quadrupole-focused beam
in the zero space-charge limit

O.A. Anderson
LBNL, Berkeley, California 94720, USA

L. L. LoDestro
LLNL, Livermore, California 94551, USA

The Kapchinskij-Vladimirskij equations are widely used to study the evolution of the beam envelopes

in a periodic system of quadrupole focusing cells. In this paper, we analyze the case of a matched beam.

Our model is analogous to that used by Courant and Snyder [E. D. Courant and H. S. Snyder, Ann. Phys.

(Paris) 3, 1 (1958)], who obtained a first-order approximate solution for a synchrotron. Here, we treat a

linear machine and obtain an exact solution. The model uses a full occupancy, piecewise-constant

focusing function and neglects space charge. There are solutions in an infinite number of bands as the

focus strength is increased. All these bands are stable. Our explicit results for the phase advance ! and the

envelopes aðzÞ and bðzÞ are exact for all phase advances except multiples of 180#, where the behavior is
singular. We find that the peak envelope size is minimized for !$ 81#. Actual operation in the higher

bands would require very large, very accurate field strengths and would produce significantly larger

envelope excursions. If such operation were found to be feasible, there would be interesting applications

which we discuss.

I. INTRODUCTION

The Kapchinskij-Vladimirskij (KV) equations [1] de-
scribe the evolution of the beam envelopes in a periodic
system of quadrupole focusing cells and are widely used to
help predict the performance of such systems, using vari-
ous methods of solution. Numerical solutions of the KV
equations give useful results in many cases, but with very
strong focusing fields there can be difficulties with numeri-
cal convergence [2] and with extreme sensitivity to input
parameters. Analytic solutions are useful for the insight
they provide into qualitative features and trends. There
have been numerous papers presenting approximate ana-
lytic solutions giving various degrees of accuracy. The
simplest, known as the smooth approximation [3,4], is
useful for lower field strengths but in some forms can
give the misleading impression that the average beam
size continues to decrease indefinitely as the focus fields
increase. Higher approximations [5,6] extend the range of
accuracy but all approximation schemes eventually fail at
sufficiently strong fields. Partly due to these limitations, the
strong-field regime has not been thoroughly investigated. A
primary motivation for the present paper is to obtain accu-
rate solutions for high field strengths and determine
whether there are strong-field regimes that might have
practical applications.

In this paper, we derive an exact solution for matched
beam envelopes (periodic with the period of the focusing
lattice) for arbitrary field strength. We treat a problem
examined by Courant and Snyder in their classic paper [7],

except that we assume a linear rather than circular ma-
chine. They discussed the case in which the focus and
defocus sections each had uniform focusing strength with
no intervening gaps. They called this the CLS configura-
tion [8]. Their model neglected space charge, as we do in
the present paper. Although space charge is no longer
negligible in typical modern devices, our exact solution
for this case does provide insight into the general behavior
of alternating-gradient systems and can provide a starting
point for analysis of other focusing models and for the case
of finite space charge. [Exact results have also been ob-
tained—for the thin-lens ("-function) focusing model—by
Takayama in the zero space-charge limit [9] and by Lund
and Bukh in their complete analysis of the zero-emittance
case [10].]
Courant and Snyder used the CLS model for a synchro-

tron, obtaining approximate solutions. We show that the
analogous model for a linear machine is exactly solvable
and explore the consequences. We will refer to our model
(piecewise-constant focus, negligible space charge,
straight rather than circular beam axis) as the CSS
model [11]. For this model: (1) We find that solutions for
the envelopes aðzÞ and bðzÞ exist in an infinite number of
bands and that these coincide with bands of single-particle
stability. (2) We obtain a well-defined expression for the
phase advance ! as a function of focusing strength that
applies to all bands. All values of ! are theoretically
possible except exact multiples of 180#. (3) The peak
beam radius is minimized when ! ¼ 80:57# and begins
to increase rapidly above !$ 100#. Stable higher bands in
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quadrupole channels have been previously mentioned in,
for example, Refs. [10,12]. The higher bands give larger
beam excursions in spite of greatly increased focusing
fields [10]. Although the minimum radius is reduced, the
average radius and peak radius are increased. It is the peak
radius that is significant for focusing lattices of limited
aperture. For such systems, in the emittance-dominated
regime, we find no advantage in increasing the focusing
strength beyond values that give ! larger than 81#—
except, perhaps, for special applications, such as the pos-
sibility of extreme beam compression discussed in
Secs. VIII and X.

II. FOCUSING MODEL

We assume a quadrupole-symmetric focusing function
KðzÞ that is piecewise constant with values &k and peri-
odic over a lattice with period 2L. This model is described
by Eqs. (1) and Fig. 1 for a single lattice cell in the xz
plane:

KðzÞ '
!þk for 0< z < L
)k for L< z < 2L:

(1)

In a lattice with quadrupole symmetry, the xz plane and
yz-plane envelopes aðzÞ and bðzÞ for a matched beam are
identical except for a shift of length L [6]. Thus, it is only
necessary to analyze the dynamics in one of the planes; we
choose the xz plane here.

III. SINGLE-PARTICLE STABILITY

In the absence of space charge, the transverse position
xðzÞ of a particle is determined by

x00ðzÞ þ KðzÞxðzÞ ¼ 0: (2)

The stability of the single-particle orbit is easily found
from the period-transfer matrix M [7,13] and is given by
jTrðMÞj< 2. With KðzÞ defined by Eq. (1), this yields

j cos
ffiffiffi
k

p
Lj< sech

ffiffiffi
k

p
L: (3)

Figure 2 shows that there are multiple bands of stable
solutions over increasingly narrow ranges of

ffiffiffi
k

p
L.

IV. DERIVATION OF THE EXACT SOLUTION OF
THE ENVELOPE EQUATIONS

In the CSS model, which neglects space charge,
the xz-plane envelope aðzÞ of a beam with emittance ∈
obeys [13]

aðzÞ00 þ KðzÞa) ∈2

a3
¼ 0 (4)

with KðzÞ from Eq. (1). The boundary conditions are
periodic for a matched beam.
Multiplying Eq. (4) by 2a0 and integrating, one obtains

a02 þ KðzÞa2 þ ∈2

a2
¼ C: (5)

Then, multiplying Eq. (5) by a2 yields

dz ¼ da2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
)KðzÞa4 þ Ca2 ) ∈2

p : (6)

Any standard table of integrals shows that the solution
for a2ðzÞ will involve trigonometric or hyperbolic func-
tions, depending on the sign of K. We will find the appro-
priate constants by using trial solutions.
We define separate functions for the focus (K ¼ þk)

and defocus (K ¼ )k) sections:

aðzÞ ¼
!
aþðzÞ for 0< z < L
a)ðzÞ for L< z < 2L

(7)

and choose trial solutions that satisfy the symmetry of
KðzÞ:

ffiffiffi
k

p

∈
aþ

2ðzÞ ¼ ’þ F cos½#ðz) L=2Þ+; (8a)
ffiffiffi
k

p

∈
a)

2ðzÞ ¼ $þG cosh½#ðz) 3L=2Þ+; (8b)

where #, ’, F, $, and G are constants. They will be
determined by substituting Eqs. (8) into Eq. (4) and invok-
ing continuity of values and derivatives of aþ and a) at the
junctions.

2L
-k

0

k

0 L
z

K
(z

)

FIG. 1. CSS focusing model for the xz plane, shown for a
single cell of the periodic lattice. The yz-plane fields are the
same but shifted by the distance L.

FIG. 2. A ¼ j cos
ffiffiffi
k

p
Lj; B ¼ sech

ffiffiffi
k

p
L. Stable solutions of

Eq. (2) exist in the regions where curve A lies below curve B.
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For the focus section, we differentiate Eq. (8a) twice and
find after some algebra that

aþ
00 ¼ )#2

4
aþðzÞ

#
1þ ∈2

k

F2 ) ’2

aþ
4

$
: (9)

Comparison with Eq. (4) gives

# ¼ 2
ffiffiffi
k

p
; (10)

the first of the five unknown constants, and

’2 ¼ F2 þ 1: (11)

For the defocus section, Eq. (10) still applies and we find
similarly

$2 ¼ G2 ) 1: (12)

A. Introduction of the focus-strength parameter !

The focus-strength parameter, used throughout this pa-
per, is defined by

% '
ffiffiffi
k

p
L; (13)

and our trial solutions become
ffiffiffi
k

p

∈
aþ

2ðzÞ ¼ ’þ F cos½%ð2z=L) 1Þ+; (14)

ffiffiffi
k

p

∈
a)

2ðzÞ ¼ $þG cosh½%ð2z=L) 3Þ+: (15)

The first derivatives are
ffiffiffi
k

p

∈
aþ

2ðzÞ0 ¼ )ð2%=LÞF sin½%ð2z=L) 1Þ+; (16)

ffiffiffi
k

p

∈
a)

2ðzÞ0 ¼ þð2%=LÞG sinh½%ð2z=L) 3Þ+: (17)

We find it convenient to use the following abbreviations in
the remainder of this section:

sn ' sin%; cs ' cos%;

sh ' sinh%; ch ' cosh%:
(18)

B. Continuity conditions

The four remaining unknown constants, ’, F, $, and G,
are found by invoking continuity of a and a0 at z ¼ L, the
boundary between focus and defocus sections. The sym-
metries built into our trial solutions guarantee periodicity
of aðzÞ with period 2L.

Using Eqs. (16) and (17), we equate derivatives at
z ¼ L:

G ¼ &F; (19)

with the ratio & defined by

& ' sn=sh: (20)

We equate aþ
2ðLÞ and a)

2ðLÞ using Eqs. (14) and (15):

$) ’ ¼ ðcs) & chÞF: (21)

For our four unknowns we now have four equations: (11),
(12), (19), and (21). The first three yield

’2 þ $2 ¼ ð1þ &2ÞF2: (22)

From Eq. (21),

$2 þ ’2 ) 2$’ ¼ ðcs) & chÞ2F2: (23)

Combining Eqs. (22) and (23) yields

$’ ¼ F2& ch cs: (24)

We square this and use Eqs. (11) and (12). After a little
more algebra, we find

&2ð1) cs2ch2ÞF4 ) ð1) &2ÞF2 ) 1 ¼ 0: (25)

The real solutions are F ¼ &ð&2ch2 ) 1Þ)1=2. To deter-
mine the sign of F, we note from Eqs. (12) and (15) that
G> 0. Then, from Eq. (19), signðFÞ ¼ signðsnÞ. We define
the function

P ð%Þ ' signðsnÞ (26)

and write

F ¼ P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
&2ch2 ) 1

p ¼ P shffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1) cs2ch2

p : (27)

From Eq. (11), ’ ¼ P sn chð1) cs2ch2Þ)1=2. The P func-
tion is required here since, according to Eq. (14), ’ is
necessarily positive.

C. Exact solution

Finally, then, Eqs. (14), (15), (19), and (21) yield the
exact solution

aþ
2ðzÞ ¼ ∈L

sn chþ sh cos½%ð2z=L) 1Þ+
P%

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1) cs2ch2

p ; (28a)

a)
2ðzÞ ¼ ∈L

sh csþ sn cosh½%ð2z=L) 3Þ+
P%

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1) cs2ch2

p ; (28b)

where the functions sn, cs, sh, and ch, defined in Eq. (18),
depend on the field-strength parameter %.
Figure 3 plots aðzÞ=

ffiffiffiffiffiffiffi
∈L

p
for various focusing strengths

% within the stable passbands discussed below. Phase ad-
vances ! (Sec. V) are also shown. Throughout this paper
we usually express % in radians and ! in degrees, the
traditional units. However, ! is more conveniently kept
in radians in Secs. V and VII.
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Equations (28) have real solutions (passbands) when
their denominators are real. The existence criterion is

cs2ch2 < 1; (29)

the same as the single-particle stability criterion, Eq. (3).

V. PHASE ADVANCE IN THE STABLE BANDS

Equation (28), the matched solution of Eq. (4), has
stable bands which surround the points where cos% ¼ 0.
We call these the midpoints %n for the focus-strength
parameter:

%n ' ðn) 1
2Þ' n ¼ 1; 2; 3 . . . ; (30)

where n is the passband number.
From Ref. [7], the full-period phase advance!ð%Þ for the

CSS case is given by (assuming jcs chj< 1)

cos! ¼ 1
2 TrM ¼ cos% cosh%: (31)

(Note that cos! ¼ 0 when cos% ¼ 0, so that ! ¼ % when
% ¼ %n.)

Solving for ! by writing !ð%Þ ¼ cos)1ðcos% cosh%Þ
raises the issue of determining which branch of cos)1 to
use for the higher passbands. To address this problem, we
first introduce the deviations !% and !!, defined by

% ¼ %n þ !%; ! ¼ %n þ !!; (32)

where ) '
2 < !!< '

2 and where !% has a smaller range
(extremely small for n > 1). Substitution of Eqs. (32) into
Eq. (31) gives

sin!! ¼ sin!% cosh% (33)

with j sin!% cosh%j< 1. Then

!ð%Þ ¼ %n þ sin)1ðsin!% cosh%Þ: (34)

Here, sin)1 is restricted to its principal value, removing the
ambiguity mentioned above. Figure 4 displays !ð%Þ for the
first two bands.
From Eq. (34) and Fig. 4 we see that, for any band n, !

has maximum and minimum values

!max ¼ n'; !min ¼ ðn) 1Þ': (35)

In all passbands, ! ranges over ' radians, so that arbitrary
! is possible except for the singular points ! ¼ n'. The

FIG. 4. (a) Phase advance [Eq. (34)] for the first two stable
bands. (b) The second band again with the % axis magnified.

FIG. 3. Plots of Eqs. (28) for various focusing strengths % with
fixed emittance ∈. (a) % ¼ 0:5', midpoint of the first stable
band; (b) % ¼ 0:5968', near band 1 edge; (c) % ¼ 1:5', the
midpoint of band 2; (d) % ¼ 1:505 618 68', near band 2 edge;
(e) % ¼ 2:5', band 3 midpoint. (The phase advance !, shown
for each case, is discussed in Sec. V.) The peak radius is smallest
for case (a), where the focus strength is not far from its optimum
value %$ 0:48'—see Sec. VI. In the even bands, both aðzÞ and
bðzÞ have minima at the points z ¼ L=2 and 3L=2. Thus, at these
points there are large reductions in beam area (see Sec. VIII) for
case (c) and huge reductions for case (d). [But note the required
field accuracy is four figures for (c) and nine figures for (d); see
also Sec. X, where other limitations on beam compression are
discussed.]
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required precision of k becomes extreme as these points are
approached.

VI. MAXIMUM ENVELOPE EXCURSION

The peak radius amax is found from Eq. (28a) by setting
the cosine term (containing z) equal to P, yielding

a2maxð%Þ
∈L

¼ P sn chþ sh

%
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1) cs2ch2

p : (36)

Figure 5 illustrates Eq. (36), showing amax=
ffiffiffiffiffiffiffi
∈L

p
as a

function of % for the first two stable bands. In Fig. 5(a),
the peak radius amax decreases with increasing field
strength up to the point where %$ 0:48'. Further increase
of % causes a rapid increase in the peak radius, which
diverges as % approaches 1:505 618 69' and !ð%Þ ap-
proaches 180#. In the narrow second band, the peak radius
has a minimum value where % and ! are very close to 1:5'
radians (270 degrees).

The peak radius at the center of any band (approximately
the minimum peak radius) is found by setting % ¼ %n:

a 2
þ maxð%nÞ ¼∈L

e%n

%n
; (37)

where %n is given by Eq. (30). From this, one finds that the
minimum peak radius in the second band is about 2.78
times larger than in the first band and that it increases
almost exponentially for larger n.

Figure 6 shows amax for the first two bands in terms of
the phase advance ! rather than the field-strength parame-
ter % used for Fig. 5. As mentioned at the end of Sec. V, all
the passbands have ! width 180#. The stop bands de-
scribed in Ref. [10] shrink, in the absence of space charge,
to points at 180#, 360#, etc.

VII. PHASE ADVANCE AS A FUNCTION OF z FOR
PASSBAND MIDPOINTS

At the midpoints %n, the cosine factor containing z in
Eq. (28) becomes

cos½%ð2z=L) 1Þ+ ¼ sinð%n2z=LÞ (38)

and the denominators become P %. Thus, a2 at the midpoint
of any band n is

anþ
2ðn; zÞ ¼ ∈L

cosh%n þ sinh%nP sinð%n2z=LÞ
%n

(39a)

an)
2ðn; zÞ ¼ ∈L

%n
cosh½%nð2z=L) 3Þ+: (39b)

The reciprocals of Eqs. (39) are easily integrated (using
appropriate branch selection), yielding the exact phase
advance !ð%; zÞ along the z axis:

!ð%; zÞ ¼ ∈
Z z

0

dz0

a2
; (40)

FIG. 5. (a) Values of amax=
ffiffiffiffiffiffiffi
∈L

p
[Eq. (36)] for the first stable

band. (b) The second band with the % axis magnified. The
smallest possible envelope excursions occur for % ¼ 0:477 84'.

FIG. 6. Values of amax=
ffiffiffiffiffiffiffi
∈L

p
[Eq. (36)] for the first two stable

bands as a function of phase advance ! [Eq. (34)]. Minimum
beam size occurs at !ð%Þ ¼ 80:57# but exceeds the minimum by
less than 1% over the range 69# to 93#.

FIG. 7. Phase ! as a function of z for the center of the second
stable band, from Eq. (41). Note the phase jump at z ¼ L=2.
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where the % dependence enters through a. The integral is done in sections. We illustrate for band 2, where %2 ¼ 3'
2 :

!ð%2; zÞ ¼

8
>>>>><
>>>>>:

tan)1ðe%2 tanxÞ ) tan)1e%2 þ

8
>>><
>>>:

0; 0< z < 1
6L

'; 1
6L < z < 5

6L

2'; 5
6L < z < L

tan)1ðeyÞ ) tan)1e%2 þ 3
2'; L < z < 2L;

where

x ' 1

2
%2

#
2z

L
) 1

$
; y ' %2

#
2z

L
) 3

$
; (41)

and where the principal value of tan)1 is used. The phase
advance over a full period ð0; 2LÞ is 3'=2, which agrees
with Eq. (34) for %2. The above result is plotted in Fig. 7.

VIII. SECOND-BAND BEAM COMPRESSION

Figure 3 showed that, in the second band, the beam
radius is small in both the x and y directions for z=L ¼
0:5 and for z=L ¼ 1:5 so that the beam area is highly
compressed at these points. [Recall that bðzÞ ¼ aðzþ LÞ
for our matched beam.] The beam area is plotted on linear
and log scales for the center (Fig. 8) and the edge (Fig. 9) of
the second band. The KV equation predicts that the com-
pression ratio is more than 200 in the former case and more
than 107 in the latter. However, various effects not taken
into account by the CSS model will limit the beam com-
pression. These and other practical matters are discussed in
Sec. X.

IX. BEAM MATCHING EQUATION

We now return to Eq. (28a) and restrict z to a constant
value, z0. For the case z0 ¼ 0, with að0Þ ' a0,

a0
2 ¼ ∈L

sn chþ sh cs

P%
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1) cs2ch2

p : (42)

This is an exact matching condition for the CSS model
which relates the initial beam amplitude and the parame-
ters %, ∈, and L. It holds for all values of % and ! except
integer multiples of '. In the limit %! 0, a0 ! haðzÞi and
Eq. (42) reduces to the usual smooth-approximation
matching condition [3,4,6]. For the CSS model, it can be
written as hai2 ! 2

ffiffiffi
3

p
∈L=%2.

It may be interesting to regard the exact matching equa-
tion (42) from another point of view. We observe that
Eq. (4), together with periodic K and the requirement
that the beam be matched to the lattice, is a homogeneous
system with periodic boundary conditions. This allows us
to interpret the solution of the envelope equations for
matched beams as an eigenvalue problem. The matching
condition is then interpreted as the (nonlinear) equation for
the eigenvalues. As typically occurs for nonlinear prob-
lems, the eigenfunction normalization, of which a0 is a
measure, enters the eigenvalue equation.

FIG. 8. Normalized beam area An ' 'aðzÞaðzþ LÞ=∈L [from
Eqs. (28)] as a function of z for the center of the
second band. Focus-strength parameter % ¼ 1:5', ! ¼ 270#

[cf. Fig. 3(c)]. The same curves apply to the range L < z < 2L.

FIG. 9. Normalized beam area An ' 'aðzÞaðzþ LÞ=∈L [from
Eqs. (28)] as a function of z near the edge of the second band.
Focus-strength parameter % ¼ 1:505 618 68', ! ¼ 359:75#

[cf. Fig. 3(d)]. The same curves apply to the range L < z < 2L.
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We illustrate the above remarks using Eq. (36), which
may be regarded as the matching equation for amax. From
the alternative point of view, it is a transcendental equation
for %, the eigenvalue, with measure amax. Some modes of
its spectrum are indicated graphically in Fig. 5. One sees,
for example, that the ordinate value amax=

ffiffiffiffiffiffiffi
∈L

p
¼ 5 inter-

sects the plot twice in each of the first two bands and has no
intersections in higher bands. There is a total of four modes
in this example. Physically, this means that there are four
different focusing strengths that give this particular value
for amax=

ffiffiffiffiffiffiffi
∈L

p
.

X. DISCUSSION OF THE SECOND BAND

For charge-dominated beams, some authors, e.g. [14],
have recommended operating in higher bands to transport
larger beam current. Lund has pointed out that the envelope
excursions will then increase [10]. Emittance-dominated
beams also exhibit this excursion increase, as shown by
Eq. (37). For a given aperture, the particle flux is reduced in
the higher bands. Nevertheless, there may be some uses for
the second band, assuming such operation to be feasible in
practice.

In the emittance-dominated case, the second band has a
special feature: The beam radii in both planes can be small
at the same points, as noted in Fig. 3. The series of
localized regions of high compression (Sec. VIII) has
possible applications such as differential pumping of the
beam line using diaphragms. A truncated lattice could
produce an extremely dense final focal spot, which, if
achievable, would have various applications—for example,
heating or compression of targets, which might be useful
for warm dense matter studies.

The design of a machine for second-band operation
would face formidable difficulties. Compared with the
focusing field for ! ¼ 90#, the field for 270# is 9 times
stronger. The narrowness in % of the second band would
require accurate field regulation—increasingly accurate as
the band edge is approached. Obviously, the case of Fig. 9
is far beyond practical reach. It would be difficult to launch
a beam in the second band. Launching at z ¼ 0, for ex-
ample, would require steeply converging and diverging
envelope angles in the two symmetry planes. All these
would be technical challenges.

Effects have been neglected in this paper that would
reduce the beam compression. Large beam excursions will
produce focusing aberrations, not treatable by the KV
equations with their paraxial approximation. As mentioned
above, significant space-charge fields will widen the focus.

(However, this may be mitigated since emittance pressure
eventually dominates as the beam is compressed.) All these
effects remain to be studied.
A final remark applies to any band: The full KV equa-

tions, which include space-charge terms, require the KV
distribution function for the beam [13] in order to produce
the linear transverse self-field required for a periodic solu-
tion. The beam density, then, is uniform with a sharp cutoff
at the boundary. On the other hand, low-space-charge
models such as the CSS model allow periodic solutions
to be obtained with distribution functions that yield real-
istic density profiles.
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