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Abstract. Computational science research components were vital parts of the SciDAC-
1 accelerator project and are continuing to play a critical role in newly-funded SciDAC-2
accelerator project, the Community Petascale Project for Accelerator Science and Simulation
(ComPASS). Recent advances and achievements in the area of computational science research
in support of petascale electromagnetic modeling for accelerator design analysis are presented,
which include shape determination of superconducting RF cavities, mesh-based multi-
level preconditioner in solving highly-indefinite linear systems, moving window using h-
or p- refinement for time-domain short-range wakefield calculations, and improved scalable
application I/O.

1. Introduction
Particle accelerators, such as Spallation Neutron Source (SNS), Linac Coherent Light Source
(LCLS), Rare Isotope Accelerator, Large Hadron Collider, and proposed International Linear
Collider, are pivotal experimental facilities for discoveries in physical sciences. Electromagnetic
modeling of those existing or proposed billion-dollar class accelerator facilities often requires
petascale computing and drives the computational science research in the related areas.
Computational science research components were vital parts of the SciDAC-1 accelerator
project [1, 2, 3, 4] and continue to play a critical role in the SciDAC-2 accelerator project,
the Community Petascale Project for Accelerator Science and Simulation (ComPASS). Recent
advances and achievements in the area of computational science research in support of petascale
electromagnetic modeling for accelerator design and optimization are presented.

2. Shape Determination of Superconducting RF Cavities
Shape deviations of the real cavity from the design may significantly impact cavity response.
A shape determination tool has been developed at Stanford Linear Accelerator Center
(SLAC) to infer for the unknown shape deviations using measurable quantities such as cavity
frequencies, field distributions and external quality factor values. A nonlinear least square
optimization problem constrained by a complex Maxwell eigenvalue problem is solved in the
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shape determination process.

minimize
ej ,kj ,d

J (ej ,kj ,d) subject to Kej + ikjWej − k2
jMej = 0 (1)

eH
j Mej = 1 and <(ej)TM=(ej) = 0 (2)

where (ej , kj) is the jth eigenpair and d are the shape deviation parameters. < denotes the
real part and = the imaginary part. More discussion about the complex quadratic eigenvalue
problem Eq( 1) can be found in [1].

The objective function J includes weighted least squares misfit of the computed and measured
cavity response. A Gauss-Newton algorithm with a discrete adjoint method is used to solve the
above nonlinear least square minimization problem. This problem is ill-posed, and a truncated
singular value decomposition method is used to overcome the ill-posedness. Each nonlinear
iteration of the algorithm requires solution of the forward problem (complex Maxwell eigenvalue
problem), solution of adjoint problems (linear system of equations), and evaluation of the
eigenvector and eigenvalue sensitivities. The algorithm is tested with examples and the solution
of the shape deviation converges within a handful of nonlinear iterations.

The shape determination tool has been used to find the causes of high external quality factor
in a high gradient prototype cryomodule at Jefferson Lab [5]. The algorithm predicted that the
manufactured cavity was deformed significantly from the original shape, and its length was 6 to
8 mm shorter than that of the original design depending on the choice of inversion parameter
set. The results agree well with those from the measurements.

3. Mesh-based Multilevel Preconditioner

In analyzing eigen-modes of accelerator cavities,

Figure 1. The convergence history us-
ing GMRES with multi-level precondi-
tioner on solving a shifted linear system.
Note that the error estimation of inner
iterations of GMRES is also plotted.

the governing Maxwell’s equations can be simplified
to the following harmonic vector wave equation:

∇×
(

1
µ
∇×

−→
E

)
− εk2−→E = 0 (3)

With finite-element discretization using tangentially-
continuous Nedelec basis functions [6],

−→
E =

∑
i xi
−→
Ni,

the above equation becomes an eigenvalue problem:

Kx = k2Mx (4)

where K =
∫
Ω

1
µ

(
∇×

−→
Ni

)
·
(
∇×

−→
Nj

)
dΩ and M =∫

Ω ε
−→
Ni ·

−→
Nj dΩ. Note that matrix M is symmetric positive definite and matrix K is symmetric

positive semi-definite with a large null space. Since the interior eigenvalues are of the interest in
the accelerator cavity modeling, a shift-and-invert transform is often applied in the process of
solving the above eigenvalue problem. This requires a solution of a highly indefinite linear system
in every eigenvalue iteration, which is notoriously difficult to solve with iterative methods.

(K− σM)x = b (5)

where σ is a prescribed shift close to the eigenvalues of the interest.



A mesh-based multilevel preconditioner has recently been developed in solving Eq (5). Given
the preconditioner system Ax = b, the vector b, which is on a dense mesh, is first restricted
onto a coarse mesh and becomes bc (from now on, the variables with superscript c are denoted
to those on the coarse mesh). Then (Kc − σMc)xc = bc is solved with a sparse direct solver
since its size can be very small. At the last step, the vector xc is prolongated back onto the
dense matrix and is regarded as the solution of the preconditioner system x. For the restriction
operation, a linear system is solved as follows

(Mc + αKc)bc =
∫

Ω

(−→
F (b) ·

−→
Nc

i + α(∇×
−→
F (b)) · (∇×

−→
N

c

i )
)

dΩ (6)

where α is a positive parameter to be specified and
−→
F (b) =

∑
i bi
−→
Ni on the dense mesh. Note

that the matrix Mc + αKc is symmetric positive definite when α is positive and the above
linear system can be solved using conjugate gradient with incomplete Cholesky preconditioner.
A similar linear system is solved for the prolongation operation. It is shown in [7] that the
above operation balanced both the error of the interpolating field and that of the curl of
the interpolating field, which is important in electromagnetic modeling. Therefore, it is more
effective to use the Mc + αKc than using the mass matrix Mc alone.

Figure 1 shows the convergence history of the GMRES with this mesh-based multilevel
preconditioner in solving a shifted linear system. With 85 iterations, the converged solution
with residual of less than 10−7 is achieved using this method. As a comparison, it took about
518 iterations to achieve the same converged solution using CG with SSOR preconditioner and
it failed to converge using CG with incomplete factorization based preconditioner. Work on the
parallel implementation of this multilevel preconditioner is in progress.

4. Moving Window with h- or p- Refinement

In calculating short-range wakefield inside an accelerator

Figure 2. A couper region of
an accelerating cavity.

structure, only the small region in the vicinity of the particle
beam is required in the simulation. A moving window
technique, in which the domain of the simulation is limited
to a small region of interest near the beam and moves with
it, can greatly save the computational efforts. This technique
has been widely used in the finite-difference simulation but
not in the finite-element simulation with unstructured grids.
In this section, a brief introduction of finite-element time-
domain (FETD) method used in T3P is given. Moving window
techniques with curvilinear tetrahedral meshes using either h-
refinement or p-refinement are then presented.

In T3P, the following inhomogeneous vector wave equation is solved numerically for the
electric field

−→
E :

∇×
(

1
µ
∇×

∫ t

−∞

−→
E dτ

)
+ ε

∂2

∂t2

∫ t

−∞

−→
E dτ = −

−→
J , (7)

where
−→
J is the electric current density, and ε and µ are the electric permittivity and magnetic

permeability.



With finite-element spacial discretization [6],
∫ t
−∞

−→
E (x, τ) dτ =

∑
i ei(t) ·

−→
Ni(x), and the

implicit Newmark-beta scheme [8] for temporal discretization, the following linear system is
solved for each time step:(

M + β(∆t)2K
)
en+1 =

(
2M− (1− 2β)(∆t)2K

)
en −

(
M + β(∆t)2K

)
en−1

− (∆t)2
(
βfn+1 + (1− 2β)fn + βfn−1

)
(8)

where matrix K and M are the same as in Eq(4) and vector f =
∫
Ω

−→
Ni ·

−→
J dΩ is the discretized

representation of the current density. Note that the four discretized vectors en, en−1, fn,
and fn−1, need to be transferred from the current window configuration to the next window
configuration when the particle beam moves out of the window.

4.1. P-refinement

A window is defined with its front and back boundaries

Figure 3. A picture of a mesh
for the coupler region.

perpendicular to the velocity of the particle beam. Inside
the window, the finite-element basis function order p of
tetrahedral elements is set to be nonzero value while outside
of the window p is zero. This effectively makes the number of
degrees of freedom (DOF) to be zero outside of the window,
therefore reducing the computational efforts. A padding
zone is put between the front of the beam and the front
boundary of the window so that the particle beam will
stay in the window for a while. By changing the size of
the padding zone, the window size is adjusted. When the
particle beam moves out the padding zone, the window will
move forward with a given distance. The vectors en, en−1,
fn, and fn−1 as shown in Eq (8) are transferred element-wise
according to the changes of the finite-element order p’s. If p
of a tetrahedral element increases, zeroes are filled for those
additional coefficients. On the other hand, if p decreases,
the corresponding coefficients are dropped.

The short-range wakefield of a coupler shown in Figure 2

Figure 4. Wakefield comparison
with moving h-refined meshes and
with a uniform mesh.

is calculated with the moving window through p-refinement
on a curvilinear tetrahedral mesh with 13 million elements.
During the simulation, the window moved 5 times with each
window having 2.37 million, 1.08 million, 1.02 million, 1.02
million, 1.50 million, and 1.78 million elements, respectively.
The run-time of the simulation using the moving window
technique is only one-tenth of that using all 13 million
elements.

4.2. H-refinement
A series of windows with padding zones are defined in the vicinity of the moving particle beam.
The corresponding series of meshes are generated by scientists from SciDAC ITAPS Center with
a dense mesh region inside each window and a coarse mesh region outside the window. Figure 3
shows one such mesh for the coupler region shown in Figure 2. When the particle beam moves
out of one window and into the next window, the vectors en and en−1 are transferred onto the



next mesh using the projection as in Eq (6) while the vectors fn and fn−1 are re-calculated
with the new mesh. The wakefield monitors in a pillbox cavity with moving h-refined meshes
and with a uniform mesh are plotted in Figure 4. It is shown that the results are in remarkable
agreement, which indicates the validity of our h-refined moving window technique. Further work
on moving window through combined h-refinement and p-refinement is in progress.

5. Scalable Application I/O
In this section, the improvement made on the parallel application I/O in the SLAC’s simulation
tool Omega3P and T3P is presented.

Due to the lack of the parallel I/O specification in the netcdf standard, a ”rank 0 write all”
approach for writing out the results in a parallel simulation had been used in the SLAC’s code.
This approach was non-scalable and the time for writing out data exceeded the time for the
rest of the simulation when the number of executing processors is more than 4000. Working
with scientists at ORNL and ANL, the application I/O has been overhauled with parallel-netcdf
API [9]. With parallel-netcdf API the execution time for writing out data in the Omega3P
simulations is reduced by two orders of magnitude.

Curvilinear tetrahedral elements are used in the SLAC’s finite-element based application suite
for high-fidelity modeling. To save disk space, only the mid-points of the curved edges are stored
in the mesh file. During the simulation, all the mid-points of the curved edges are read in from
the file and only those belonging to the local processor are kept in the memory. A more optimized
read algorithm is developed by taking advantage of fast inter-processor communication. First the
mid-points are partitioned with the number of processors. Each processor read in its partitioned
portion of the mid-points in the second step. In the third step, an MPI Allgatherv() is invoked
to get all the mid-points for the selection of the mid-points in the local mesh. This scheme
provides a scalable read algorithm and has a huge time-saving on NCCS Jaguar computer when
number of processors in the simulation is large.

With the above-mentioned application I/O improvement and various communication pattern
enhancement, SLAC’s FETD code T3P has been efficiently used with a half billion degrees of
freedom to simulate an 8-cavity cryomodule with the INCITE allocation[10].
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