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Estimated 55Mn and 90Zr cross section covariances in the fast neutron energy region
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We completed estimates of neutron cross section covariances for55Mn and90Zr, from keV range to 25 MeV,
considering the most important reaction channels, total, elastic, inelastic, capture, and (n,2n). The nuclear reac-
tion model code EMPIRE was used to calculate sensitivity to model parameters by perturbation of parameters
that define the optical model potential, nuclear level densities and strengthof the pre-equilibrium emission.
The sensitivity analysis was performed with the set of parameters which reproduces the ENDF/B-VII.0 cross
sections. The experimental data were analyzed and both statistical and systematic uncertainties were extracted
from almost 30 selected experiments. Then, the Bayesian code KALMANwas used to combine the sensitivity
analysis and the experiments to obtain the evaluated covariance matrices.

I. INTRODUCTION

Neutron cross section covariances are highly demanded by
applications, probably the most prominent being the Global
Nuclear Energy Partnership (GNEP) and the U.S. Nuclear
Criticality Safety Program (NCSP). In GNEP, improved nu-
clear concepts are being considered with fuel and reactor char-
acteristics that are well outside the design envelope of existing
and prior systems. Therefore, a wide effort in advanced sim-
ulations must be preceded with the adequate adjustment of
the recently released ENDF/B-VII.0 library [1]. Nuclear data
covariances (uncertainties and correlations) are essential for
such adjustment. NCSP is developing computational tools to
enhance criticality safety predictive capabilities. For testing
these tools an extensive amount of covariance data is needed,
giving rise to the recent “low-fidelity project” [2].

This project was charged to provide a rough set of covari-
ances covering all relevant reaction channels for all 393 mate-
rials in the ENDF/B-VII.0 library, emphasizing completeness
rather than precision. In addition, NCSP needs high-quality
covariances for specific materials, such as55Mn and 90Zr.
This need was partly met by the new ORNL evaluation of
55Mn in the resonance region [3], including also55Mn(n,γ)
dosimetry reaction for which covariance re-evaluation is re-
quired [4].

The present work is addressing covariances for55Mn and
90Zr in the fast neutron region. Although the low-fidelity
project was useful starting point, we made an important step
forward by including almost 30 sets of experimental data.

The paper is organized as follows. In Section II, we de-
scribe the methodology used to produce the cross section co-
variances, while Section III and IV discuss, respectively,the
results and the conclusions.

II. METHODOLOGY

Our methodology is based on the nuclear reaction model
code EMPIRE [5], Bayesian code KALMAN [6] and due in-

∗Electronic address: pigni@bnl.gov; http://www.nndc.bnl.
gov/nndcpeople/pigni.html

clusion of experimental data, see adjacent paper for more de-
tails [7]. The EMPIRE code system incorporates an extensive
set of nuclear reaction models capable of describing all rele-
vant reaction mechanisms, coupled to the up-to-date library of
input model parameters [8] and providing reasonable overall
description of nuclear observables even if default parametriza-
tion is used. EMPIRE was used to calculate neutron cross sec-
tions and sensitivity matrices. Then, these sensitivity matrices
were used as prior by KALMAN in order to incorporate, one
by one, experimental data including their statistical and sys-
tematic uncertainties.

We emphasize that our goal is to produce covariance esti-
mates, not to re-evaluate cross sections. Therefore, our mod-
eling and parametrization aims to reproduce ENDF/B-VII.0
somewhat approximately, just giving us enough confidence in
covariance estimates.

A. Reaction Models and Parameters

Four nuclear reaction models were adopted that should suf-
ficiently well describe the physics of nuclear reactions at neu-
tron energies from 10 keV to 25 MeV for both55Mn and90Zr.
The spherical optical model, in case of90Zr, and the coupled
channels formalism, in case of55Mn, take care of the total
cross sections and neutron scattering. The Hauser-Feshbach
statistical model describes the bulk of particle emission,and
the exciton pre-equilibrium model describes major features of
fast particle emission at higher incident energies.

TABLE I: Prior optical-model parameter uncertainties (in %):r -
radius,a - diffuseness,V - real depth,W - imaginary depth. The
subscriptsv, s, andw, respectively, denote real volume, real surface,
and imaginary surface. The superscripts,tg ≡ n + A

Z andnp ≡ p +
A+1

Z−1
, identify nucleon-nucleus interaction.

∆rtg
s ∆rtg

v ∆rtg
w ∆V tg

v ∆W tg
s

3-5 5 5 5 3-5

∆W tg
v ∆atg

s ∆atg
v ∆V np

v ∆W np
s

5 5 5 5 5

The parametrization was taken from RIPL-3 [8]. For55Mn



III RESULTS AND DISCUSSION A Reaction Models and Parameters

we used optical model parameters of Koning-Delaroche [9]
and for 90Zr the dispersive potential used by us earlier [1].
Parameter uncertainties were those used in Ref. [2]. The op-
tical model parameters, for which uncertainties (3% or 5%)
were considered, are listed in Tab. I. The list of 8 parameters
relevant for the Hauser-Feshbach and the exciton model plus
a parameter taking into account the deformation of55Mn, is
shown in Table II. The uncertainties given in Tabs. I, II repre-
sent theprior information on the model parameters required
as a starting point in the Bayesian update procedure.

TABLE II: Prior parameter uncertainties (in %) used for the Hauser-
Feshbach and exciton models:̃a - total level density,̃g - single-
particle level density,fγ - gamma-ray strength functions, and mfp -
nucleon mean-free path; Def - deformation in the DWBA. The super-
scripts refer tocn ≡ compound,tg ≡ target,n2n ≡ (n,2n) residue,
np ≡ (n,p) residue.

∆ãcn ∆ãtg ∆ãn2n ∆ãnp ∆g̃np ∆g̃tg ∆fγ ∆mfp ∆Def

15 15 15 15 15 15 10-15 25 35

B. Sensitivities and Bayesian Update

Matrix elementssi,j of the sensitivity matrixS were calcu-
lated as

si,j =
∂σ(Ei,p)

∂pj

, (1)

whereσ is the cross section,Ei is the energy andp is the
vector of model parameters includingpj . The partial deriva-
tives were computed numerically, by varying the parameters
as defined by the uncertainties given in Tabs. I and II.

The Bayesian update procedure was used to update prior
results by taking into account new data. We used the
code KALMAN which is based on the iterative generalized
least-squares approach. Applying the Bayesian equations is
straightforward, an update being a simple algebraic operation,

pn+1 = pn + PnSTQn+1(σ
exp
n+1 − σ(pn))

(2)

Pn+1 = Pn − PnSTQn+1SPn .

Here,pn is the vector of model parameters,Pn is their co-
variance matrix andσexp

n+1 is the new experimental data set.
The updated (posterior) values are denoted by the superscript
n + 1. The matrixQn+1 is defined as an inverse of the co-
variance matrixCn and the experimental covariance matrix
C

exp
n+1

Qn+1 = (Cn + C
exp
n+1)

−1 . (3)

Then, the updated (posterior) cross section covariance matrix
is obtained by the well known “sandwich” equation

Cn+1 = SPn+1S
T . (4)

The experimental data were analyzed and both statistical
and systematic uncertainties were extracted for selected ex-
periments. The covariance matrix of thenth-experiment is

Cexp
n = Un + Wn , (5)

whereUn andWn are the covariance matrices of the statis-
tical and systematic uncertainties, respectively. In the explicit
notation and omitting the subscriptn, the matrix elements are
given by

c
exp
i,j =

{

ui,j + wi,j i = j

wi,j i 6= j ,
(6)

where the off-diagonal terms are obtained assuming that the
systematic uncertainties are fully correlated.

The quality and consistency of the evaluated cross sections
can be assessed by scalar quantity

χ2 =
∑

n

(σexp
n+1−σ(xn))T(Cexp

n+1)
−1(σexp

n+1−σ(xn)) . (7)

High value ofχ2 per one degree of freedom suggests that the
obtained uncertainties are under-estimated and it is fairly com-
mon practice to use this factor to rescale these uncertainties to
get their final values.

III. RESULTS AND DISCUSSION

We calculated neutron cross sections and their covariance
matrices for55Mn and90Zr at 63 incident energies between 1
keV and 25 MeV, considering the five reaction channels, total,
elastic, inelastic, (n,2n), and capture. We used data from 22
experiments for55Mn and 7 experiments for90Zr. First, we
discuss55Mn and focus on energies above the ORNL evalua-
tion [3], that is, above 122 keV.

Fig. 1 compares our cross sections with ENDF/B-VII.0 and
three sets of experimental data [10–12] found to be the ba-
sis of the ENDF/B-VII.0 evaluation. Due to the necessity of
retaining validated ENDF/B-VII.0 cross sections, our estima-
tion of covariances exclusively depends on these selected ex-
periments. The optical model predicts a smooth, averaged be-
havior of cross sections and cannot reproduce fluctuating val-
ues extending as high as 4 MeV and adopted by the ENDF/B-
VII.0. Accordingly, below 4 MeV we adopted the uncertain-
ties deduced from the experiments. Since related experimen-
tal information was limited, we estimated these uncertainties
conservatively as 5%. At higher energies, our uncertainties
are based on KALMAN and take into account careful mea-
surement by Cierjackset al. [10].

In Fig. 2,55Mn(n,n’) reaction is shown. Our cross sections
are in reasonable agreement with the ENDF/B-VII.0 evalua-
tion. Relative uncertainties are fairly large at the threshold
region, while in the energy range of about 0.7-10 MeV they
drop to about 15-30%. As expected, the uncertainties rise at
higher energies where cross sections become small.

Cross sections for55Mn(n,2n), obtained with EMPIRE-
KALMAN using the experimental data of Refs. [13–24], ap-
pear to agree well with ENDF/B-VII.0 as shown in Fig. 3.
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FIG. 1: Reaction55Mn(n,tot). Prior, posterior, and ENDF/B-VII.0
cross sections are compared with experimental data [10–12]. Rela-
tive uncertainties are in red (point-wise representation).
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FIG. 2: Reaction55Mn(n,inl). Prior, posterior, and ENDF/B-VII.0
cross sections are compared with experimental data. Relative uncer-
tainties are in red.

Relative uncertainties exhibit expected U-shape, starting with
large values at the threshold region of∼10 MeV, at energies
>22 MeV being essentially flat. At higher energies, in the ab-
sence of experimental data, the uncertainties again increase.

Fig. 4 displays55Mn radiative capture cross sections and
their uncertainties. Similar to (n,tot) reaction, below 1 MeV
the ENDF/B-VII.0 adopted fluctuating cross sections follow-
ing the experiment by Garget al. [25]. Consequently, we
adopted Garg’s experimental uncertainties. At higher ener-
gies EMPIRE-KALMAN method was adopted. Relative un-
certainties are lower than 10% in the energy range of 0.1-15
MeV, followed by expected sharp increase at higher energies.

We proceed with the discussion of90Zr reactions showing
first 90Zr(n,tot) and90Zr(n,el) in Figs. 5 and 6. Total as well
as elastic cross sections compare well with ENDF/B-VII.0 and
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FIG. 3: Reaction55Mn(n,2n). Prior, posterior, and ENDF/B-VII.0
cross sections are compared with experimental data [13–24]. Rela-
tive uncertainties are in red.
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FIG. 4: Reaction55Mn(n,γ). Prior, posterior, and ENDF/B-VII.0
cross sections are compared with experimental data. Relative uncer-
tainties are in red.

experimental data. Except for the low energy region, the un-
certainties are fairly flat around 2.5%. In contrast, uncertain-
ties for (n,inl) are much larger throughout the whole energy
range (Fig. 7) since no experimental data were used. Gener-
ally, uncertainties should be low whenever a wealth of exper-
imental data is used in the evaluation.

Finally, in Fig. 8 the90Zr(n,2n) cross sections obtained
with EMPIRE-KALMAN method are shown. Compared are
prior, posterior, and ENDF/B-VII.0 cross sections with ex-
perimental data [30–34] included in our evaluation showing
good agreement with both ENDF/B-VII.0 and data. Relative
cross section uncertainties exhibit expected U-shape.
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FIG. 5: Reaction90Zr(n,tot). Prior, posterior, and ENDF/B-VII.0
cross sections are compared with experimental data [26–29]. Rela-
tive uncertainties are shown in red.
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FIG. 6: Reaction90Zr(n,el). Prior, posterior, and ENDF/B-VII.0
cross sections are compared with experimental data. Relative uncer-
tainties are shown in red.

IV. CONCLUSIONS

We produced estimates of neutron cross section covariances
for 55Mn and 90Zr in the fast neutron energy region. This
work was primarily motivated by the needs of the U.S. Nu-
clear Criticality Safety Program, though the results are ofin-
terest for other applications such as GNEP and dosimetry. Our
results are based on the EMPIRE-KALMAN approach using
statistical and systematic uncertainties taken from almost 30
selected experiments.

Our covariances should be considered as being of inter-
mediate quality. For high-fidelity results one should perform
complete re-evaluation of cross sections simultaneously with

covariances, and preceded with detailed analysis of all ex-
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FIG. 7: Reaction90Zr(n,inl). Shown areprior, posterior, and
ENDF/B-VII.0 cross sections. Relative uncertainties are in red.
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FIG. 8: Reaction90Zr(n,2n). Prior, posterior, and ENDF/B-VII.0
cross sections are compared with experimental data [30–34]. Rela-
tive uncertainties are shown in red.

perimental data.55Mn represents additional challenge due to
many data available, including high resolution measurements
that exhibit strong fluctuations up to a few MeV.
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