BNL-81673-2008-CP

e-Cooling High  $\beta$  Cavity & Cryomodule

# Design and Fabrication of The RHIC Electron-Cooling Experiment High Beta Cavity and Cryomodule

D. Holmes, M. Calderaro, M. Cole, M. Falletta, E. Peterson, <u>J. Rathke</u>, T. Schultheiss and R. Wong Advanced Energy Systems Inc., 27E Industrial Blvd., Medford, NY 11763, USA I. Ben-Zvi, A. Burrill, R. Calaga, G. McIntyre Brookhaven National Laboratory, Upton, NY, USA.

**Distribution A - Approved for Public Release** 

Notice: This document has been authorized by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this document, or allow others to do so, for United States Government purposes.



**Putting Accelerator Technology to Work** 

Energy Systems, in

Advanced

#### Outline

e-Cooling High  $\beta$  Cavity & Cryomodule

Energy Systems, Inc.

Advanced

- Overview
- Cryomodule Configuration
- Superconducting Cavity Analysis, Design, Fabrication
- Cavity Testing
- Cavity Hermetic String Assembly
- Cryomodule Buildup
- Summary & Status



#### **Overview & Design Features**

e-Cooling High  $\beta$  Cavity & Cryomodule

#### • Electron Cooling Experiment Cavity – Test in BNL High Current ERL

- Cavity Physics Design done by Brookhaven. Cavity and cryomodule Engineering and Fabrication by AES
- BBU Threshold > 1.8 Amps. Design Current of 500 mA
- Large Cavity Bore & Beam Pipes → No Trapped Modes
- Ferrite Lined HOM Absorbers in Beamline Upstream and Down
- Coaxial Fundamental Power Coupler → <50 kW CW with Energy Recovery</p>





**Putting Accelerator Technology to Work** 

Energy Systems, inc.

Advanced

# **Cryomodule Assembly Configuration**



NATIONAL LABORATORY

Advanced

## **Cryomodule Assembly Configuration**

e-Cooling High  $\beta$  Cavity & Cryomodule



Dimensions in inches



Putting Accelerator Technology to Work

Slide 5

BRUUKHAVEN NATIONAL LABORATORY

## **Mechanical and Electromagnetic Analysis**

e-Cooling High  $\beta$  Cavity & Cryomodule

- Finite element models were used to evaluate the thermal, structural, and RF behavior thermal load, pressure load, and loads from the cavity tuner
- Cavity is inherently stiff due to large angle cell faces → no iris stiffeners, 3mm niobium thickness



#### **RF Analysis / Cavity Configuration**

e-Cooling High  $\beta$  Cavity & Cryomodule



## Low Power RF Test Cavities

e-Cooling High  $\beta$  Cavity & Cryomodule

- AES built two copper models for design verification & tooling development. Models formed and welded using same tools & techniques
- BNL test program verified HOM performance and investigated potential "superstructure" configurations







#### **Niobium Cavity Fabrication**

#### e-Cooling High $\beta$ Cavity & Cryomodule



CAVITY PRE-WELD ASSEMBLY

NATIONAL LABORATORY





#### Vertical Test Results (Done at JLAB)

e-Cooling High  $\beta$  Cavity & Cryomodule





## **Cavity String Assembly I**

e-Cooling High  $\beta$  Cavity & Cryomodule



BROOKHAVEN NATIONAL LABORATORY

## **Cavity String Assembly II**

e-Cooling High  $\beta$  Cavity & Cryomodule



#### **Completed Hermetic String at JLAB**





Slide 12

## **Space Frame and Thermal Shield Installation**

e-Cooling High  $\beta$  Cavity & Cryomodule



NATIONAL LABORATORY

## **Space Frame and Thermal Shield Installation**

e-Cooling High  $\beta$  Cavity & Cryomodule







Energy Advanced

#### **Cryomodule Buildup**

SUPPORT STANDS

BROO

KH*r*ven

NATIONAL LABORATORY



feed Bayonet

Slide 15

FPC port

4K coolant outlet ( Beam tube)

Energy Advanced

Putting Accelerator Technology to Work

Support stand interface

#### **Cryomodule Assembly**

BROOKHAVEN NATIONAL LABORATORY e-Cooling High  $\beta$  Cavity & Cryomodule





**Putting Accelerator Technology to Work** 

Slide 16

## **Completed Cryomodule Assembly at BNL**

e-Cooling High  $\beta$  Cavity & Cryomodule



Energy Advanced



Slide 17

В

NATIONAL LABORATORY

## **Summary & Status**

e-Cooling High  $\beta$  Cavity & Cryomodule

- A high-current SRF cavity for an Energy Recovery Linac has been designed by BNL and AES and fabricated by AES
- The cavity was cleaned and tested by JLAB with BNL personnel support
- Cavity performance exceeded goal of 20 MV/m at Q<sub>0</sub> > 1x10<sup>10</sup> and far exceeded requirement of 15 MV/m at Q<sub>0</sub> > 1x10<sup>10</sup>
- Hermetic String assembled at JLAB with BNL personnel support and shipped to BNL
- BNL has recently completed Cryomodule assembly and unit is ready for installation in the ERL vault

