

BNL-79969-2007-CP

RADIOACTIVE ELEMENTS IN THE STANDARD ATOMIC WEIGHTS TABLE

Norman E. Holden

National Nuclear Data Center
Energy Sciences & Technology Department
Brookhaven National Laboratory
P.O. Box 5000
Upton, NY 11973-5000
www.bnl.gov

Prepared for the 44th IUPAC General Assembly in Torino, Italy

August 2007

Notice: This manuscript has been co-authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

This preprint is intended for publication in a journal or proceedings. Since changes may be made before publication, it may not be cited or reproduced without the author's permission.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

RADIOACTIVE ELEMENTS IN THE STANDARD ATOMIC WEIGHTS TABLE

Norman E. Holden National Nuclear Data Center Brookhaven National Laboratory Upton, New York 11973-5000, USA

Introduction

In the 1949 Report of the Atomic Weights Commission¹, a series of new elements were added to the Atomic Weights Table. Since these elements had been produced in the laboratory and were not discovered in nature, the atomic weight value of these artificial products would depend upon the production method. Since atomic weight is a property of an element as it occurs in nature, it would be incorrect to assign an atomic weight value to that element. As a result of that discussion, the Commission decided to provide only the mass number of the most stable (or longest-lived) known isotope as the number to be associated with these entries in the Atomic Weights Table.

As a function of time, the mass number associated with various elements has changed as longer-lived isotopes of a particular element has been found in nature, or as improved half-life values of an element's isotopes might cause a shift in the longest-lived isotope from one mass to another.

In the 1957 Report of the Atomic Weights Commission², it was decided to discontinue the listing of the mass number in the Atomic Weights Table on the grounds that the kind of information supplied by the mass number is inconsistent with the primary purpose of the Table, i.e., to provide accurate values of "these constants" for use in various chemical calculations. In addition to the Table of Atomic Weights, the Commission included an auxiliary Table of Radioactive Elements for the first time, where the entry would be the isotope of that element which was the most stable, i.e., the one with the longest known half-life.

In their 1973 Report³, the Commission noted that the users of the main Table of Atomic Weights were dissatisfied with the omission of values for some elements in that Table and it was decided to reintroduce the mass number for the radioactive elements into the main Table.

In their 1983 Report⁴, the Commission decided that radioactive elements were considered to lack a characteristic terrestrial isotopic composition, from which an atomic weight value could be calculated to five or more figure accuracy, without prior knowledge of the sample involved. These elements were again listed in the Atomic Weights Table with no further information, i.e., with no mass number or atomic weight value.

Preamble to the Table of the Radioactive Elements

For the elements, which have no stable characteristic terrestrial isotopic composition, the data on the half-lives and the relative atomic masses for the nuclides of interest for those elements have been evaluated. The values of the half-lives with their uncertainties are listed in the table. The uncertainties are given for the last digit quoted of the half-life and are given in parentheses. A half-life entry for the Table having a value and an uncertainty of 7 ± 3 is listed in the half-life column as 7 (3).

The criteria to include data in this Table, is to be the same as it has been for over fifty years. It is the same criteria, which are used for all data that are evaluated for inclusion in the Standard Table of Atomic Weights. If a report of data is published in a peer-reviewed journal, that data is evaluated and considered for inclusion in the appropriate table of the biennial report of the Atomic Weights Commission. As better data becomes available in the future, the information that is contained in either of the Tables of Standard Atomic Weights or in the Table of Radioactive Elements may be modified.

It should be noted that the appearance of any datum in the Table of the Radioactive Elements is merely for the purposes of calculating an atomic mass value for any sample of a radioactive material, which might have a variety of isotopic compositions and it has no implication as to the priority for claiming discovery of a given element and is not intended to.

The atomic mass values have been taken from the 2003 Atomic Mass Table⁵. Most of the quoted half-lives in the Table have already been documented in various sources^{6,7,8,9,10,11}.

Acknowledgement

This manuscript has been authored by Brookhaven Science Associates, LLC, under Contract No. DE-AC02-98CH1-886, with the Department of Energy. The United States Government retains, and the publisher, by accepting the article for publication, acknowledges a world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the United States Government purposes.

References

- 1. E. Wichers, J. Am. Chem. Soc. 72, pp 1431-1432 (1950).
- 2. E. Wichers, J. Am. Chem. Soc. 80, pp 4121-4126 (1958).
- 3. "Atomic Weights of the Elements 1973", Pure Appl. Chem. 37, pp 591-603 (1974).
- 4. N.E. Holden and R.L. Martin, Pure Appl. Chem. 56, pp 653-764 (1984).

- 5. G. Audi, A.H. Wapstra and C. Thibault, Nucl. Phys. A 729, pp 337-675 (2003).
- 6. N.E. Holden, Pure Appl. Chem. 61, pp 1483-1504 (1989).
- 7. N.E. Holden, Pure Appl. Chem. 62, pp 941-958 (1990).
- 8. N.E. Holden, R.N. Reciniello and J-P. Hu, Health Phys. 87, pp 410-415 (2004).
- 9. N.E. Holden, AIP Conference Proceedings 769, International Conference on Nuclear Data for Science and Technology, Santa Fe, New Mexico, 26 September-1 October 2004, pp 426-429 American Institute of Physics, Melville, NY (2005).
- 10. N.E. Holden, "Table of the Isotopes (Revised 2005)" Handbook of Chemistry and Physics 87th edition, edited by D.R. Lide, Boca Raton, FL. CRC Press Inc., section 11, pp 50-203 (2006).
- 11. N.E. Holden, "Table of the Isotopes (Revised 2007)" Handbook of Chemistry and Physics 89th edition, edited by D.R. Lide, Boca Raton, Fl. CRC Press Inc., section 11, (2008), to be published.

TABLE OF THE RADIOACTIVE ELEMENTS

43	Technetium	Tc	97	96.9064 4.21 (16) x10 ⁶		a
			98	97.9072	$6.6(10) \times 10^6$	a
			99	98.9063	$2.1 (3) \times 10^5$	a
61	Prometium	Pm	145	144.9127	17.7 (4)	a
			146	145.9147	5.53 (5)	a
			147	146.9151	2.623 (3)	a
84	Polonium	Po	208	207.9812	2.90(1)	a
			209	208.9824	$1.3(2) \times 10^2$	a
			210	209.9829	138.4 (1)	d
85	Astatine	At	210	209.9871	8.1(4)	h
			211	210.9875	7.21 (1)	h
86	Radon	Rn	210	209.9897	2.4 (1)	h
			211	210.9906	14.6 (2)	h
			222	222.0176	3.823 (4)	d
87	Francium	Fr	212	211.9962	20.0 (6)	min
			222	222.0176	14.2 (3)	min
			223	223.0197	22.0(1)	min
88	Radium	Ra	226	226.0254	1599. (4)	a
			228	228.0311	5.76 (3)	a
89	Actinium	Ac	225	225.0232	10.0(1)	d
			227	227.0278	21.77 (2)	a
90	Thorium	Th	230	230.0331	$7.54(3) \times 10^6$	a
			232	232.0381	$1.40(1) \times 10^{10}$	a
91	Protactinium	Pa	231	231.0359	$3.25(1) \times 10^4$	a
			233	233.04025	27.0 (1)	d
92	Uranium	U	233	233.0396	$1.592(2) \times 10^{5}$	a
			234	234.0410	$2.455(6) \times 10^5$	a
			235	235.0439	$7.04(1) \times 10^8$	a
			236	236.0456	$2.342(4) \times 10^7$	a
			238	238.0508	$4.468(3) \times 10^9$	a
93	Neptunium	Np	236	236.0466	$1.54(6) \times 10^5$	a
			237	237.0482	$2.14(1) \times 10^6$	a
94	Plutonium	Pu	238	238.0496	87.7 (1)	a
			239	239.0522	2.410 (3) x 10 ⁴	a
			240	240.0538	$6.56(1) \times 10^3$	a
			241	241.0569	14.4 (1)	a
			242	242.0587	$3.75(2) \times 10^5$	a
			244	244.0642	$8.00(9) \times 10^7$	a

TABLE OF THE RADIOACTIVE ELEMENTS (Continued)

At. Element Elem. Mass Atomic Half-life ± Unit No. Name Symbol No. Mass Uncertainty

ı		1	ı		1	1
95	Americium	Am	241	241.0568	432.7 (6)	a
			243	243.0614	$7.37(2) \times 10^3$	a
96	Curium	Cm	243	243.0614	29.1 (1)	a
			244	244.0628	18.1 (1)	a
			245	245.0655	$8.48(6) \times 10^3$	a
			246	246.0672	$4.76(4) \times 10^3$	a
			247	247.0704	$1.56(5) \times 10^7$	a
			248	248.0723	$3.48(6) \times 10^5$	a
97	Berkelium	Bk	247	247.0703	$1.4(3) \times 10^3$	a
			249	249.0750	$3.20(3) \times 10^2$	d
98	Californium	Cf	249	249.0749	351. (2)	a
			250	250.0764	13.1 (1)	a
			251	251.0796	$9.0(5) \times 10^2$	a
			252	252.0816	2.65 (1)	a
99	Einsteinium	Es	252	252.0830	472. (2)	d
			254	254.0880	276. (1)	d
100	Fermium	Fm	253	253.0852	3.0(1)	d
			257	257.0951	100.5 (2)	d
101	Mendelevium	Md	258	258.0984	51.5 (3)	d
			260	260.1037	27.8 (3)	d
102	Nobelium	No	255	255.0932	3.1 (2)	min
			259	259.1010	58. (5)	min
103	Lawrencium	Lr	251	251.0944	~ 39.	min
			261	261.1069	~ 40.	min
			262	262.1096	3.6 (3)	h
104	Rutherfordium	Rf	265	265.1167	~ 13.	h
			267	267.122	~ 1.	h
105	Dubnium	Db	267	267.1224	~ 1.2	h
			268	268.125	1.2 (4)	d
106	Seaborgium	Sg	265	265.1211	~ 15.	S
	-		271	271.133	~ 2.	min
107	Bohrium	Bh	267	267.1277	~ 17.	S
			272		~ 1.	min
108	Hassium	Hs	269	269.1341	~ 10.	S
			277	277.150	~ 11.	min
109	Meitnerium	Mt	268	268.1387	~ 0.03	S
			276	276.151	~ 0.7	S
110	Darmstadtium	Ds	280	280.160	~ 7.6	S
			281	281.162	~ 11.	S

TABLE OF THE RADIOACTIVE ELEMENTS (Continued)

At. Element Elem. Mass Atomic Half-life ± Units No. Name Symbol No. Mass Uncertainty

111	Roentgenium	Rg	279	279.162	~ 0.17	S
			280	280.164	~ 3.6	S
112	Ununbium	Uub	283	283.172	~ 4.	S
			285	285.174	~ 29.	S
113	Ununtrium	Uut	283	283.176	~ 0.1	S
			284	284.178	~ 0.48	S
114	Ununquadium	Uuq	288	288.186	0.8 (3)	S
			289	289.187	~ 2.6	S
115	Ununpentium	Uup	287	287.191	~ 0.03	S
			288	288.192	~ 0.09	S
116	Ununhexium	Uuh	291		~ 18.	ms
			292	292.200	~ 18.	ms
			293		0.06 (5)	S
118	Ununoctium	Uuo	294		~ 0.89	ms