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Abstract. This contribution addresses various aspects of nuclear waste vitrification. Nuclear wastes
have a variety of components and composition ranges. For each waste composition, the glass must
be formulated to possess acceptable processing and product behavior defmed in terms of physical
and chemical properties that guarantee the glass can be easily made and resist environmental
degradation. Glass formulation is facilitated by developing property-composition models, and the
strategy of model development and application is reviewed. However, the large variability of waste
compositions presents numerous additional challenges: insoluble solids and molten salts may
segregate; foam may hinder heat transfer and slow down the process; molten salts may accumulate
in container refractory walls; the glass on cooling may precipitate crystalIine phases. These
problems need targeted exploratory research. Examples of specific problems and their possible
solutions are discussed.

Introduction

The majority of nuclear waste in the world originates from the nuclear fuel cycle and nuclear
weapons reprocessing [1]. At least 108 sites containing radioactive waste exist in the United States.
Perhaps the most prominent among them is the Hanford Site in the State of Washington [2], where
177 underground radioactive waste tanks contain roughly 200,000 m' of radioactive liquid and
sludge from plutonium production from 1944 to 1987.

Hanford Site waste will be pretreated and separated into high-level waste (HLW) and low­
activity waste (LAW) fractions. Both HLW and LAW will be vitrified in continuous melters, and a
substantial portion of the LAW will be partitioned to a supplemental LAW treatment. To make
nuclear-waste glass, the waste streams from a pretreatment facility, in the form of HLW slurries or
LAW solutions, are mixed with glass-forming and modifying additives in the HLW or LAW
vitrification facilities, respectively. In both facilities, the resulting melter feeds are charged into
electrically heated continuous melters from which the molten glass is poured into staiuless-steel
canisters for disposal in the Yucca Mountain repository or stainless-steel containers for disposal in
the Hanford Integrated Disposal Facility.

This paper briefly reviews the glass-formulation method for making glasses that easily melt and
meet the quality required for disposal. Also discussed are property-composition relationships,
processing problems, and glass-durability issues.

Glass Formulation

To make certain waste glass is easily processable and has a quality conforming to the regulatory
requirements for disposal, the glass must be properly formulated for any waste composition (within



the defmed range) that may be delivered from the waste pretreatment facility. These projected waste
streams will substantially vary, both in the number and concentration ranges ofmajor components.

Melt processability and product quality are defmed in terms of glass properties. Glasses are
formulated using mathematical relationships, also called models, that link key properties to glass
composition. The models are expressed in terms of response functions, usually polynomials relating
properties to mass or mole fractions of components; the numerical coefficients are determined by
applying regression analysis to experimental data.

For continuous melters, glass properties that must be controlled to allow easy processing are the
melt viscosity, electrical conductivity, and liquidus temperature. This is because the processing
temperature in waste glass melters cannot exceed 1200°C; above this temperature, the Inconel®
electrodes (a material that can withstand waste-melt corrosiveness) lose their mechanical strength.

The product quality of waste glasses is defined by means of outcomes of various standardized
tests, such as the product consistency test [3], vapor hydration test [4], and toxicity characteristic
leaching procedure [5]. The quality requirements are more restrictive for LAW glasses because
these glasses will be less protected in the disposal facilities than HLW glasses in the repository.
Economic criteria (glass volume and process rate) are also important and must be considered.

For most composition regions of waste glasses, ftrst-order polynomials are sufficiently

representative [6]; i.e., P =f(I.:/:x;) , where P is the glass property, f is the response function

(e.g., exp), Xi is the i-th component fraction (mass or mole) in glass, and Pi is i-th component
property coefficient (partial speciftc or molar property).

As glass components originate from waste, additives, or both, they are subjected to mass
balances in the form Xi = WiW + ai(l - W), where Wi is the i-th component fraction in the non­
volatile portion of waste, ai the i-th component fraction in non-volatile portion of additives, and
W the waste loading (the fraction of glass that origiuated in the waste). Mathematically speaking,
the task of glass formulation is to determine the optimum value of Wand optimized values of ajS

that yield glass with acceptable properties for a given set of Wi values.
Because models are subjected to uncertainties, experimental conftrmation is necessary before a

glass is subjected to large-scale testing and production. Thus, glass formulation proceeds in the
following steps:
I) For the given waste, determine a glass composition with optimized properties using property-

composition relationships.
2) Prepare a simulant of the glass using nonradioactive surrogates and measure its key properties.
3) Compare measured and calculated properties and adjust the formulation ifnecessary.
4) Prepare the fmal simulant glass and measure its key properties.
5) Prepare glass from the actual waste and measure its key properties.

Processing Problems

Not all processing problems can be avoided by formulating glasses with desirable properties.
Unlike in the processing of commercial glasses, the feed composition of waste glasses is only
partially controlled. This can lead to various problems described in this section.

As shown schematically in Fig. I, the melter feed (waste plus additives that may be premelted
into a frit) is charged into the continuous melter in the form ofa water slurry that dries in the melter
and forms a cold cap on the pool of molten glass (similar to batch pile or batch blanket of
commercial-glass melters).

As presented in Fig. 2, various intermediate solids can form within the cold cap [7]. These
solids can be transferred to the melter bottom by descending convection currents where they can
settle (Fig. 3) and eventually block the melter outlet. If the bottom sludge is electrically conducting,
it can distort the electric fteld in the melter.

Molten ionic salts (predominantly sulfates) tend to segregate during the melting process and
accumulate on the melt surface, causing refractory corrosion. As presented in Fig. 4, undissolved
sulfate is taken to the melt surface inside gas bubbles [8].



Also, foaming is often a serious problem. Melting reactions produce a large volume of gas of
which a small fraction is trapped in the glass-forming melt and later released. More troublesome is
the foam from bubbles released from molten glass from multivalent oxides such as FeOx. This foam
insulates the cold cap, slowing the transfer of heat needed for melting [9].
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Fig. 2. Intermediate crystalline phases that
form in a Savannah River waste glass [7].

Fig. I. Schematic of continuous
waste-glass melter.

Fig. 3. Micrograph of a melter-bottom
sludge (spinel and silver) [10].

Fig. 4. Scanning electron Microscopy (SEM)
image of sulfate bubble in an LAW glass [8].

Bulk vitrification has been recently designed as a supplemental process for vitrifying LAW.
Dry feed is charged into a large (7.3x2.3x2.3 m) metallic box lined with layers of refractory and
insulating materials and electrically heated with two graphite electrodes. The box is then sealed and
used as a waste package for disposal.

Bulk vitrification is facing similar problems as those in continuous melting. Molten salts
segregated on the melt surface may contain technetium (Tc) that is present in LAW in minute
concentrations. Though precipitation and settling of the crystalline phase is not a problem, liquid
metals can precipitate and accumulate at the container bottom. Metals can contain metallic Tc that
can be easily released in a humid environment. Finally, releasable Tc can accumulate in the glass­
contact refractory walls that are made from a relatively inexpensive castable refractory material.
Molten salts (mainly nitrates) from LAW can migrate into these walls, driven by capillarity.

While methods for avoiding salt accumulation on the melt surface are currently being
investigated, the other problems have been solved. Metal precipitation can be eliminated by using
low-iron additives. The migration of salts into the walls was reduced to an acceptable level by
increasing the specific surface area of the feed additives (using fine silica) and by cellulose
additions that destroy a portion of nitrates at temperatures at which the salts are relatively immobile
[I I].



Process Rate

The rate of melting is an important productivity issue, especially for continuous melters.
The melting rate is controlled jointly by the heat-transfer rate and the rate of feed-to-glass
conversion [9]. This can be expressed as

2[( 2)"2 ]N= Nc 1+ 4N,H -1
2NH Nc

where N is the rate of melting (mass per time and area), Nc is the conversion-controlled rate of
melting, and NH is the heat-transfer-controlled rate ofmelting. These rates are defmed as

and

where I.e and AH are effective heat conductivities of the cold cap and molten glass, Tc and TM are
the temperatures of the cold cap and the bulk melt, respectively, I) is the thermal-boundary-layer
thickness, k is the conversion-rate coefficient, p is the feed density, and Q is the conversion heat
(the energy needed to turn slurry feed under ambient conditions to 1 kg of glass). The thickness of
the thermal boundary layer is defmed as I) = (TM - T.)/(I)TIl)y)y=O, where y is the vertical distance
from the cold-eap-melt interface and Tr is the temperature of the cold-cap-melt interface.

Both the heat transfer and the conversion process are upset if fluxes (that are present in the form
of low-viscosity molten ionic salts, also called the primary melt, existing at temperatures at which
the glass-fonning melt has not yet developed) migrate out of the cold cap. This leads to cold-cap
freezing and inability to reach a steady state in the melter.

An important factor affecting the heat-transfer rate is the melt viscosity, which influences the
velocity of natural convection in the melter and the extent of bubble/foam accumulation under the
cold cap [I2]. Because viscosity depends on glass composition, glass formulation is of a crucial
importance for melter operation. For fast melting, the viscosity near the cold-cap bottom surface
should be as low as possible.

Heat can be transferred from the hot melt to the cold cap faster by increasing the melt
temperature and by bubbling. A higher melt temperature increases the temperature gradient in the
melt under the cold cap, thus increasing the density gradient, which is the driving force for melt
circulation. Bubbling further enhances melt circulation, removes foam accumulated under the cold
cap, and even breaks through the cold cap, exposing a larger interface area to melting. Increased
melt circulation (by increased temperature, decreased viscosity, and bubbling) suppresses the
thermal boundary layer under the cold cap, increasing the heat flux to the cold cap.

Note that Eq. 2 grossly oversimplifies the conversion process by reducing a rather complex set
of parallel and sequential reactions and transitions with one rate coefficient, k. In reality, the
conversion process proceeds in several stages. As the feed temperature increases, the ionic salts
begin to melt, forming the primary melt. The reactive components of the primary melt, such as
carbonates and nitrates, react with silica, creating the glass-forming melt while leaving behind less­
reactive sodium sulfate that only gradually dissolves in the glass-forming melt. Once the glass­
forming melt connects into a continuous body, the residues of molten salts and oxidation-reduction
reactions generate gases that are trapped inside the melt in the form of bubbles. The resulting

(1)

(2)

(3)



primary foam increases the melt volume several times [12] and collapses as soon as the melt
viscosity decreases below a certain level. These stages are common to waste and commercial feeds
and hatches.

The complexity of the feed-to-glass conversion process indicates that its rate can be influenced
by many internal parameters. Probably most prominent among them is the content of reductants,
such as sugar or cellulose, in the feed. Reductants react with oxyionic salts, especially nitrates and
nitrites, and with high-valence oxides, such as Fez03 and Mn20 3. These reactions are exothermic:
They internally supply heat to the cold cap independent of heat transfer from external sources. Also,
reducing the content of ionic salts in the cold cap decreases the potential for flux separation that
leads to cold-eap freezing. The importance of reductants for bulk vitrification has been mentioned
above.

The impact of the primary foam on the rate of melting is not well understood. It is not clear
whether the main effect of primary foam is insulating the cold cap or whether the growing bubbles
help to homogenize the melt, thus helping dissolve the solid particles.

Product Quality Issues: Loug-Term Corrosion

As stated above, glass acceptability for disposal is defmed by responses to standard corrosion tests.
Glass corrosion is a function of thermodynamic state variables (temperature and composition) as
well as the kinetics of various individual reactions that participate in the corrosion process. It is not
well understood at present how the responses of glass to standard tests relate to long-term corrosion
behavior, especially when considering the poor predictability of the environmental conditions over
the hundred-thousand years that the radioactivity needs to decay.

Under laboratory conditions in a closed system, glass corrosion proceeds in four stages: initial
stage, solution-satoration stage, traosition stage (a catastrophic event), and fmal stage.
The traosition stage occurs when mineral species suddeuly precipitate from the oversatorated
solution. In the fmal stage, glass dissolution is controlled by the aqueous reactions. It is not clear
whether these two fmal stages can occur in the open system.

The long-term behavior of glass is usually simulated by accelerated tests, such as a vapor
hydration test, where glass coupons are exposed to hot steam. Fig. 5 shows examples of glasses
fully or strongly corroded [4], i.e., turned into mineral gels and crystals; it also shows examples of
crystalline phases usually seen on the coupon surfaces.

As the melt is poured into canisters, some of it is rapidly quenched when contacting the canister
walls, while the melt cools at the slowest rate in the canister centerline (Fig. 6). Even a slower rate
is experienced by glass in the center of the bulk-vitrification box. During slow cooling, the glass
may precipitate crystals (Fig. 6) that remove components from the amorphous matrix, thus changing
its corrosion resistance. Common crystalline phases found in Hanford HLW glasses are spinel
[(Fe,Ni,Zn)(Fe,Cr,Mn)204], hematite (Fez03), zircon (ZrSi04), baddeleyite (Zr02), parakeldyshite
(Na2Zr2Si07), nepheline (NaAlSi04), wollastonite (CaSi03), and cristohalite (Si02). Most of these
phases do not form in a sufficient quantity to influence glass durability. However, a massive
precipitation ofnepheline can significantly decrease glass durability and must be avoided.
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Fig. 5. Corroded vapor-hydration-test coupons; top: two examples of thin sections (optical
images); bottom: zeolite crystals on coupon surfaces (colored SEM images).
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Fig. 6. (From top-left clockwise) Canister centerline cooling (for Hanford
HLW glass), aggregate of spinel crystals and RU02 needles,

nepheline crystals, and baddeleyi te dendrite.

Conclusions

I) Waste glass can be efficiently formulated using the property-compositIOn relationship.
The results of calculations must be verified with experiments.

2) The formation of solids, segregation and migration of molten salts, and melt foaming can
interfere with the waste-glass melting process. Crystallization can impact the quality of the fmal
product. These phenomena need to be considered when formulating glass and determining the
makeup of melter feeds.



3) Predicting the fate of glass over hundreds of thousands of years in a geologic repository based
on various short-term corrosion tests remains a challenge. In a closed system, glass corrosion
proceeds through fOUf stages of which the last two (transition and final) are determined by
mineral precipitation from the aqueous medium.

4) Bulk vitrification to accelerate LAW immobilization is still being evaluated. The major obstacle
to its implementation on a large scale, the migration of waste species into the refractory lining,
has been overcome by using fine-grain additives and adding cellulose to the melter feed.
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