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Abstract— This paper investigates stochastic processes that
are modeled by a finite number of states but whose transition
probabilities are uncertain and possibly time-varying. The treat-
ment of uncertain transition probabilities is important because
there appears to be a disconnection between the practice and
theory of stochastic processes due to the difficulty of assigning
exact probabilities to real-world events. Also, when the finite-
state process comes as a reduced model of one that is more
complicated in nature (possibly in a continuous state space),
existing results do not facilitate rigorous analysis.

Two approaches are introduced here. The first focuses on
processes with one terminal state and the properties that affect
their convergence rates. When a process is on a complicated
graph, the bound of the convergence rate is not trivially related
to that of the probabilities of individual transitions. Discovering
the connection between the two led us to define two concepts
which we call “progressivity” and “sortedness”, and to a new
comparison theorem for stochastic processes. An optimality
criterion for robust optimal control also derives from this
comparison theorem. In addition, this result is applied to the
case of mission-oriented autonomous robot control to produce
performance estimate within a control framework that we
propose.

The second approach is in the MDP frame work. We
will introduce our preliminary work on optimistic robust
optimization, which aims at finding solutions that guarantee
the upper bounds of the accumulative discounted cost with
prescribed probabilities. The motivation here is to address the
issue that the standard robust optimal solution tends to be
overly conservative.

I. INTRODUCTION

The theory of stochastic processes has produced many
elegant results. However, there seems to be a disconnection
between theory and practice1, which is largely due to the dif-
ficulty of assigning exact probabilities to real-world events.
This is particularly true in the case of autonomous robot
control, which will be discussed later in this paper.
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1There are some notable exceptions such as the quantitative approach to
analyzing the financial market

For the most part of this paper, we consider processes
with one terminal (absorbing) state and concentrate on their
convergence rate. This is largely motivated by our study
of mission-oriented autonomous robot control, in which the
robot usually need to execute several steps, some enabling
the others, and finally accomplishing the mission. A very
relevant body of research include those on symbolic methods
of control and Motion Description Languages. See [1], [2],
[3], [7] and the collection of articles in [4]. For such
systems, accomplishment of the mission can be modeled as
a terminal state, and one can compute the risk of mission not
accomplished by some deadline from the convergence rate.

Here, we assume only bounds of the transition probabili-
ties are known. When the process is on a complicated graph,
the bound of the convergence rate is not trivially related to
that of the probabilities of individual transitions. That is,
whether the convergence rate would increase or decrease
when a particular transition probability increases is not clear
in general when the other transition probabilities are only
known up to a range. For instance, consider the graph in
Figure 1, in which both nodes 2 and 3 may reach the goal
directly. The figure can actually be misleading in this case.
For this chain, it is possible that Stage 2, even Stage 1, is
actually “closer” to the terminal stage than Stage 3. Then, the
seemingly forward transitions (suggested by how the nodes
are ordered) from nodes 1 and 2 to 3 are actually backward
ones.

2 3 41 *
the terminal stage

Fig. 1. A diagram of stages and transitions in a process in which the order
of the stages may or may not be misleading.

To address this problem, we defined two new concepts
which we call progressivity and sortedness. “More progres-
sive” is a relation between probability transition matrices
that is different from the commonly used elementwise “≥”
relation. “Sortedness” is on the other hand a property that
certifies a transition matrix to serve as a reference for pro-
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gressivity based comparison. The main theorem of this paper
states that if a constant transition matrix P̂ is sorted, then
all processes whose transition matrices are more progressive
than P̂ for all time converges faster than the Markov process
associated with P̂ . In addition, we will show that this result
leads to an optimality criterion for robust optimal control.

Another topic discussed in this paper is optimistic robust
optimization (ORO) of Markov Decision Processes (MDPs),
again, with uncertain transition probabilities. Robust opti-
mization is traditionally studied in the sense of optimizing
the worst-case outcome, see [12], [13], [9], [6] for example.
However, the optimal policy that concentrates on the worst
cases can often be too conservative. With ORO, one may
make use of available probabilistic information to come up
with optimal solutions that focus on the probably scenarios
rather than the worst-case scenarios. [10], [11] has studied
the ORO of linear programming problems with uncertain
constraints, in which the ORO optimal solution has a con-
trolled level of probability of violating the constraints. The
work reported here is an extension to the MDP case, although
instead of having a chance of violating some constraints, the
ORO solution here has a chance of giving an estimate of the
accumulative cost that is lower than the actual outcome.

In what follows, the first topic mentioned above will be
discussed in Section II, III, and IV. Among them, Section II
introduces the concepts of “progressivity” and “sortedness”,
and proves the main theorem; Section III discusses the
implication to robust optimization; and Section IV applies
the results to mission-oriented autonomous robot control. The
second topic of the paper (the MDP case) will be discussed
in Section V.

II. A COMPARISON THEOREM FOR THE TIME-TO-FINISH
OF STOCHASTIC PROCESSES WITH UNCERTAIN AND

TIME-VARYING TRANSITION PROBABILITIES

Consider a stochastic system with L + 1 possible
states, where the state L + 1 is absorbing. Let φ(k) =
(φ1(k), . . . , φL(k))T , where φi(k), i = 1, . . . , L is the
probability of reaching state i at time k. Let ψ(k) be the
probability of reaching the absorbing state by time k. Let
P (k) be the transition probability matrix with the row and
column corresponding to the absorbing state removed. This
shall be understood when we mention probability transition
matrices in what follows. Thus

φ(k + 1) = P (k)φ(k), ψ(k) = 1− 1T φ(k). (1)

The matrix P (k) is nonnegative and further sub-stochastic.
Let’s review some useful properties of such matrices first. For
a sub-stochastic matrix P , the magnitude of its eigenvalues
cannot exceed 1. Recall that a square nonnegative matrix is
called irreducible if given any two indices i, j ∈ {1, . . . , L},
there exists a sequence of indices i1, i2, . . . , il such that

pi1i · pi2i1 · pi3i2 · · · pil,il−1 · pj,il
> 0.

Intuitively, this means that there is a possible chain of
transitions connecting any pair of states. If P is further
irreducible, then (see [8], Chapter 1, Theorems 4.1, 4.3 and
5.1)

(i) P has a unique real and positive eigenvalue r such that
r ≥ |λ| for any other eigenvalue λ of P . This eigen-
value r is called the maximal eigenvalue of P . Note
that a complex eigenvalue with the same magnitude, if
it exists, is not referred to as a maximal eigenvalue.

(ii) The maximal eigenvalue of P has a positive eigenvec-
tor.

(iii) The maximal eigenvalue of P is greater than the
maximal eigenvalue of any principal submatrix of P .

(Note: Properties (i) and (ii) are the main part of the well-
known Perron-Frobenius Theorem. If P is reducible, then it
still has a maximal eigenvalue, but it might have multiplicity
greater than one and the associated eigenvectors are only
guaranteed nonnegative.)

The transition matrix P (k) is generally time-varying, and
we do not assume that it is known exactly for any given
k. Then, the question is: What do we need to know about
P (k) in order to make a statement about the time-to-finish
distribution of the system. Previous works typically use
elementwise bounds of P (k). Although intuitive, that does
not seem to be closely connected to the behavior of the
process. Here, we define a different relation that is more
relevant to the problem under study.

Definition 1 (Progressivity): Consider two L × L transi-
tion matrices P1 and P2. We say that P2 is no less progressive
than P1, denoted by P2 º P1, if

qT (P2 − P1) ≤ 0

for any vector q = (q1, q2, . . . , qL)T such that

q1 > q2 > . . . > qL > 0.

If qT (P2 − P1) < 0 then P2 is more progressive than P1,
denoted by P2 Â P1.

The relation “no less progressive” is a partial order of
the set of sub-stochastic matrices. Intuitively, being no less
progressive means having an equal or greater tendency of
transiting to higher-index states. Indeed, if from each state,
the transition probability to some state is reduced and the
same amount is added to that of a higher-index state, then
the transition matrix P becomes more progressive.

Example 1: Consider

P1 =




1− p1 1− p2 1− p3

p1 0 0
0 p2 0


 ,

P2 =




1− p1 − ε1 1− p2 1− p3 − ε3
p1 + ε1 0 0

0 p2 − ε2 ε3


 ,
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and

P3 =




1− p1 − ε1 1− p2 1− p3 − ε3
p1 + ε1 0 0

0 p2 2ε3


 ,

where ε1, ε2, ε3 are small positive numbers such that
P1, P2, P3 are still sub-stochastic. One may verify using the
definition that P2 Â P1 and P3 cannot be compared with P1

or P2 in terms of progressivity.

The “no less progressive” relation is a linear inequality
of the elements of the transition matrices, as shown by the
following lemma.

Lemma 1: Let

Q =




1 1 . . . 1 1
1 1 . . . 1 0

. . .
1 0 . . . 0 0




L×L

.

(i) P2 º P1 if and only if Q(P2 − P1) ≤ 0.
(ii) If P2 Â P1, then Q(P2−P1) ≤ 0 and Q(P2−P1) 6= 0.

(iii) If Q(P2 − P1) < 0, then P2 Â P1.

(The matrix inequalities are in the elementwise sense.)

Proof: For the “only if” part of item (i), note that
each row of Q is a vector on the boundary of the set of
vectors whose elements are positive and in descending order.
Then, from the definition of “º” and using the continuity of
qT (P2 − P1) in q, Q(P2 − P1) ≤ 0 must hold.

For the “if” part of item (i), one only needs to verify that
any L dimensional vector whose elements are positive and in
descending order can be expressed as a linear combination
of the rows of Q with positive coefficients.

For item (ii), first note that Q is invertible. Thus, Q(P2−
P1) 6= 0, otherwise P1 and P2 would be identical. The rest
of item (ii) follows directly from the “only if” part of (i),
since “Â” is strictly stronger than “º”. Item (iii) holds for
the same reason as the “if” part of (i).

One may expect a system to proceed to the absorbing state
no slower if its probability transition matrix becomes no less
progressive. However, this is not necessarily the case.

Example 2: Consider again the graph depicted in Figure
1. A possible transition matrix of this system is

P =




0.1 0 0.1
0.9− ε 0.1 0

ε 0.1 0.1


 ,

where ε > 0 is a parameter. Clearly, P is no less progressive
for greater ε. However, the maximal eigenvalue of P in-
creases when ε increases. That is, the probability of reaching
the absorbing state approaches 1 slower for greater ε.

A careful examination of the example illustrates a general
problem. Namely, the state 2 is actually “closer” to the
absorbing state than the state 3 is. For cases with a more
complicated graph of transitions, inspection can become
difficult. To establish a comparison, we need an additional
condition.

Definition 2 (Sortedness): Let P be a L × L irreducible
nonnegative matrix with maximal eigenvalue r and associ-
ated positive left eigenvector q = (q1, q2, . . . , qL)T . We say
that P is sorted if q1 > q2 > . . . > qL, or semi-sorted if
q1 ≥ q2 ≥ . . . ≥ qL.

Remark: From the Perron-Frobenius Theorem (properties
(i) and (ii) of irreducible nonnegative matrices discussed
above), every irreducible nonnegative matrix can be rear-
ranged into a sorted matrix by simultaneous row/column
permutation.

The significance of sortedness will become apparent in
light of the following theorem.

Theorem 1: Consider process (1). Let P̂ be a sorted
substochastic matrix of the same dimensions as P (k), and
let r be the maximal eigenvalue of P (k).

(i) If P (k) º P̂ for all k = 1, 2, . . . ,∞, then

∃β, 1− ψ(k) < β · rk, as k →∞.

(ii) Further, if P (k) Â P̂ , then

(1− ψ(k)) · r−k → 0 as k →∞.

(iii) If P̂ Â P (k), then

(1− ψ(k)) · r−k →∞ as k →∞.

Proof: Let 0 < r ≤ 1 be the maximal eigenvalue of P̂
and q be the associated positive left eigenvector. Let

V (k) = r−kqT φ(k).

Then,

V (k + 1)− V (k) = qT (r−k−1φ(k + 1)− r−kφ(k))
= r−k−1qT (P (k)φ(k)− rφ(k))
= r−k−1qT (P (k)− P̂ )φ(k).

By virtue of P̂ being sorted, the elements of q satisfy q1 >
q2 > . . . > qL > 0.

For the first claim, if P º P̂ , then qT (P−P̂ ) ≤ 0. Because
φ(k) is always nonnegative, we have V (k + 1)− V (k) ≤ 0.
By definition, V (k) ≥ 0, so V (k) converges to a bounded
value for k →∞.

Let σ(k) = r−k1T φ(k), then

V (k)/q1 ≤ σ(k) ≤ V (k)/qL.

Thus σ(k) also converges to a finite value (possibly zero) as
k →∞, say σ∞. Then, 1T φ(k) ∼ σ∞ · rk for k →∞. That
is, 1− ψ(k) ∼ σ∞ · rk.
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For the second claim, if P Â P̂ , then qT (P − P̂ ) < 0. Let
α > 0 be the smallest element of −qT (P − P̂ ), then

V (k + 1)− V (k) ≤ r−k−1 · (−α)1T φ(k)
< (−α)1T φ(k)
< − α

qL
V (k).

Thus, V (k) decays to zero at least as fast as (1 − α/qL)k,
and so does σ(k). Then σ∞ = 0.

Similarly for the third claim, if P̂ Â P , then V (k),
σ(k) →∞. Consequently, (1−ψ(k)) ·r−k →∞ as k →
∞.

Remarks:

1) One may wonder whether we could have obtained the
same result if we defined “more progressive” as: P2 Â
P1 if for any vector q whose elements are positive and
in descending order, qT (P2 − P1) ≤ 0 and 6= 0. The
answer is negative. To give an example, consider

P̂ =
(

0 0.8
0.7 0

)
,

P (k) =





(
0 0.6

0.7 0.2

)
: k is even,

(
0 0.8

0.9 0

)
: k is odd,

and φ(0) = (1, 0)T . One may verify that φ(k) would
be the same whether the probability transtion matrix
is P (k) or P̂ , while P (k) would be more progressive
than P̂ under the alternative definition.

2) The connection between progressivity and sortedness
plays a central role in the above proof. These two
concepts seem to be fundamental. In particular, more
implications of the sortedness property seem worthy
of further investigation. As a first step of this in-
vestigation, we will explore the connection between
sortedness and robust optimal policies in Section III.

III. ROBUST OPTIMAL POLICY

Consider the following decision problem: Given a system

x(k + 1) = H(k, x(k), u(k), w(k)), x(0) = x0, (2)

where the state x ∈ Rn; the control u is in a command set
U = {µ1, µ2, . . . , µL}; and w is a disturbance process in
a probability space (Ω,F) with probability measure Pr[·] :
F 7→ [0, 1]. Denote the control policy by

u = h(x) : Rn 7→ U. (3)

Suppose the command µi is admissible only when x ∈
Xi ⊆ Rn, i = 1, . . . , L. Consider the problem of maximizing
the probability of driving the system state into a target
domain in the state space, denoted by XL+1, as time passes.

let s(k) denote the index of the command issued at time
k. Then, given a control policy and the initial state, s(k) is
a random process over {1, . . . , L + 1}, with L + 1 being an
absorbing state. We will call s(k), k = 1, 2, . . . the command
process. The probability transition of s(k) can be written in
the form of (1).

Here we do not assume the probability measure of the
disturbance process is known exactly. Instead, we will only
assume that Pr[·] falls within a collection of probability
measures M, such that the probability transition matrix of
the process s(k) is no less progressive than some matrix.
This assumption can be satisfied if under each command µi

and for any domain D ⊂ Rn, we can obtain two bounds p̌
and p̂, and

p̌ ≤ Pr[H(k, x, µi, w) ∈ D|x] ≤ p̂,

given any x ∈ Xi and for all k ≥ 0.

Consider the problem of designing a robust optimal policy
to maximize the minimum rate of convergence of the system
towards the domain Xk+1. Formally, the problem can be
written as

max
h:Rn 7→U

a

s. t. ∃β, limk→∞ Pr[x(k) 6∈ XL+1]eak ≤ β,
∀Pr[·] ∈M and ∀x0,

(4)

where the process x(k) is defined by (2) and (3).

One feasible policy is the following:

u = h∗(x) = µi

if x ∈ Si = {x ∈ Xi|x 6∈ Xj , j = i + 1, . . . , L + 1}.
(5)

One may verify that S1, S2, . . . , Sk+1 is a partition of Rn.
This policy is thus well-defined. In plain words, this policy
takes the ordering of the commands in the command set as an
indication of relative priority, and issues a certain command
if firstly, it is admissible; and secondly, no command with a
higher priority (a higher index) is admissible. This policy
makes intuitive sense, and it can indeed be the optimal
solution of (4). We will prove a criterion for the optimality
of policy (5) in the rest of this section.

Lemma 2: Suppose the probability measure of Pr[·] is
exactly given, and Pr[H(k, x, µj , w(k)) ∈ Si|x = ξ] = pi,j

uniformly for all ξ ∈ Xj and k = 0, 1, . . ., i, j = 1, . . . , L.
If P = {pi,j} is sorted, then the policy (5) is the optimal
solution of

max
h:Rn 7→U

a

s. t. ∃β, limk→∞ Pr[x(k) 6∈ XL+1]eak ≤ β.
(6)

Proof: Consider the command process. The hypothesis
of the lemma says that under the policy (5), the transition
probabilities of this process are given by P for all time.
Consider an alternative strategy such that for i = 1, . . . , L,
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u(k) takes the value of µi when x(k) ∈ S′i. (By definition,
S′L+1 = SL+1.) For the control strategy to be well-defined,
S′1, S

′
2, . . . , S

′
L+1 must also be a partition of Rn. At the same

time, because of the admissibility constraints, S′i ⊆ Xi for
each index i. The change from the original partition to the
new partition can be decomposed into a series of changes
that each involve the domains of two actions. Suppose one
of the changes in this series is to remove a nonempty set
∆S from the domain of action i0 and add it to the domain
of action i1, i1 6= i0. Then, ∆S ⊆ Si0 ∩ S′i1 . Note that
Si0 does not intersect Xi for i = i0 + 1, . . . , L + 1, and
S′i1 is in Xi1 . Then, for Si0 ∩ S′i1 to be nonempty, i1 < i0
must hold. A consequence of the above change is to render
the probability transition matrix of the process s(k) less
progressive in terms of the current ordering of the actions.
Because the less progressive relation is transitive (as a part
of being a partial order), a series of changes like this results
in an alternative strategy whose transition matrix is also less
progressive than P . This is true for all alternative strategies.
In addition, since P is sorted, the optimality of policy (5)
follows from Theorem 1.

Theorem 2: Let P (k) be the probability transition matrix
of the command process s(k). Suppose for any initial state
x0, time k ≥ 0, and any Pr[·] ∈ M, P (k) is no less
progressive than a constant matrix P ∗ when policy (5) is
applied, with P (k) ≡ P ∗ being one possibility. If P ∗ is
sorted, then policy (5) is an optimal solution of the problem
(4).

Proof: Denote the maximal eigenvalue of P ∗ by r∗,
and let a∗ = − ln r∗. Then, from Theorem 1, there exists a
β such that Pr[x(k) 6∈ XL+1] ≤ βe−a∗k for k →∞ and all
Pr[·] ∈M. This shows that the pair (h∗(·), a∗) is a feasible
solution of (4).

On the other hand, let Pr∗[·] be a probability measure such
that P (k) ≡ P ∗. That is, Pr[H(k, x, µj , w(k)) ∈ Si|x ∈
Xj ] = p∗i,j uniformly for all x ∈ Xj and k = 0, 1, . . .,
i, j = 1, . . . , L + 1. Pr∗[·] is then a member of M. Lemma
2 says that if Pr∗[·] is indeed the probability measure of
the disturbance process, then no other policy can produce
a higher convergence rate than a∗. Note that Pr∗[·] is the
worst-case probability measure for h∗(·). Thus, (h∗(·), a∗)
is optimal.

IV. MISSION ORIENTED AUTONOMOUS ROBOT
CONTROL

In this section, we consider the problem of mission
oriented autonomous robot control as another application
of Theorem 1. The design solutions to such problems are
often hierarchical. Let’s consider a two-layer model, where
the lower layer produces the so-called elementary actions
(EAs) together with their preconditions, postconditions and
assessments of their minimum probability for “success”; and

the upper layer produces a mission-accomplishing policy
through ordering the EAs.

Here, an EA is a 5-tuple (f, ϕ, ψ, p̂, Θ). Let x ∈ Rn be
the state of the robot’s world. The function f(x) is a lower-
level control law that produces the signals directly fed to the
actuators. Denote the state evolution under f by x(t + τ) =
F (t, x(t), w, τ), where w is a random process. (Here, we
use t to denote time in stead of k for reasons that will
become clear later.) The functions ϕ : Rn 7→ {true, false}
and ψ : Rn 7→ {true, false} correspond to precondition and
postcondition. The precondition ϕ(x) equals true if this EA
is admissible at x, and false otherwise. The postcondition
ψ(x) indicates the nominal result that the EA is designed
to achieve, with ψ(x) = true when x is in the nominal
range of the terminal state of this EA. The number p̂ is a
probability, and the number Θ is a finite duration in time.
Taken together, the execution of the control law f with initial
state in ϕ−1(true) satisfies2:

1) The system will not go to ruin under f , where “ruin” is
defined as a domain R, a subset of Rn that is disjoint
from both ϕ−1(true) and ψ−1(true), and such that
when x enters R, it becomes infeasible for any control
law to drive x out of R.

2) The system state x will enter ψ−1(true) from
ϕ−1(true) in less than Θ units of time with a prob-
ability greater than p̂. More precisely, for all t,

Pr



∃δ ∈ (0, Θ),
ϕ(F (t, x(t), w, τ)) = true for 0 ≤ τ < δ,
and ψ(F (t, x(t), w, δ)) = true


 > p̂.

(7)

In plain words, when admissible, an EA is safe and has a
chance to succeed in some given time. We will call p̂ the
minimum success probability, Θ the nominal duration, and
ϕ−1(true) the admissible domain of this EA.

The system dynamics treated at the upper layer can be
expressed in the form of (2):

x(t + 1) = H(t, x(t), u(t), w(t)), x(0) = x0, (8)

where the command set U becomes a set of EAs — EAi =
(fi, ϕi, ψi, p̂i, Θi), i = 1, . . . , L + 1. Then,

H(t, x, EAi, w) ≡ Fi(t, x(t), w, 1). (9)

The admissible domain of the ith command is Xi =
ϕ−1

i (true). Assume the mission of the robot is characterized
by rendering ϕL+1 = true. Recalling that R is the domain
of ruin, assume for all x 6∈ R, the precondition of at least
one EA is true. The control policy in the form of (5) can be
applied:

h(x) = fi(x) if ϕi(x) = true, and
ϕi+1(x) = . . . = ϕL(x) = ϕL+1(x) = false.

(10)

2Here ϕ−1(true) and ϕ−1(false) denote the preimage of true and false,
respectively, although ϕ−1 as a function might not exist. The same is true
for ψ−1.
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There is a difference however: the probabilistic informa-
tion assumed for the EAs is not in terms of the transitions of
each step. This formulation is natural for autonomous robot
control, because each EA may have a chance to reach its
goal only after running for some time. But we can still apply
Theorem 1 by rescaling time.

Theorem 3: Consider the policy (10). If for each index
i = 1, . . . , L, there is a i′ > i such that ψi(x) = true
implies ϕi′(x) = true, then this mission is accomplished
w.p.1 for all initial conditions not in the ruin set R. Further,
the probability of mission-not-accomplished by time t, as
t →∞ is less than

rt/ΘM ,

where 0 < r < 1 is the maximal eigenvalue of the matrix

P̂ =




1− p̂1 1− p̂2 1− p̂3 · · · 1− p̂k

p̂1 0 0 · · · 0
0 p̂2 0 · · · 0
...

. . .
...

0 . . . p̂k−1 0




,

and ΘM = max{Θ1, Θ2, . . . , ΘL}.
Proof: Given a policy, the system (8) generates a

symbolic sequence σ(k) : R+ 7→ {1, 2, . . . , L, L+1}, which
records the EAs actually taken to accomplish the mission.
(This sequence is somewhat different from the command
process, but related.) When the mission is started, σ(0) is
generated to record the first EA applied. Each next symbol is
generated when the policy switches to a different EA, or the
EA currently applied reaches its nominal duration. Mission
accomplishment is recorded as σ(k) = L + 1, and is an
absorbing state of the sequence. Let tk be the time when the
kth symbol is generated. Then,

tk
k
≤ ΘM . (11)

The probability transition of σ(k) can be written in the
form of (1):

φ(k + 1) = P (k)φ(k), ψ(k) = 1− 1T φ(k),

where φ(k) is a L-dimensional vector recording the prob-
ability distribution of s(k) over 1 through L, and ψ is the
probability of the mission being accomplished by time tk.
Using the definition of the minimum success probabilities
and Lemma 1, one can show that P (k) is more progressive
than P̂ for all k. The matrix P̂ is also sorted. To see this,
let r be the maximal eigenvalue of P̂ . From property (iii)
of irreducible matrices in Section II, r > 1 − p1 because
1−p1 is a principal submatrix of P̂ . One may verify that the
eigenvector of P̂ associated with r is q = (q1, q2, . . . , qk)T ,
with

q1 = 1,

qi = 1− (1− r) ri−2+ri−3p1+...+p1p2···pi−2
p1p2···pi−1

,

i = 2, . . . , k.

Using 1 < r < 1 − p1 and with some tedious calculations,
it can be shown that q1, q2, . . . , qk is indeed a decreasing
sequence. So, the process s(k) converges to L + 1 in
probability at a rate greater than that of rk. Almost sure
convergence to mission accomplishment follows based on
the well-known Borel-Cantelli Lemma ([5]).

Note that the probabilistic information assumed here
is almost minimum for estimating the time-to-mission-
accomplishment of an autonomous robot. If richer infor-
mation is available, then more interesting analysis may be
carried out along the same line.

V. A ROBUST APPROACH TO MARKOV DECISION
PROBLEMS WITH UNCERTAIN TRANSITION

PROBABILITIES

As a different but very related problem, we consider
a discrete-time infinite horizon discounted cost MDP with
finite state space S and control space U . For notational
simplicity, we assume that U is state-independent. When the
system is at state i ∈ S and control u ∈ U is taken, a
cost c(i, u) is incurred, which we assume nonnegative and
bounded. The system then makes a transition to state j with
probability pij(u). The process then repeats from state j.
Let pi(u) = (pij(u))j∈S be the transition probability vector
associated with the state-control pair (i, u). Consider finding
a stationary policy π : S 7→ U , and let Π be the set of all
admissible candidates. Let 0 < α < 1 be the discount factor.

In the framework of “standard” MDPs, it is assumed that
the transition probability vectors pi(u), ∀ i ∈ S, u ∈ U ,
are precisely known. Let us denote by ω the collection of
the transition probability vectors, i.e., ω , {pi(u)}i∈S,u∈U .
Given the initial state i0 = i, the cost of policy π is calculated
as

V π
ω (i) = Eω

[ ∞∑
t=0

αtc(it, π(it)) | i0 = i
]
,

where it is the state at epoch t and the expectation is taken
with respect to ω. The objective is then to find an optimal
policy π∗ that minimizes V π

ω (i) for all i ∈ S, i.e.,

V ∗
ω (i) = min

π∈Π
V π

ω (i), ∀ i ∈ S.

For the robust problem, the uncertainty in the transition
probabilities can be modeled by assuming that pi(u) belongs
to some bounded set Ωi(u). For instance, Ωi(u) can be
described as Ωi(u) , {p | p ≤ p ≤ p, p ∈ ∆|S|}, where
p ≥ p ≥ 0 and ∆|S| is the probability simplex in R|S|. Let
Ω , ×Ωi(u), i.e., the Cartesian product of Ωi(u), i ∈ S.
When the transition probabilities are uncertain, the worst-
case approach considered in the literature seeks a policy that
minimizes the worst possible cost. Such a policy, denoted by
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πF , is the solution of the standard robust MDP:

V ∗
F (i) = min

π∈Π
max
ω∈Ω

Eω

[ ∞∑
t=0

αtc(it, π(it)) | i0 = i
]
, ∀ i ∈ S.

We refer to πF as the fat policy. It was shown by [9] that
V ∗

F (i), ∀ i ∈ S, satisfies the following set of equations, which
is the robust version of the well-known Bellman equations:

V ∗
F (i) = min

u∈U

{
c(i, u) + α max

pi(u)∈Ωi(u)

∑

j∈S

pij(u)V ∗
F (j)

}
, ∀ i.

The fat policy is found by solving

πF (i) = argmin
u∈U

{
c(i, u) + α max

pi(u)∈Ωi(u)

∑

j∈S

pij(u)V ∗
F (j)

}
, ∀ i.

A value iteration algorithm for solving the robust Bellman
equations was proposed by [9]. Also, [6] proved indepen-
dently the robust Bellman equations and developed both
value and policy iteration algorithms.)

Let V πF
ω (i) be the cost of the fat policy of the initial state

i0 = i when state transitions occur according to a given ω,
i.e.,

V πF
ω (i) = Eω

[ ∞∑
t=0

αtc(it, πF (it)) | i0 = i
]
.

Clearly, for any ω ∈ Ω, V ∗
ω (i) ≤ V πF

ω (i) ≤ V ∗
F (i) for all

i ∈ S.

In order to obtain a less conservative policy, let’s consider
an optimistic robust formulation, where we restrict our at-
tention to a subset of the full uncertainty set Ω. Of course,
by doing this, we can only produce performance bounds
that holds in a probablistic sense. Let R , ×Ri(u), where
Ri(u) ⊆ Ωi(u). The optimistic robust MDP problem is:

V ∗
R(i) = min

π∈Π
max
ω∈R

Eω

[ ∞∑
t=0

αtc(it, π(it)) | i0 = i
]
, ∀ i ∈ S.

Let πR denote an optimal policy of the optimistic robust
MDP. Then, V ∗

R(i), ∀ i ∈ S, satisfies the robust Bellman
equations:

V ∗
R(i) = min

u∈U

{
c(i, u) + α max

pi(u)∈Ri(u)

∑

j∈S

pij(u)V ∗
R(j)

}
, ∀ i,

with

πR(i) = argmin
u∈U

{
c(i, u) + α max

pi(u)∈Ri(u)

∑

j∈S

pij(u)V ∗
R(j)

}
, ∀ i.

Again, one can use a value iteration algorithm or policy
iteration algorithm to determine V ∗

R(i) and πR(i) for all
i ∈ S.

Having defined the robust MDP, we characterize its per-
formance by comparing its optimal cost with the optimal
cost of a random instance of the MDP. Specifically, we are
interested in P

[
V πR

ω (i) ≤ V ∗
R(i)

]
for a randomly selected

ω ∈ Ω. To that end, let us consider the cost of the robust

policy for the MDP with ω. Let V πR
ω be the corresponding

value function, i.e.,

V πR
ω (i) = Eω

[ ∞∑
t=0

αtc(it, πR(it)) | i0 = i
]
.

Consider the probability of the complement of V πR
ω (i) >

V ∗
R(i):

P
[
V πR

ω (i) > V ∗
R(i)

]

= P
[
V πR

ω (i) > V ∗
R(i) | ω ∈ R

]
P

[
ω ∈ R

]

+ P
[
V πR

ω (i) > V ∗
R(i) | ω /∈ R

]
P

[
ω /∈ R

]

= P
[
V πR

ω (i) > V ∗
R(i) | ω /∈ R

]
P

[
ω /∈ R

]
. (12)

Let pi(πR(i)) ∈ ω be the transition probability vector for
the state-control pair (i, πR(i)). Since V πR

ω (i) and pi(πR(i))
satisfy V πR

ω (i) = c(i, πR(i)) + α
∑

j∈S pij(πR(i))V πR
ω (j),

we can write the first probability in (12) as

P
[
V πR

ω (i) > V ∗
R(i) | ω /∈ R

]

= P
[
c(i, πR(i)) + α

∑

j∈S

pij(πR(i))V πR
ω (j) >V ∗

R(i) | ω /∈R
]

= P
[ ∑

j∈S

pij(πR(i))V πR
ω (j) > C(i) | ω /∈ R

]
, (13)

where C(i) = 1
α

{
V ∗

R(i)− c(i, πR(i))
}

.

The V πR
ω (i) in (13) cannot be determined until ω is

realized. To find a bound of V πR
ω (i) that is independent of

ω, we compute the worst cost of the policy πR for all ω /∈ R
as follows:

V πR(i) = max
ω/∈R

Eω

[ ∞∑
t=0

αtc(it, πR(it)) | i0 = i
]
, ∀ i ∈ S.

One can calculate V πR(i) through the following set of
equations: for all i ∈ S

V πR(i) = c(i, πR(i)) + αmax
ω/∈R

∑

j∈S

pij(πR(i))V πR(j), ∀i ∈ S.

(14)

It may not be easy to compute V πR(i) because the require-
ment of ω /∈ R could make the maximization problem in
(14) complicated. In that case, one may find a bound by
replacing V πR(i) with V̂ πR(i), which is the solution of3

V̂ πR(i) = c(i, πR(i))

+ α max
pi(πR(i))∈Ωi(πR(i))

∑

j∈S

pij(πR(i))V̂ πR(j), ∀ i ∈ S.

Replacing V πR
ω (i) in (13) with V πR(i), we obtain

P
[∑

j∈S
pij(πR(i))V πR

ω (j) > C(i) | ω /∈ R
]

≤ P
[∑

j∈S
pij(πR(i))V πR(j) > C(i) | ω /∈ R

]

≤ P
[
V′pi(πR(i)) ≥ C(i) | ω /∈ R

]
, (15)

3The use of V̂ πR (i) could make the analysis weaker.
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where V is the vector whose components are the V πR(i).

Putting (12), (13), and (15) together and using Markov’s
inequality, we obtain for θ ≥ 0

P
[
V πR

ω (i) > V ∗
R(i)

]

≤ P
[
V′pi(πR(i)) ≥ C(i) | ω /∈ R

]
P

[
ω /∈ R

]

≤ e−θC(i)E
[
eθV′pi(πR(i)) | ω /∈ R

]
P

[
ω /∈ R

]

= exp
[− θC(i) + Λpi(πR(i))∈ω/∈R(θV)

]
P

[
ω /∈ R

]
,

where Λpi(πR(i))∈ω/∈R(θV) , log E
[
eθV′pi(πR(i)) | ω /∈

R
]
. Optimizing over θ, we arrive at the following proposi-

tion.

Proposition 1: It holds that

P
[
V πR

ω (i) > V ∗
R(i)

]

≤ exp
[

inf
θ≥0

{
− θC(i) + Λpi(πR(i))∈ω/∈R(θV)

}]
P

[
ω /∈ R

]
.

(16)

In general, computing the probability bound in (16) exactly
would still pose computational challenges. Sometimes, how-
ever, ω is induced by a few parameters. In this case, the
computational challenge could be mild.

VI. CONCLUSION

The theme of this paper is on the analysis and control
of stochastic processes whose transition probabilities are
uncertain. We first formulated a basis of comparison between
finite-state stochastic processes with one absorbing state,
and showed that the result has useful implications to robust
optimal control. Second, we discussed our preliminary work
on optimistic robust solution of Markov Decision Processes,
in which the key issue is to estimate the probability that
the performance in an actual operation would fall short of
the performance bound suggested by the optimistic robust
formulation.
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