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Summary

The Modular Aquatic Simulation System in Two Dimensions (MASS2) is a two-dimensional,

depth-averaged hydrodynamic and transport model. The model simulates time varying distri-

butions of depth-averaged velocities, water surface elevations, and water quality constituents.

MASS2 is applicable to a wide variety of environmental analyses of rivers and estuaries where

vertical variations in the water column are negligible or unimportant.

MASS2 uses a boundary-fitted, orthogonal, curvilinear computational mesh. A key feature is

the use of multiple computational mesh blocks. Multiple blocks allow MASS2 to be applied to

complex domains. Blocks can be connected to each other with cells having a one-to-one or one-

to-many correspondence. This allows the use of a high-density mesh where detailed results are

needed and coarser meshes elsewhere.

MASS2 is designed to simulate a range of river and estuarine flow and water quality problems.

MASS2 can simulate a wide variety of hydrodynamic conditions, including supercritical flow and

hydraulic jumps. MASS2 can also be used to simulate the fate and transport of water quality

parameters. Any number of conservative or decaying scalar quantities (e.g., salinity, radionuclides)

may be simulated simultaneously with hydrodynamics or using precomputed hydrodynamics. In

addition, MASS2 has the ability to simulate some special water quality parameters: total dissolved

gas, temperature, and suspended sediment.

The equations of mass, momentum, and species conservation are discretized using the finite-

volume method and solved using iterative solution procedures. The coupling of the momentum and

mass conservation (continuity) equations is achieved using a variation of the SIMPLE algorithm

extended to shallow-water flows. MASS2 is coded in standard Fortran90 and has been compiled

on a variety of operating systems including Linux, Windows, and Mac OS X.

Features and capabilities of MASS2 include the following:

• Fully-conservative formulation of the governing equations that allows for shock-capturing

• Unsteady simulation including time-marching to a steady-state

• Multi-block, orthogonal curvilinear computational grid to allow for simulation of complex

channels and islands

• Implicit finite-volume discretization on a staggered grid

• Iterative solution methods

• Parallel processing using message passing interface (MPI)

• Subcritical flows
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• Supercritical flows including hydraulic jumps

• Wetting and drying of cells

• Temperature simulation through solution of the thermal energy equation

• Total dissolved gas transport including a temperature-dependent equation of state

• Species and contaminant transport

• Non-conservative transport processes such as surface heat exchange, surface gas exchange,

sediment-contaminant interaction

• Suspended sediment transport

• Bed evolution including erosion and deposition

• Sediment-contaminant interaction using partition coefficients

• Spatially-distributed coefficients (roughness, eddy viscosity, species diffusion)

• Input and model control using text files

• Restart from previous simulation results

• Transport-only model using previously computed hydrodynamics

This report documents the theory and numerical methods used in MASS2. In addition, the

results of several hydrodynamic and transport validation tests are presented. A companion user

manual documents the application of MASS2.
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Glossary of Symbols

The following is a list of the symbols and their definitions used in this document. Where

specific units are required, those units are listed with the definition of the symbol. However, most

of the theory presented in this document is applicable in any consistent set of units. So in lieu of

specific units, dimensions are listed in square brackets ([]). Dimensions are abbreviated as follows:

M = mass, L = length, T = time, and F = force (= MLT-2).

α solar altitude (radians)

αd depth correction under-relaxation factor

βair apparent Bunsen coefficient for air

(L/L·atm)

βi Bunsen coefficient for gas fraction i

(L/L·atm)

δ declination of the sun (radians)

∆t time step [T]

λφ decay rate of transported scalar φ [T-1]

(ξ,η)
orthogonal computational coordinates

ρ fluid density [ML-3]

ρb bed bulk density[ML-3]

ρs j
solids density sediment fraction j [ML-3]

σ∗ Stephan-Boltzmann constant

(5.67×10−8 W/m2K4)

τb bottom shear stress [FL-2]

τb1
bottom shear stress component in the

ξ-direction [FL-2]

τb2
bottom shear stress component in the

η-direction [FL-2]

τd j
bottom shear stress below which

deposition of sediment fraction j occurs

[FL-2]

τe j
bottom shear stress above which erosion

of sediment fraction j is initiated [FL-2]

τs1
surface shear stress component in the

ξ-direction [FL-2]

τs2
surface shear stress component in the

η-direction [FL-2]

ε1 turbulent diffusion coefficient in the

ξ-direction [L2T-1]

ε2 turbulent diffusion coefficient in the

η-direction [L2T-1]

εt turbulent diffusion coefficient [L2T-1]

εw emissivity of water (0.97)

φ volumetric concentration of a dissolved

transported scalar [ML-3]

Φ site latitude (radians)

φbed j
concentration of particulate contaminant

sorbed to sediment fraction j in the bed,

per unit sediment mass [MM-1]

φpart j

volumetric concentration of the

particulate phase of scalar φ associated

with sediment fraction j [ML-3]

φpore volumetric concentration of scalar

quantity φ in the bed pore water [ML-3]

φsed j
volumetric concentration of sediment

fraction j suspended in the water column

[ML-3]

at short-wave radiation atmospheric

transmission coefficient
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Aair apparent molecular volume of air (with

unit conversion, atm·L/mg·mm Hg)

aw wind function coefficient (W/m2/mm Hg)

bw wind function coefficient

(W·sec2/mm Hg)

C total dissolved gas concentration (mg/L)

C∗ saturation concentration of air at the

water surface (mg/L)

Ca Brunt’s coefficient

CL cloudiness as a fraction of sky covered

cv specific heat of water at 15◦C

(4186 J/kg·◦C)

d water depth [L]

D50 j
median particle diameter of sediment

fraction j [L]

dbed bed depth [L]

D j deposition rate of sediment fraction j

[ML-2T-1]

Dporeφ

diffusion rate of scalar quantity φ
between the water column and bed pore

water [L2T-1]

E equation of time (hr)

Eo j
erodibility coefficient for sediment

fraction j [ML-2T-1]

E j erosion rate of sediment fraction j

[ML-2T-1]

ea actual water vapor pressure in air

(mm Hg)

es water vapor saturation pressure of air at

the water surface (mm Hg)

Fj fraction of sediment fraction j in the bed

[MM-1]

g gravitational constant [LT-2]

g11 metric coefficient [L2]

g21, g12

metric coefficient [L2]

g22 metric coefficient [L2]

h hour angle of the sun (radians)

h1 metric coefficient in the ξ direction [L]

h2 metric coefficient in the η direction [L]

Ha measured incoming short-wave solar

radiation (W/m2)

Han net atmospheric long-wave radiation at

the water surface (W/m2)

Hb long-wave back-radiation at the water

surface (W/m2)

He heat flux at the water surface due to

evaporation (W/m2)

Hc heat flux at the water surface due to

conduction (W/m2)

Ho radiation flux reaching the earth’s

atmosphere (W/m2)

Hsn net incoming solar short-wave radiation

at the water surface (W/m2)

Kφ j
rate of mass transfer between dissolved

and particulate phases of scalar φ [T-1]

Kbφ j
coefficient defining partitioning of scalar

quantity φ between dissolved and

particulate sorbed to sediment fraction j

in the bed [L3M-1]

Kdφ j
coefficient defining partitioning of scalar

quantity between dissolved and

particulate sorbed to sediment fraction j

[L3M-1]

KL dissolved gas surface transfer coefficient

[MT-1]

Lloc site longitude (radians)

Lst standard longitude for the local time zone

(radians)
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Mφbed

total mass (all phases) of scalar φ in the

bed per unit bed area [ML-2]

Mφbed j

mass of particulate φ sorbed to sediment

fraction j per unit bed area [ML-2]

Mφpore

mass of scalar φ per unit bed area within

the bed pore water [ML-2]

Mbed total mass of sediment in the bed per unit

bed area [ML-2]

Msed j

mass of sediment fraction j in the bed per

unit bed area [ML-2]

Nsed number of sediment fractions

p bed porosity

PH20 vapor pressure of water (mm Hg)

PTDG

total dissolved gas pressure (mm Hg)

Rs albedo or reflection coefficient

Sφ source term for the transport equation

when dissolved scalar φ is represented

[ML-2T-1]

Sφpart j

source term for the transport equation

when the particulate phase of scalar φ
sorbed to sediment fraction j is

represented [ML-2T-1]

Ssed j
source term for the transport equation

when suspended sediment fraction j is

represented [ML-2T-1]

ST source term for the scalar transport

equation when thermal energy transport

is represented

t time [T]

T water temperature (◦C)

tφ1/2
half-life of transported scalar φ [T]

T11,T21,T22

components of the effective stress tensor

[FL-2]

Ta air temperature (◦C)

tl local time (hr)

ts solar time (hr)

u depth-averaged velocity component in

the x-direction [LT-1]

U depth-averaged velocity component in

the ξ-direction [LT-1]

v depth-averaged velocity component in

the y-direction [LT-1]

V depth-averaged velocity component in

the η-direction [LT-1]

w j settling velocity of sediment fraction j in

water [LT-1]

W wind speed [LT-1]

Xi mole fraction of gas i

x, y Cartesian physical coordinates, e.g., state

plane coordinates [L]

zb bottom elevation [L]
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1.0 Introduction

The Modular Aquatic Simulation System in Two Dimensions (MASS2) is a two-dimensional,

depth-averaged hydrodynamic and transport model. The model simulates time varying distri-

butions of depth-averaged velocities, water surface elevations, and water quality constituents.

MASS2 was originally developed to simulate the transport and fate of total dissolved gas gen-

erated at spillways of dams on the Lower Columbia and Snake Rivers (Richmond et al. 1999b,

2000). Following its initial development, the MASS2 code has evolved to include new capabilities

and has been used in a variety of investigations. Examples include studies of sediment mobility

in the Lower Snake River (Richmond et al. 1999a), time-varying juvenile chinook salmon habitat

along the Hanford Reach of the Columbia River (McMichael et al. 2003; Perkins et al. 2004); and

the fate of Hanford Site radionuclides should they enter the Columbia River (Kincaid et al. 2001).

MASS2 uses a structured, multi-block, boundary-fitted, curvilinear computational mesh that

allows the simulation of very complex riverine or estuarine networks. A single block consists of

a logically rectangular computational mesh. Several blocks may be connected together. The mesh

blocks may have varying resolution allowing high resolution to be used only in areas where it is

needed.

MASS2 can simulate a wide variety of hydrodynamic conditions, including supercritical flow

and hydraulic jumps. It can also simulate a wide variety of water quality conditions, including sed-

iment, conservative or decaying contaminants, sediment-sorbed contaminants, water temperature,

and total dissolved gas.

Any number of these constituents may be simulated simultaneously subject to the limita-

tion of available computer memory. In addition, transport simulations may be performed using

pre-calculated hydrodynamic conditions, allowing long-term transport simulations unencumbered

by the more intensive hydrodynamic calculations, or repeated transport simulations without re-

simulating hydrodynamics.

Capabilities and features of MASS2 include:

• Fully-conservative formulation of the governing equations that allows for shock-capturing

• Unsteady simulation including time-marching to a steady-state

• Multi-block, orthogonal curvilinear computational grid to allow for simulation of complex

channels and islands

• Implicit finite-volume discretization on a staggered grid

• Iterative solution methods

• Parallel processing using message passing interface (MPI)

1



• Subcritical flows

• Supercritical flows including hydraulic jumps

• Wetting and drying of cells

• Temperature simulation through solution of the thermal energy equation

• Total dissolved gas transport including a temperature-dependent equation of state

• Species and contaminant transport

• Non-conservative transport processes such as surface heat exchange, surface gas exchange,

sediment-contaminant interaction

• Suspended sediment transport

• Bed evolution including erosion and deposition

• Sediment-contaminant interaction using partition coefficients

• Spatially-distributed coefficients (roughness, eddy viscosity, species diffusion)

• Input and model control using text files

• Restart from previous simulation results

• Transport-only model using previously computed hydrodynamics

MASS2 is coded in standard Fortran90 and has been compiled on a variety of operating systems

including Linux, Windows, and Mac OS X.

This report documents the theory (Chapter 2) and numerical methods (Chapter 3) used in

MASS2. In addition, the results are presented from several of hydrodynamic (Section 4.1) and

transport (Section 4.2) validation tests to which MASS2 was subjected. The companion user man-

ual (Perkins and Richmond 2004) documents the application of MASS2.
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2.0 Model Theory

2.1 Coordinates and Grid System

The Modular Aquatic Simulation System in two-dimensions (MASS2) is formulated using an

orthogonal, curvilinear coordinate system. The governing equations are formulated in conservative

form using a full transformation to the curvilinear system where the velocities are the physical

contravariant velocities components (Richmond et al. 1986).

The physical coordinate system is Cartesian and the metric coefficients which define the coor-

dinate transformation take the form

h1 =

√

(

∂x

∂ξ

)2

+

(

∂y

∂ξ

)2

and

h2 =

√

(

∂x

∂η

)2

+

(

∂y

∂η

)2

where h1 and h2 are the metric coefficients in the ξ and η direction, (x,y) are the physical (Carte-

sian) coordinates, i.e., state plane coordinates, and (ξ,η) are the orthogonal computational coordi-

nates.

Physical contravariant velocity components are the dependent variables used in the MASS2

depth-averaged momentum equations. The contravariant components have base vectors (covari-

ant base vectors) that are tangent to the computational coordinate direction. Thus, these compo-

nents “follow” the coordinate lines in the numerically generated computational grid. The physical

components of a contravariant vector, denoted by A(i), are determined by its projection onto the

coordinate direction:

A(i) = Aiai · ei =
√

giiA
iei · ei =

√
giiA

i

To convert the physical contravariant components to a Cartesian coordinate system (e.g., for output

to plotting software) the following transformation is used

u =
U√
g11

∂x

∂ξ
+

V√
g22

∂x

∂η

v =
U√
g11

∂y

∂ξ
+

V√
g22

∂y

∂η

To convert from Cartesian coordinates to the physical contravariant coordinates:

U = (u
∂ξ

∂x
+ v

∂ξ

∂y
)
√

g11

V = (u
∂η

∂x
+ v

∂η

∂y
)
√

g22
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where u and v are the Cartesian velocity components in the x and y directions, respectively, and U

and V are the physical contravariant velocity components in the η and ξ directions, respectively.

The coordinate transformation is given by

∂ξ

∂x
=

1

J

∂y

∂η

∂ξ

∂y
=

−1

J

∂x

∂η

∂η

∂x
=

−1

J

∂y

∂ξ

∂η

∂y
=

1

J

∂x

∂ξ

so that the physical contravariant components are

U = (u
∂y

∂η
− v

∂x

∂η
)

√
g11

J

V = (−u
∂y

∂ξ
+ v

∂x

∂ξ
)

√
g22

J

where

g11 = h2
1

g22 = h2
2

g12 = g21

=
∂x

∂ξ

∂x

∂η
+

∂y

∂ξ

∂y

∂η

J = is the determinant of the Jacobian matrix

= g11g22 −g12g21.

2.2 Hydrodynamics

The depth-averaged conservation of mass, or continuity, equation in computational coordinates

is

h1h2
∂d

∂t
+

∂(h2dU)

∂ξ
+

∂(h1dV )

∂η
= qs (2.1)

where d is water depth, U is the depth-averaged velocity component in the ξ direction, V depth-

averaged velocity component in the η direction, and qs is the total of other sources.

The equation for U or ξ-direction momentum in the computational coordinates is

h1h2
∂(dU)

∂t
+

∂
(

dh2U2
)

∂ξ
+

∂(dh1VU)

∂η
+d

∂h1

∂η
UV −d

∂h2

∂ξ
V 2 = −gh2d

∂(zb +d)

∂ξ

+
1

ρ

∂(dh2T11)

∂ξ
+

1

ρ

∂(dh1T21)

∂η
+

d

ρ

∂h1

∂η
T21 −

d

ρ

∂h2

∂ξ
T22 +

h1h2

ρ
(τs1

− τb1
)

(2.2)
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where zb is the channel bottom elevation, τb1
is the component of bottom shear stress in the ξ-

direction, and τs1
is the component of surface shear stress in the ξ-direction.

Similarly, the V or η-direction momentum equation in computational coordinates is

h1h2
∂(dV )

∂t
+

∂(dh2UV )

∂ξ
+

∂
(

dh1V 2
)

∂η
+d

∂h2

∂ξ
UV −d

∂h1

∂η
U2 = −gh1d

∂(zb +d)

∂η

+
1

ρ

∂(dh2T12)

∂ξ
+

1

ρ

∂(dh1T22)

∂η
+

d

ρ

∂h2

∂ξ
T12 −

d

ρ

∂h2

∂η
T11 +

h1h2

ρ
(τs2

− τb2
)

(2.3)

where τb2
and τs2

are the bottom and surface shear stress in the η direction. The components of the

stress tensor, T11,T21,T22, are the so-called effective stresses, and these are linearly related to the

fluid strain rate in an incompressible fluid through the following equations:

T11 =2µeξeξ

T22 =2µeηeη

T12 =T21 = µeξeη

(2.4)

where

eξeξ =
1

h1

∂U

∂ξ
+

V

h1h2

∂h1

∂η

eηeη =
1

h2

∂V

∂η
+

U

h1h2

∂h2

∂ξ

and

eξeη =
h2

h1

∂

∂ξ

(

V

h2

)

+
h1

h2

∂

∂η

(

U

h1

)

MASS2 uses the Bousinessq eddy viscosity model to represent the turbulence stresses, so the

viscosity coefficient in equation 2.4 is a turbulent eddy viscosity.

Bottom shear stress is computed using

τb1 = ρCbU
√

U2 +V 2 (2.5)

and

τb2 = ρCbV
√

U2 +V 2 (2.6)

where the bed-friction coefficient is calculated based on the Manning roughness value, n, as

Cb = g

(

n2

1.49d1/3

)

(2.7)
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2.3 Scalar Transport

The governing equation for the transport of a scalar is obtained by applying the principle of

conservation of mass to a fluid element. In orthogonal curvilinear coordinates, the governing

equation is

h1h2
∂(dφ)

∂t
+

∂(h2dUφ)

∂ξ
+

∂(h1dV φ)

∂η
=

∂

∂ξ

(

h2
ε1

h1
d

∂φ

∂ξ

)

+
∂

∂η

(

h1
ε2

h2
d

∂φ

∂η

)

+h1h2Sφ (2.8)

where φ is (usually) the volumetric scalar concentration, ε1 is the turbulent diffusion coefficient in

the ξ-direction, ε2 is the turbulent diffusion coefficient in the η-direction, and Sφ is the source term.

Equation 2.8 is used to represent the fate and transport of various kinds of scalar quantities. The

representation of individual scalar quantities differs only in the computation of the source term, Sφ.

The remainder of this section describes Sφ for specific types scalar quantities.

2.3.1 Dissolved Scalar Source Term

When equation 2.9 is used to represent the fate and transport of generic dissolved scalar quan-

tities, the source term is

Sφ = − λφφd

+
Nsed

∑
j=1

Kφ j

(

Kdφ j
φsed j

φ−φpart j

)

+
Nsed

∑
j=1

ρs j
D50 j

(1−n)Kφ j

(

Kbφ j
φ−φbed j

)

+ qφ

(2.9)

The first term of equation 2.9, λφφd, represents contaminant decay where λ is the constant

decay rate. This is usually used to represent radioactive decay, but it can be used to represent any

process that can be approximated as a first-order decay (Fischer et al. 1979). The decay rate is

computed from the half-life, tφ1/2
, as

λ =
ln2

tφ1/2

(2.10)

The second term of equation 2.9, represents the exchange with all of the suspended particulate

phases of the scalar φ (one for each sediment fraction j). Kdφ j
is a partitioning coefficient specific

to the scalar φ and sediment fraction j (Onishi and Thompson 1984). The value of Kdφ j
is the ratio

of particulate to dissolved contaminant when they are in equilibrium:

Kdφ j
=

φpart j

φsed j
φ

(2.11)

where φpart j
is the volumetric concentration of particulate contaminant, φsed j

is the volumetric con-

centration of sediment fraction j, and Kdφ j
is a partitioning coefficient specific to the scalar φ and

6



sediment fraction j. The second term of equation 2.9 represents the rate at which contaminant mass

is exchanged between the dissolved and particulate phases to achieve the equilibrium described by

equation 2.11. The magnitude of the exchange is governed by the dissolved/particulate imbalance

and the rate at which contaminant is exchanged between phases, Kφ j
, which has dimensions of

time-1.

The third term of equation 2.9 similarly represents the exchange of dissolved contaminant

within the water column with any particulate contaminant on the bed surface. The exchange is

assumed to be limited to the surface of the bed, or the mass of sediment fraction j occupying a

thickness of one sediment grain width, D50 j
, at the top of the bed.

The final term, qφ, represents any other sources. This term is used to supply contaminants to

the water column from non-point sources like groundwater. Section 3.8.2 describes how this is

computed.

2.3.2 Suspended Sediment Source Term

The general transport equation, equation 2.8, is used to represent the transport of sediment

suspended in the water column. An arbitrary number of sediment fractions can be simulated si-

multaneously and are assumed to be independent of each other. The source term in equation 2.12

for sediment fraction j is the difference between erosion from and deposition to the bed:

Ssed j
= E j −D j (2.12)

where Ssedi
has dimensions of mass per unit bed area per time. E j is the erosion rate of sediment

fraction j, given by (Partheniades 1962)

E j =







(

τb

τe j

−1

)

Eo j
, if τb > τe j

0, if τb ≤ τe j

(2.13)

where τb is the bed shear computed from the hydrodynamic state (equations 2.5 and 2.6), Eo j
is the

erodibility coefficient for sediment fraction j, and the critical erosion shear stress, τe j
, represents

the shear at which erosion of sediment fraction j is initiated. The erosion rate computed using

equation 2.13 is limited by the availability of sediment fraction j in the bed.

D j is the deposition rate of sediment fraction j, given by (Krone 1962)

D j =











(

1− τb

τd j

)

w jφsed j
, if τb < τd j

0, if τb ≥ τdi

(2.14)

where φsed j
is the volumetric concentration, w j is the particle settling velocity, and τdi

is the critical

deposition shear stress for sediment fraction j.

The coefficients w j, τe j
, τd j

, and M j are properties specific to the sediment fraction (other

properties are required as well, see Section 3.8). Their values will vary depending the sediment

particle size, chemical composition of the sediment, and other local conditions. Consequently, they

are determined by calibration.
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2.3.3 Particulate Scalar Source Term

When equation 2.8 is used to represent the transport of the particulate phases of a contaminant,

the transported quantity is the volumetric concentration of the contaminant sorbed to an individual

sediment fraction, j. The source term of equation 2.8 takes the form

Sφpart j
= − λφφpart j

d

−
Nsed

∑
j=1

Kφ j

(

Kdφ j
φsed j

φ−φpart j

)

+

(

φbed j
E j −

D jφpart j

φsed j

)

(2.15)

The first term of equation 2.15 represents decay, as in equation 2.9. The second term represents

exchange with the dissolved phase and corresponds to the second term of equation 2.9. The third

term represents the particulate mass deposited to or eroded from the bed, with the deposition
(

D j

)

and erosion
(

E j

)

determined as in equation 2.12.

2.3.4 Thermal Energy (Temperature) Source Term

When equation 2.8 is used to represent the transport of thermal energy, the transported quantity

is the depth-averaged water temperature, T , in ◦C, and the source term has the form

ST =
ΣH

ρcv

(2.16)

where cv is the specific heat of water (assumed constant at 4186 J/kg·◦C) and ΣH is the net heat

exchange at the water surface, W/m2, which is represented as

∑H = Hsn +Ha − (Hb +He +Hc) (2.17)

where the units are W/m2.

Hsn is the net incoming solar short-wave radiation and was computed using measured or es-

timated incoming shortwave solar radiation. Hsn is based on either measured values of incoming

solar radiation, when available, or from theoretical estimates and a measurement of cloud cover.

When measured radiation is available,

Hsn = Ha (1−Rs)

where Ha is the measured short-wave solar radiation at the surface, W/m2, and Rs is the albedo or

reflection coefficient. The albedo is calculated by (Brown and Barnwell 1987):

Rs = A

(

180α

π

)B

(2.18)

where

A =















1.18 for CL < 0.1
2.20 for 0.1 ≤CL < 0.5
0.95 for 0.5 ≤CL < 0.9
0.35 for CL > 0.9
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and

B =















−0.77 for CL < 0.1
−0.97 for 0.1 ≤CL < 0.5
−0.75 for 0.5 ≤CL ≤ 0.9
−0.45 for CL > 0.9

where CL is the cloudiness. The solar altitude, α, is calculated using (Gates 1980; Monteith and

Unsworth 1990)

sinα = sinΦsinδ+ cosΦcosδcosh

where Φ is the site latitude, δ is the declination of the sun, given by (Duffie and Beckman 1982)

δ = 23.45
π

180d
sin

(

2π

[

284+ j

365

])

and h = (π/12)(ts −12) . ts is the solar time, in hours, given by

ts = tl +
12

π
(Lst −Lloc)+E

E is the equation of time, given by (Duffie and Beckman 1982)

E = (9.87sin2B−7.53cosB−1.5sinB)/60

with B = [2π(n−81)]/364.

When measured radiation is not available, net incoming short-wave solar radiation can be esti-

mated using (Brown and Barnwell 1987)

Hsn = Hoat (1−Rs)
(

1−0.65C2
L

)

in which Ho is estimated using (Duffie and Beckman 1982; Wigmosta and Perkins 1997)

Ho = Hsc

[

1+0.033cos

(

360n

365

)]

sinα

where Hsc is the solar constant (approximately 1360 W/m2) and n is the day of the year.

The other components of equation 2.17 are computed according to Edinger et al. (1974). Net

incoming atmospheric long-wave radiation is estimated as

Ha = 4.4×10−8(Ta +273)4 [Ca +0.031
√

ea] (2.19)

where Ca is the Brunt coefficient, typically having a value of 0.65. Long-wave back-radiation was

estimated as

Hb = εwσ∗(T +273.15)4

where T is the cross section averaged water temperature. Evaporation heat flux was computed

using

He =
(

aw +bwW 2
)

(es − ea) (2.20)

where W is the wind speed, in m/sec, aw and bw are adjustable wind function coefficients, es is

the saturation water vapor pressure at the water surface (a function of current air temperature), in

mm Hg, and ea is the actual water vapor pressure at the water surface, in mm Hg. Conduction heat

flux was computed as

Hc = Cc

(

aw +bwW 2
)

(Ts −Ta) (2.21)

where Cc is typically 0.46.
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2.3.5 Total Dissolved Gas

When equation 2.8 is used to represent total dissolved gas (TDG), the source term represents

the exchange of dissolved gas in the water column with the atmosphere. The source term has the

form

STDG = KL (C∗−C) (2.22)

where C is the volumetric concentration of air in water, mg/L, C∗ is the saturation concentration

of air in water at the surface, mg/L, and KL is a surface transfer coefficient. Many air-water gas

exchange formulas are available in the literature. In MASS2, KL is a function of wind speed and

given by a fit of a cubic polynomial equation to empirical data presented by O’Connor (1982,

Figure 6 intermediate scale data):

KL = dW 3 + cW 2 −bW +a

= −0.0045W 3 +0.1535W 2 −0.5026W +0.6885
(2.23)

where KL is in m/day and W is the wind speed in m/sec, 10 m above the water surface.

Because it is convenient to present TDG simulation results as TDG partial pressures or a frac-

tion of the saturation partial pressure, MASS2 computes partial TDG pressures and saturations

internally. Calculation of TDG pressures and saturations from a given concentration, and vice

versa, is accomplished using the relationships presented in Colt (1984). The mass concentration of

TDG is related to partial pressure with

C =
(PTDG −PH2O)βair

Aair

where PTDG is the partial pressure of TDG, mm Hg, PH2O is the vapor pressure of water, mm Hg,

βair is the apparent Bunsen coefficient for air, L/L·atm, and Aair is the apparent molecular volume of

air (with unit conversion), atm·L/mg·mm Hg. Air is assumed to be composed of a limited number,

N, of individual gases. These are shown in Table 2.1. The apparent Bunsen coefficient for air is

computed as an aggregate of the Bunsen coefficients for individual gas fractions:

βair =

N

∑
i=1

βiXi

N

∑
i=1

Xi

where βi is the Bunsen coefficient for gas fraction i, L/L·atm, and Xi is the mole fraction of gas

i. The mole fractions used are those for atmospheric air and are shown in Table 2.1. Individual

gas fraction Bunsen coefficients are computed as functions of temperature using relationships pre-

sented by Colt (1984), as is water vapor pressure, PH20. The apparent molecular volume of air is

computed as an aggregate of individual gas fractions:

Aair =
760

1000













N

∑
i=1

βiXi

N

∑
i=1

KiβiXi












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where Ki is the ratio of molecular weight to molecular volume, g/L, for gas fraction i, the values

of which are shown in Table 2.1.

Table 2.1. Gas fractions used to compute gas mass

concentrations from gas pressures (Colt

1984). Mole fractions are for atmospheric

air.

Gas Fraction Xi Ki, g/L

Nitrogen (N2) 0.78084 1.25043

Oxygen (02) 0.20946 1.42903

Argon (Ar) 0.00934 1.78419

Carbon Dioxide (CO2) 0.00032 1.97681
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3.0 Numerical Methods

3.1 Computational Mesh

The computational mesh is supplied to MASS2 as a set of vertices in the physical coordinate

system (Figure 3.1). From these vertices, metric coefficients (Section 2.1) are computed (using

finite-differences) to transform the mesh into a rectangular grid in computational space. For con-

venience, mesh blocks are labeled according to the expected flow direction: the four sides are

labeled as upstream, downstream, left bank, and right bank. It is also convenient, for discretization

of the governing equations, to label the four sides as directions: west being upstream, east being

downstream, south being the right bank, north being the left bank.

The vertices define the corners of cells. At the center of these cells, depth and transported scalar

quantities are computed. Velocities are computed at the cell faces using staggered control volumes

(CV) to avoid unrealistic solutions to the coupled continuity-momentum equations as discussed

by Patankar (1980). Bottom elevation is supplied with each vertex location. This defines the

bathymetry for MASS2. When bottom elevations are required at other locations (the cell center,

e.g.), they are interpolated from the vertex elevations as necessary.

Mesh blocks can be connected to other blocks. These blocks abut each other and must line

up such that an integral number of cells in one block abut a single cell in the other. Connected

blocks share necessary information through ghost cells. When the model grid is first read by the

model, a layer of ghost cells is created on all sides of each block. If the ghost cell corresponds to

a connected block, the ghost cell size and shape is based on the cells in the connected block. If

the ghost cell does not correspond to a connecting cell, the cell size and shape is extrapolated from

the block interior. Using this strategy allows grid metric coefficients to be correctly computed near

block edges, particularly for the staggered velocity CVs.

3.2 Discrete Forms of Governing Equations

The governing equations in the model are discretized using the finite-volume methods de-

scribed by Patankar (1980). The momentum and scalar transport equations are discretized using

similar methods. The discretized scalar transport equation is presented first in Section 3.2.1. Fol-

lowing that derivation, the specific issues related to discretizing the momentum equations and the

depth-velocity coupling are presented in Section 3.2.2.
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Figure 3.1. Layout of the MASS2 computational mesh for a single block.
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3.2.1 Discretized Form of the General Scalar Transport Equation

The general scalar transport equation (2.8) can be rearranged into the form

h1h2
∂(dφ)

∂t
+

∂Jξ

∂ξ
+

∂Jη

∂η
= h1h2Sφ (3.1)

where the total flux in each direction is

Jξ = (h2dUφ)−h2
ε1

h1
d

∂φ

∂ξ
(3.2)

Jη = (h1dV φ)−h1
ε2

h2
d

∂φ

∂η
(3.3)

Equation 3.1 can then be integrated over the control volume to obtain

h1h2

(

dPφP −d0
Pφ0

P

)

∆t
+ Je − Jw + Jn − Js = h1h2(SC +SPφP) (3.4)

where the time derivative is formulated using the implicit Euler scheme and d0
P and φ0

P are evaluated

at the previous time step. The flux terms (Je, etc) are computed at the east, west, north, and south

CV faces. The source term is linearized into a constant part (SC) and a part the depends on φ (SP).

The fluid continuity or mass conservation (equation 2.1) can also be integrated over a CV to

yield the following

h1h2
(dP −d0

P)

∆t
+Fe −Fw +Fn −Fs = 0 (3.5)

where the fluid mass flux ( Fe, etc) through each face of the CV is

Fe = (h2Ud)e (3.6)

Fw = (h2Ud)w (3.7)

Fn = (h1V d)n (3.8)

Fs = (h1V d)s (3.9)

As recommended by Patankar (1980), the final form of the discrete general scalar transport

equation can by multiplying equation 3.5 by φP and then subtracting that from equation 3.4 to

obtain

h1h2

(

φPd0
P −φ0

Pd0
P

)

∆t
+(Je −FeφP)− (Jw −FwφP)

+(Jn −FnφP)− (Js −FsφP) = h1h2(SC +SPφP)

(3.10)
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Each of the total flux terms can be represented using the values in the center of each CV in the

form

Je −FeφP = aE(φP −φE) (3.11)

Jw −FwφP = aW (φW −φP) (3.12)

Jn −FnφP = aN(φP −φN) (3.13)

Js −FsφP = aS(φS −φP) (3.14)

where the coefficients in these and the remaining flux terms are

aE = DeA(|Pe|)+max[−Fe,0] (3.15)

aW = DwA(|Pw|)+max[Fw,0] (3.16)

aN = DnA(|Pn|)+max[−Fn,0] (3.17)

aS = DsA(|Ps|)+max[Fs,0] (3.18)

and the effective diffusion coefficient (D) and Peclet number (P) are

De =

(

ε1d
h2

h1

)

e

(3.19)

Dw =

(

ε1d
h2

h1

)

w

(3.20)

Dn =

(

ε2d
h1

h2

)

n

(3.21)

Ds =

(

ε2d
h1

h2

)

s

(3.22)

Pe =
(h2Ud)e

De
(3.23)

Pw =
(h2Ud)w

Dw
(3.24)

Pn =
(h1V d)n

Dn

(3.25)

Ps =
(h1V d)s

Ds
(3.26)

These coefficients result from discretizing the diffusive flux using the central-difference approxi-

mation and where the advective flux term can be discretized using various schemes which can be

selected by various choices for the function A(|P|). Some common choices for A(|P|) are listed in

Table 3.1.

The final discretized form of equation 2.8 is then

aPφP =aWφW +aEφE +aSφS +aNφN +b

aP =aW +aE +aS +aN +a0
P −SPh1h2

a0
P =

h1h2d0
P

∆t

b =SCh1h2 +a0
Pφ0

P

(3.27)
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Table 3.1. Function A(|P|) for different advection schemes

Scheme A(|P|)
Upwind 1

Hybrid max[0,1−0.5|P|]
Power law max[0,1−0.1|P|5]

for each control volume (CV) P (Figure 3.1), where the subscripts W , E, S, and N refer to the CVs

neighboring P on the west, east, south, and north sides. SP and SC refer to the φ-dependent and

constant parts of the source term, respectively.

The hybrid scheme (Patankar 1980) is used for the adjective term in the solution of scalar

transport equations in MASS2. This allows for a zero diffusive flux, which is necessary when

internal “dead” zones, or dry cells, are simulated.

Note that the orthogonal curvilinear form of the discretization equations presented reduce to

the typical Cartesian form if the coordinate transformation is considered to be from a nonuni-

form Cartesian grid to the uniform computational domain and the metric coefficients (h1,h2) are

replaced by (∆x,∆y), respectively.

Equation 3.27 is implicit in space and time. The assembly of these equations for each nu-

merical CV results in a system of linear equations that are solved using a line-by-line tridiagonal

matrix algorithm (TDMA) (Versteeg and Malalasekera 1995). Others methods are optional using

the Aztec (Tuminaro et al. 1999) library and the Portable, Extensible Toolkit for Scientific Compu-

tation (PETSc) Balay et al. (1997, 2002). These are usually not used because the TDMA algorithm

performs efficiently for most applications.

3.2.2 Discretized Form of the Momentum Equations

The momentum equations (2.2 and 2.3) can be put in the same form as the scalar transport

equation (2.8). The additional terms arising from the coordinate transformation are grouped into

the source term. These source terms, which include the depth gradient, bottom elevation gradient,

and bed resistance are evaluated using finite-difference expressions in the computational grid.

As in Patankar (1980), a staggered numerical grid is employed to oid the computation of un-

realistic depth and velocity fields. Consequently, the momentum equations are solved at different

locations and CVs than transported scalars (Figure 3.1).

The power-law scheme (Patankar 1980) (see Table 3.1) is used for the advection terms in

the momentum equations. It should be noted that the power-law scheme reduces to first-order

accuracy for high values of the grid Peclet number (advection-dominated cases) and therefore

introduces artificial diffusion when the computational grid lines and streamlines are not aligned. In

the majority of applications, artificial diffusion will be minimal if the computational mesh lines and
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streamlines are approximately aligned. Higher-order schemes can be used to minimize artificial

diffusion but this increased accuracy comes at the price of additional computational effort that Ye

and McCorquodale (1997) estimate to be 40 to 70% more than the power-law scheme. Future

development plans (see Chapter 5) include adding a monotonic, higher-order advection scheme to

MASS2.

Experience has shown that the handling of the bed shear (resistance) term (equations 2.5 and

2.6) of the momentum equations is very important to the success of the overall hydrodynamic

solution in MASS2. In the momentum equations for U , for example, the contribution bed shear

force to the source term estimated by

S = −APUPV P

where V P is the velocity magnitude at the U CV center, given by

√

U2
P +V 2

P , UP and VP are the

longitudinal and lateral velocity at the U CV center, and CP is the collected constants (with respect

to U) from equation 2.5. To linearize this term, it is separated into a constant and U dependent part

(Patankar 1980):

S = SC +SPUP

The previous estimate of UP, U∗
P , is used to evaluate the velocity magnitude using the previous

estimate of UP:

S =−APUPV
∗
P

so that

SC =0

SP =−APV
∗
P

3.2.3 Velocity-Depth Coupling

The coupling of the momentum and mass conservation equations is achieved using a variation

of Patankar (1980) SIMPLE algorithm extended to depth-averaged flows by Zhou (1995). Zhou’s

method has been extended here to orthogonal curvilinear coordinates in the present study. In the

method, equation 2.1 is used to develop an equation of the form of 3.27 and solved for a depth

correction, d′ (in lieu of the pressure correction in the original SIMPLE algorithm). The solution

to the depth correction equation is used to correct the velocities from the solution of the momentum

equations. A portion of the depth correction is used to adjust depth.

Given a water depth distribution (d∗) at the current iteration, the depth-averaged velocities

(U∗,V ∗) can be computed from the discretized momentum equations:

aPU∗
P = ∑anbU∗

nb −
gh2P

2

[

d∗2
e −d∗2

w

]

− gh2P

2
[d∗

e +d∗
w] [ze − zw]+bU (3.28)

aPV ∗
P = ∑anbV ∗

nb −
gh1P

2

[

d∗2
n −d∗2

s

]

− gh1P

2
[d∗

n +d∗
s ] [zn − zs]+bV (3.29)
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Recall that the use of a staggered grid means that the CVs for each velocity component are

different and that the locations of the control volume faces (east, west, etc) and central point are

relative to that particular CV.

Although the iterative solution of equations 3.28 and 3.29 will yield the velocity field corre-

sponding to the prescribed depth field that velocity field may fail to satisfy the continuity equation

2.1. A method is needed to iteratively correct the velocity and depth fields so that the continuity

and momentum equations are both satisfied. This method is the SIMPLE algorithm adapted to

depth-averaged flows solved on an orthogonal curvilinear grid.

The correct depth and velocity field is composed of the value at the current iteration plus a

correction term:

d = d∗ +d′

U = U∗ +U ′

V = V ∗ +V ′

where (d∗,U∗,V ∗) are the current values and (d′,U ′,V ′) are the correction terms. A discrete

equation for the velocity corrections can be derived by subtracting the current iteration value from

the final velocity (U ′ = U −U∗):

aPU ′
P = ∑anbU ′

nb −
gh2P

2

[

d2
e −d2

w +d∗2
w −d∗2

e

]

− gh2P

2

[

d′
e +d′

w

]

[ze − zw] (3.30)

This equation can be expanded to obtain

aPU ′
P = ∑anbU ′

nb −
gh2P

2
[d∗

e +d∗
w]
[

d′
e −d′

w

]

− gh2P

2

[

d′
e +d′

w

]

[d∗
e −d∗

w]

− gh2P

2

[

d′2
e −d′2

w

]

− gh2P

2

[

d′
e +d′

w

]

[ze − zw]

(3.31)

Following Patankar (1980) and Zhou (1995) the first and last three terms of equation 3.31 are

dropped which yields an equation for the velocity correction:

U ′
P = −gh2P

2

[d∗
e +d∗

w]

aP

[

d′
e −d′

w

]

(3.32)

A similar equation for the other velocity correction (V ′
P) can be derived using the same method.

The updated velocity can now be expressed as

UP = U∗
P − gh2P

2

[d∗
e +d∗

w]

aP

[

d′
e −d′

w

]

(3.33)

This equation for the U velocity and the corresponding equation for the V velocity can be substi-

tuted into the discrete continuity equation 3.5 to arrive at a discrete equation for the depth correc-

tion:

cPd′
P = cEd′

E + cW d′
W + cNd′

N + cSd′
S +M∗ (3.34)
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where

cP = cE + cW + cN + cS + c0
P

c0
P =

h1Ph2P

∆t

cE = (h2d)e

[

gh2P

2

[d∗
e +d∗

w]

aPU

]

Ue

cW = (h2d)w

[

gh2P

2

[d∗
e +d∗

w]

aPU

]

Uw

cN = (h1d)n

[

gh1P

2

[d∗
n +d∗

s ]

aPV

]

Vn

cS = (h1d)s

[

gh1P

2

[d∗
n +d∗

s ]

aPV

]

Vs

M∗ = c0
P(d0

P −d∗
P)+(h2d)wU∗

w − (h2d)eU
∗
e +(h1d)sV

∗
s − (h1d)nV ∗

n

Note that the CV for the depth correction equation is the same as that used for scalar vari-

ables.The bracketed terms in the coefficients cE , etc should be calculated and stored when at the

time when the subscripted velocities ([· · · ]Ue
, etc) are computed in their respective CVs. The term

M∗ is the so-called mass source since it is the negative of the discrete continuity equation 3.5.

When the mass source is driven to zero then the depth correction will also be zero. At this time

both the continuity and momentum equations are satisfied.

The depth correction equation is solved using the same iterative solution methods as used for

the general scalar transport equation in Section 3.2.1.

3.3 Solution Procedure

MASS2 begins execution by reading the configuration and allocating the memory necessary to

store variables for the problem. The mesh is then read, appropriate ghost cells created, and mesh

metric coefficients computed. Boundary and initial conditions are read and set.

The overall procedure for simulation is essentially a time loop (Figure 3.2). During a time step,

execution depends on the operational mode selected. If active, hydrodynamics (Section 3.3.1) are

solved first. The transport solution (Section 3.3.2) is then performed. After solution is complete,

the “old” values of variables are updated with the new, and optionally, output is accumulated to

average conditions over the output interval rather than instantaneous values.

3.3.1 Hydrodynamics

Nonlinearity and coupling of the momentum (Section 3.2.2) and depth correction (Section 3.2.3)

equations are handled through an iterative solution procedure (Figure 3.3). In a single iteration of
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Ouptut Results

[do output]

Advance time

[hydrodynamics mode]

Figure 3.2. Solution algorithm flow chart.
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the hydrodynamic solution, each block is solved independently, assuming conditions in the sur-

rounding blocks are constant. The solution of a single block proceeds as follows

1. The necessary values (U , V , d) from neighboring blocks are copied into ghost cells (Sec-

tion 3.6), or specified boundary conditions are assigned (Section 3.5).

2. Coefficients for the discretized equation for U-momentum are assembled, and the resulting

system of equations is solved.

3. Coefficients for the discretized equation for V -momentum are assembled, and the resulting

system of equations solved.

4. Coefficients for the discretized equation for depth correction (d′) are assembled and the

system of equations solved.

5. The computed velocity components are adjusted using the computed depth correction ac-

cording to equation 3.33.

6. The depth field is adjusted using only a portion of the depth correction:

d = d∗ +αdd′

where d is the new depth, d∗ is the previous estimate, and αd is an under-relaxation factor,

between 0 and 1. Typically, αd less than 0.4 is necessary.

7. If wetting and drying is enabled, the wet/dry state of each cell is checked and appropriate

adjustments made (Section 3.7).

Once all blocks are processed, the mass source error (Patankar 1980) of the domain is computed as

the maximum of the individual block mass source errors. Block mass source error is the maximum

cell mass imbalance computed in the solution of the depth correction equation. If the computed

mass source error is less than the user-specified value, the hydrodynamic solution is complete.

Otherwise, further iterations are performed until the mass source error is reduced or the user-

specified maximum number of iterations is exceeded.

3.3.2 Scalar Transport

Like the hydrodynamic solution, the transport solution procedure is iterative in nature (Fig-

ure 3.4). A constant, user-specified number of iterations is performed in which each simulated

scalar quantity is solved. The iterative scheme is used to couple scalar quantities with interdepen-

dencies (e.g., temperature and TDG, or particulate and dissolved phases of the same contaminant)

and resolve block connections. All transported scalar source terms (Section 2.3) are evaluated

using the previous estimate (i.e., explicit). Contribution of non-point sources is discussed in Sec-

tion 3.8.2.
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Figure 3.3. Hydrodynamic solution algorithm flow chart.
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Figure 3.4. Scalar transport solution algorithm flow chart.
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3.4 Initial Conditions

To numerically solve the system of governing equations, initial conditions must be supplied

for hydrodynamics and each transported scalar. Initial conditions for each dependent variable (ve-

locity, depth, and concentration) are assigned at the start of each simulation either as approximate

values or using the results from a previous simulation (i.e., hot-start file).

Initial hydrodynamic conditions can be set using an initial water surface profile developed

externally. If velocity is not supplied with the profile, it is approximated based on the local water

surface slope. In some cases, this can aid model startup, particularly in applications with steep (but

still subcritical) slopes. Flow from the block upstream to the downstream end is assumed. Lateral

velocity (V ) is assumed zero everywhere within the block. It is also assumed that the longitudinal

slope of the water surface represents the energy slope (S f ) so the longitudinal velocity is estimated

with Manning’s equation as

U∗ =
Co

n
d2/3S

1/2

f

where d is the average depth in the U control volume.

Initial transported scalar conditions must be set prior to solution. MASS2 can either set these

to a constant value or initialize them from a previous simulation.

3.5 Boundary Conditions

The discretized form of the governing equations describes the velocity or scalar concentration

at a cell center (the cell varying with the equation). Most boundary conditions are applied at the

block boundary. Figure 3.5 shows the φ, U , and V computational cells near open block boundaries.

The cells shown have the same index and are the limit of computed cells in the block. Bound-

ary conditions are applied at block boundaries by manipulating the discretized transport equation

(equation 3.27) in the manner of Norris (2000). Essentially, two boundary conditions are consid-

ered.

The first condition is assigning a given value at the boundary (Dirichlet). If, for example,

φ = φo is required at the west boundary, then

φw = φo ≈ (φP +φW)

2
=⇒ φW = 2φo −φP

where φw is the value of φ at the west face of the cell and P designates the central control volume.

Substituting this into equation 3.27 yields

aPφP = aW (2φo −φP)+aEφE +aSφS +aNφN +S

(aP +aW)φP = aEφE +aSφS +aNφN +(S +2aWφo)
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Figure 3.5. Cells computed near an open block boundary. The φ, u, and v cells shown all have the

same indices and represent the solution limits for a single block.

The Dirichlet boundary condition is then applied by adjusting some of the coefficients in the cell

equation after its assembly:

aP = aP +aW

SC = SC +2aWφo

aW = 0

The second boundary condition is assigning a constant gradient condition at the boundary

(Neumann). For example, if the gradient normal to the west face is required to be zero:

∂φ

∂x
≈ φP −φW

δx
= 0 =⇒ φP = φW
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Substituting this into equation 3.27 yields

aPφP = aWφP +aEφE +aSφS +aNφN +S

(aP −aW)φP = aEφE +aSφS +aNφN +S

So, to apply the Neumann condition, coefficients of the cell equation are adjusted as follows:

aP = aP −aW

aW = 0

Because of the staggered grid scheme used in MASS2, some special consideration needs to be

given boundary conditions for the momentum equations. Note in Figure 3.5 that U on the upstream

(west) boundary and V on the right bank (south) boundary are not computed but must be specified.

Manipulation of the cell equation, as described above, is not necessary because those locations are

not part of the solution. This limits the kind of boundary condition that may be applied at those

boundaries to velocity.

Velocity boundary conditions on the downstream (east) and left bank (north) sides must be

handled differently. If, for example, a velocity uo is to be applied at east side of the block, the U

equation needs to be manipulated to produce that result: UP = uo. This is done by source term

manipulation (Patankar 1980). In the discretized equation, the source term S is represented as the

sum of a constant part and a cell dependent part:

S = SC +SPUP

where UP is U at the next time step (the value being solved for). To force the solution to UP to the

desired value (in this case uo), a value, KbigUP is added to both sides of the cell equation, where

Kbig is a constant. On the constant side of the cell equation, UP is set to the desired value, uo, so

S = S +Kbiguo

aP = aP +Kbig

If Kbig is large enough to make the other terms of the cell equation inconsequential, the solution

will become

KbigUP ≈ Kbiguo =⇒ UP ≈ uo

This source term manipulation is also used to define special boundary conditions internal to the

mesh block. MASS2 allows two kinds of internal boundaries: walls and dead zones. Walls block

longitudinal or lateral flow by forcing the longitudinal or lateral velocity (U or V ) to zero along a

line of U or V CVs. These can be used to represent narrow dikes or walls that are not over-topped.

Dead zones remove entire scalar cells from the simulation by forcing U velocity on the west and

east faces to zero, V velocity on the south and north faces to zero, and the depth correction, d,

within the cell to zero. This eliminates any change in the cell. For scalar transport, dead zone

cells are essentially removed from the solution. This is done by forcing the advective and diffusive

fluxes in and out of the cell to zero. The advective flux is zero because all velocities in and out of

the cell have been forced to zero. To eliminate diffusive flux, the diffusivity must be set to zero.

Dead zones can be used to represent small islands or other obstructions.
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3.6 Mesh Block Connections

At the beginning of each hydrodynamic iteration (Section 3.3.1), the state (velocity compo-

nents, water surface elevation, and scalar quantities) of the block are set in the ghost cells using

the state of the neighboring block. Assembly and solution of the block then proceeds using the

state of the ghost cells as though they were part of the block. From the point of view of one block,

any information transferred from connected blocks is considered constant (similar to a boundary

condition) during the calculations performed in a single iteration.

A special case of block connection is when the cells of the abutting blocks line up with a one-

to-one correspondence. In this case, ghost cells are created with the same size and shape as the cells

in the neighboring blocks. At the beginning of the iteration, the current state of the neighboring

cells is simply copied into the ghost cells.

The more general block connection is when the “fine” grid block has several cells abutting a

single cell in the “coarse” grid block, such as the case shown in Figure 3.6. In this case, each cell

in the coarse block abuts three cells in the fine block. The size and shape of the ghost cells in

the coarse grid are that of three of the neighboring fine cells grouped together. Conversely, each

fine block ghost cell overlaps 1/3 of the neighboring coarse cell. In this situation, ghost cell state

variables cannot be directly copied from the neighboring block.

The ghost cell value of water surface elevation any transported scalar quantity is obtained by

interpolating the value from the neighboring block at the ghost cell center using a small group of

neighboring cells. This interpolation is done by inverse distance weighting:

φg =

N

∑
i=1

φi

ri

N

∑
i=1

1

ri

where φg is the value of φ to be placed in the ghost cell, φi is the value of φ in the ith of N cells in

the neighboring block near the center of the ghost cell, and ri is the distance from the center of the

ith cell to the ghost cell center.

Velocity components are handled in a different manner because of their staggered locations. In

the coarse block, the velocity component parallel to the block face (V in the example of Figure 3.6)

corresponds directly to the velocity component in the fine block and can be simply be copied

into the ghost cell. In the fine block, however, only some of the ghost cell values can be copied

directly. The other locations fall within the neighboring coarse cell, and their values are linearly

interpolated between the two values at the coarse cell sides. When setting the ghost cell value of

the velocity component that crosses the block boundary (U in the case shown in Figure 3.6), it is

more important to equate the fluxes across the boundary than it is to equate the velocities (Shyy

et al. 1997; Thakur et al. 1997). Therefore, ghost cell velocity is computed from the flux crossing

the face the neighboring block. The flux across the boundary of the coarse cell is

Fc = UcAc
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Figure 3.6. Example computational mesh block interface.

where Ac is the flow area at the coarse cell boundary. Conversely, the flux through the faces of the

corresponding fine cells is

Ff = ∑
j

U f j
A f j

The velocity component in the coarse ghost cell is set using the flux from the fine cells:

Uc =
Ff

Ac

Similarly, the velocity component in the fine ghost cells is set using the flux from the coarse cell:

U fi =
A fi

∑
j

A f j

Fc

3.7 Wetting and Drying

Wetting and drying in MASS2 relies on a manipulation of the source term in the discretized

momentum (Section 3.2.2) and depth correction (Section 3.2.3) equations to drive the solution in

individual dry cells to an appropriate state. A cell is considered dry if the depth falls below a spec-

ified depth, ddry. When a cell is dry, source term manipulation is used to drive the hydrodynamic

solution of that cell so that the cell depth does not change (i.e., force d′ to zero), and there is no flux

in or out of the cell (force both U and V to zero at the cell boundaries). This is the same manner

in which dead zones, discussed in Section 3.5, are handled. A dry cell remains dry until certain

conditions are met such that it is allowed to rewet:

1. At least one of the cell’s wet neighbor cells (S, N, W, E) must have a higher water surface

elevation(a) than the cell.

(a) Water surface elevation is defined at the center of the d′ control volume (Figure 3.1).
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2. The average of the cell’s and all of its wet neighbors water surface elevation is higher than

the rewetting depth, drewet, which is equal to or slightly larger than ddry.

3. The average water surface elevation, from 2, is high enough to keep the depth in all of the

wet neighbors above ddry.

These conditions are similar to those used by Falconer and Chen (1991). The wet/dry state each

cell in the domain is checked each hydrodynamic iteration (Section 3.3.1) after the new depth (and

water surface elevation) is estimated.

3.8 Bed Accounting

3.8.1 Sediment

The MASS2 sediment bed is represented as a single well-mixed layer with a specified, spatially

and temporally constant porosity, p, and variable depth, dbed. The sediment composition of the

bed is stored as mass per unit bed area for each sediment fraction, Msed j
. The depth of the bed is

computed as

dbed = ρbMbed = ρb

Nbed

∑
j=1

Msed j
(3.35)

where Mbed is the total sediment mass per unit bed area, and ρb is the bed bulk density, computed

as

ρb =

Nsed

∑
j=1

Msed j

(1− p)
Nsed

∑
j=1

Msed j

ρs j

where ρs j
is the solids density for sediment fraction j.

At the end of a simulation time step, the erosion and deposition rates computed during the

suspended sediment transport solution (Section 2.3.2) are added and subtracted from the bed mass:

Msed j
=
(

Msed j

)

old
+∆t

(

D j −E j

)

h1h2

which is an approximate time integration of the source term in equation 2.12.

3.8.2 Transported Scalars

Transported scalar quantities are also accounted for in the bed, both in a dissolved phase within

the bed pore water and particulate phase(s) sorbed to bed sediments. Dissolved scalar quantities

are stored as mass per unit bed area, Mφpore
. When necessary, a pore concentration is computed as

φpore =
Mφpore

pdbed
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Particulate scalar quantities are also stored as mass per unit bed area, Mφbed j
. Often, the ratio of

scalar to sediment mass is necessary:

φbed j
=

Mφbed j

Msed j

At the beginning the simulation time step, scalar mass from non-point sources is added to the

bed, as described in Section 3.8.2.2. At the end of the time step, all other direct exchange with the

water column is accounted for. This takes two forms. First, any particulate contaminant eroded or

deposited with sediment is subtracted or added to the current particulate mass:

Mφbed j
=
(

Mφbed j

)

old
+∆t

(

D jφpart j

φsed j

−φbed j
E j

)

h1h2,

which is a time integration of the third term of equation 2.15. Second, any exchange of particulate

contaminant on the bed surface with the water column is accounted for:

Mφbed j
=
(

Mφbed j

)

old
+∆t

(

Nsed

∑
j=1

ρs j
D50 j

(1−n)Kφ j

(

Kbφ j
φ−φbed j

)

)

h1h2,

which is a time integration of the third term of equation 2.9.

Those scalar quantities that decay in the water column also decay in the bed. This decay is

accounted for at the end of each time step, after any exchange with the water column has been

considered. The mass of dissolved scalar quantities are decayed using

Mφpore
=
(

Mφpore

)

old
exp
(

−λφ∆t
)

(3.36)

Similarly, each particulate phase is decayed using

Mφbed j
=
(

Mφbed j

)

old
exp
(

−λφ∆t
)

(3.37)

3.8.2.1 Dissolved/Particulate Phase Partitioning

Particulate phase contaminants sorbed to bed sediments are assumed to be instantaneously in

equilibrium with their dissolved counterparts in the bed pore water:

φpore =
φbed1

Kbφ1

=
φbed2

Kbφ2

= · · · =
φbedNsed

KbφNsed

When written in terms of mass, this becomes

Mφpore

p
=

Mφbed1

ρbKbφ1
F1

=
Mφbed2

ρbKbφ2
F2

= · · · =
MφbedNsed

ρbKbφNsed

FNsed

(3.38)
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where Fj is the mass fraction of sediment fraction j in the bed. In addition, the total mass of any

species φ in the bed is

Mφ = Mφpore
+

Nsed

∑
j=1

Mφbed j
= Mφpore

+
Nsed

∑
j=1

φbed j
Msed j

(3.39)

If equation 3.38 is substituted into equation 3.39,

Mφ = Mφpore

(

1+
ρb

p

Nsed

∑
j=1

Kdφ j
Fj

)

so that the mass of φ in the pore water at equilibrium is

Mφpore
=

Mφ

1+
ρb

p

Nsed

∑
j=1

Kdφ j
Fj

(3.40)

and the mass of particulate φ at equilibrium is

Mφbed j
= φbed j

Msed j
=

ρb

p
Mφpore

Kdφ j
Fj (3.41)

where Mφ is from equation 3.39.

3.8.2.2 Bed (Non-Point) Source

MASS2 is able to represent non-point sources of contaminants that enter the water body

through the bed. The source is described using a mass rate of contaminant entering the bed bottom

and a flow rate of groundwater(b) that is carrying the contaminant. As this flux of water and con-

taminant filter through the bed, the contaminant may sorb to the bed sediments if it has a particulate

phase. Once filtered through the bed, contaminant may enter the water column. In the absence of

any driving water flux, contaminant in the bed pore water may diffuse into the water column.

To represent these processes, non-point sources are added to the bed in an iterative manner,

with a fixed number of iterations performed each time step. At the beginning of each simulation

time step, the following algorithm is used:

1. The total contaminant mass, m∗
φ, and the average water flux, qb, to enter the bed from the

non-point source is computed.

2. For each iteration:

(a) A fraction (e.g. 1/3, if there 3 iterations) of m∗
φ is added to Mφpore

.

(b) All phases of φ are equilibrated, as described in Section 3.8.2.1.

(b) This additional volume of water is assumed to be very small and is not included in the hydrodynamic solution.
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(c) Using the equilibrated pore concentration, the advective and diffusive exchange with

the water column is computed and removed from Mφpore
. The rate of exchange with the

water column during the ith iteration is computed as

qφi
= qbφpore +h1h2Dporeφ

φpore −φold

0.5dbed

(3.42)

where φold is the water column concentration from the previous time step, Dporeφ
is a

diffusion coefficient.

3. All phases of φ are equilibrated again.

4. The computed qφi
are averaged to determine qφ.

The resulting qφ is then used in the solution of scalar φ in the water column (equation 2.9).
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4.0 Validation Tests

4.1 Hydrodynamic Tests

4.1.1 Subcritical, Uniform Flow in a Rectangular Channel

This test was used to verify that MASS2 was able simulate subcritical uniform open channel

flow and does so with multiple computational mesh blocks. The model was configured to simulate

a rectangular channel 3048 m (10,000 ft) long and 152.4 m (500 ft) wide (Figure 4.1). A normal

depth of 1.524 m (5.0 ft), an average velocity of 0.61 m/sec (2.0 ft/sec), and a Manning’s rough-

ness coefficient of 0.026 were chosen. The slope of the channel required to produce these given

conditions was predicted with Manning’s equation (Chow 1959):

So =

[

V n

d
2
3

]2

= 1.425×10−4 m/m

Note that the bottom slope was computed using depth rather than wetted perimeter. This is consis-

tent with the representation of bottom friction in MASS2 (Section 2.2), where sidewall friction is

not included. The normal depth was applied as the downstream boundary condition. A discharge

of 141.6 m3/sec (5000 cfs) was applied at the upstream boundary.

1

3048 m

0.434 m

1.524 m

velocity = 0.61 m/s

1.425×10−4

Figure 4.1. Profile dimensions of channel used for

subcritical uniform flow in a channel

flow test.

Three computational grids were used. The first was a single 100 by 10-cell block. For the

second grid, the first was split into two 50 by 10-cell blocks. The third grid consisted of three

blocks. A 40 by 10-cell block, having the same resolution as the 1 and 2 block grids, covered the

upstream and downstream 1219 m (4000 ft) of the channel. An 80 by 20-cell block, doubling the

lateral resolution, was used in the middle 610 m (2000 ft) section of the channel.

MASS2 matched the theoretical depth over the entire length of the channel after starting with a

flat water surface profile and zero velocity as initial conditions (Figure 4.2). The steady-state sim-

ulated water surface elevation was parallel to the bottom (Figure 4.3). The steady-state simulation

was independent of the grid block arrangement.
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Figure 4.2. Simulated steady-state depth profiles from the subcritical uniform flow in a channel

tests. Three computational meshes were used: (a) a single 10x100 cell block, (b) two

10x50 blocks, and (c) three blocks with a 10x40 block upstream and downstream and

a 20x80 block in between. Vertical lines indicate block boundaries.

4.1.2 Subcritical, Uniform Flow in a Trapezoidal Channel

This test was similar to the test of Section 4.1.1 except that the channel cross section was

trapezoidal instead of rectangular. To simulate flow in a trapezoidal channel, MASS2 must use

wetting and drying to allow the side slopes to be exposed.

MASS2 was configured to simulate a trapezoidal channel with a base width of 13.4 m (44 ft)

and a side slope of 0.08929. The channel was chosen to be 30.5 m (100 ft) wide by 1.52 m (5 ft)

deep overall (Figure 4.4) and 305 m (1000 ft) long. A single block, 50 by 25-cell mesh was used.

A constant discharge of 40.8 m3/sec (1440 ft3/sec) was imposed at the upstream end. Manning’s

roughness coefficient was set to 0.026 and the longitudinal slope was set to 1.6025−3, which was

expected to result in a normal depth of 1.22 m (4.0 ft). Initially, the water surface elevation was

set to inundate the entire mesh 2.74 m (9 ft). The center line depth imposed at the downstream

boundary started at the initial value and was gradually decreased to the expected normal depth,

where it remained for the duration of the simulation. The dry and rewetting depths used were very

small: 3.05×10−3 m (0.01 ft) and 3.66×10−3 m (0.012 ft), respectively.
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Figure 4.3. Simulated steady-state water surface elevation profiles from the subcritical uniform

flow in a rectangular channel tests. Three computational meshes were used: (a) a

single 10x100 cell block, (b) two 10x50 blocks, and (c) three blocks with a 10x40

block upstream and downstream and a 20x80 block in between. Vertical lines indicate

block boundaries.
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Figure 4.4. Channel cross section used for the uni-

form flow in a trapezoidal channel test.

37



The center line flow depth simulated by MASS2 was very close to that expected (Figure 4.5).

Depth was slightly over-predicted at the upstream end of the channel, probably due to the inexact

imposition of the discharge at the boundary.
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Figure 4.5. Comparison of simulated depth (a) and water surface elevation (b) from the subcritical,

uniform flow in a trapezoidal channel.

4.1.3 Gradually Varied Subcritical Flow in a Rectangular Channel

In this test, the channel used in Section 4.1.1 was extended to double its length in two ways

(Figure 4.6). In case 1, the extension was placed downstream of the original channel. The slope of

this extension was made steeper than the original channel, So = 1.4208×10−3, so that the expected

flow would be subcritical, with a depth of 0.762 m (2.5 ft), a velocity of 1.22 m/sec (4 ft/sec), and a

channel discharge of 141.6 m3/sec (5000 cfs). In case 2, the steeper extension was placed upstream

of the original channel.
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Figure 4.6. Dimensions of channel used for the gradually varying flow in a channel tests.

MASS2 was configured to simulate each of these cases with a 200 by 10-cell single-block grid.

The channel discharge was imposed as the upstream boundary condition and the expected normal

depth was imposed as the downstream boundary condition. The simulations were started with a

constant depth and of 0.91 m (3.0 ft) a longitudinal velocity of 0.061 m/sec (0.2 ft/sec).
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In both cases, normal depth in the downstream reach was simulated as expected (Figure 4.7).

In case 2, the expected normal depth was also simulated in the upper reach. In case 1, however, the

upper reach was not long enough to obtain normal depth to become established. Instead, a classic

M2 profile (Chow 1959) was simulated where depth was in transition to the shallower downstream

depth.
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Figure 4.7. Simulated steady-state depths and water surface elevations from the gradually varied

flow in a rectangular channel test.

4.1.4 Transition to Supercritical Flow in a Rectangular Channel

This test validates MASS2 in two ways: simulation of supercritical flow and the use of a zero

gradient hydrodynamic downstream boundary condition. MASS2 was configured to simulate a

channel 5000 ft long. The upstream 1220 m (4000 ft) of the channel had the same dimensions as

the channel used in Section 4.1.1. The lower 152 m (500 ft) had the same rectangular section but

a bottom slope of 0.0676 m/m. With a channel discharge of 142 m3/sec (5000 cfs) and Manning

roughness coefficient of 0.026, the expected normal depth in the supercritical part of the channel

would be 0.240 m (0.787 ft) and the velocity would be 3.87 m/sec (12.7 ft/sec). Critical depth for

this channel was 0.445 m (1.459 ft).

The channel was simulated with a single block grid 140 cells long by 10 cells wide. The

upstream, subcritical portion used 40 cells longitudinally and the downstream, supercritical portion

used 100 cells. A depth of (5 ft) and a zero velocity were supplied as initial conditions.
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The simulated water surface profile displays the classic M2 profile (Chow 1959) while tran-

sitioning from subcritical to critical (Figure 4.8). The location of critical depth was correctly

simulated to be where the slope changed. The classic S2 profile was simulated downstream where

flow transitioned from critical to supercritical.
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Figure 4.8. Simulated steady-state water surface elevation and depth from the transition to super-

critical flow in a rectangular channel test.

4.1.5 Hydraulic Jump in a Straight Channel

This test was used to examine the ability of the model to simulate the transition of flow from

supercritical to subcritical with a hydraulic jump. Gharangik (1988) performed measurements of

such a transition in a laboratory flume. The model was configured to simulate a rectangular channel

0.45 m (1.48 ft) wide and 13.9 m (45.60 ft) long using a single 238 by 5-cell grid block. The

channel had no bottom slope. A depth of 0.064 m (0.21 ft) and velocity of 1.82 m/sec (5.97 ft/sec)

were imposed at the upstream boundary, resulting in a channel discharge of 0.053 m3/sec (1.87 cfs)

and upstream Froude number of 2.30. A velocity of 0.69 m/sec (2.264 ft/sec) was imposed at the

downstream end resulting in a depth of 0.17 m (0.58 ft) and a Froude number of 0.53. The initial

conditions were a depth of 0.064 m (0.21 ft) and a velocity of 0.34 m/sec (1.0 ft/sec) longitudinally

and zero laterally.

The model simulated depths very similar to the laboratory experiment (Figure 4.9). The simu-

lated jump was correctly located, but the simulated jump was steeper and also somewhat smoother

than the observed. Several simulations were performed to identify correct values for Manning

roughness coefficient and eddy viscosity. The simulated jump was very sensitive to both of these

values. A value of 0.007 was chosen, which was slightly below the range measured in the experi-

ments (0.008 to 0.011). The eddy viscosity was chosen to be 0.074 m2/sec (0.8 ft2/sec).

4.1.6 Varied Flow in a Trapezoidal Channel

MacDonald et al. (1997) presented analytic solutions to a set of gradually and rapidly open

channel flow problems. Their test problem 3 considered subcritical flow in a channel with a varying

bottom slope. The channel was 5 km (3.1 miles) long with a Manning roughness coefficient of

0.030 and a trapezoidal section with a base width of 10 m (32.8 ft) and a 1:2 side slope. The
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Figure 4.9. Simulated depth from the hydraulic jump in a

straight channel test compared to that observed

by Gharangik (1988).

channel discharge was 20 m3/sec (707.3 cfs) and the downstream depth was 1.125 m (3.69 ft). The

bottom slope was given by

So =

{

1− 400 [10+4d(x)]

g [10+2d(x)]3 d(x)3

}

d′(x) + 0.36

[

10+2d(x)
√

5
]4/3

[10+2d(x)]10/3
d(x)10/3

where slope, So, and hydraulic depth, d(x), are functions of distance along the channel, x, and g is

gravitational acceleration. The depth and its derivative is given by

d(x) =
9

8
+

1

4
sin
( πx

500

)

(4.1)

and

d′(x) =
π

2000
cos
( πx

500

)

The solution to the problem is given by equation 4.1. MASS2 was configured to simulate this

problem using a 2500 by 24 cell grid that was 18 m (59.1 ft) wide. This grid would allow depths

up to 2 m without exceeding the top of trapezoidal section. The dry and rewetting depths used

were very small: 1.52×10−3 m (0.005 ft) and 1.83×10−3 m (0.006 ft), respectively.

Depths simulated by MASS2 were consistent with, but slightly lower than, the analytic solution

(Figure 4.10). This is probably due to the representation of friction in MASS2 (Section 2.2).

MASS2 friction is based on the bed area projected to a horizontal plane, whereas the analytic

solution uses the wetted perimeter. Consequently, friction on the sides of the trapezoidal section

was slightly underestimated.

Test problem 4 of MacDonald et al. (1997) considered flow in a trapezoidal channel transi-

tioning from subcritical to supercritical and the transitioning back to subcritical with a hydraulic

jump. The channel was 1000 m (3280 ft) long with a Manning roughness coefficient of 0.020.

The channel cross section had a base width of 10 m (3.28 ft) and a 1:1 side slope. The channel

discharge was 20 m3/sec (707.3 cfs), and the depth at the downstream boundary was 1.349963 m
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Figure 4.10. Simulated water surface elevation and depth compared with the analytic solution to

problem 3 of MacDonald et al. (1997).

(4.429 ft). The channel slope was given by

So(x) =

{

1− 400 [10+2d(x)]

g [10+d(x)]3 d(x)3

}

d′(x)+0.16

[

10+2d(x)
√

(2)
]4/3

[10+d(x)]10/3
d(x)10/3

where

d(x) =



































0.723449

[

1− tanh

(

x

1000
− 3

5

)]

for 0 ≤ x ≤ 300

0.723449

{

1− 1

6
tanh

[

6

(

x

1000
− 3

5

)]}

for 300 < x ≤ 600

3

4
+

3

∑
k=1

ak exp

[

−20k

(

x

1000
− 3

5

)]

+
3

5
exp
( x

1000
−1
)

for 600 < x ≤ 1000

which is the solution, and

d(x) =



































−0.723449×10−3sech2

(

x

1000
− 3

10

)

for 0 ≤ x ≤ 300

−0.723449×10−3sech2

[

6

(

x

1000
− 3

10

)]

for 300 < x ≤ 600

− 1

50

3

∑
k=1

kak exp

[

−20k

(

x

1000
− 3

5

)]

+
3

5000
exp
( x

1000
−1
)

for 600 < x ≤ 1000

where a1 = −0.111051, a2 = 0.026876, and a3 = −0.217567.

MASS2 was configured to simulate this case using a 500 by 56-cell grid. The dry and rewetting

depths used were very small: 3.05× 10−3 m (0.01 ft) and 3.66× 10−3 m (0.012 ft), respectively.

Depths simulated by MASS2 were very close to the analytic solution (Figure 4.11). The hydraulic

jump was simulated in the expected location; depths above the hydraulic jump were slightly over-

estimated.
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Figure 4.11. Simulated water surface elevation and depth compared with the analytic solution to

problem 4 of MacDonald et al. (1997).

4.1.7 Flow in a Converging and Diverging Channel

Panagiotopoulos and Soulis (2000) and Klonidis and Soulis (2001) describe a laboratory study

of subcritical flow in a converging and diverging flume. The flume was 0.25 m (0.82 ft) wide at

the entrance and exit and narrowed to half that width in between (Figure 4.12). Velocity and depth

measurements were taken along approximate streamlines that divided the flume laterally in fifths.
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Figure 4.12. Model domain used to represent the converging and diverging channel test. The

dashed lines denote the approximate streamlines along which measurements were

made.

MASS2 was configured to simulate this flume using a 50 by 10-cell mesh. A discharge of

0.286 m3/sec (0.727 ft3/sec) was imposed as the upstream boundary condition. A depth of 0.286 m

(0.938 ft) was imposed as the downstream boundary condition, based on observations. Simulated

depths and velocities were compared with observations made along the approximate streamlines

2 and 5 (Figure 4.12). Manning’s roughness coefficient was set to 0.010. Several values of eddy

viscosity were tested; a value of 0.014 m2/sec (0.15 ft2/sec) produced the best results. Simulated

depths were consistent with the observed and with the previous simulation of Klonidis and Soulis

(2001) (Figure 4.13).
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Figure 4.13. Simulated depth and velocity in the converging and diverging channel test compared

with that observed by Panagiotopoulos and Soulis (2000).

4.1.8 Two-Dimensional Flow Around a Spur Dike

Flow around a spur-dike, or groyne, has been used in several studies to verify hydrodynamic

models (Ouillon and Dartus 1997; Tingsanchali and Maheswaran 1990; Molls and Chaudhry

1995). Tingsanchali and Maheswaran (1990), Molls and Chaudhry (1995) and Molls et al. (1995)

compared simulations to the data of Rajaratnam and Nwachukwu (1983) and Nawachukwu (1979).

Ouillon and Dartus (1997) compared simulation against another set of experimental data. This

test compared flow simulated by MASS2 with the experimental work done by Rajaratnam and

Nwachukwu (1983). The Manning’s roughness coefficient was set to 0.010.

The domain dimensions are shown in Figure 4.14. The spur-dike was represented as a very thin

plate using a wall internal boundary (Section 3.5). This constitutes a slip condition for the lateral

velocity at the wall. After several simulations were performed with varying eddy viscosity, a value

of 1.50 m2/sec (1.61e-02 ft2/sec) was chosen.

Under these conditions, MASS2 simulated a recirculation zone behind the spur-dike about

1.7 m long (Figure 4.15). The slip condition at the spur-dike was apparent (Figure 4.16). The vari-

ation of longitudinal velocity at relative distances across the channel were compared with observed

(Figure 4.17). In general, the velocities simulated by MASS2 were consistent with observations.
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Figure 4.14. Computational domain for the flow around a spur-dike test.
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Figure 4.15. Streamlines from the flow around a spur dike test.
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Figure 4.16. Simulated velocity vectors near the spur-dike. Every other vector is shown.
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Figure 4.17. Comparison of simulated velocity with observed and other reported simulations of

the flow around a spur-dike test. y is the distance across the
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4.1.9 Side Discharge into an Open Channel

This test was used to compare MASS2 with experimental work done by Rodi and Weiss (1980)

(as presented by Ye and McCorquodale 1997). The model was configured to simulate a rectangular

channel with width, B, of 1.82 m (5.971 ft), a length of 4B, 7.28 m (23.884 ft), and zero slope

(Figure 4.18). The initial and downstream boundary depth were 0.06 m (0.197 ft). The entire

domain was assigned a value of 0.0001 for Manning’s roughness coefficient, n, to represent a

smooth surface. A constant discharge of 0.1092 m3/sec (0.3856 ft3/sec) to produce an average

longitudinal velocity
(

U
)

of 0.1 m/sec (0.328 ft/sec). After several simulations were performed

with varying eddy viscosity, a value of 9.29×10−3 m2/sec (1.00×10−2 ft2/sec) was chosen.

According to the summary of previous data and simulation presented by Ye and McCorquodale

(1997), the recirculation zone caused by the jet should be 1 to 1.7 times B in length and about 0.2

times in width. The size of recirculation zone simulated by MASS2 had dimensions close to these

(Figure 4.19).
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=
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.8
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V = 4U = 0.4 m/s (1.312 ft/s)

do = 0.06 m (0.197 ft)

B

Figure 4.18. Model domain and boundary conditions for the side discharge into an open channel

test.

4.1.10 Flow in a Meandering Channel

Chang (1971) performed several experiments in a flumes with one or more meanders. The large

flume was 7.67 ft wide and consisted of two opposing 3.0-ft-radius, 90-degree bends connected by

a straight section of 18.75 ft. The experiment was performed with a uniform flow in the flume with

a depth of 0.377 ft (0.115 m) and a bulk velocity of 1.2 ft/sec (0.366 m/sec). To provide uniform

flow, the flume was tilted at a slope of 3.5×10−4 ft/ft. This not the slope of the channel, but of the

table supporting the flume. Chang (1971) measured velocity along four cross sections labeled A,

B, C, and D in Figure 4.20.

MASS2 was configured to represent the large flume experiment performed by Chang (1971).

The MASS2 configuration used the domain shown in Figure 4.20. A constant, evenly distributed

discharge of 3.478 ft3/sec (0.0985 m3/sec) was imposed as the upstream boundary condition. A

constant stage was imposed at the downstream boundary, leading to constant depth of 0.377 ft at

the center of the channel. After several test simulations with varying values, Manning’s n was

chosen to be 0.01125 so that the upstream and downstream depths were nearly the same.
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Figure 4.19. Simulation results from the side discharge into an open channel test. Streamlines

(above) are shown for the entire domain. Velocity vectors are shown only in the

vicinity of the jet (longitudinally, every third vector is shown).

Simulated velocity varied linearly across flume (Figures 4.21 and 4.22). Measured velocity

appeared to be heavily influenced by the side wall (Figure 4.22). To try to emulate this, a second

simulation was performed but with Manning’s roughness coefficient much higher (0.040) in the

cells along the flume walls and slightly lower (0.00925) elsewhere. Simulated upstream and down-

stream depths were nearly the same with this combination. This helped bring simulated velocities

near the walls closer to those measured (Figure 4.22).

Figure 4.20. Dimensions of the simulation domain used in the meandering channel test.
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Figure 4.21. Simulated velocity vectors in the meandering channel test case. The upper graph

shows vectors from the simulation using the slip boundary condition along the chan-

nel walls. The lower graph shows vectors from the simulation with increased rough-

ness at the walls.
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a meandering channel test.
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4.2 General Scalar Transport Tests

4.2.1 One-Dimensional Advection

This tests the longitudinal transport of an arbitrary species by advection only. It exercises the

scalar transport capabilities of MASS2 and highlights some shortcomings of the underlying trans-

port algorithm in unsteady simulations where sharp gradients of the transported quantity occur. For

unsteady simulations the power-law advection scheme will yield solutions that are overly diffusive.

As noted by Patankar (1980), the nature of numerical or false diffusion in unsteady simulations is

different than in multi-dimensional steady-state simulations where the performance of the power-

law scheme is adequate when the computational grid is aligned with the flow streamlines.

The channel configuration described in Section 4.1.1 was used. A triangular pulse of con-

taminant concentration, shown in Figure 4.23, was used as a boundary condition, which can be

described as

φo(t) =































0 for t ≤ 0,

φp

(

1− tp − t

tp

)

for 0 < t ≤ tp,

φp

(

1− t − tp

tp

)

for tp < t ≤ 2tp,

0 for t > 2tp

(4.2)

where t is time measured from start of the pulse (06:00 in Figure 4.23), tp is the time to the peak (24

min), and φp is the peak concentration (10.0). With pure advection, this pulse should be translated

downstream without change in shape. The translated concentration is

φ(x, t) = φo(t − x/v) (4.3)

where x is the distance along the channel and v is the flow velocity (2.0 ft/sec in this case). Several

simulation time steps were used in order to test the effect of varying Courant number, Cn, given by

Cn =
v∆t

∆x

Time steps were chosen to produce Courant numbers of 0.1, 1.0, and 6.0.

Solution of the transport equation in MASS2 was highly diffusive in this unsteady problem

(Figure 4.24). The sharp concentration pulse was reduced considerably as it traveled downstream.

The reduction of the peak concentration was greatest with the Courant number of 6.0 and some

phase error is also apparent in the simulation.

4.2.2 One-Dimensional Advective Diffusion

This test compared MASS2 (longitudinal) transport simulation to an analytic solution to the

unsteady advection-diffusion equation. The analytic solution describes the transport of a sharp

concentration front through a medium moving at a constant velocity and having an initial concen-

tration of zero. The concentration along the channel is described as (Fischer et al. 1979)

C(x, t) =
Co

2

[

1− erf

(

x− vt√
4KT t

)]

(4.4)
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Figure 4.23. Upstream concentration boundary condition used for the one-dimensional advection

test. The time axis is shown in 24-hour clock time. Simulation start time was 05:00.
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Figure 4.24. Results of the one-dimensional advection test for three Courant numbers: (a) 0.1, (b)

1.0, and (c) 6.0. The plots show simulation results (points) and the advected boundary

concentration (4.3, solid line) at 24, 48 and 72 minutes after the concentration peak

at the upstream boundary.
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where t is time, x is the distance along the channel, v is the flow velocity, Co is the height of the

concentration front, and KT is the longitudinal dispersion coefficient.

The same channel configuration as Section 4.2.1 was used to simulate this situation with a KT

of 30.0. The channel was given an initial concentration of zero, and a constant concentration of

10.0. Also, as in Section 4.2.1, three transport time steps were used to yield three Courant numbers:

0.1, 1.0, and 6.0.

As in Section 4.2.2, MASS2 exhibited noticeable numerical diffusion, smearing the front more

than predicted by the analytic solution (Figure 4.25). The simulations at higher Courant numbers

exhibited more diffusive behavior. Simulated concentrations were the same when using multiple

blocks (Figure 4.26). The multi-block meshes used were the same as described in Section 4.1.1.
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Figure 4.25. Simulated concentration (points) compared with the analytic solution (equation 4.4,

solid line) to the one-dimensional advective diffusion test. Three cases are shown:

(a) Co = 0.1, (b) Co = 1.0, and (c) Co = 6.0. Concentration profiles are shown at

6-minute intervals, starting 6 minutes after the concentration peak was reached at the

boundary.
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Figure 4.26. Concentration from multi-block simulations (points) compared to the analytic solu-

tion (equation 4.4, solid line) to the one-dimensional advective diffusion test. Con-

centration profiles are shown at 6 minute intervals, starting 6 minutes after the con-

centration peak was reached at the boundary. Vertical lines indicate block boundaries.

Simulation results are for Co = 1.0.

4.2.3 Lateral Mixing

This test was used to check the MASS2 simulation of steady-state lateral mixing of a trans-

ported contaminant. A constant concentration, Cb, was applied along one half of the upstream

boundary and a higher constant concentration, Co, was applied along the other half. This problem

has an analytic solution described by Fischer et al. (1979):

C (x,y) =
Co

2

inf

∑
n=− inf

[

erf

(

y′ + 1
2
+2n√

4x′

)

− erf

(

y′− 1
2
+2n√

4x′

)]

+Cb (4.5)

where x′ = xεt

VW 2 and y′ = y
W

.

MASS2 was configured to simulate uniform flow with a depth of 1.83 m (6 ft) in a rectangular

channel 30.4 m (100 ft) wide and 1219 m (4000 ft) long. A constant discharge of 56.6 m3/sec

(2000 cfs) was supplied as the upstream boundary condition, and a constant depth of 1.83 m was

supplied as a downstream boundary condition. The longitudinal and lateral diffusivity (ε1 and ε2 in

equation 2.8) were set to 0.279 m2/sec (3.0 ft2/sec). This value was also used for εt in the analytic

solution.

A contour plot of simulated steady-state concentrations is shown in Figure 4.27. Simulated

concentrations matched the analytic solution very well both laterally (Figure 4.28) and longitudi-

nally (Figure 4.29).

4.2.4 Point Source

This case was used to compare the output of a MASS2 simulation of a contaminant species

supplied to the channel as a point source with an analytic solution to the problem. The analytic
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Figure 4.27. Contour plot of simulated concentration from the lateral mixing test.
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Figure 4.28. Lateral variation of simulated concentration compared with the analytic solution to

the lateral mixing test.
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solution, from Fischer et al. (1979), is

C

Co
=

1

(4πx′)
1
2

inf

∑
n=− inf

{

exp
[

−
(

y′−2n− y′o
)2

/4x′
]

+ exp
[

−
(

y′−2n+ y′o
)2

/4x′
]}

(4.6)

where

Co =
Ṁ

V dW
, x′ =

xεt

VW 2
, and y′ =

y

W

and (xo,yo) is the location of the source, and Ṁ is the mass source rate.

MASS2 was configured to simulate the channel described in Section 4.1.1 with a 200 by 25-

cell mesh. A constant source of contaminant
(

Ṁ = 1.0 units/sec
)

was supplied to a single cell

near the upstream boundary. The center of the cell was located at xo = 22.9 m (75 ft) and yo =

38.1 m (125 ft). The longitudinal and lateral diffusivity (ε1 and ε2 in equation 2.8) were set to

0.019 m2/sec (0.2 ft2/sec). This value was also used for εt in the analytic solution.

A contour plot of the steady-state concentrations simulated is shown in Figure 4.30. MASS2

simulated concentrations close to the solution, except very near the source, where MASS2 over-

estimated peak concentrations (Figure 4.31).
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Figure 4.30. Contour plot of simulated concentration from the point source transport test.

4.2.5 Radioactive Decay

An analytic solution to compute concentrations of a decaying scalar quantity along the channel

was presented by Fischer et al. (1979) as

C = Co exp

[

−
(

Uox

2K

)

(√
α+1−1

)

]

(4.7)
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Figure 4.31. Lateral (a) and longitudinal (b) variation of simulated concentration compared with

the analytic solution to the point source test.

where K is a dispersion coefficient, Uo is the bulk velocity,

α =
4Kλ

U2
o

, (4.8)

and

Co = Ci

[

2

α

(√
α+1−1

)

]

(4.9)

MASS2 was configured to simulate the channel described in Section 4.1.1. A constant concen-

tration of decaying contaminant, Ci = 10.0, was imposed as a boundary condition at the upstream

end. The half-life of the contaminant was chosen to be the travel time in the channel,

3048 m

0.61 m/sec
= 5000 sec, so that λ =

log2

5000
= 1.386×10−4

and the expected concentration at the channel outfall would be precisely half the inflow concen-

tration. Concentrations simulated were very close to the analytic solution and the simulate down-

stream concentration was half the inflow concentration (Figure 4.32).

4.2.6 Dissolved/Particulate Species Partitioning

This test was used to exercise the simulated exchange between dissolved and particulate phases

of a scalar species. The simple rectangular channel and flow conditions in Section 4.1.1 was

used. At the upstream boundary, clean sediment (particulate concentration was zero) was supplied

at a concentration of 1.0, and purely dissolved contaminant was supplied at a concentration of

1.0. The partitioning coefficient, Kdφ
, was set to 1.0, so that, as the dissolved contaminant was

transported downstream, it equilibrated with the sediment to the point were the dissolved and

particulate concentrations were both 0.5. The transfer rate, Kφ, was set to 5×10−4 sec-1.

As expected, simulated dissolved and particulate approached concentrations of 0.5 and nearly

reached equilibrium at the channel outfall (Figure 4.33a). A second simulation was performed in
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which the contaminant was assigned a half-life of 5000 sec (reach travel time). MASS2 correctly

simulated the decay in both phases, so that the concentrations at the channel outfall were half of

the previous simulation (Figure 4.33b).
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Figure 4.33. Simulated dissolved and particulate concentrations in the species partitioning test.

The conservative contaminant case is shown in (a); (b) shows the decaying contami-

nant case.
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5.0 Future Development

Following its original development, additional capabilities have been added to MASS2 to meet

the specific needs of new applications. New code features which the authors plan to add (subject

to available funding) include the following:

• Second-order time differencing

• Second-order monotonic scheme for advection

• SIMPLER and SIMPLEC velocity-depth coupling schemes to improve rate of convergence

• Depth-averaged turbulence model

• Multilayer sediment bed

• Bedload sediment transport

• Internal flow regulation in cells - culverts, weirs, flow over embankments

• Improved input file checking and error trapping

• Additional output file options and utilities
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