
Slant Path Distances Through  

Cells in Cylindrical Geometry and an 

Application to the Computation of Isophotes

LA-14349
Approved for public release;  

distribution is unlimited.



This report was prepared as an account of work sponsored by an agency of the U.S. Government.  
Neither Los Alamos National Security, LLC, the U.S. Government nor any agency thereof, nor any of 
their employees make any warranty, express or implied, or assume any legal liability or responsibility  
for the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by Los Alamos 
National Security, LLC, the U.S. Government, or any agency thereof. The views and opinions of authors 
expressed herein do not necessarily state or reflect those of Los Alamos National Security, LLC, the 
U.S. Government, or any agency thereof. Los Alamos National Laboratory strongly supports academic 
freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not endorse 
the viewpoint of a publication or guarantee its technical correctness.

Los Alamos National Laboratory, an affirmative action/
equal opportunity employer, is operated by Los Alamos 
National Security, LLC, for the National Nuclear Security 
Administration of the U.S. Department of Energy under 
contract DE-AC52-06NA25396.

Funding is provided by the Department of Energy, Nonproliferation Office.



Slant Path Distances Through  

Cells in Cylindrical Geometry and an  

Application to the Computation of Isophotes

Rodney Whitaker 

Eugene Symbalisty 

LA-14349
Issued: December 2007





Slant Path Distances Through Cells in Cylindrical
Geometry and an Application to the Computation of

Isophotes

by
Rodney Whitaker and Eugene Symbalisty

an updated version of the original unpublished report by
Henry G. Horak and John W. Kodis

i



Contents

1 Introduction 1

2 Slant Path Geometry 1
2.1 Right Circular Cone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Right Circular Cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 The Subroutine HOWFAR 5

4 The Subroutine WHERE 6

5 The Calculation of Isophotes 7

6 Current Work 10
6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.2 Isophote Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.3 Particular Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

7 Summary 19

8 Acknowledgements 19

9 Bibliography 20

10 Appendix 21
10.1 Sample input file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
10.2 Code listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
10.3 OpenMP make file on a MAC G5 . . . . . . . . . . . . . . . . . . . . . . . 50
10.4 Make file for serial processor such as Sun . . . . . . . . . . . . . . . . . . . 50

ii



List of Figures

1 The position vector, a, and the direction vector, Ω. . . . . . . . . . . . . . 2
2 A quadrilateral mesh cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3 The incident, Iν(0,Ω), and emergent, Iν(s,Ω), intensities. . . . . . . . . . 7
4 The observer, O, is located at (a0, c0). . . . . . . . . . . . . . . . . . . . . . 9
5 Isophotes for 10 kt with 200-m HOB at 2 s. . . . . . . . . . . . . . . . . . 10
6 Isophotes for a 1-kt burst at 50-m HOB and a time of 0.4 s, horizontal path 12
7 Isophotes for a 1-kt burst at 50-m HOB and a time of 0.4 s, and 450 path. 13
8 The Si band power vs time curve for 450 look angle. . . . . . . . . . . . . . 14
9 Si flux versus time for the 10 kt, 240-m HOB at three elevation angles. . . 15
10 Si flux versus time for the 10 kt, 0-m HOB at three elevation angles. . . . . 16
11 Isophotes for a 10 kt burst at 0-m HOB and 00 elevation angle. . . . . . . . 16
12 Isophotes for a 10-kt burst at 0-m HOB and 900 elevation angle. . . . . . . 17
13 Si flux versus time for the 10 kt, 0-m and 240-m HOB showing the delayed

minimum time for the 0-m HOB case. . . . . . . . . . . . . . . . . . . . . . 18

iii



1 Introduction

This report is composed of two parts. The first is a restoration of the hardcopy draft of the
original report by Horak and Kodis from 1983 that did not get to final form. The algorithm
documented in that draft was in routine use in weapon effects calculations at Los Alamos
since the mid-1970s. That draft was converted to LaTex format by Rod Whitaker and
Eugene Symbalisty in late 2006, and C. Flaming made electronic versions of the original
figures. We give first the text and figures of the original report (Sections 1 through 5) with
new results starting after Section 5.

Abstract

In computer programs involving two-dimensional cylindrical geometry, it is often
necessary to calculate the slant path distance in a given direction from a point
to the boundary of a mesh cell. A subroutine, HOWFAR, has been written that
accomplishes this, and is very economical in computer time. An example of its use
is given in constructing the isophotes for a low altitude nuclear fireball.

Computer programs that solve problems in two-dimensional cylindrical geometry often
must calculate slant path distances through mesh cells (see, e.g., Amsden and Hirt, 1973;
Anderson and Sandford, 1974, Horak et al., 1982, and Lathrop and Brinkley, 1973). This
is particularly important in Monte Carlo computations that follow the random walks of
numerous statistical particles. A subroutine, HOWFAR has been written that efficiently
calculates the slant path distance in a given direction from a point to the boundary of a
mesh cell, and allows for the many special cases. HOWFAR has become very valuable in
several radiation-hydrodynamics codes that are used at Los Alamos to follow the evolution
of nuclear explosions in the earth’s atmosphere (Anderson and Sandford, 1974, Horak et
al., 1982).

In Section V the use of HOWFAR is illustrated to find slant optical distances through
cells, and by using the formal solution of the equation of transfer to calculate isophotes
(radiance contours) for a low-altitude nuclear fireball.

2 Slant Path Geometry

The basic formulas for calculating slant path distances through mesh cells in cylindrical
geometry are readily obtained by using vector algebra. Refer to Figures 1 and 2. The
cross section of a cell in the XZ-plane is the area bounded by four straight-line segments;
the entire cell is the volume described by rotating this figure in a circle about the OZ-axis.
This quadrilateral is assumed to be convex, with the four vertices numbered consecutively
i = 1,2,3,4 in the counterclockwise sense as viewed from a point on the negative Y-axis. In
Lagrangian hydrodynamic calculations the mesh cells can be subject to severe distortion,
although provision is usually provided to prevent cell boundaries from becoming concave.

The position vector, a, of a moving point at a given instant of time can be written

1
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a = ai + bj + ck (1)

where i, j, and k are basic unit vectors in a right-handed orthogonal Cartesian coordinate
system, and its direction of motion is given by the unit vector

Ω = ξi + ηj + ζk. (2)

The vector equation of the straight line segment originating at the point a, and extending
in the direction Ω is

r(d) = a + Ωd (d > 0), (3)

where r = xi + yj + zk is the position vector of any point on the line segment, and d
is the distance parameter. The geometric problem is to find the points of intersection of
this line segment with the boundary surfaces of the mesh cells, viz., right circular cones
and cylinders described about the OZ-axis, and planes perpendicular to the OZ-axis. It
is assumed throughout that the moving point in question is located within a mesh cell,
although it may be necessary to perform some computation in order to identify the precise
cell (refer to Sec. IV).

Let (ρ, φ, z) be the cylindrical coordinates of a point P, and xi,xi + dxi (i = 1,2,3,4)
the position vectors in the XZ-plane of two consecutive vertices of a mesh cell, where

xi = xii + zik, and dxi = dxii + dzik . The equation of a right circular cone whose
line of symmetry is the Z-axis, and which passes through the points xi,xi + dxi is

r(ρ, φ) = ρ cosφ i + ρ sinφ j + (z0 + ρ cotα)k, (4)

where

z0 = zi − xi cotα, (5)

and

cotα =
dzi

dxi

. (6)

α is the semivertex angle of the cone, and z0k the position vector of the vertex. If dxi = 0,
the resulting equations describe a right circular cylinder:

r(φ, z) = ρ0 cosφ i + ρ0 sinφ j + z k , (7)

where

ρ0 = xi , dxi = 0. (8)

The equation of a plane perpendicular to the z-axis, and that contains the points
xi,xi + dxii , is

3



r(ρ, φ) · k = z0, (9)

where

z0 = zi , dzi = 0. (10)

The points of intersection e of the above surfaces with the straight line segment r =
a + Ωd are found by simultaneous solution, and the results are described below.

2.1 Right Circular Cone

For a right circular cone, we have

e = ei + f j + gk (11)

= (a + ξd)i + (b + ηd)j + (c + ζd)k, (12)

where

d =
−Q±

√
(Q2 − PR)

P
(13)

P = ξ2 + η2 − F 2 (14)

Q = aξ + bη − EF (15)

R = a2 + b2 − E2 (16)

E = (c− z0) tanα (17)

F = ξ tanα (18)

zo = zi − xi cotα (19)

cotα =
dzi

dxi

. (20)

2.2 Right Circular Cylinder

For the case of the right circular cylinder, the above equations for e and d apply with

P = ξ2 + η2 (21)

Q = aξ + bη (22)

R = a2 + b2 − x2
i . (23)
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2.3 Plane

For the case of the plane, equation 11 applies with

d =
zi − c

ζ
. (24)

There are special cases that can arise and must be properly treated in the program; some
of these will be discussed subsequently.

3 The Subroutine HOWFAR

A FORTRAN listing of the subroutine HOWFAR is given in the appendix. It will be
necessary for the user to provide statements regarding the memory storage and location
of coordinates, etc., and to set up the appropriate common blocks. Comments have been
liberally inserted, but certain aspects require more discussion.

A test is made at the outset whether the point P with position vector a really lies
inside the cell in which it is surmised to be located. Again let xi = xii+zik, and xi +dxi,
where dxi = dxii+ dzik, be the position vectors of any two consecutive mesh cell vertices
in the XZ-plane. The plane POZ can be rotated about axis OZ into coincidence with the
XOZ reference plane; thus P maps onto P ′ so that the position vector of P ′ is a′ = ρi+ck,
where ρ =

√
a2 + b2 . The scalar triple product

C = [(a′ − xi)× dxi] · j, (25)

serves to indicate in which half of the XZ-plane, as divided by the line xi + t dxi (t is a
variable scalar), the point P ′ is to be found. If C is positive, P ′ is said to lie in the left
half plane. If P ′ is to the left of all four cell sides ( dxi = x2−x1,x3−x2,x4−x3,x1−x4

respectively), it is clearly inside the cell. If C is not positive for any one of the cell sides,
then P ′, and therefore P , must lie outside the cell. In this latter case, the subroutine
WHERE (see the next section) is called to identify the proper cell.

In order to find the distance from P (a) in the direction Ω to the emergence point, it
is necessary to find the minimum positive distance among the intersections with the four
cell surfaces. In doing this, whenever imaginary values of D occur, they need only be
identified, and not calculated. The choice between two positive real roots is complicated
because of a possible intersection with the false cone. The latter is that half of the cone not
containing the two given mesh points, but nevertheless defined by the same second degree
equation. There is a simple procedure that can be used in computations to separate true
and false cone solutions. An intersection point e of the straight line and cone, obtained
from equations 11 and 13, is given by e = a + Ωd = ei + f j + gk = ρi′ + gk, where
ρi′ = ei+ f j and ρ =

√
e2 + f 2. Also, the cone line-element through e passes through the

point Pi = xii
′ + zik in the direction dpi = dxii

′ + dzik. The condition that e lies on this
line-element is (e− pi)× dpi · j′ = 0 with j′ = k× i′, or simply

(ρ− xi)− (g − zi)(
dxi

dzi

) = 0 , (26)
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which is equivalent to

(c− zi + ζd) dxi dzi + xidz2
i = ρdz2

i . (27)

Now the vector i′ is always chosen for each intersection point in such a way that ρ = e · i′
is positive, and as a consequence it can be verified that equation 27 is not satisfied by
false cone solutions. In practice the most difficult cases arise when the semi-cone angle α
is near 90 degrees, and the tolerances become severe.

If the direction vector Ω lies in a plane through a containing the Z-axis, the condition
being a ·Ω×k = aη− bξ = 0, the problem becomes that of finding the intersection of the
given line with other straight lines (cone elements) in this plane. It can be readily shown
that the distances from a to the two possible intersecting points with the cone elements
are given by

d =
(z0 − c) cosφ tanα +

√
a2 + b2

ζ cosφ tanα−Ω ·P
, (28)

cosφ = ±1, (29)

where

a = ai + bj + ck =
√

a2 + b2P + ck (30)

P =
ai + bj√
a2 + b2

(31)

Ω = (Ω ·P)P + ζk (32)

z0 = zi − xi cotα (33)

tanα =
dxi

dzi

. (34)

False solutions can be discarded as described previously.

4 The Subroutine WHERE

The subroutine WHERE calculates the identity of the mesh cell (cell number or number
pair) within which a point with given coordinates is located. WHERE carries out a
systematic search procedure beginning with some cell in which the point is surmised to
be located; the test based on equation 25 is used, although it is applied to triangles rather
than quadrilaterals.

Consider a mesh quadrilateral in the XZ-plane with vertices xi (i=1,2,3,4), and cor-
responding coordinates (xi, zi). The image point P ′ (position vector a′) corresponding
to the given point P (position vector a = ai + bj + ck) has coordinates (ρ, c), where
ρ =

√
a2 + b2. Construct the diagonal of the quadrilateral, x1−x3, and form the product

D13 = (x1 − x3) × (a′ − x3) · j. If D13 is negative, a′ lies outside triangle 1,3,4; then, if
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Figure 3: The incident, Iν(0,Ω), and emergent, Iν(s,Ω), intensities.

D23 = (x2−x3)× (a′−x3) · j is negative, P ′ lies outside the quadrilateral, and the search
proceeds to the adjoining cell that also contains side 3,2. If D23 is positive, it is necessary
to form D12 = (a′ − x1)× (x2 − x1) · j; if D12 is negative, P ′ lies outside, and the search
proceeds to the adjoining cell that also contains side 1,2. If D13 is positive, then the
product D34 = (a′−x3)× (x4−x3) · j is formed, and finally D14 = (a′−x4)× (x1−x4) · j,
if required.

5 The Calculation of Isophotes

Consider the problem of calculating the emergent radiance field for a low-altitude nu-
clear explosion. The geometric form of such a fireball is initially spherical at very early
times, evolving later to a toroid with a vertical axis. Radiation-Hydrodynamic codes
using cylindrical geometry have been written at Los Alamos that compute the evolution
of such explosions. At each time step in the evolution, the physical variables, tempera-
ture, density, hot-air absorption coefficients, etc., are calculated for each mesh cell. Such
information is stored only for certain preselected times and is later recovered for post-
processing. The program ISOPHOT, given in the appendix, is usually run in this mode.
The radiance calculations can be accomplished with the same method of radiative transfer
used in evolving the fireball, such as discrete ordinates; however, because HOWFAR is
available to calculate the slant distance, s, through a mesh cell, the formal solution of
the equation of transfer can be easily applied and should give the most accurate results
possible with the given constraints created by the grid structure. Furthermore this gives
an independent check on the transfer method adopted for the evolution computation. The
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emergent radiation is given by (refer to Fig. 3):

Iν(s,Ω) = Iν(0,Ω)e−
∫ s

0
kν(s′)ds′

+
∫ s

0
Sν(s

′,Ω)e(−
∫ s

s′ kν(s′′)ds′′)kν(s
′)ds′ (35)

where Iν(0,Ω) is the radiance of light of frequency ν in the direction Ω at s = 0, kν(s
′) is

the absorption coefficient at s′, and Sν(s
′,Ω) is the source function at s′ in direction Ω.

For thermal radiation the source function is the Planck function Bν(T ), and

Sν(s
′,Ω) = Bν [T (s′)] =

2hν3

c2

1

ehν/kT − 1
, (36)

where T is the absolute temperature. Equation 35 can be applied to a single mesh cell
within which the source function is assumed to be constant, giving

Iν(s,Ω) = Iν(0,Ω)e−kνs + Bν(T )(1− e−kνs) , (37)

where T and kν are appropriate for the cell, s is the slant distance through the cell
calculated by HOWFAR and Iν(0,Ω) the radiance incident on the cell in direction Ω.
This procedure can be applied along a chosen ray through the entire mesh, cell by cell.
In order to obtain isophote contours, it is necessary to find emergent radiances in this
fashion along many rays through the fireball to the observer’s position (we routinely use
about 1000 to 3000 rays). A contour-line plotting routine can then be used to produce
isophote graphs. Finally, by integration over the field of isophotes the irradiance, Dν , at
the observer can be found,

Dν =
∫ ω0

0
Iν cosθ dω. (38)

Iν is the radiance emitted in the direction of the observer by a surface area element, dΣ,
of the source, ω0 is the solid angle subtended by the source and dω that subtended by dΣ
as viewed from the observer’s position. Theta is the angle between the collimation axis
of the camera, or photometer, and the axis of dω. Any convenient cubature formula can
be used to evaluate the integral.

In the program ISOPHOT, given in the appendix, the following procedure is adopted
(refer to Fig. 4). Let a0 = a0i+ c0k be the position vector of the observer in the XZ-plane
with respect to the initial center, C, of the mesh. The code first searches the mesh for
the cell with the highest temperature. The vertex of this cell has coordinates (xh, zh) in
the XZ-plane. A line is drawn from the observer a0(ao, c0) to the point C : H(0, zh) in
the direction

Ω∗ =
(H0 − a0)

|H0 − a0|
. (39)

Next, a plane is constructed through the point H(0, zh) perpendicular to Ω∗. A rectangu-
lar cartesian coordinate system (coordinates y, l) is formed in this plane with the origin
at C and axes in directions j = k × i and l = j × Ω∗. A grid is created in the JL-plane
from y = 0 to +R along the J-axis and from l = −R to R along the L-axis, where 2R
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Figure 4: The observer, O, is located at (a0, c0).

is the maximum linear dimension of the fireball. The radiance values display symmetry
with respect to the L-axis, because the physical parameters possess axial symmetry about
the Z-axis. Therefore, it is only necessary to calculate radiances on the positive side of
the L-axis; for this purpose, a grid can be used with yj/R = 0, 1, ...n(j = 1, ..., N + 1)
and lk/R = −N,−N + 1, ...− 1,−, 1, ..., N(k = 1, ..., 2N + 1). The integration to find the
irradiance Dν can be performed in two parts over positive and negative l values: thus,

Dν =
2A

r2
H

ΣN+1
j=1 Σ2N+1

k=1 wj wk Ij,k(ν) cos4θj,k (40)

where

rH = |H− a0| =
√

a2
0 + (c0 − zh)2, (41)

A is the area of a grid cell,

cosθj,k =
rH√

y2
j + l2k + r2

H

, (42)

and Ij,k is the radiance in the direction of the observer at point (yj, lk), and wj, wk are
appropriate quadrature weights.

Fig. 5 shows the isophotes computed in the fashion just described for a nominal 10-kt
near-surface (altitude 200 m) nuclear explosion at the evolution time of 2 seconds. The
fireball is beginning to develop into the form of a ring-shaped vortex, or toroid, under
the action of the ground reflected shock. The observer is located at a large distance
horizontally from the fireball. The two points of maximum radiance are labelled O,

9
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Figure 5: Isophotes for 10 kt with 200-m HOB at 2 s.

and the isophote contours are assigned relative values in the stellar-magnitude scale,
m = −2.5log[I(m)/I(0)], where m is is the magnitude associated with radiance I(m),
and I(0) is the maximum radiance arbitrarily assigned magnitude zero.

6 Current Work

6.1 Preliminaries

In the work here Iν , Bν , and Sν all have units of energy per unit area, per unit time, per
steradian, and per Hz and have names of specific monochromatic intensity, the Planck
function and the source function, respectively. The term radiance is also used for Iν . The
irradiance, Dν , is the integral of Iν over solid angle and has the units of a flux, energy per
unit area, per unit time, per Hz. The intensity, Iν , is the basic dependent variable in the
radiative transfer equation.

In the late 1970s, the computational approach had been incorporated into the existing
atmospheric effects code SnYAQUI that combined the finite difference hydrodynamic code
YAQUI, Amsden and Hirt, (1973), with the discrete ordinate Sn algorithm for radiative
transfer, (Lathrop, 1972, Lathrop and Brinkely, 1973). Over time, as computational
resources shifted from a central computing facility with large mainframes, to distributed
computing with increasingly powerful desktops, we have migrated our atmospheric effects
codes. Along the way, we adopted the newer hydro package CAVEAT, Addessio et al.
(1992) and coupled it to the Sn discrete ordinate code to make SnCAVEAT. In making
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SnCAVEAT we included some new developments in the Sn method, Hill and Patternoster
(1982). SnCAVEAT now runs on Sun Solaris Unix, with the f90 compiler; Mac OS X, with
the Absoft and g95 compilers; and a Los Alamos National Laboratory high performance
computing cluster, with the Portland Group f90 compiler.

The code SnCAVEAT is a 2-D program usually run in cylindrical geometry, (r, z).
Not every calculation of interest needs 2-D; often a 1-D program can be used. Once the
ground surface is encountered or when bouyant deformation begins, then a calculation
must transition from 1-D to at least 2-D. (One could argue that everything should be 3-D,
but we are not there yet.) A strategy often followed is to perform the calculation with
a 1-D, spherically symmetric, code until just before 2-D effects begin. Then one maps
the 1-D problem into the the 2-D mesh and continues the evolution with the 2-D code.
The same equation of state and multi-group opacity tables are used for the 1-D and 2-D
codes. Our 1-D code is based on the work of Zinn (1973) as programmed in the code
HYCHEM. Additional information on the code can be found in the other Zinn references
in the bibliography, as well as Symbalisty et al. (1995). Another version of the 1-D code,
called RADFLO, is described in Horak and Kodis (1983). RADFLO does not include the
detailed atmospheric chemistry capability found in HYCHEM; otherwise, they are quite
similar.

The Appendix provides a sample input file, a code listing, and two sample makefiles.
There are some parts of the Isophote processor that are specific to our SnCAVEAT pro-
gram. For use with outputs from other numerical applications, a few comments may
be helpful. One needs the numerical mesh coordinates, the specific internal energy (en-
ergy/mass), the mass density (mass/unit volume), opacity data, planck functions and
equation of state (EOS) data. In our application, the coordinates are in the variable xv,
specific internal energy in sie, mass density in rho, opacity data in uk, Planck functions
in plb and equation of state data in gt and fp. In the listing, the include files comdeck and
comdeck1 hold a number of SnCAVEAT variables including those needed by the isophote
code. These would be different with other codes, and the details of reading the binary
dumps would be different as well. In the listing, common block rlc1 holds the opacity and
planck functions while block state holds the equation of state (EOS) data.

The details of the EOS and opacity data can be found in Symbalisty et al. (1995)
and Horak and Kodis (1983); however, we will provide a brief summary here. Let T be
temperature in ev, P be pressure, E be specific internal energy and ρ mass density. Then
gt holds T/E as a function of E for 100 temperatures and seven densities. The array
fp holds P/(ρE) as a function of E for 100 temperatures and 7 densities. The array
uk holds the opacity data as Rosseland means, cm2/gm, for 51 frequency bands, for 100
temperatures and seven densities.

6.2 Isophote Application

An isophote post processor was written that processes a SnCaveat binary dump file.
This post processor follows the algorithm documented in Sections 1—5. With the post
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Figure 6: Isophotes for a 1-kt burst at 50-m HOB and a time of 0.4 s, horizontal path

processor code, one can easily calculate contours for a series of SnCAVEAT dump files
and change the observer look angle. The first example of the current version is given in
Fig. 6 for a - kt burst at 50-m HOB with a horizontal look angle, at a nominal distance
of 20000 km, while Fig. 7 is the same except for a 450 look angle. In these plots, the time
and maximum radiance are given at the top of the plots. The contours are for radiance
values normalized by the maximum radiance. The calculation was initialized at 1.5 ms
from a 1-D HYCHEM run. Fig. 8 then gives the Si irradiance (Eq. 43) as a function of
time for the 450 look angle.

For a given observer position, and a given set of isophote contours, Eq. 38, for Dν

gives the energy per unit area, per unit time (a flux), at the observer position. One could
then, for some detector with some area A, determine the total energy per second in the
detector by ADν .

The irradiance values in the different bands can be summed with appropriate weights
to calculate specific responses. For a silicon detector, we determine the irradiance with
the following summation:

siirad = 0.17 ∗ hkirad(7) + 0.95 ∗ hkirad(8) + 0.89 ∗ hkirad(9)

+ 0.62 ∗ hkirad(10) + 0.37 ∗ hkirad(11) + 0.12 ∗ hkirad(12), (43)
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Figure 7: Isophotes for a 1-kt burst at 50-m HOB and a time of 0.4 s, and 450 path.
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Figure 8: The Si band power vs time curve for 450 look angle.

where the hkirad values are the fluxes in the bands 7 to 12, and the coefficients give the
relative weight for calculating the bhangmeter-weighted Si band. This is what is plotted
in Fig 8. Although siirad has the units of a flux, it could also be viewed as the power in
a unit area.

6.3 Particular Cases

One reason for using a post-processing code, such as isophote, is to calculate fluxes from
different look angles (expressed as either elevation angle or zenith angle). For lower heights
of burst (HOB), where there is ground interaction, 2-D effects become important, and the
fireball evolution departs from that for a 1-D free air burst. For a burst on an ideal
perfectly reflecting surface, HOB = 0, where downward-directed energy is reflected back
into the fireball, there is a well known factor of two effect on the observed yield, for blast
as well as optical. On the other hand, for a higher HOB, one would expect a 1-D free-air
behavior with a 2-D code.

We have performed a series of calculations of a 10-kt burst at HOBs of (meters): 0,
30, 60, 120, and 240. These were chosen in part to test for the surface burst factor of
two in yield as measured by minimum time in the silicon power time curve. The fireball
evolution was performed with our 2-D code SNCAVEAT. Binary mesh dumps are made
periodically over the course of the calculation. The isophote post-processor then reads
the dumps and performs the radiative transport through the fireball structure. These
calculations were performed with Sn order 4. A new initialization scheme was used in
SnCAVEAT that follows the philosophy that is used in our 1-D code, HYCHEM, Zinn

14



Figure 9: Si flux versus time for the 10 kt, 240-m HOB at three elevation angles.

(1973). In the following figures we show data from the isophote post processor for an
observer at 20000 km and at various elevation angles.

In Fig. 9, for the 240-m HOB, we show Si-weighted fluxes for the elevation angles of
00, 450 and 900. In this calculation, there was no ground in the calculation. As expected
the curves overlay nicely, with a slight difference at second max, showing no look angle
dependence, the expected result for no ground interaction. Next, in Fig. 10 for the
0-m HOB we show Si fluxes at three elevation angles. Here, the ground interaction is
immediate, the fireball structure is not the same as seen from different angles, and the
large differences in the Si flux curves can be understood by reference to the isophote
contours. In Fig. 11, for the 0-m HOB, we first show the contours for the horizontal look
angle, followed by Fig. 12 for the vertical look angle. Both are plotted on the same scale,
and the integration over the contours of Fig. 12 will clearly give a larger value than that
for Fig. 11.

The HOB effect on minimum time is illustrated in Fig. 13 where we show Si flux
versus time for the 240-m HOB and the 0-m HOB, both with a horizontal look angle. In
this figure, we also show one curve from the Los Alamos version of Hychem. The surface
burst has a later minimum time than the 240-m HOB, 0.0149 s as opposed to 0.0120
s. The value for the 0m HOB is exactly that for a free air 20-kt burst as given by the
scaling law in Symbalisty et al. (1995). This demonstrates the HOB effect rather nicely
for optical parameters. The 240-m values are larger consistent with the contours shown
in Figs. 11 and 12. The early time, through first maximum, radiative output is difficult
to calculate because of the large optical depths in the very hot shock that would require

15



Figure 10: Si flux versus time for the 10 kt, 0-m HOB at three elevation angles.
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Figure 11: Isophotes for a 10 kt burst at 0-m HOB and 00 elevation angle.
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Figure 12: Isophotes for a 10-kt burst at 0-m HOB and 900 elevation angle.
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prohibitively small cells. In this regime, HYCHEM uses tables of shock brightness versus
shock speed obtained from steady state shock theory, Symbalisty et al. (1995) and Zinn
and Sutherland (1981). This avoids the oscillations in brightness such as are shown in
the early part of the SnCAVEAT curves until the radiative scales are compatible with the
cell sizes.

Table 1 gives the full set of minimum times for the different HOB calculations.

10−4 10−3 10−2 10−1 10010−4

10−3

10−2

Time (s)

 S
i F

lu
x 

(W
at

ts
 p

er
 m

2 )

Kt 10 Comparisons

Blue   Hychem
Red    SnCaveat  240 m
Green SnCaveat      0 m

Figure 13: Si flux versus time for the 10 kt, 0-m and 240-m HOB showing the delayed
minimum time for the 0-m HOB case.

Table 1: Minimum times for the 10-kt HOB series.

HOB (m) T min (s)

0 0.0149
30 0.0133
60 0.0121
120 0.0120
240 0.0120
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7 Summary

In this report, we have illustrated the application of our isophote post-processor program,
isopost.f, on some SnCaveat 2D fireball simulations. In addition, we have shown the delay
in minimum time, compared to a free air burst, for lower heights of burst, including a
surface burst. We recover the well known factor of two in apparent yield for the surface
burst. The current version does require a cylindrical (r,z) mesh. With this constraint, the
code could be applied to other CFD code outputs with some changes in reading in the
CFD output and having an appropriate set of opacity and equation-of-state data.

A similar and independent capability was developed at Sandia National Laboratory
and is discussed in Dreike et al. (2006).
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10 Appendix

10.1 Sample input file

Below we show the input file for running the isophote code that is namelist based.

$input
nangl = 2,
angl(1:2)= 0.00, 45.00,
zevent = 5.0e+01,
robs = 20000.0,
ndumps = 2,
binpath =’/scratch/wphenom/ISO_MP/’,
tstrt = 0.0000,
tend = 3.00e-05,
istellar = 0,
irect = 0,

$

Number of grid points will be (2*nstk-1)(2*nstk-1)
Maximum number of rays is (2*nstk-1)*nstk
zevent = height of burst in km
robs = distance to observer in km
nangl = number of different angles
angl = array of angles in degrees
istellar = 1 implies stellar magnitudes
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10.2 Code listing

Now we provide a listing of the isophote processor. This version does incorporate OpenMP
for shared memory, multi-processor machines. The OpenMP instructions appear as compiler
directives that are just seen as comments for a serial processor computer.

cemds 1 Aug 2007 Converted to run parallel using OpenMP
cemds setenv OMP_NUM_THREADS #

cemds 04 Apr 2007 Added loop over observer locations
cemds nangl = number of different observer angles
cemds angl = array of observer angles (measured from ground up), degrees
cemds robs = distance to observer in km
cemds zevent = altitude of event in km

cemds 13 Mar 2007 Added istellar switch
cemds Added irect switch
cemds Added ptiso.txt output file
cemds Added siechk.txt output file
cemds The number of possible rays is (nstk * (2*nstk-1)),
cemds but only the rays with nonzero intensity are
cemds included in the count.

! isopost.f program to read sncaveat binary dump files
! and generate contours of brightest as seen by an
! observer at x = a01 (cm) and z = a03 (cm)
! the size of the plane of isophotes is a grid of
! x and z points of size (2*nstk-1, 2*nstk-1)
! based on Horak and Kodis, 1983.

! generates isodat.txt file
! the input file iniso

program isopost
parameter (nangmax=4, nbands=6, nstk=51, nlstk=2*nstk-1)
parameter (nlstsq=nlstk*nlstk, nsxnl=nstk*nlstk)

include ’comdeck’
include ’comdeck1’

common/rlc1/uk(100,7,51), plb (100,51), freq(52), freqd(51)
common /state/ gt(100,7), fp(100,7)
common /eqstk/ dk1,d2,d3,d4

common /mesh/ nxp,nyp,nx,ny
common /iando/ binfile,binpath
common/plotk/ikpt,jkpt
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common/esstuff/ irect, istellar
character dstart*9, dfin*9, tstart*10, tfin*10

dimension angl(nangmax), siband(nangmax), siirad(nangmax),
& hkirad(51,nangmax), xk(nlstk,nangmax),
& yk(nlstk,nangmax), hkint(nlstsq,nbands,nangmax),
& hwk(nlstk)

character*10 binfile
character*70 binpath

namelist /input/ zevent,nangl,robs,ndumps,binpath,
& angl,irect,istellar, tstrt,tend

call date_and_time(dstart, tstart)

open (7,file=’iniso’,form=’formatted’)
open (9,file=’isopht.owt’,form=’formatted’)
open(10, file=’isodat.txt’,form=’formatted’)
open(12, file=’siechk.txt’,form=’formatted’)
open(14, file=’ptiso.txt’,form=’formatted’)

do i=1,4
angl(i) = float(i-1) * 30.

enddo
irect = 0
istellar = 0
nangl = 4
ndumps = 3
robs = 20000.
tend = 100.
tstrt = 0.
zevent = 0.060
degtorad = acos(-1.0)/180.

read (7,input)

c convert from km to cm

robs = robs * 1.e5
zevent = zevent * 1.e5

write(14,*) binpath
write(14,’(i4," = nstk")’) nstk
write(14,’(i4," = nangl")’) nangl
write(14,’(10(1x,f5.1))’) (angl(i),i=1,nangl)
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write(14,’(i5," = number of time points")’) ndumps

write(10,’(i4," = ndumps")’) ndumps
write(10,’(2(i4,1x)," nstk, nlstk")’) nstk, nlstk
write(10,’(i4," = # of angles")’) nangl
write(10,’(10(1x,f5.1))’) (angl(i),i=1,nangl)

do i=1,4
angl(i) = degtorad * angl(i)

enddo

call rdaesop

open(11, file=trim(binpath)//’binlist’,form=’formatted’,
1 status=’old’)

cemds gu(,1) = jt
cemds gu(,2) = tfrc
cemds gu(,3) = jr
cemds gu(,4) = rfrc

call hwkset(hwk,nlstk,nstk)

do 550 ii=1,ndumps

read (11,’(a10)’)binfile
call idlrd

if (t.ge.tstrt.and.t.le.tend) then

nx = n1(1) + 1
ny = n2(1) + 1
nxp = nx + 2
nyp = ny + 2
iblk = 1
n1p3 = n1(iblk) + 3
n2p2 = n2(iblk) + 2
n2p1 = n2(iblk) + 1
ifrst(iblk) = n1p3 + 2
lastv(iblk) = n1p3*n2p2 - 1
lastc(iblk) = n1p3*n2p1 - 2
msizv(iblk) = n1p3*n2p1 - 2
tsn = t
ms = msz(iblk)
m1(iblk) = 1

24



do i=1,lastv(iblk)
sie(i) = te(i) - 0.5*(uc(i)**2 + uc(msz(iblk)+i)**2)

enddo
write(12,’(/,"t =",1pe11.4)’) t

call siechk(sie,n1(1),n2(1))

call dblknt(rho(1), sie(1), gu(1), gu(1+ms), gu(1+2*ms),
& gu(1+3*ms), n1(1), n2(1), ms)

mkfst = 7
mklst = 12

!$omp parallel do
do iang =1,nangl

call setxkyk(sie,xv(1),xv(1+ms),xk(1,iang),yk(1,iang),
& ikpt,jkpt,ms,nlstk,nstk,nx,nxp)
enddo

!$omp parallel do private(iang, a01, a03)
!$omp+ shared(n1,n2,xv,rho,sie,gu,hkint,siband,siirad,hkirad,xk,yk)

do 500 iang = 1, nangl

a01 = robs * cos(angl(iang))
a03 = zevent + robs * sin(angl(iang))

call isopht(a01,a03,n1(1),n2(1),xv(1),xv(ms+1),rho(1),
& sie(1),gu(1),gu(1+ms),gu(1+2*ms),gu(1+3*ms),
& ms,ncyc,nstk,nlstk,nlstsq,nsxnl, hkint(1,1,iang),
& siband(iang), siirad(iang), hkirad(1,iang), mkfst,
& mklst, xk(1,iang), yk(1,iang), nbands, hwk,
& uk, plb, nxp, nyp, nx, ny, ikpt, jkpt)

500 continue

do iang=1,nangl

a01 = robs * cos(angl(iang))
a03 = zevent + robs * sin(angl(iang))

call owtvar1(xk(1,iang), yk(1,iang), hkint(1,1,iang),
& siirad(iang), hkirad(1,iang), a01, a03,
& tsn, ncyc, nlstk, mkfst, mklst, nbands)

enddo
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write (6,’(" cycle = ",i6," time =",e13.5)’) ncyc, t

elseif(t.gt.tend) then
go to 600

endif

550 continue
600 continue

call date_and_time(dfin, tfin)

write(*,’(/,"DATE AND TIME END = ",a8,2x,a10,
& /,"DATE AND TIME START = ",a8,2x,a10,/)’)
& dfin, tfin, dstart, tstart
write(9,’(/,"DATE AND TIME END = ",a8,2x,a10,
& /,"DATE AND TIME START = ",a8,2x,a10,/)’)
& dfin, tfin, dstart, tstart

close(3)
close(7)
close(10)
close(11)
close(14)
close(31)
end

c ======================================================================

subroutine siechk(sie,n1,n2)
dimension sie(0:n1+2,0:n2+2)

do j=1,n2
do i=1,n1

if(sie(i,j) .lt. 0.0) then
write(12,’("sie(",i3,",",i3,")=",1pe11.4)’) i,j,sie(i,j)

endif
enddo
enddo

return
end

c ======================================================================
subroutine idlrd

c This routine writes a dump containing the contents of most
c of the labeled common blocks into file DP2D.
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c Called by: HYDROOUT
c Calls : none

c ======================================================================
include ’comdeck’
include ’comdeck1’
common /iando/ binfile,binpath

c ======================================================================
character*10 binfile
character*70 binpath

open(31,file=trim(binpath)//trim(binfile),status=’old’,
1 form=’unformatted’)

read(31) t,ncyc,nblks,alecoef,dthydro,handed,rpl

do iblk=1,nblks
read(31) n1(iblk)
read(31) n2(iblk)
read(31) msz(iblk)
m1(iblk) = 1
m2(iblk) = 1
call idlbin3(xv(m2(iblk)), uc(m2(iblk)),

& pr(m1(iblk)), te(m1(iblk)),
& rho(m1(iblk)), temp(m1(iblk)),
& n1(iblk), n2(iblk))
enddo

read(31) grav(1)

if(grav(1) .gt. 0) then
read(31) nzeq
read(31) (prequ(i),i=1,nzeq)
read(31) (roequ(i),i=1,nzeq)
read(31) (tequ(i), i=1,nzeq)
read(31) (zeq(i), i=1,nzeq)

endif

10 format(1x," idl dump read ",i3," at t=",1pe12.5," cycle=",i5)
130 format(a10)

end

c ======================================================================
subroutine idlbin3(xv,uc,pr,te,rho,temp,n1,n2)
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c ======================================================================

c This routine writes arrays to binary dump

c Called by: idlbin
c Calls : none

c ======================================================================
dimension xv(n1+3,n2+3,2), uc(n1+3,n2+3,2), pr(n1+3,n2+3),

& te(n1+3,n2+3), rho(n1+3,n2+3), temp(n1+3,n2+3)

read (31) ((xv(i,j,1),i=1,n1+3),j=1,n2+3)
read (31) ((xv(i,j,2),i=1,n1+3),j=1,n2+3)
read (31) ((uc(i,j,1),i=1,n1+3),j=1,n2+3)
read (31) ((uc(i,j,2),i=1,n1+3),j=1,n2+3)
read (31) ((te(i,j) ,i=1,n1+3),j=1,n2+3)
read (31) ((pr(i,j) ,i=1,n1+3),j=1,n2+3)
read (31) ((rho(i,j) ,i=1,n1+3),j=1,n2+3)
read (31) ((temp(i,j),i=1,n1+3),j=1,n2+3)
end

c ======================================================================
subroutine contrj(z,nzx,nzy)
dimension z(nzx,nzy)

!crww write out array z

do jy=1,nzy
write(10,’(5e14.6)’) (z(i,jy),i=1,nzx)
enddo

end
c ==================================================================

subroutine dblknt(ro, sie, jt, tfrc, jr, rfrc, n1,n2,ms)

dimension ro(ms), sie(ms)
dimension jt(1:n1+3,1:n2+3), tfrc(1:n1+3,1:n2+3)
dimension jr(1:n1+3,1:n2+3), rfrc(1:n1+3,1:n2+3)

common /state/ gt(100,7), fp(100,7)
common /eqstk/ dk1,d2,d3,d4

common /mesh/ nxp,nyp,nx,ny
common/plotk/ikpt,jkpt
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tmax = 0.0

do 30 jj=2,ny
do 20 ii=2,nx

ij = (jj-1)*nxp+ii
fj = d4*log(ro(ij))+dk1
j = max(1,min(int(fj),6))
jr(ii,jj) = j
rfr = fj - float(j)
rfrc(ii,jj) = rfr
rfr1 = 1.-rfr
fi = (log(sie(ij))-d2)*d3
i = max(1,min(int(fi),99))
efr = fi-float(i)
efr1 = 1.-efr
tmp = ((gt(i,j )*efr1 + gt(i+1,j )*efr)*rfr1 +

1 (gt(i,j+1)*efr1 + gt(i+1,j+1)*efr)*rfr)*sie(ij)
if (tmp.lt.tmax) go to 10

tmax = tmp
ikpt = ii
jkpt = jj

10 tk = 6.7808525*log(tmp) + 26.290555
jt(ii,jj) = max(1,min(int(tk),99))
tfr = tk - float(jt(ii,jj))

c below prevents negative opacities or plankb,s

if (tfr.lt.0.0) tfr = 0.0
tfrc(ii,jj) = tfr

20 continue
30 continue

return
end

c ==================================================================
subroutine howfar(x,y,ms,iray,sintsq,a,omega,dcell,inew,jnew,

& iold,jold,xd,yd,iko,a1a2sq,rhop,nko)

dimension x(ms),y(ms), a(3), omega(3), xd(5), yd(5)

c form geometry for tests of all 4 sides

nhen=0
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if (rhop.eq.0.0) go to 99
1 a12om=a(1)*omega(1)+a(2)*omega(2)

a21om=a(1)*omega(2)-a(2)*omega(1)
20 dcell=1.e+38

i=1
iko=0
inew=iold
jnew=jold

2 n2=i+1
y1=yd(i)
y2 =yd(n2)
dy=y2-y1
x1=xd(i)
x2=xd(n2)
dx=x2-x1
d2=1.e+38
if (dx.eq.0.0) go to 11
yma3=y1-a(3)
ad3=x1*dy-yma3*dx
celtst=rhop*dy-ad3
if(celtst.ge.0.0)go to 100
if((dy*omega(3)).lt.0.0) go to 7
yma3=yma3+dy

c test below eliminates abt 25 percent of cases

7 if((yma3*omega(3)).lt.0.0) go to 19
dysq=dy*dy
if(dysq.lt.1.e-16) go to 60
if(a12om.lt.0.0) go to 30
if(x2.ge.x1) go to 29
x2=x1

c x2=xmax nxt statement diverts about 19 percent

29 if( rhop.ge.x2) go to 19
30 omg3dx=omega(3)*dx

if(a21om.eq.0.0) go to 80
p=sintsq*dysq-omg3dx**2
r=a1a2sq*dysq-ad3**2
q=a12om*dysq-ad3*omg3dx
pxr =p*r
if(pxr.lt.0.0)go to 43

c if above true, only 1 pos. root exists as disc**0.5.gt.qpinv
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if((q*p).ge.0.0) go to 19
pinv=1./p
qsq=q*q
if(qsq. ge.(1.e3*pxr))go to 35

c abt 6 percent come thru here

disc=qsq-pxr
if(disc.lt.0.0) go to 19
qpinv=-q*pinv
disc=sqrt(disc*pinv**2)

c always 2 positive roots d1 is the smallest

d1=qpinv-disc
d2= qpinv+disc
go to 46

11 r1=rhop-x1

c dx=0.0 routes

if ((r1*dy).ge.0.0) go to 100
r2=rhop+x1
if (sintsq.eq.0.0) go to 19
r=r1*r2
qsq=a12om**2
if (a21om.eq.0.0) go to 82
pxr=sintsq*r
qsqfr=1.e-03*qsq
if (r.lt.0.0) go to 12
if (a12om.ge.0.0) go to 19
if((qsqfr-pxr).ge.0.0) go to 21
disc=qsq-pxr
if (disc.lt.0.0) go to 19
d1= -(a12om+sqrt(qsq-pxr))/sintsq
go to 5

21 qinv=1./a12om
d1= -r*qinv*(0.5+0.125*pxr*qinv**2)
go to 5

12 if ((qsqfr+pxr).ge.0.0) go to 13

c r=neg routes fall thru here means q=0.0

d1=(-a12om+sqrt(qsq-pxr))/sintsq
go to 5

13 if (a12om.lt.0.0) go to 15
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d1= (-r/a12om)*(0.5+0.125*pxr/qsq)
go to 5

15 prdq2=pxr/qsq
d1=(a12om/sintsq)*(-2.+prdq2*(0.5+0.125*prdq2))
go to 5

35 prdqsq=pxr/qsq

c less than .04 percent come here
c use taylor series expansion to prevent underflow.

qpinv=-q*pinv
dadd=2.*qpinv
d1=prdqsq*qpinv*(0.5+0.125*prdqsq)
d2=dadd-d1
go to 46

c use taylor series expansion to prevent underflow.

43 pinv=1./p

c p*r negative. sqrt(disc). gt. -q/p

qsq=q*q
if(qsq.ge.1.e+3*(-pxr)) go to 44
disc=qsq-pxr
d1=sqrt(disc*pinv**2)-q*pinv
go to 46

44 prdqsq=pxr/qsq
qpinv=-q*pinv
dadd=2.*qpinv
d1=prdqsq*qpinv*(0.5+0.125*prdqsq)
if(dadd.lt.0.0)go to 46
d1=dadd-d1

46 ztest=ad3+d1*omg3dx
if ((ztest*dy).ge.0.0) go to 5
if ((ad3+d2*omg3dx)*dy.lt.0.0)d2=1.e38
d1=d2

5 if(d1.ge.dcell) go to 19
dcell=d1
iko=i

19 i=i+1
if (i.le.4) go to 2
if(iko.eq.0) go to 100
inew=iold+3-iko
if(iko.eq.1)inew=iold
if(inew.lt.1) inew=1
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jnew=jold+iko-2
if(iko.eq.4)jnew=jold
return

60 if(omega(3).eq.0.0) go to 19

c dy=small route

d1=yma3/omega(3)
go to 5

80 if(dx.eq.0.0)go to 82

c rte for motion in plane of axis of symmetry

denom=rhop*omg3dx-a12om*dy
if(denom.ge.0.0) go to 19
d1=celtst*rhop/denom
go to 5

82 if(a12om*dy.le.0.0)go to 19
d1=rhop*(x1-rhop)/a12om
go to 5

99 a(1)=a(1)+1.e-06
a1a2sq=a(1)**2+a(2)**2
rhop=sqrt(a1a2sq)
go to 1

100 call whrko(kko,x,y,ms,rhop,a(3),inew,jnew,iold,jold,
& xd(1),xd(2),xd(3),xd(4),xd(5), yd(1),yd(2),yd(3),yd(4),yd(5))

c kko=1 means no chng in cell. kko=0 pt out of mesh
c kko=-1= pt not found

nko=nko+1
if (kko.gt.1) go to 20
if (kko.lt.0) go to 140
if (kko.eq.0) go to 138
if (nhen.eq.1) go to 140

c below corrects points lying on cylinder

cemds write (6,160) iold,jold,rhop,a(3)
nhen=1
dx=xd(n2)-xd(i)
dy=yd(n2)-yd(i)
if (a(1).eq.0.0 .and. a(2).eq.0.0) a(1)=1.e-06

c we increment 1.e-06*rhop perp to sfc on whc pt. lies
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csddr=1.e-06/(sqrt(dx**2+dy**2))
if ((dy*a12om-rhop*omega(3)*dx).lt.0.0) go to 134
a(1)=a(1)*(1.+dy*csddr)
a(2)=a(2)*(1.+dy*csddr)
a(3)=a(3)-dx*csddr*rhop
go to 136

134 a(1)=a(1)*(1.-dy*csddr)
a(2)=a(2)*(1.-dy*csddr)
a(3)=a(3)+dx*csddr*rhop

136 a1a2sq=a(1)**2+a(2)**2
rhop=sqrt(a1a2sq)

call whrko(kko,x,y,ms,rhop,a(3),inew,jnew,iold,jold,
& xd(1),xd(2),xd(3),xd(4),xd(5), yd(1),yd(2),yd(3),yd(4),yd(5))

go to 1
138 iko=-1

return
140 write (6,170) iray,iold,jold,rhop,a(3)

iko=0
return

160 format (14h pt on cyl i=,i3,3h j=,i3,6h rhop=,e10.4,4h a3=,e10.4)
170 format (1x,7hpt unkn,3h l=,i4,3h i=,i3,3h j=,i3,4h xp=,e10.4,4h yp

1=,e10.4)
end

c ======================================================================
subroutine isopht(a01,a03,n11,n21,x,y,ro,sie,jt,tfrc,
& jr,rfrc,ms,ncyc,nstk,nlstk,nlstsq,nsxnl, hkint,
& siband, siirad, hkirad,mkfst, mklst, xk, yk,
& nbands,hwk,uk,plb,nxp,nyp,nx,ny, ikpt, jkpt)

dimension a(3), omega(3), xd(5), yd(5)

dimension ro(ms), sie(ms), x(ms), y(ms),
& jt(1:n11+3,1:n21+3), tfrc(1:n11+3,1:n21+3),
& jr(1:n11+3,1:n21+3), rfrc(1:n11+3,1:n21+3),
& hkint(nlstsq,nbands), dkinv(nsxnl), xk(nlstk), yk(nlstk),
& xkpd2(nlstk), hkmag(nlstsq), hwk(nlstk)
dimension hkirad(51)
dimension uk(100,7,51), plb(100,51)

nst = nstk
nlst = nlstk
dist1 = 1.0000002
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distin = 2.e-06
zbot = y(nxp+2)
xmax = x(nxp+nx+1)
ztop = y(ny*nxp+nx+1)

xmaxsq = xmax*xmax
ijkp = (jkpt-1)*nxp+ikpt
z0 = y(ijkp)
sietst = min(1.0e+09,0.5*sie(ijkp))
do 30 i=ikpt,nx

ijkpt = (jkpt-1)*nxp+i
pimax = x(ijkpt)
if(sie(ijkpt) .lt. sietst) go to 40

30 continue
40 continue

jkp1=jkpt+1
do 42 jj=1,jkp1

ij = (jj-1)*nxp+ikpt
if(sie(ij) .ge. sietst) go to 43

42 continue
43 zb = y(ij)

do 44 jj=jkp1,ny
ij=(jj-1)*nxp+ikpt
if(sie(ij) .ge. sietst) go to 45

44 continue
45 zt = y(ij)

zt = max(zt,1.05*zb)
plmax = pimax
if (a01 .le. pimax) go to 8
t3a03 = zt - a03
b3a03 = zb - a03
if (a03.le.zb) go to 7
if (a03.ge.zt) go to 6

c observer btwn b,c

t1a01= pimax-a01
b1a01= t1a01
go to 9

6 t1a01=-(pimax+a01)
b1a01= pimax-a01
go to 9
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8 z0a03=z0-a03
dobs=sqrt(a01**2+z0a03**2)
go to 22

7 t1a01= pimax-a01
b1a01=-(pimax+a01)

9 sqb = sqrt(b1a01**2+b3a03**2)
sqt = sqrt(t1a01**2+t3a03**2)
z0 = a03-a01* (sqb*t3a03+sqt*b3a03)/(sqb*t1a01+sqt*b1a01)
z0a03 = z0 - a03
dobs = sqrt(a01**2+z0a03**2)

22 dbot1 = zbot - a03
dobsnv = 1./dobs
dobssq = dobs*dobs
omg01 =-a01*dobsnv
omg03 = z0a03*dobsnv
radsp = pimax/float(nst-1)
radspl = plmax/float(nst-1)
dtop1 = ztop - a03

c find freq independent geometry

omgdk = z0a03*omg03 - a01*omg01
nstp = (nst-1)*nst

do 60 i1=1,nlst
60 xkpd2(i1) = xk(i1)**2 + dobssq

kk=0
do 64 j1=1,nlst

yksq = yk(j1)**2
do 62 i1=nst,nlst
kk = kk+1

62 dkinv(kk) = 1.0/sqrt(xkpd2(i1) + yksq)
64 continue

cemds loop over the frequency bands of interest

ib = 0
do 350 mk=mkfst,mklst

ib = ib + 1
hkomax = 0.0
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nko = 0
mk1 = mk
kv = 0
iray = 0

c observer must be outside yaqui mesh. omg is a unit vector
c along ray. omg1=omg*i, omg2=omg*j, omg3=omg*k
c observer is in xz-plane such that his x-coord (a01) is ge 0.
c right hand side of mesh is scanned so that omg2 ge 0.

j1n=-nlst

do 310 j1=1,nlst

j1n = j1n + nlst
omg1kp = yk(j1)*omg03 - a01
omg3kp = z0a03 - yk(j1)*omg01

do 300 i1=nst,nlst

j1ni1 = j1n+i1
hkint(j1ni1,ib) = 2.e-30
kv = kv+1
diinv = dkinv(kv)
omega(1) = omg1kp*diinv
omega(2) = xk(i1)*diinv
omg3 = omg3kp*diinv
omega(3) = omg3
sintsq = omega(1)**2 + omega(2)**2
if (dtop1 .lt. 0.0) go to 170
if (dbot1 .lt. 0.0) go to 90

c observer below mesh, and rays could strike bottom.

if (sintsq.eq.0.) go to 120
a1omg3=a01*omg3+omega(1)*dbot1
a2omg3=omega(2)*dbot1
rhotst=a1omg3**2+a2omg3**2
if (xmax.ge.a01) go to 130
if (rhotst.lt.(xmaxsq*omg3**2)) go to 130

c below ray strikes cylinder or could miss mesh entirely.

90 disc=xmaxsq*sintsq-(a01*omega(2))**2
if (disc.lt.0.) go to 300
a0omg1=a01*omega(1)
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dcell=(-(a0omg1+sqrt(disc))/sintsq)*dist1
a(3)=a03+dcell*omega(3)

if (a(3).lt.zbot .or. a(3).ge.ztop) go to 300

a(1)=dcell*omega(1)+a01
a(2)=dcell*omega(2)
a1a2sq=a(1)**2+a(2)**2
rhop=sqrt(a1a2sq)

if (rhop.ge.xmax) go to 300

iold=nx
do 100 j=3,nyp-1
kk=j
ij=(j-1)*nxp+nx
if (a(3).lt.y(ij)) go to 110

100 continue
110 jold=kk-1

go to 250
120 dcell=dbot1

a(1)=a01
a(2)=0.0
a(3)=zbot+distin
rhop=a01
a1a2sq=rhop*rhop
go to 140

130 if (omg3.eq.0.0) go to 300
omg3nv=1.0/omg3

c ray strikes the bottom, omg3 is not 0.0.

a(1)=a1omg3*omg3nv
a(2)=a2omg3*omg3nv
a(3)=zbot+distin
a1a2sq=rhotst*omg3nv**2
rhop=sqrt(a1a2sq)
if (rhop.ge.xmax) go to 300

140 continue
do 150 i=3,nxp-1
ii=i
if (rhop.lt.x(nxp+i)) go to 160

150 continue
160 iold=ii-1

jold=2
go to 250
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170 continue

c observer at alt. abv that of the yaqui mesh and
c rays could strike mesh top

if (sintsq.eq.0.0) go to 200

c omg1= + or- =omg2=+ , omg3= - .if omg3=0. ray misses mesh

a1omg3=a01*omega(3)+omega(1)*dtop1
a2omg3=omega(2)*dtop1
rhotst=a1omg3**2+a2omg3**2
if (xmax.ge.a01) go to 210
if (rhotst.lt.(xmaxsq*omg3**2)) go to 210

c ray strikes cylinder or misses mesh entirely

disc=xmaxsq*sintsq-(a01*omega(2))**2
if (disc.lt.0.0) go to 300
dcell=(-(a01*omega(1)+sqrt(disc))/sintsq)*dist1
a(3)=a03+dcell*omega(3)
if (a(3).lt.zbot.or.a(3).ge.ztop) go to 300
a(1)=a01+dcell*omega(1)
a(2)=dcell*omega(2)
a1a2sq=a(1)**2+a(2)**2
rhop=sqrt(a1a2sq)
if (rhop.ge.xmax) go to 300
iold=nx

do 180 j=3,nyp-1
kk=j
ij=(j-1)*nxp+nx
if (a(3).lt.y(ij)) go to 190

180 continue

190 jold=kk-1
go to 250

200 dcell=dtop1
a(1)=a01
a(2)=0.0
a(3)=ztop-2.0e-06
rhop=a01
a1a2sq=rhop*rhop
go to 220

210 if (omg3.eq.0.0) go to 300
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c ray strikes top. omg3 is not 0.0

omg3nv=1.0/omg3
a(1)=a1omg3*omg3nv
a(2)=a2omg3*omg3nv
a(3)=ztop-distin
a1a2sq=rhotst*omg3nv**2
rhop=sqrt(a1a2sq)
if (rhop.ge.xmax) go to 300

220 continue

do 230 i=2,nxp-1
ii=i
ij=(ny-1)*nxp+i
if (rhop.lt.x(ij)) go to 240

230 continue

240 iold=ii-1
jold=ny

250 g = 1.0
hki = 0.0

do 270 l=1,1000

ij=(jold-1)*nxp+iold
ipj=ij+1
ijp=ij+nxp
ipjp=ijp+1

xd(1)=x(ij)
xd(2)=x(ipj)
xd(3)=x(ipjp)
xd(4)=x(ijp)
xd(5)=xd(1)

yd(1)=y(ij)
yd(2)=y(ipj)
yd(3)=y(ipjp)
yd(4)=y(ijp)
yd(5)=yd(1)

call howfar(x,y,ms,iray,sintsq,a,omega,dcell,inew,jnew,
& iold,jold,xd,yd,iko,a1a2sq,rhop,nko)

if (iko.le.0 ) go to 300
ij=(jold-1)*nxp+iold
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rfr=rfrc(iold,jold)
jro=jr(iold,jold)
k=jt(iold,jold)
tfr=tfrc(iold,jold)
tfr1=1.-tfr
if (rfr.ge.1.0) rfr=1.0
if (rfr.lt.0.0) rfr=0.0
rfr1=1.-rfr
opac=(uk(k,jro,mk)*rfr1+uk(k,jro+1,mk)*rfr)*tfr1+(uk(k+1,jro,mk)*r

1fr1+uk(k+1,jro+1,mk)*rfr)*tfr
plnkb=plb(k,mk)*tfr1+plb(k+1,mk)*tfr
ordc=opac*ro(ij)*dcell
if (ordc.ge.1.e+02) go to 255
eopd=exp(-ordc)
go to 257

255 eopd=0.0
257 hki = hki +g*plnkb*(1.-eopd)

g=g*eopd
if (eopd.eq.0.0) go to 280
dcell=dcell+1.e-06
a(1)=a(1)+omega(1)*dcell
a(2)=a(2)+omega(2)*dcell
a(3)=a(3)+omg3*dcell
a1a2sq=a(1)**2+a(2)**2
rhop=sqrt(a1a2sq)
kko=0
if (dcell.lt.1.00001e-06) then

call rtinc(kko,x,y,ms,a,omega,inew,jnew,iold,jold,
& xd, yd, iko, a1a2sq, rhop)
endif
if (a(3).ge.ztop) go to 280
if (a(3).le.zbot) go to 280
if (rhop.ge.xmax) go to 280
iold=inew

270 jold=jnew

l=1000

c write(6,403) iray,iold,jold

280 hkint(j1ni1,ib) = hki
iray = iray+1
if(hki .ge. hkomax) hkomax=hki

300 continue
310 continue
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cemds loop over xk,yk is now over

hkomx = hkomax

c write (6,402) iray, nko, hkomax

hmxfr = hkomx*1.e-07

if (hkomax.eq.0.0) go to 351

hkomax = 1./hkomax

cemds if hkint = 0 or hkint = 2.e-30, then set to (1.e-7 * max value)

j1n = -nlst
do 320 j1=1,nlst

j1n = j1n+nlst
do i1= nst,nlst

j1ni1 = j1n+i1
if (hkint(j1ni1,ib) .eq. 2.e-30) hkint(j1ni1,ib) = hmxfr
if (hkint(j1ni1,ib) .eq. 0.0) hkint(j1ni1,ib) = hmxfr
j1nn = j1n+nlst-i1+1
hkint(j1nn,ib) = hkint(j1ni1,ib)

enddo
j1n1 = j1n+nst

320 continue

d1irr = 0.0
d2irr = 0.0
j1n = -nlst
j11 = 0
j1n2 = (nst-2)*nlst

do 330 j1=1,nst
j1n = j1n + nlst
j1n2 = j1n2 + nlst
do 330 i1=1,nst

j11 = j11+1
j12 = j11+nstp
ik = i1+nst-1
j1ni1 = j1n+ik
j1ni2 = j1n2+ik
hwkij = hwk(j1)*hwk(i1)
d1irr = d1irr + hwkij*hkint(j1ni1,ib)*(omgdk*dkinv(j11))**4
d2irr = d2irr + hwkij*hkint(j1ni2,ib)*(omgdk*dkinv(j12))**4
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330 continue

hkirad(mk) = 2.*radspl*radsp*(d1irr + d2irr)/dobssq

350 continue

siirad = 0.17*hkirad(7) + 0.95*hkirad(8) + 0.89*hkirad(9) +
& 0.62*hkirad(10) + 0.37*hkirad(11) + 0.12*hkirad(12)
siband = hkirad(7) + hkirad(8) + hkirad(9) +
& hkirad(10) + hkirad(11) + hkirad(12)

351 continue
return

360 format (6h a01=,1pe10.3,5h a03=,e10.3,6h dobs=,e10.3,7h omg1=,e1
10.3,7h omg3=,e10.3)

402 format (9h no rays=,i6,11h wh calls=,i5," hkomax =",1pe11.4)
403 format(6h iray=,i6,4h i=,i5,4h j=,i4)
700 format (11(1x,e9.3))
702 format(12h intensities)

end
c***********************************************************************

subroutine rdaesop

common/rlc1/uk(100,7,51), plb (100,51), freq(52), freqd(51)
common /state/ gt(100,7), fp(100,7)
common /eqstk/ dk1,d2,d3,d4

real*8 QBM(51), RHOTBL(8), DELTAQ(51), hnu(51)

C Read in the opacities, Planck functions, and eq of state data.
C 50 frequency groups -- local Rosseland means.
C Read in frequency info. and Planck functions
C B=PI*Planck function. QBM, DELTAQ used for plots.
C QBM are band misdpoint(Angstr.) in reverse order
C QBM(1)=midpoint band 50 etc.
C DELTAQ are band widths in Angstroms.

MMAX = 51
ITBLMAX = 100

open(file=’aesop51’,unit=3,status=’old’)

READ(3, *) ((plb(I,J), I=1,100), J=1,51), (QBM(K), K=1,51),
8 (DELTAQ(L), L=1,51), MMAX
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C GT, FP are tables for interpolating T(eV) and P(dynes/cm**2)

DO 40 J = 1,7
READ(3, *) RHOTBL(J), (GT(I,J), I=1,ITBLMAX),

8 (FP(I,J), I=1,ITBLMAX)
DO 30 K=1,100

READ(3, *) (uk(K,J,M), M=1,MMAX)
DO M = 1,MMAX
IF (uk(K,J,M) .LT. 0.D0) THEN

WRITE(7,’(’’ A uk is < 0.’’,3I4,1PE10.3)’)
8 K, J, M, uk(K,J,M)

STOP
ENDIF

ENDDO
30 CONTINUE
40 CONTINUE

close(3)

C Calc constants for E.O.S. interpolation. These depend
C on range of densities and energies in E.O.S. data
C FI=D3* (LN(EOFX) -D2) I=FI EFR= FI-DBLE(I)
C ALFA=EXP(LN(E(90)/E(1))/89.) D2=LN(E1/ALFA) D3=1/LN(ALFA)
C FJ= D4*LN(RHOFX) +D1
C D4= 1./LN(10) D1= -LN(RHO0)/LN(10)= -D4*LN(RHO0)

D4 = 1./LOG(10.D0)
DK1 = -D4*LOG(0.1D0*RHOTBL(1))
ALFA = EXP(LOG(1.D16/2.D9)/89.D0)
D3 = 1.D0/LOG(ALFA)
D2 = LOG(2.D9/ALFA)

C Set up the frequency group array.
C Use HNUR for setting up band edges in eV. 1st bndry=.3185eV,
C Last one used to be 40393.07 eV. Now it’s 99.4 keV. Note that
C we are generating the HNUR(M) here because they are not supplied on
C the aesop file. But these hnur are supposed to be the same as the
C ones used in generating the aesop (aesop51) file.
CPLD HNUR(39) and above match the bands that Steve White uses for wpn outputs.

cemds units are in eV

IF (RHOTBL(1) .LT. 1.E-07) THEN
freq(1) = 0.1

ELSE
freq(1) = 0.3185
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END IF
DO 60 M=2,43

IF (M.LE.21) THEN
freq(M) = .3185*1.2142**(M-1)

ELSE
freq(M) = 15.44948501*1.43**(M-21)

END IF
60 CONTINUE

freq(39) = 9.290E+3
DO 65 M = 40,52

freq(M) = 1.200*freq(M-1)
65 CONTINUE

C Calculate HNU, band mid-points in eV.

DO M=1,MMAX
freqd(M) = freq(M+1) - freq(M)
hnu(M) = 0.5*(freq(M+1) + freq(M))

enddo

return
end

c***********************************************************************
subroutine rtinc(kko,x,y,ms,a,omega,inew,jnew,iold,jold,

& xd, yd, iko, a1a2sq, rhop)

dimension x(ms),y(ms), a(3), omega(3), xd(5), yd(5)

dx=xd(iko+1)-xd(iko)
dy=yd(iko+1)-yd(iko)
if (a(1).eq.0.0.and.a(2).eq.0.0) a(1)=1.e-06

c we increm. perp. to sfc on whc. pt. lies

csddr=1.e-06/sqrt(dx**2+dy**2)
if ((dy*(a(1)*omega(1)+a(2)*omega(2))-rhop*omega(3)*dx).lt.0.) go

1 to 134
a(1)=a(1)*(1.+dy*csddr)
a(2)=a(2)*(1.+dy*csddr)
a(3)=a(3)-dx*csddr*rhop
go to 136

134 a(1)=a(1)*(1.-dy*csddr)
a(2)=a(2)*(1.-dy*csddr)
a(3)=a(3)+dx*csddr*rhop

136 a1a2sq=a(1)**2+a(2)**2
rhop=sqrt(a1a2sq)
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call whrko(kko,x,y,ms,rhop,a(3),inew,jnew,iold,jold,
& xd(1),xd(2),xd(3),xd(4),xd(5), yd(1),yd(2),yd(3),yd(4),yd(5))

return
end

c***********************************************************************
subroutine whrko(kko,x,y,ms,xp,yp,inew,jnew,iold,jold,

& x4,x1,x2,x3,x5, y4,y1,y2,y3,y5)

common /mesh/ nxp,nyp,nx,ny

dimension x(ms),y(ms)

inew=iold
jnew=jold
kko=1
go to 20

10 kko=kko+1
if (kko.ge.200) go to 100
ij=(jnew-1)*nxp+inew
ijp=ij+nxp
ipj=ij+1
ipjp=ijp+1
x4=x(ij)
x1=x(ipj)
x2=x(ipjp)
x3=x(ijp)
y4=y(ij)
y1=y(ipj)
y2=y(ipjp)
y3=y(ijp)

20 xpx3=xp-x3
ypy3=yp-y3
y13=y1-y3
x13=x1-x3

c vectors are-
c d13 =(r1-r3)x (rp-r3)=(y13*xpx3-x13*ypy3)
c d34 =(rp-r3)x (r4-r3)= ypy3*x43-xpx3*y43
c d14 =(rp-r4) x(r1-r4) =ypy4*x14-xpx4*y14
c triangle 123
c d13= -d13 of triangle 134
c d23 =(r2-r3) x(rp-r3) =y23*xpx3-x23*ypy3
c d12 =(rp-r1) x(r2-r1) =ypy1*x21-xpx1*y21
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d13=y13*xpx3-x13*ypy3
if (d13.ge.0.0) go to 40

c if abv fails, p is to left of vector r1-r3

if (((y2-y3)*xpx3-(x2-x3)*ypy3).lt.0.0) go to 80
if (((yp-y1)*(x2-x1)-(xp-x1)*(y2-y1)).lt.0.0) go to 30
go to 50

30 inew=inew+1
if (inew.ge.nxp-1) go to 90
go to 10

40 if (((x4-x3)*ypy3-(y4-y3)*xpx3).lt.0.0) go to 60

c p to right of r1-r3. if abv fails, p in or below triang 134

if (((yp-y4)*(x1-x4)-(xp-x4)*(y1-y4)).lt.0.0) go to 70

c if abv fails, d13,d34, and d14 all + and p in tri. 134

50 iold=inew
jold=jnew
x5=x4
y5=y4
return

60 if (inew.eq.2) go to 100
inew=inew-1
go to 10

70 jnew=jnew-1
if (jnew.lt.2) go to 90
go to 10

80 jnew=jnew+1
if (jnew.ge.nyp-1) go to 90
go to 10

90 kko=0

c means cell out of range

go to 50
100 kko=-1

c means cell not found

write (6,110) kko,inew,jnew,xp,yp,x4,x1,x2,x3
write (6,120) y4,y1,y2,y3
jnew=nyp
go to 50
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110 format (2x,3i5,6(1x,e12.6))
120 format (42x,4(1x,e12.6))

end
c ======================================================================

subroutine owtvar1(xk, yk, z, siirad, hkirad, a01, a03,
& tsn, ncyc, nlst, mkfst, mklst, nbands)

dimension xk(nlst), yk(nlst), z(nlst,nlst,nbands)
dimension hkirad(51)

write(10,’(2(1pe11.4,1x)," x, z in cm")’) a01, a03
write(10,’(i6,e13.5)’)ncyc,tsn
write(10,’(i5,i5)’) nlst, nlst
write(10,’(4e13.5)’) (xk(ii),ii=1,nlst)
write(10,’(4e13.5)’) (yk(ii),ii=1,nlst)

do nb=1,nbands
do j=1,nlst
write(10,’(5e14.6)’) (z(i,j,nb),i=1,nlst)
enddo
enddo

write(10,’(5e13.6)’)(hkirad(kk),kk=mkfst,mklst)
write(10,’(e13.6)’) siirad

return
end

c ======================================================================
subroutine owtvar2(siband, siirad, a01, a03, tsn, ncyc, nang)
dimension siband(nang), siirad(nang)

c write(14,’(2(1pe11.4,1x)," x, z in cm")’) a01, a03
c write(14,’(" t si band si bhangmeter ")’)
c write(14,’(3(1x,1pe11.4))’) tsn, siband, siirad

return
end

c ======================================================================
subroutine hwkset(hwk,nlstk,nst)
dimension hwk(nlstk)

cemds hwk() = 1/3, 4/3, 2/3, 4/3, 2/3, ..., 1/3 .

hwk(1) = 1./3.
if (nst.eq.3) go to 4
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do 2 k=2,nst-1,2
hwk(k) = 4./3.
hwk(k+1) = 0.5*hwk(k)

2 continue
go to 17

4 hwk(2) = 4./3.
17 continue

hwk(nst) = 1./3.

return
end

c ======================================================================
subroutine setxkyk(sie,x,y,xk,yk,ikpt,jkpt,ms,nlst,nst,nx,nxp)
dimension sie(ms), x(ms), y(ms)
dimension xk(nlst), yk(nlst)

ijkp = (jkpt-1)*nxp + ikpt
sietst = min(1.0e+09,0.5*sie(ijkp))

do 30 i=ikpt,nx
ijkpt = (jkpt-1)*nxp+i
pimax = x(ijkpt)
if(sie(ijkpt) .lt. sietst) go to 40

30 continue
40 continue

radsp = pimax/float(nst-1)
radspl = pimax/float(nst-1)

c find freq independent geometry

do 60 i1=1,nlst
xk(i1) = float(i1-nst)*radsp

60 continue

do 64 j1=1,nlst
yk(j1) = float(j1-nst)*radspl

64 continue

return
end

c ======================================================================
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10.3 OpenMP make file on a MAC G5

Next we give a listing of the make file used on a four processor Mac.

#! /bin/csh -f
#
FC = gfortran
FFLAGS = -c -O3 -s -fopenmp -fdefault-real-8 -fdefault-integer-8 -fdefault-double-8
FFLAGS1 = -O3 -s -fopenmp -fdefault-real-8 -fdefault-integer-8 -fdefault-double-8
#
SRCS = isopost.f
SRC_OBJS = ${SRCS:.f=.o}
EXEC = runisop
#
%.o: %.f
${FC} $(FFLAGS) $<
#
${EXEC}: $(SRC_OBJS)
${FC} ${FFLAGS1} -o ${EXEC} $(SRC_OBJS)
#
# additional dependencies
#
isopost.o: comdeck comdeck1
clean:
rm *.o ${EXEC}

10.4 Make file for serial processor such as Sun

#! /bin/csh -f
# run by executing make -f makiso
# where makeiso is this file
# #
# this is for one program as it stands.
# doing a make debug -f makeiso will compile
# with -g option for debug
# isopost.f is the OpenMP version
#
FC = f90
FFLAGS = -O3 -c
FOPTS = -xtypemap=real:64,integer:64
#
SRC = isopostp
SRCS = isopost.f
SRC_OBJS = ${SRCS:.f=.o}
EXEC = ${SRC:=x}
#OBJ = ${SRC:=.o}
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#
%.o: %.f
${FC} $(FFLAGS) $(FOPTS) $<
#
${EXEC}: $(SRC_OBJS)
${FC} -o $@ $(SRC_OBJS)
#
debug:
${MAKE} "FFLAGS = -g -c" "EXEC = ${EXEC:x=gx}" -f makeiso

#${OBJ}: $(SRCS) comda comdb
#${FC} $(FFLAGS) $(SRCS)
#
#
clean:
rm *.o ${EXEC}

51



This report has been reproduced directly from the  
best available copy. It is available electronically  
on the Web (http://www.doe.gov/bridge).

Copies are available for sale to U.S. Department
of Energy employees and contractors from:
 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN  37831
 (865) 576-8401

Copies are available for sale to the public from:
 National Technical Information Service
 U.S. Department of Commerce
 5285 Port Royal Road
 Springfield, VA  22161
 (800) 553-6847




	LA-14349
	Contents
	Table
	Table 1:

	List of Figures
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Figure 7:
	Figure 8:
	Figure 9:
	Figure 10:
	Figure 11:
	Figure 12:
	Figure 13:

	1 Introduction
	Abstract

	2 Slant Path Geometry
	2.1 Right Circular Cone
	2.2 Right Circular Cylinder
	2.3 Plane

	3 The Subroutine HOWFAR
	4 The Subroutine WHERE
	5 The Calculation of Isophotes
	6 Current Work
	6.1 Preliminaries
	6.2 Isophote Application
	6.3 Particular Cases

	7 Summary
	8 Acknowledgements
	9 Bibliography
	10 Appendix
	10.1 Sample input file
	10.2 Code listing
	10.3 OpenMP make file on a MAC G5
	10.4 Make file for serial processor such as Sun


