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NONLINEAR SYSTEM IDENTIFICATION FOR
DAMAGE DETECTION

Charles R. Farrar, Keith Worden! Michael D. Todd? Gyuhae Park)
Jonathonn Nichols,® Douglas Adams, Matthew T, Bement,' and Kevin Farinhalt'

ABSTRACT

This report has been developed based on information exchanges at a two-day
workshop on nonlinear system identification for damage detection that was held July
25-26, 2006, at Los Alamos National Laboratory. The workshop 15 the second 1 a
series that was hosted by the LANL/UCSD Engineering Institute {EI}. This Institute 15
an education- and research-focused collaboration between Los Alamos National
Labomatory (LANL) and the University of Calitornia, 5San Diege (UCSD)}, Jacobs
School of Engineering. The Institute’s research and education focus is to promote and
further develep the multidisciplinary fields of structural health monitering (SHM),
damage prognosis and model validation and vncertainty quantification.

The process of implementing 2 damage detechon strategy for agrospace, vl
and mechanical enginsering infrastructure is referred to as SHM. A statistical
pattern recognition paradigm for SHM is first presented and the concept of
nonlinear system 1denhficaton 15 addressed with respect to the feature extraction
portion of this paradigm. In many cases damage causes a structure that initially
behaves in a predominantly linear manner to exhibit nonlinear response when
subject to its operating envirenment. The fermation of cracks that subsequently
open and close under operating loads i3 an example of such damage. The damage
detection process can be significantly enhanced if one takes advantage of these
nonlinear etfects when extracting damage-zensitive features from measured data.
This report will provide examples from nenlinear dynamical systems theory and
from nenlinear system identification techniques that are used for the feature
extraction portion of the damage detection process. The report concludes by
defining some future research needs and directions that are amed at transibiomng
the concept of nonlinear system identification for damage detection from laboratory
research to field-deployed engineering systems.

" The Enginesning Instiiutz, Los Alames National Laboralory, Los Alamos. New Mexico 87545,

! Diepariment of Mechianical Engineering, University of Sheffield. Sheffield, UK.

! Department of Structoral Enginsering. University of California. San Dizgo. La Jolla. CA $2093-0085.
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1. INTRODUCTION

This report has been developed based on information exchanges at a two-day workshop
on nodlinear system identification for damage detection that was held July 25-26, 20060, at
Los Alamos National Laboratory. The workshop is the second in a senies hosted by the
LANLAJCSD Engineering Institute (EI). This Institute is an education- and research-focused
collaboration between Los Alamos National Laboratory (LANL) and the University of
California, San Diego (UCSDY), Jacobs School of Engineering. The technical focus of this
Institute is damage prognosis {DP), a multidisciplinary engineering science concerned with
assessing the current conditon and predicting the remaining hfe of aerospace, awil, and
mechanical infrastroctore. Struciural Health Monitoring, which is the process of identifying
damage in structures and tracking its evolution, is one of the technologies necessary to perform
DP. Because DP relies on predictive models, model validation and uncertainty quantification is
alzo a key technological component to the DP process.

1.1 The Structural Health Monitoring Process

Structural health monitoring (SHM) is the process of detecting damage in structures.
The geal of SHM is to improve the safety and reliability of aerospace, civil, and
mechanical infrastructure by detecting damage before it reaches a critical state. To achieve
this goal, technology is being developed to replace qualitative visual inspection and tme-
based maintenance procedures with more quantifiable and automated damage assessment
processes. These processes are implemented using both hardware and software with the
intent of achieving more cost-effective condition-based maintenance. A more detailed
general discussion of SHM can be found in [1].

The authors believe that all appreaches to SHM, as well as all tradinonal nondestructve
evalvation procedures (e.2., ultrascnic inspection, acoustic emissions, active thermography)
can be cast in the context of a statistical pattern recogmition problem [2]. Solutions to this
problem require four steps: (1) Operational evaluation, {2) Data acquisition, (3} Feature
extraction, and (4} Statistical modeling for Feature classification.

A necessary first step to developing a SHM capability is Operational Evaluation. This
part of the SHM solution process attempts to answer four questions regarding the
implementation of a SHM system: (1) What are the life safety and/or economic justifications
for menitoning the structure? (2) How is damage defined for the system being monitored?
(3) What are the operational and environmental conditions under which the system of
intergst funchons? (4) What are the limitabons on acquinng data in the operabonal
envircnment? Operational evaluation defines, and to the greatest extent possible, quantifies
the damage that is to be detected I also defines the benefits 1o be gained from deployment
of the SHM system. This process also beging to set limitations on what will be monitored
and how to perform the monitoring as well as tailoring the monitoring to unique aspects of
the system and unique features of the damage that is to be detected.

The data acquisition portion of the SHM process involves selecting the excitation
methods;, the sensor types, numbers, and locations; and the data acquisition/storage/
processing/transmittal hardware. The actual implementation of this porticn of the SHM
process will be application- specific. A fundamental premise regarding data acquisition and
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sensing is that these systems do not measure damage. Rather, they measure the response of
4 system to its operational and environmental loading or the response to inputs from
actuators embedded with the sensing svstem. Depending on the sensing technology
deployed and the type of damage to be identified, the sensor readings may be more or less
directly correlated to the presence and location of damage. Data interrogation procedures
{feature extraction and statistical modehng for teature classification) are the necessary
components of a SHM system that convert the sensor data inte infermation about the
structural condition. Furthermore, to achieve successful SHM, the data acquisition system
will have to be developed in conjunction with these data interrogation procedures.

A damage-sensitive featurs is some quantity extracted from the measured system
response data that is correlated with the presence of damage in a structure. Ideally, a damage-
sensiive feature will change in some consistent manner with increasing damage level.
Identifying features that can accurately distinguish a damaged structure from an undamaged
ong is the focus of most SHM technical literature [3, 4]. Fundamentally, the feature extraction
process is based on fitting some model, either physics-based or data-based, to the measurad
system response data. The parameters of these madels or the predictive errors associated with
these models then become the damage-sensitive features. An alternate appreach is to identify
features that directly compare the sensor waveforms or spectra of these wavefonns measured
before and after damage Many of the features 1dentified for impedance-based and wave
propagation-based SHM studies fall into this categery [5, 6, 7, 8]

The portion of the structural health monitoring process that has received the least
attention in the techmical literature is the development of statistical models to enhance the
damage detection process. S1atistical modeling for feature classification i3 concerned with
the implementation of the algorithms that analyze the distributions of the extracted feaures
in an effort to determine the damage state of the structure. The algorithms vsed in statistical
model development wsually Fall into three general categories: {1) Group Classification,
(2 Regression Analysis, and (3) Outlier Detection. The appropriate algerithm to use will
depend on the ability to perform supervised or unsupervised leaming. Here, supervised
learning refers to the case where examples of data from damaged and undamaged structures
are available. Unsupervised learning refers to the case where data are only available from the
undamaged structure. The statistical models are typically used to answer a series of questions
regarding the presence, location, type, and extent of damage.

Inherent in the data acquisition, feature extraction, and statistical modeling portions of
the SHM process are data normalization, cleansing, fusion, and compression. As it applies
to SHM, data normalization is the process of separating changes in sensor reading caused
by damage from those caused by varying operational and envirenmental eonditions [9].
Data cleansing is the process of selectively choesing data to pass en to, or reject from, the
feature selection process. Data fusion is the process of combining information from
multiple sensors in an effort to enhance the fidelity of the damage detection process. Data
compression is the process of reducing the dimensicnality of the data, or the feature
extracted from the data, in an effort 1o facilitate efficient storage of information and to
enhance the statistical quantification of these parameters. These four activities ¢can be
implemented in either hardware or software and usuvally a combmation of the two
approaches s used.
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1.2 Annual Workshops

Te further promote the development of DP, the El is hosting a series of workshops
that rotate their technical focus on an annual basis between (1) Emerging sensing
technologies; (2.) Data interrogation procedures; and (3.) Predictive modeling as these
topics relate to DP. The results of the first workshop held in 2005, which focused on power
harvesting for embedded structural health monitoring sensing systems, are summarized in
a report that can be downloaded from www lanl gov/projects/ei [10]. Presentations, an
attendee list, and the workshop agenda for this first workshop are also available at this
Web address.

The 2006 workshop focus was on nonlinear system identification as it relates to the
feature extraction portion for SHM. In many cases damage causes a structure that initially
behaves in a predominantly linear manner to exhibit nonlinear response when subject to its
operating environment. The formation of cracks that subsequently open and close under
operating loads is an example of such damage. The damage detection process can be
significantly enhanced if one takes advantage of these nonlinear effects when extracting
damage-sensitive features rom measured data. This report will summarize four discussion
topics that were addressed in the workshop working groups. These topics are

e Sources/Classification of Material/Component/System and Damage Nonlinearities
in SHM (See Section 3 Below)

e Nonlinearity versus Nonstationary Issues (See Section 5 below)

* Taxonomy and Usage of Nonlinear Approaches in SHM (Detection. Transition,
Interrogation) (See Sections 6-8 below)

o Progress Barriers, lssues. and Outstanding SHM Requirements Demanding
Nonlinear Methods (See Section 9 below)

In addition, the workshop attendees thought that terms associated with the theme
topic should be defined and Section 4 provides these definitions. By addressing these
topics this report is intended to summarize the state-of-the-art in nonlinear system
identification as it has been applied to SHM and concludes with a summary of future
research needs and challenges to transitioning this technology from research to field-
deployed system applications. The summary will begin by first discussing commonly used
damage-sensitive features and their limitations

2, COMMONLY USED DAMAGE FEATURES AND THEIR LIMITATIONS

The most common features that have been reported in the SHM literature, and that
represent a significant amount of data condensation from the actual measured quantities,
are resonant frequencies, mode shape vectors, and quantities derived from these
parameters. These features are identified by fitting a physics-based model, specifically a
lumped-parameter modal model, to measured kinematic response time histories, most often
absolute acceleration, or spectra of these time histories. Well-developed experimental
modal analysis procedures are applied to the measured response time histories or spectra to
estimate the system’s modal properties [11,12]. The fitting process is done using data from
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the structure in some initial and uswally assumed undamaged condition, and then is
repeated at periodic intervals or after some potentially damaging event that tnggers the
assessment process. Changes in the modal parameters are then used to indicate the
presence and location of damage in either a forward or inverse manner [4].

Another class of damage identification methods is based on features related to
changes in mass, stiffness and damping matrix indices associated with physical models that
have been correlated so that the model predicts, as closely as pessible, experimentally
determined modal properties. These methods solve for the updated matrices (or
perturbations to the nominal model that produce the updated matnces) by forming a
constraingd optimization problem based on the structural equations of motion, the nominal
model, and the identified modal properties [13,14]. Comparisons of the matrix indices that
have been comelated with modal properties identified from the damaged stucture to the
original correlated matrix indices can provide an indication of the existence, location and
extent of damage.

The features described above have several issues associated with them that have
prevented their use in most “real-world™ applications. First, most of these features invelve
fitting a linear physics-based model to the measured data from both the healthy and
potentially damaged structure. Often these models do not have the fidelity 1o accurately
represent boundary conditons and structural component connechwity, which are prime
locations for damage accumulation. Also, this process does not take advantage of changes
in the system response that are caused by nonlinear effects. As a result, nonlinear effects
tend to be smeared through the lingar model-fiting process. From a more practical
perspective, real-world structures’ modal properties have been shown to be sensitive to
changing ¢environmental and operational conditions [15] and such sensitivity can lead to
false indications of damage. Modal properties associated with lower-frequency global
modes have been shown to be insensitive to local damage. In contrast at higher frequencies
the modal preperties are associated with local response. However, the practical limitations
with the excitation and identification of the modal properties associated with these local
maxdes, caused in part by high modal density and low parhicipation factors, can make them
difficult to identify. Finally, the inverse appreaches to damage identification do not
necessatily produce unique solutions and the degree of freedom mismatch between the
numerical madel and the measurement locations can severely limit the ability to accurately
perform the required matrix updates. A more detailed discussion of these feature-extraction
methods and their limitations can be found in [3, 4]. Based on these limitations and the
observation that many damage scenarios cause a previously linear structure to exhibit
nonlinear behavior, researchers have developed damage-sensitive features that take
advartage of the nonlinear response exhibited by a damaged structure.

3. TYPES OF DAMAGE THAT CAN PRODUCE NONLINEAR SYSTEM
RESPONSE

There are many types of damage that can cause an initially linear structural system to

respond to its operational and envircnmental lcads in a nonlinear manner. One of the most
common types of damage is cracks that subsequently open and close under operational loading.
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This type of damage may include fatigue cracks that form around rivets in air frames. cracks that
oceur in brittle materials such as conerete and cracks that result from excessive deformation such
as those found in moment resisting steel frame connections afler the Northnidge earthquake. It 15
reiterated that nonlinear response to operational and environmental loading will only be observed
in these cracked structures if the loading causes the cracks to open and close while data are being
acquired, Otherwise the crack simply results in a change in geometry of the structure and the
structure will continue to respond as a linear system, but in a different configuration, In some
cases it is difficult to produce cracks in a controlled manner that exhibit the same dynamic
characteristics as the cracks that occur in the in situ structure, Figure 1 shows a “erack”™ being
introcduced into a bridge structure to simulate fatigue cracks that occur at the welds of cross-beam
seats to the web of the main load carrying plate girder [16]. However, this crack, which was
introduced with a torch, produces a cut in the plate girder web that was approximately 10 mm
wide. This crack did not open and close under any subsequent loading and, therefore, did not
exhibit the same dynamic characteristics as the type of crack it was intended to simulate.

Figure 1. Torch cut that was used to simulate a fatigue
crack in a plate girder.

Many of the common damage tvpes observed in rotating machinery produce nonlinear
responses to the harmonic excitation associated with the machine’s operational frequency.
There are numerous detailed charts of characteristic faults for a vanety of machines and
machine elements (e.g . see the chart on pp.515-522 in [17]. or the charts on pp. 88—92 in
[18, Vol.1]). Damage 1o bearing races, loose bearing and chipped gear teeth are examples
of damage that can produce nonlinear response in rotating machinery. Commercially
avallable software specifically designed for the isolation of faults based on vibration
signatures. is readily available. For example, an automated, expert diagnostic system is
evaluated in [19],
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Another common type of damage that results in nonlinear system response is that of
loose connections, This damage can include debond of glued connects or other types of
chemical debond such as that between concrete and reinforcing steel, loose bolts, and
interference fits that loosen because of material deformation. This type of damage overlaps
with cracks as cracks in welded connections can result in a loose connection. The
associated rattling or impacting that results when these loose connections are subject to
sufficient loading causes structures with loose connections to exhibit nonlinear dynamic
response characteristics. In some cases, such as the insertion of the femoral component of
an artificial hip (shown in Fig. 2), engineers are attempting to utilize the transition from
nonlinear response to linear response as an indicator of a successful implant in a
cementless procedure that utilizes an interference fit.

Figure 2. The femoral component of an artificial hip being
insarted into the femur of a cadaver with accelerometers
monitoring the insertion process.

Another type of damage that can result in nonlinear dynamics response when these
structures are subjected to dynamic loading, i1s delamination in bonded, layered materials
such as fiber reinforced composite plates and shells, Often such delaminations are
introduced by impact loading. Damage from this type of loading is difficult to detect
because the delaminations often occur undemeath the surface of the plate on the side
opposite from the impact location and these locations may not be readily accessible for
visual inspection. Delamination can be accompanied by matrix cracking and fiber breakage
that add to the nonlinear dynamic response characteristics exhibited by the plate or shell if
it is subsequently loaded to levels that cause the delamination to open and close. Figure 3
shows a composite plate that was subject to a projectile impact. Although some surface
damage is visible on the side of the plate opposite from the impact, an ultrasonic scan
reveals more extensive delaminations that can not be seen by surface inspection.

If one extends the concepts of structural health monitoring to manufacturing
processes, then machine tool chatter is a phenomenon that can produce nonlinear dynamic
response of the cutting tool. Chatter is the vibration that results during turning and facing
operations. If not controlled, chatter can lead to poor surface finish and parts that will not
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Figure 2. Upper left: high-spead projectile impacting the plate. Upper right: photo showing minimal
surface damage where projectile impacted the plate. Lower left: more significant damage on the
side opposite the impact. Lower right: ultrasonic scan showing more extensive delamination areas
after four different impacts.

meet their design tolerances. Poor surface finish, in turn, can lead to the premature
formation of fatigue cracks. The onset of chatter can potentially be detected by the
nonlinear dynamic response characteristics measured on the cutting tool. Figure 4 shows a
piezoelectric sensor that has been mounted on a cutting tool for the purpose of monitoring
chatter during facing and turning operations,

Finally, matenal nonlineanties associated with excessive deformation such as vielding
of steel can cause a structure to respond to dynamic loading in a nonlinear manner. This
type of damage is particularly difficult to detect because in most cases yielding does not
alter the stifthess or mass distribution of a structure once the loading has been removed.
Yielding is accompanied by permanent deformation and in some cases this permanent
deformation can lead to nonlinear system response if it results in subsequent impacting
with neighboring components when the structure is dynamically loaded.
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{a} Close-up of Culting Tool and Scasor (b} Experimental Sclup

Figure 4. Sensor mounted on a cutting tool to monitor chatter during facing and turning operations.

4. MOTIVATION FOR EXPLORING NONLINEAR SYSTEM IDENTIFICATION
METHODS FOR SHM AND DEFINITION OF TERMS

Research aimed at defining damage-sensitive features based on the concepts of nonlinear
system identification is motivated by an examination of the twe simple single-degree-of-
freedom (SDOF) systems shown in Figs. 3(a) and 5(b). Also shown in these figures are the
force-displacement properties of their stiffness element. The response of the system on the left
when subjected to a harmonic forcing function of amplitude F, at a frequency of @ can be
described by the solution to the second-order linear differential equation

mx -+ cx +hx = F cosat (1)

where m 1s the system mass, ¢ is the viscous damping coefficient and & is the spring stiffness.
Note that for this case m, ¢ and k do not vary with either time or position of the mass.

The solution to this system is readily obtained in closed form for the given forcing
function and, in principle, can be obtained for an arbitrary forcing function, ff7), with a
convolution integral.

x(t) = Ifh(r - 1)f(1)dt, where (2)

his the system’s impulse response function and for a SDOF system it is defined as

i) = : e sinfom 1) | (3)
m

i
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-

k ¢
where o, = .I{—, €= and o, =& |l =C° {(4)
m 2 mk

Solution by means of a convolution integral implies that the principle of superposition
applies. Also, there is a unique input/output relationship defined in the frequency domain
by the system’s frequency response function (FRF), Hf @)

X(o)=H(o)Fo) . (5)

1

where H (@)= T

(©)

and A7) is the Fourier transform of the response and /@) is the Fourier transform of the
input forcing function. The FRF is the Fourier transform of the impulse response function.

(b)
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Figure 5. Characteristics of linear and nonlinear systems. (a) shows a spring-mass system with a linear
stiffness element; (b) shows a spring-mass system with a cubic stiffness element, and (c) illustrates
difficulties posed for low-level, vibration-based damage detection methods when monitoring yielding of
matallie structures.
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For systems made up of multiple interconnected SDOF systems, normal modes are
defined and through proper coordinate transformation the response of the multi-depree of
freedom (MDOF) system can be defined as the superposition of responses from a set of
SDOF systems [20] The MDOF system will also have a unique frequency-domain sy stern
input—output relationship defined by the FRF matrix as

X()}=H{olF (o)) M

Also, the system will exhibit reciprocity meaning that if you excite at one location and
measure the response at another locaton, that frequency response function wall be the same
as the one obtained by reversing that process A structure exhibiting reciprocity is
characterized by symmetric stiffness and FRF matrices

The system in Fig 5(b} corresponds to a Duffing oscillator With this system the
stiffness is not only a function of the mass’s displacement, but also has a stiffness term that
is proportional to the cube of this displacement and the equation of motion becomes

mx +cx + kx + ' = F, ooso1 (3}

This seemingly small perturbation to the system’s shffness element brings about some
significant changes to the system dynamics First, a <losed form solution is no longer
available even for a harmonic input Superposition no longer applies and the frequency
response function no longer defines a general unique input/cutput relation in the frequency
domain Instead, the FRF is now a function of the system’s input For MDOF systems
normal modes are net defined, the system response can not be determined through modal
superposition and reciprocity no longer applies

From this example, one ¢an infer that when damage causes an imnally linear system to
respond in a nonlinear manner, the new dynamic response charactenistics exhibited by the
now nonlinear system can be used as distinct indicators of damage However, there are
confounding factors that make 1dentifying such changes a challenge First, many systems
exhibit nonlinear response characteristics in their undamaged state In this case it 15 even
more imperative that these characteristics are accurately quantified if changes in these
nonlinear properties are to be used as indicators of damage Second, as shown in the force—
displacement curve corresponding to the Duffing oscillator in Fig 5(b), if the excitation i3
small, the system will exhibit linear charactenstics as indicated by the blue shffness ling
Theretore, it may be difficult to identify the onset of nonlinear response characteristics
without proper excitaton A simlar situatien anses with metallic structures as shown m
Fig 3{c) If damage is defined as yielding of the material, this damage can only be detected
if measurements are made during the yielding process or if the measurements are sensitive ta
the permanent deformation in the material that results from the yelding process The strain
hardening characteristics of such materials make it difficult 1o detect damage with low-level
vibration-based techniques because such damage does significantly alter the mass, stiffness
or energy dissipation properties when load has been removed from the material
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A final challenge is the somewhat obvious statement that there is no single general
method 1o medel and identify all types of nonlinearities. Different nonlinearities have
different charactenistics as indicated by the two types of nonlinearities shown in Figs. 5(b}
and 5(c}, one of which has continuous load-displacement characteristics and the other that
has a discontinuous load-deformation relationship. The implication is that one needs some
knowledge of the nonlineanity type that the damage will produce in order to effectively
identify the onset of that nonlinearity and the associated damage.

With this motivation the methods of the nonlinear system identification and modeling that
have been applied to SHM are next reviewed. To facilitate this review, several terms related to
these methods will first be defined followed by a more detailed discussion that compares and
contrasts the topics of nonlinear system response versus nonstationary system response.

Deterministic dynamic system- A system that has no randomness. A deterministic system
is one for which a mathematical expression can be defined that will describe its response at
all times.

Linear dynamics system - A system that obeys the principle of superposition

Stochastic (random) dynamic system - A system where the future response can not be
predicted frem an explicit mathematical expressicen.

Ergodic process - A process where the statistics of the sample realizations of that process
are equal to the statistics of the realization of the entire process implying a stabonary
process (defined below)

Casual system - A system where the current systems response and the system state is only
a function of the current and past inputs to the system.

5. A DISCUSSION OF NONLINEAR SYSTEM RESFONSE VERSUS NON-
STATIONARY SYSTEM RESPONSE

Most of the techniques that have been developed for the analysis of both linear and
nonlingar systems pre-suppose that the acquired data are observations of a stabonary
random process. This assumption is useful to invoke because it can greatly simplify the
estimation of quantties relevant to system identification. The difficulty, of course, is
identifying when 1t is appropriate to treat the data as staticnary. Additicnally, the
practitioner must also discemn whether the data were produced by a linear or nonlinear
system. Distinguishing among these categories (linear/nonlinear, stationary/nonstationary)
is a challenging problem that does not admit a simple nonparametric (data driven) sclution.

Before discussing some possible approaches, 1t1s useful to define what 1s meant by a
stationary random process. The definitions of lingar and nonlinear processes have already
been presented in an earlier section.

A stnetly stationary random process 1s one in whuch the joint probability distnbution of
the measured data does not change in time. Let xu#) be the k™ sample record (time series)
of a random process X , measured at discrete times t,= 1,2,.. N. Strict stationarity implies

PAx D x 8 ) (1 )= polx () + 7 x, {8 + 1), 0 {f, +7)) (9}

12
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where the function p.( )is the joint probability density function (pdf) associated with the

N observations of the process. Equation 9 simply states that this function does not depend
on tme 6 long a5 the time ditferences between observations remain constant. The concept
of weak stationarity is less demanding and requires that only the mean value and first joint
moment of the data (as opposed to the entre pdf) remain unchanged by time shifting, Le.

E[x.t)]= E[xi + D))= 4.

10
Elxtrxt)]= Extr + 1), + D))= R(1, - 1) (10)

Equation (10) states that the mean wvalue does not depend on time while the
autocovariance function for any twe random variables, denoted By, depends only on the
relative time difference between the two observations. Continuing with higher and higher
joint moments simply leads back to Eq. 9. The expected values associated with Eq. {10}
are assumed to apply over the entire ensemble of & = 1. __K records. However, in many
cases the statistical properties may be estimated by averaging over time instead. The mean
of the #" record can be estimated as

=22 x0,) a1

a=1

If this quantity (as well as all other ime-averaged properties} is expected to be the
same for all sample functions k, the process 15 ergodic. From a practical standpoint the
advantage 1o dealing with stationary, ergodic processes is that relevant statistics can be
estimated with a single time record.

The above discussion concemns random processes only, For example, consider an
ensemble of sine waves, x{tF=Asin{wt+6) where 8y i3 a random phase associated with a
particular realization of x,(t), and 8y is umformly distributed between O and Zm. At any
time, t, the distnbunon, plx{t}), of these sine waves is given by

1
X)) =———= [3| < A. 0 otherwise . {12}
add’ —x° i

Note, at ¢ach time, t, this distribution is not a function of time and, hence, the statistical
moments will not be a function of time implying a stationary process. This time invariance
of the distribution is shown in the left-hand side of Fig. 6.

However an ensemble of sine waves with no random phase will preduce replicates
of the same sine wave. The ensemble produced by this process is completely deterministic
and 15 therefore non-stationary because at any hime, t, the expected valug 1s a function of t

13
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Figure 6. The left side shows realizations of a sine function with a random phase and the associated
pdfs corresponding to times t1 and tz illustrating that the pdfs are time invariant and implying the
signal is stationary. The right side shows realizations of a sine wave without the random phase
where the pdfs vary with time indicating the signal is nonstationary.

as shown in the right-hand side of Fig. 6. Stated another way, setting 8,=0. the mean value
of the ensemble at any time. t, is simply E[x(/)]=Asmn{ws)yand is therefore time
dependent. The same fixed phase sine-wave with additive, zero-mean, Gaussian noise,
ii1). is also nonstationary as

E[x(t)] = Asin(e1) + E[n(1)] = Asin(et) . (13)

Some recently developed SHM techniques make use of a deterministic excitation
however. For example, the theory underlying several attractor-based approaches to SHM
suggest computing statistical “measures” from the data despite the fact that the data are
non-stationary with respect to probability (there is no random component). How does one
apply the definition of stationarity to deterministic systems?

14
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In the study of deterministic dynamical systems the language changes but the concept
of stationanty still remaing. Assume we have a dynamical systemn governed by

X(1) = £1{x(O)x = R (14)

where {15 a deterministic function depending on time and parameters . If E is a subset of
points in "™, define the invariant measure p(£) to satisty [21].

AL (EN = AE] (15}

That is to say, application of the dynamics forward or backward in time does not change
the measure. This property is similar to our presious discussion of stationarity where time
shifting did not alter the probability measure, It turns owut that probabality i5 just one subset of
measure theory, desceibing the behavior of collections of points in space [22] Both
deterministic and random processes may be treated under this framework. As a working
defimition, we may therefore term a stationary process to be one in which the measure of interest
(probability or other) associated with collections of observations is not changing in ime.

The difficulty in distinguishing nonlinearity from nonstationarity can now be described.
Many of the tests for nonlinearity are based on the null hypothesis that the underlying system
is & lingar, cavsal, time invariant system i.¢. that the dynamics are described by

W= Th(r)r(f — T}t (16)

The alternative hypothesis 13 usually taken to be that the data were produced by a
nonlinear, time invanant system. However, these tests will also rgject the null hypothesis
for non-stationary, linear processes. The nonstationarity may come as a result of the
properties of the input changing o time (x(t) 15 non-stationary} or because the system
parameters are changing in time i.e. &#(7)— A{t.7). The latter situation is referred to as a
linear time-varying system. In short, any test that 1s based on Eq. 16 as a oull hypothesis
may decide in favor of the alternative if the alternative is (1) a nonlinear process, (2) a
linear process with non-stationary inputs, or {3} a time-varying linear process.

The method of surrogate data, for example, is one popular test for nenlinearity [23].
The practitioner creates randomized versions of the measured signal that preserve the
autocorrelation function and probability distribution of the data. Under the null hypothesis
of a linear, staticnary response certain metrics computed frem these randomized surrogates
should be statistically indistinguishable from those computed from the original data.

Figure 7 shows the results of applying the methed of surrogate data to several
different types of system output. The discriminating feature used in this case was the mean
nonhinear prediction error (NPE) obtained by using a nonlinear, data-driven model to
forecast future values. The equations of motion for the system are given by

mi+ i +(k + e )x + k0" = F(1) (17}

15
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Figure 7. A surrogate test applied to the response of a single degree of
freedom system driven with stationary Gaussian excitation. The
discriminating feature used was the mean nonlinear prediction error
(MPE). Blue dots represent the surrogate NPE values, red crosses
represent the NPE values obtained from the original data.

where m = 1.0 kg, ¢ = 3.0 N's/m and & = 1000 N/m were fixed parameters and £ and ky
were the nonstationarity and nonlinearity parameters respectively, The excitation was
taken as a stationary Gaussian random process with constant power spectral density
Pr=0.01N/Hz. This system was numerically integrated, giving time series of N = 32768
observations sampled at intervals of 0.01s. For £= Ay, =0, the system is linear and the data
and surrogates produce mean NPE values in the same range. As expected, when
kv = 10000 N/m”®, £=0 the system is nonlinear, stationary and the data fall outside the linear
surrogate bound. However, when & = 100N/m, & = 0.025 N/fm's”, kv = 0 N/m”, the system is
linear with a time-varying stiffness and. hence, is non-stationary Based on the surrogate
analysis the response still appears nonlinear despite the fact that it was produced by a
linear system

Other tests for nonlineanty will similarly have difficulty in making the distunction.
Tests based on the coherence funetion [24] require the estimation of the coherence between
input and output data. This estimation, as is usually performed, involves the assumption of
ergodicity (hence stationarity). This assumption is also why the surrogate algorithm has
difficulty. The algorithm requires estimates of the power spectral density function. which
depend on stationary data. Other tests for nonlinearity invelve adjusting the input
amplitude and observing the scaling in the response amplitude. For a linear system, the

16



Moplingar Bysiem idenlificalion for Damage Dalaction LA-143563-MS

response should scale with the input because of superposition {Eq. 16 again) while for a
nonlinear system this will not be the case. However, any nonstaticnarity will alse cause
this test to Fail unless the same nonstationarity i3 observed for each mput amplitude {(an
unlikely event}).

In short, it is difficult 10 make the distinction (nonlinear/nonstationary) using
approaches based on Eq. 16 However, if the practitioner is willing to invoke a more
detailed understanding of the system under test the two phencmena can possibly be
separated. For example, if one has the three models of Eq. 17 (obtained by setting various
combinagtions of parameters equal to zero) the queshon of which model 15 best supported
by the data can be answered via a number of appreaches. Even if only the time-scales of
the underlying system are known @ priori, a simple test for some types of nonstationarity is
available. A reverse-arrangement “trend” test can be performed for both mean and vanance
{or any other moment) Divide the time history into “M” blocks and compute the sample
mean, variance, et. of each block giving D, 1 = 1. M. Summing up the total number of
times D, > I (1 = 1.__N-I, j = i+]...N) gives a randem variable A If the M observations
are independent, and of the same random variable, both the mean and variance of A are
known and can be used o construct contidence intervals tor this null hypothesis.

As an example, consider again the system of Eq. 17 with k= 100, ky= 0, and varying
levels of &. The rate of increase is varied from £ = 0...0.0007 Nims® giving seven differeut
“levels” of nonstationarity. The simulated time sernies were divided into M = 25
nonoverlapping blocks, each consisting of 1310 points (total time seres length was 32768
observaticns). The expected value of the random variable A {obtained by averaging cver 10
strmulated responses), along wath the associated 95% confidence intervals, is shown n Fig. 8
for both mean and vanance of the data blocks. As expected, the parametric variation in
stiffness does not influence the mean value, but does eventually result in a detectable trend
(nonstationarity} in sample vanance. The advantage to this test 1s that it 1s strmghtforward
and non-parametric. The difficulty is in choosing the number of segments “M™. This choice
can only be made with some knowledge of the underying time-scales of the process being
observed. Additonally, this test will not capturs an arbitrary type of nonstationanty.

In summary, nonlinearity and nonstationarity can be difficult to distinguish as both
mechanisms will often cause rejections of the null hypothesis of a linear, time invariant
system. While nonparametric tests for “trend™ exist, they still require some knowledge of
the system being observed. Nonlinearity and nonstationarity can only be defimtively
separated it well-defined models of both phencmena are available.

6. NONLINEAR INDICATOR FUNCTIONS

Menlinear indicator functions are functions used to identify changes in the measured
system response that are indicative of the onset of nonlinear system response. In some
cases these indictors are based on the assumpticn that the undamaged system will exhibit
linear respanse. Also, as previgusly mentioned changes in system response resulting from
other system changes as well as operatonal and ¢nvironmental vanability may cause
changes in these indicators.
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Figure 8. Trend tests applied to the system described by Eq. 17.

6.1 Basic Signal Statistics

Many basic signal statistics can be used as damaged-sensitive features. Examples of
such statistics for an n-point discrete time series obtained from a sensor reading, X, . are
summarized in Table 1. Note that all of the features in Table 1 reduce the n-dimensional
time series into a feature of unit dimension. For illustration purposes these statistics have
been applied to acceleration-time histories recorded with Sensor 1 on a concrete column
that was subjected to dynamic excitations with an electrodynamic shaker after vanous
levels of damage had been introduced by quasi-static cyclic load tests as summarized in
Appendix A. In the subsequent plots Damage Level O corresponds to the undamaged
column. Damage Level | corresponds to a lateral displacement applied to the top of the
column that caused incipient yield of the reinforcement and occurs after the concrete
cracks. Damage Level 2 corresponds to a lateral displacement of the top of the column that
is 2.5 times the lateral displacement that caused incipient yield. Damage Level 3
corresponds to a lateral displacement of the top of the column that is 7.0 times the lateral
displacement that caused incipient yield,

The erest factor and K-factor listed in Table 1 are used to diagnose deviations from
sinusoidal response. Data acquired from a 4 degree of freedom (DOF) model building
subjected to sinusoidal base excitations are used to illustrate this feature. This structure and
the testing procedures are summarized in Appendix B. All acceleration time histories from
the concrete column and the 4 DOF system used to generate the plots below as well as
detailed test summaries can be downloaded from www lanl gov/projects/ei.
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Talde 1. Signal Statletlce that are Used as Damage
Sansitlve Features
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The tirst statistic discussed is the peak amplitude of the measured response. In cases
where damage causes a reduction in stiffness and the input to the system is stationary, the
peak amplitude of response will typically increase. This feature 15 plotted as a function of
damage level for the concrete column tests in Fig 9 The drop in peak amplitude
associated with the final damage case i3 attnibuted to oot maintaining the same input
amplitude as the input was applied in an open-loop manner without feedback control.

There are many other basic statistics that can also be used to identify when changes in
the system response that are indicative of damage have occurred as discussed below,

The mean and root-mean-square measure the central tendency of the data because these
values typically fall in the central range of the tme series amplitudes. To illustrate the shift in
the mean value cavsed by damage, consider the cantilever beam shown in Fig. 10 {a) A
through hele i3 drilled in the free end of the beam, and that end 18 connected to the Labworks
ET-132 shalcer with a 10-32 thread stinger. A stram gage was mounted 6 mm (1/4 in) trom the
aluminum clamp at the fixed end of the beam as shown in Fig. 13 (b}. The beam was tested
before and after it was plastically deformed. The plastic bending deformation was introduced
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near the strain gsage, which resulted in 1253 pe of static strain. Band-limited random noise with
frequency content between 0.2 to 200 Hz was used as the dynamic excitation. Time and
frequency domain data were captured for these random excitations. Figure 10 (c) shows the
FRF that relates the conditioned strain-gage signal to the excitation voltage supplied to the
shaker's amplifier. Each FRF is averaged from 10 separate measurements using a Hanning
window. Figure 10 (c) illustrates that the deformation causes a shift in the resonant frequencies
of the beam, increasing the first mode from 28 Hz to 30.5 Hz, and the second mode from
81 Hz to 34 Hz. The strain time histeries from the random excitations are shown in Fig, 10 (d)
where the DC offset in the strain readings is very clear as is evident in the distinct shift in the
mean value of the signal, and this shift carresponds to the stanie plastic stram. This shuft in the
mean value will net be evident in an accelerometer reading because piezoel ectric sensors do
not measure DC response.

Nete the mean value is sensitive to outliers, so a few extreme data points can
significantly influence this feature. As illustrated in Fig. 10, a shift in the mean value i3 a
feature that can detect the permanent offset caused by yielding as depicted in Fig. 6 so long
as the sensor can respond to static loads {e.g., an electric resistance strain gage),

The mean-squared values and root-mean-square values are shown for the varicus
concrete column damage levels in Fig. 11. Here one can see that these values increase with
increased damage level. There is a significant increase between the incipient damage case
and the subsequent damage case.
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Figure 10. (a) Cantilever beam with shaker attached to the free end, (b) strain gage used to measure
the beam's dynamic response, (c) frequency response functions from the undamaged and plastically
deformed beam, and (d) strain-time histories from the undamaged and plastically deformed beam
showing the offset in the mean values caused by the plastic deformation.

The standard deviation measures the dispersion about the mean of the time-series
amplitudes. For a fixed level of excitation, damage that reduces the stiffhess of the system
will, in general, cause an increase in the standard dewviation of the measured kinematic
response quantities such as acceleration or strain, Figure 12 shows the change in the standard
deviation of the acceleration response obtained from the concrete column tests as a function
of increasing damage levels where the standard deviation 1s seen to increase with increasing
damage levels. As with the other statistics, this series of tests shows that there is a significant
increase in the standard deviation when the structure goes from the incipient damage level to
the next higher damage level.
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The skewness is another measure of the central tendency of a random variable. Any
symmetric distribution such as normal distribution will have a skewness value equal to
zero. The skewness 15 sensitive to an asymmetry being introduced inic an initially
symmetric system such as the interference that produces the nonlinear respense in the
4 DOF system. Figure 13 shows the change in skewness for the 4 DOF system summarized
in Appendizx B when an impact nonlinearity is designed such that impacts occur when
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relative deformations between the top two floors exceed a threshold value in one direction
only, Therefore, this nonlineanity introduces an asymmetry info an onginally symmetric
structure. In Figure 13 the red lines correspond to a normal distribution fit to the measured
acceleration amplitudes of the third floor (mass 4). The blue line comresponds to an
approximation of the density function obtained with a kemel density estimator When the
system is linear, the kernel density estimate of the distribution function is nearly identical
to the normal distribution that was fit to the data, In these cases the skewness value is close
to zero as would be expected for a symmetric distribution. At the low excitation applied to
the system with the nonlinearity, the estmated distnbution function appears to overlay the
normal distribution that was fit to the data, but the skewness value has increased by more
than an order of magnitude. When the high the higher level excitation is applied to the
nonlinear system the estimated density function shows significant difference from the
normal distribution and the skewness value increased by more than two orders of
magnitude compared to the comparable value obtained from the linear system.
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Figure 13. The change in skewness between the linear and symmetric 4 DOF system (see Appendix B)
and the same system when an asymmetric impact nonlinearity is present for two different levels of
excitation.
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The kurtosis measures the peaked nature of the measured-response distribution. This
value is plotted for the various concrete column damage levels in Fig. 14. For a nomally
distributed response the kurtosis will have a value of 3.

1 i 7 !
Cprrcagm ekl

Figure 14. The bhurlosis calculated for

accaleratioh responss measures at Sensor 4

(see Appendix A) on the concrete column tests
phatted as a functien of damage l=wal.

The crest factor and K-factor are often used to assess the deviation from sinusoidal
response in rotating machinery. For linear systems responding to a harmonic input this
feature has a theoretical value of | 414 Table 2 summarizes the crest and K-factars obtained
from a force transducer at the base (mass 1) and accelerometers at each floor (masses 1-4) of
the 4 DOF system summarized in Appendix B when the structure was subjected to 53 He
and 70 Hz sinusoidal inputs at different amplitude levels. In Table 2 it can be seen that both
the K-factor and the crest factor show 4 deviation from the expected valugs at the locations
most influenced by the impacting. The crest factors obtained from sensor readings at the
other Locations show little change. The K-factor shows a significant change at all locations,
but the changes are most pronounced at the locations ¢lozest to the impact location.

6.2 Coherence Function

The coherence fonction is a spectrum and is usually wsed with random or impulse
excitahon. It ¢an provade a quick visual mspechon of the quality of am FRF and, in many cases,
is a rapid indicatcr of the presence of nonlinganty in specific frequency bands or resenance
regions. Tt is arguably the most often-used test of nonlinearity, by virtue of the fact that almost
all commercial spectrum analyzers come wath software that caleulates this quantity.
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Table 2. Crest Factor and K-Factor for the 4 DOF System Subjected to Harmonic Inputs

Crest Factor
Sensor 53 Hz Excitation 70y Hz Excitation
No Bumper With Bumper No Bumper With Bumper
Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2
Chl 145 144 1.47 148 143 143 143 143
Ch2 1:42 142 142 142 144 144 141 1.41
Ch3 143 143 1.87 1. B2 144 143 1.39 1.38
Chd 1:43 142 1.03 1.02 143 142 1.32 1.32
Input 143 144 143 143 143 144 143 142
K Factor
Sensor 53 Hz Excitation 70 Hz Excitation
No Bumper With Bumper No Bumper With Bumper
Test | Test 2 Test 1 Test 2 Test | Test 2 Test 1 Test 2
Chl 268 282 000367 000369 0824 0737 (270 0,267
Ch2 233 243 0,352 0.349 380 331 (3 206 0,200
Ch3 212 233 00379 00354 2.96 255 0365 00373
Chd 238 238 00627 00,0603 0518 0446 0,00729 000714
Input #21 792 2280 1270 1170 1210 1730 1720

Ch 1-4 are accelerometers mounted on each mass, Input is the force trinsducer mounted between (he bottom mass
and shaker

Test | corresponds to a 0.5 v rms inpot amplifede. Test 2 cormesponds to 2 2.0 v s imput amplinede.

Bumper is located between miass 4 and mass 3 (Ch 4 and Ch 3)

Before discussing nonlinearity, the coherence function will be derived for linear
systems subject to measurement noise on the output. Such systems have time-domain
equations of motion,

x(1) = SLA(e)] + m(r) (18)
where S is an operator that is a function of elastic, inertial and energy dissipation

characteristics of the structure and m(t) 15 the measurement noise. In the frequency domain
a little algebra produces the coherence function y*{(w ) [24],

H(o)[ S, (o) ()]
& (o) S (0v)

¥ (o) (19)
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where Hyey) is the frequency response function, Sx(ar) is the power spectrum of the input,
N} i3 the power spectrum of the response and S,/ 15 the power spectrum of the noise.

This gquantity is the fraction of the output power, which can be linearly correlated with
the input. Now, as ¥ {@)and §_{6)/S_{m) are both positive quantities, it follows that
0=y* 21 with 3° =1 only if 8, (w@)/S, (w)=0, implying that there is no measurement
noise. The coherence function therefore detects if there is noise in the cutput measvrement.
In fact, it can be shown that #> <1 if there is noise anywhere in the measurement process
[24]. If the coherence is plotted as a function of w, any departures from unity will be
readily identifiable, Nate that all these quantities in the second term in Eq. 19 are readily
computed by commercial spectrum analyzers designed to estimate H{@), which 13 why
coherence functions are so readily available in standard instrtumentation.

Because the coherence function determines the extent of the output power linearly
correlated with the input, it also detects nonlineanty. Consider the data from a SDOF
system with a cubic stiffness; if the level of excitation is low, the response x will be small
and x* will be negligible in comparison. In this regime, the system will effectively behave
as a linear system and the coherence function for input and output will be near unity as
shown in Figure 15 As the exeitation 15 increased, the nonlingar terms will begin to play a
part, and the coherence will drop as shown in Figure 16, This type of sitvation will occur
for all polynomial nonlinearities and systems exhibiting piecewise-linear stiffness like
those induced by a breathing crack [25] However, if one considers Coulomb friction, the
opposite occurs. At high excitation, the fraction breaks out {that i3, stick response gives
way to slip response) and a nominally linear response will be obtained and hence
coherence values closer to unity will result.

It is important to stress again that in order to use the coherence function for detecting
nonlinearity and hence damage, it is necessary to realize that a reduction in the level of
coherence can be caused by a range of protlems, such as noise on the output and/or input
sigmals that may in turn be caused by incorrect gain settings on amplifiers, leakage, and
extraneous sources of unmeasured input to the system. Such obvicus causes should be
checked before structural nonlinearity and hence damage is suspected as the cause of loss
of coherence.

6.3 Linearity and Reciprocity Checks

One method to demonstrate that a structure is respoending in a nonlinear manner 1s to
excite the structure at two different levels and show that that the response does not scale
linearly by the ratic of the excitations levels. A common approach to visualize this
property i3 to overlay the frequency response functions (FRFs) from the excitations at the
two different levels. For linear systems the two FRFs obtained with the different excitation
levels should overlay because the response spectrum is normalized by the input spectrum.
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Figure 17 shows an overlay of the input impulse power spectral density functions
from a lineanity check performed on a bridge structure summanzed in [15] and the
corresponding driving point FRFs. In this case the two impact tests where the power
spectral density amplitudes were different by a factor of about five were performed within
2 hrs of each other and no changes were introduced to the structure’s condition within this
time period. Ideally, a linearity check should be performed over the expected range of
operating loads, but this linearity test was limited to what could be obtained using the
instrumented hammer. These plots highlight a difficulty with interpreting data from a
lineanty check. Between 7 and 25 Hz the structure exhibits linear charactenistics when
excited at the levels shown in this figure, However, above 30 Hz there is a noticeable
difference in the two measurements suggesting the possibility that nonlinearities were
excited in this frequency range or that signal-to-noise ratios were poor, thus providing the
appearance of nonlinear response. This frequency range also corresponds to lower
coherence in the lower-excitation level measurement as shown in Fig. 18. The coherence
was observed to improve tor the higher magnitude input suggesting that possibly the lower
signal-to-noise ratio in the low-amplitude measurements might be causing the linearity test
discrepancies shown in Fig 17. Therefore, in addition to the FRF overlaying one would
also like to see the corresponding coherence functions overlay as well to have confidence
that the structure’s response scales linearly with increasing amplitude.

Figures 19-22 show similar results for measurements made at each mass in the 4 DOF
system (see Appendix B) when excited with different amplitude band-limited (20-200 Hz)
random base inputs. These figures show the cases when the system is linear and when an
impact nenlinearity 18 present between floors two and three (masses 3 and 4). These figures
also show the corresponding coherence functions. For the linear case the FRF magnitudes
overlay across the entire spectrum. With an exception for the drop in coherence associated
with 60 Hz electric noise in the low amplitude tests, the coherence functions for the two
linear systems also overlay

1:]"-

PED " 2z
&,
.
1
i
i
]
i
i
1
i
1
1
)
I
)
]
i
1
¥
Fietpuen oy Rospanse Fancilon B ondude fyh)
EI'
_F:-
———

Figure 17. Results of a linearity check performed on bridge structure that shows different portions of the
FRF are more sensitive to the nonlinear system response.
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Figure 18. The coherence functions corresponding to the linearity tests shown in Fig. 17.
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Figure 19. The linearity test FRF magnitudes and corresponding coherence functions for
the base (mass 1) of the 4 DOF structure in a linear condition (left) and when an impact
nonlinearity is present (right) between floors 2 and 3 (masses 3 and 4).
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Figure 20. The linearity test FRF magnitudes and corresponding coherence functions
for the first floor (mass 2) of the 4 DOF structure in a linear condition (left) and when an
impact nonlinearity is present (right) between floors 2 and 3 (masses 3 and 4).
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Figure 21. The linearity test FRF magnitudes and corresponding coherence functions for
the second floor (mass 3) of the 4 DOF structure in a linear condition (left) and when an
impact nonlinearity is present (right) between floors 2 and 3 (masses 3and 4).
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Figure 22. The linearity test FRF magnitudes and corresponding coherence Tunctiens for
the third floor (mass 4) of the 4 DOF structure in a linear condition (left) and when an
impact nonlinearity is prasent (right) betwean floors 2 and 3 (masses 3 and 4),

When the impact nonlinearity 1s present. there are significant distortions in the FRFs
when compared to the corresponding linear cases. Also, there is considerable change in these
FRFs and corresponding coherence functions associated with the impacting system as a
function of excitation level, particularly in the higher frequency portions of the spectra.

Reciprocity checks are also performed to assess the linearity of a system’s response. A
structure is said to exhibit reciprocity when the measured FRF formed from an input at
location j and a response at location 1 corresponds directly with the measured FRF formed
from an input at location 1 and response at location j, Figure 23 shows the FRF magnitudes
for an impact applied at one point on a bridge deck (see [15]) and a response measured at
one of the most distant measurement points on that same deck. Also shown in this figure is
the FRF magnitude for an impact applied at pt. B and a response measured at Point A,
Coherence plots corresponding to the reciprocity results are also shown in Figure 23
Because the data acquisition system channels were moved from one point to another (i.e.,
the input measurement channel is the same for inputs at both locations as shown in
Fig, 24), these figures show the reciprocity of the entire measurement system, including
the structure and the data acquisition system.
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Figure 23. The FRFs and corresponding coherence functions measured during a
reciprocity test on the Alamosa Canyon Bridge (see [15]). Measurements were
conducted using the procedure depicted in Fig. 24.
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Figure 24. In this case, which corresponds to the measurement procedure used to obtain
the reciprocity data in Fig. 23, one simply reverses the input and response measurement
points. The input and response sensors remain connected to their original data acquisition
channel. This approach measures the reciprocity of the structure and the data
acquisition system.
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Figure 25. Alternatively, one can reverse the input and response measurement points
while keeping the input and response sensors connected to data acquisition channels
associated with the measurement point. This measurement procedure gives a measure of
the reciprocity of the only structure.
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Alternatively, one can keep the data acquisition channel associated with a particular
location as depicted in Fig, 25, A plot of the FRF magnitudes when the accelerometers at
points. A and B have been switched is shown in Fig. 26 along with the corresponding
coherence functions. By switching the accelerometers the reciprocity being measured is
that of the structure alone. From Figs. 23 and 26 it is evident that the structure itself is
exhibiting reciprocity in the all portions of the spectrum where there is good coherence,
Also, when Fig. 23 is compared to Fig 26, it is evident that the noise in the measurement
electronics of the data acquisition system is contributing to the loss of reciprocity,
particularly near the third natural frequency at 11.5 Hz.
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Figure 26. The FRFs and corresponding coherence functions measured

during a reciprocity test on the Alamosa Canycon Bridge (see [15]).
Measurements were conducted using the procedure depicted in Fig. 25.
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Figures 27-30 show reciprocity check from the 4 DOF system when an impact
excitation was applied at the first floor (mass 2) and acceleration response measurements
were made at the base (mass 1) each of the floors (masses 2-4) (see Appendix B). The
testing procedure used corresponds to that shown in Fig, 24 In these figures the FRF
magnitude and corresponding coherence functions are shown for the cases when the
structure is in a linear configuration and for the case where the excitation excites the
impact nonlinearity, In these cases the linear structure exhibits reciprocity over all portions
of the spectrum where consistent coherence between the two measurements was obtained.
When the nonlinearity is excited, there are again considerable distortions of the FRFs as
compared to those obtained from the linear system and the structure no longer exhibits
reciprocity as indicated by the FRFs that do not overlay.
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Figure 27. The FRFs and corresponding coherence functions measured during a reciprocity
tests on the 4 DOF system without nonlinearity (left) and with an impact nonlinearity (right)
(see Appendix B). Measurements were conducted using the procedure depicted in Fig. 24.
Measurement locations wera on tha base (mass 1) and first floor (mass 2).
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Figure 28, The FRFs and corresponding coherence functions measured during
reciprocity tests on the 4 DOF system without nonlinearity (left) and with an impact
nonlinearity (right) (see Appendix B). Measurements were conducted using the
procedure depicted in Fig. 24. Measurement locations were on either end of the
first floor (mass 2).
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Figure 29. Tha FRFs and corresponding coherence functions measured during reciprocity
tests on the 4 DOF system without nonlinearity (left) and with an impact nonlinearity (right)
(see Appendix B). Measurements were conducted using the procedure depicted in Fig. 24.
Measurement locations were on the first floor (mass 2) and second floor {(mass 3).
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Figure 30. The FRFs and corresponding coherence functions measured during reciprocity
tests on the 4 DOF system without nonlinearity (left) and with an impact nonlinearity (right)
(see Appendix B). Measurements were conducted using the procedure depicted in Fig. 24.
Measurement locations were on the first floor (mass 2) and third floor (mass 4),

6.4 Harmonic Distortion

Harmonic or waveform distortion 1s one of the clearest indicators of the presence of
nonlinearity, Such distortions are the primary damage sensitive feature used to diagnose
the condition of rotating machinery [17.26], which is the primary SHM application that has
made the transition from research to practice. If the excitation to a linear system is a
moncharmonic signal, i.e. a sing or cosine wave of frequency . the response will be
moncharmonic at the same frequency (after any transients have died out) [24] Inaddition,
the response of a linear system to some initial disturbance (displacement or velocity
impulse) can be represented by a sum of decaying sinusoids after transients have died out
as described by the well-known convolution integral [20].

It is not always true to say that a sine wave input to a nonlinear system will not
produce a sine wave output. However, this is usually the case and this is the basis of a
simple and powerful test for nonlinearity as sine wave inputs are simple signals to generate
in practice, The form of the distortion is due to the appearance of higher harmonics in the
response, Similar higher harmonics are observed in the response of nonlinear systems
excited by an initial displacement or by an initial velocity impulse.
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Distortion can be easily detected by observing the input and output time response
sigmals. Fig. 31 shows an example of harmonic distortion where a sinusoidal acceleration
response signal is altered by, in this case, a cubic nonlinearity.
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Figura 31. Ewidence of distortion In time
historles as a result of nonlinearity.

In Figure 31 the output respense from a nonlingar system is shown in terms of the
displacement, velocity and aceeleration. The reason that the acceleration is more distorted
compared with the corresponding velocity or displacement is easily explained. Let
JHe) = st (o¢) be the input to the nonhnear system. The output, x(¢), will generally (at least
for weak nonlinear systems) be represented as a Fourer serics composed of harmonics
written as,

s()=A/sin{ar+¢,)+ A ainf 207 + . ) + A, sind Jaf + $,)... (20)
and the comesponding acceleration, x{.') is,
) = —@* 4, sin(o7 + ¢, ) — 40° 4, sin{ 2w + ¢, ) — %0 A, sin(3er + 9,)... {21)

Thus the #™ cutput acceleration term is weighted by the factor #° compared to the fundamental.
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Harmonic generation can also be seen in systems subjected to nonsinusoidal inputs.
Figure 32 shows the Wigner-Ville time-frequency transform applied to free-vibration
response data measured at the free end of both uncracked and cracked cantilever beams
subject to an initial displacement [27]. The crack is located at the midspan and penetrates
half the thickness of the beam. The time-frequency plots in Fig 32 show the generation of
resonant frequency harmonics in the freely vibrating, cracked cantilever beam as well as
the change in stiffness state as the crack opens and closes, A comparison of the two plots
in Fig. 32 clearly shows that the presence of nonlinearity adds considerable complexity to
the frequency response characteristics of the system and measures of this complexity
relative to the undamaged system response can be used to infer the presence of damage.

Figure 32. WignerVille transforms of the freevibration accelerationtime hislories measured on an
uncracked cantilever beam (left) and a cracked cantilever beam (right) subjected to an initial displacemaeant.

Another illustration of harmonic distortion can be seen in data obtained from the
4 DOF system when the system is subjected to a 53 Hz harmonic base excitation. In one
case the system is in a linear configuration and in the other case the excitation excited an
impact nonlinearity (see Appendix B). Figure 33 shows a portion of input time histories
and corresponding power spectra for the inputs from the two tests. This figure shows that
the input remained constant between the two tests. Figures 34 though 37 show a portion of
the input time histones and corresponding power spectra (normalized to a peak value of 1)
from each floor for both the linear and nonlinear cases. The response measurements show
increasing distortion from a harmenic response with increasing distortion from sensors
closer to the impact location. Also, harmonics of the driving frequency are visible in the
power spectra of the measurements made at the base (mass 1) and each of the floors
(masses 2-4) when the impact nonlinearity is present. These harmonics are accompanied
by significant drop in the amplitude of response even though Fig, 33 shows that the base
excitation remained consistent in each test.
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Figure 33. Harmonic base input signals (53 Hz) used to drive the 4 DOF system in its
linear and nonlinear configuration.
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Figure 34. Base (mass 1) response to a 3 Hz harmonic base input signal used to drive
the 4 DOF (see Appendix B) system in its linear and nonlinear configuration (impact
between floors 2 and 3 [masses 3 and 4]). Peak Amplitudes in the spectra have been
scaled to 1 and a peak amplitude of only 0.03 v has been plotted to better show tha
harmonics that were generated.
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Figure 35. First floor (mass 2) response to a 53 Hz harmonic base input signal used
to drive the 4 DOF (see Appendix B) system in its linear and nonlinear
configuration (impact between floors 2 and 3 [masses 3 and 4]). Peak Amplitudes
in the spectra have been scaled to 1 to better show the harmonics that

were generated.
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Figure 36. Second floor (mass 2) response to a 53 Hz harmonic base input
signal used to drive the 4 DOF (see Appendix B) system in its linear and
nonlinear configuration (impact between floors 2 and 3 [masses 3 and 4]).
Peak Amplitudes in the spectra have baen scaled to 1 to better show the
harmonics that were generated.
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Figure 37. Third floor (mass 3) response to a 53 Hz harmonic base input signal used to
drive the 4 DOF (see Appendix B) system in its linear and nonlinear configuration (impact
betweaen floors 2 and 3 [masses 3 and 4]). Peak Amplitudes in the spectra have been
scaled to 1 to better show the harmonics that were generated.

In general, if the system inputs are nonsinusoidal waveforms, such as band-limited
random signals, waveform distortion is difficult to detect and alternate features are
required such as those that can be obtained from the coherence function or the probability
density function.

6.5 Frequency Response Function Distortions

As previously discussed, damage can be inferred from the loss of amplitude
invariance of any number of measured quantities when it is assumed that the system
respands in a predominantly lingar manner when in its undamaged state, One of the most
fundamental constructs for modal analysis is the FRF; this takes a specific form for linear
MDOF systems and departures from this form as the excitation level changes can yield
information about the type of nonlinearity present in the system. The study of FRF
distortion was the subject of some of the earliest attempts (o reconcile nonlinearity with
madal analysis [12].

Before discussing FRF distortion, recall the principal definitions of the FRF, first for a
stepped-sine test. I a signal Fyinfer) is input to a linear system, it will result in a response
Nsinfest+ g, the FRF - afunction of @ -1s defined by,

Hiw) fl%{_m}
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This quantity is very straightforward to obtain experimentally Owver a range of
frequencies, sinusoids Fsmfwt) are injected sequentially into the system of interest At
each frequency, the tme histories of the input and response signals are recorded afier
transients have died out and Fourier transformed The ratio of the (complex) response
spectrum to the input spectrum yields the FRF value at the frequency of interest In the
case of a linear system, the FRF in Eq 22 summanzes the mput/output process in its
entirety and does not depend on the amplitude of excitation & In such a situation, the FRF
is referred ta as pure

In the case of a nonlinear system, it is well-known that sinusoidal forcing generates
response components ai frequencies other than the excitation frequency In particular, the
distobution of energy amongst these frequencies depends on the level of excitation F, 50
the measurement process described above will also lead to a quantity which depends on &
However, because the process 1s simple, it 1s often carned out expenmentally 1o an
unadulterated fashion for nenlinear systems The FRF resulting from such a test is referred
to as composite and denoted by A (o) Stoctlly speaking, A@, 515 more approprate, but
the amplitude argument will always be clear from in this context In the control Literature,
A, (@) is often called a describung function

The form of the composite FRF also depends on the type of excitation used If white
noise of constant power spectral density £ is used and the FRF is obtained by taking the
ratic of the cross- and auto-spectral densities (Syvr, S=r} for a linear system,

H{m} - S.".-.I"" {m)

23
) (23)

and 1115 a textbook matter 10 show that this quantity is idenhical to the FRF from stepped-
sine testing If however, the same approach is used for a nonlinear system, another
composite FRF is obtained,

Allw FP)= ;‘F—EE , (Z4)

and the function A (&, P) is distinct from the A g, £} obtained from a stepped-sine test
The object of this section is to cutline some ways of computing FRFs, in the hope that the
analysis can be used to identify nonlinearities that are indicative of damage

The first calculation wall illustrate a well-known means of approximating A (@) - the
analytical analogue of the stepped-sine test - the method of Aarmovre bafance [28]) A
nonlinear system is needed and without a doubt the most commonly referenced SDOF
nonlinear system is given by Duffing’s equation,

my+ex+he +kx’ = f(6) (25)

and this will be adopted for the analysis here
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Harmonic balance simply assumes that the response to a sinuscidal excitation is a sinuscid
at the same frequency The trial sclution Xsrfoi} is substituted in the equation of motion,

mx -+ cx+kx + kyx* = Fsin(wt — ) (26}

To simplify matters the phase has been transferred onto the input to allow ¥ to be
taken as real The substitubion yields,

-0 X sin{of) + coX cos{os) + EX sinfes)+ kX sinfed) = Fsinfor-¢) (27}

or, after a little elementary tngonometry,

1 ' ' 3 3 . ] . _
—mo” X sin{of) + coX cos(of) + £X sin(ei)+ & X {Zsm{mt}—qsm[mi]} = (28)

Fan{wf)eosd — F coslot)sind

Equating the coefficients of sin{av) and cos(en) (the fndamenial components)
vields the equations,

—mo’ X + kX +%k}X3 = Fcosd, and (29)
cerX — -Lsmg . {30}

The required gain and phase follow routinely,

‘%|: 3] - — , and (31}
’{—mm2+k+zk3k'2} +clm3}

1 = a

e’ + R %k,x:

¢ = tan

(32)

¥

and these can be combined inte the complex FRF,

Ao)= ! (33)

k +1A'3X: -’ +1cw
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At a fixed level of excitation, the FRF has natural frequency.

(34)

so 1t depends on X and hence, indirectly on F. If &, = 0, the natural frequency increases
with F; such a system is referred to as hardening. If &, <0 the system is sofiening; the
natural frequency decreases with increasing F.

This approximation reproduces expenmental results which show that the natural
frequency changes with amplitwde, Further, the actwal form of the FRF can depant
substantially frem the linear form. Fer given F and @, X is obtained by salving the
(essentially) cubic Eq. 29, As complex roots cocur in conjugate pairs, Eq. 2% will either have
one or three real solutions. The effect of this observation is well-known, but remains striking.

At low levels of excitation, the FRF is a barely distorted version of that tor the
underlying linear system as the & term dominates for X <71, A umque response amplitude
(a single real root of Eq. 29 is obtained for all & . As F increases, the FRF becomes more
distorted and departs from the linear torm, but a unique response is still obtained for all .
This continues untl F reaches a entical value Fiop, where the FRE has a vertical tangent.
Beyond this point a range of & values, [a,,,.0,_,]. is obtained over which there are three
real solutions for the response. This is a hifurcaiion point of the parameter /. As the test or
simulation steps past the point @, two new responses become passihle and persist until

@,,e» 15 reached and two solutions disappear. The graph of the response is shown in Fig. 38

The relevant experimental circumstances tor this analysis occur during a stepped-sine
or a sine~well test. Consider an upward sweep. A umoue re (punsva exists up to @ =a, .
However, beyond this point, the response stays on branch x"' essentially by continuity.
This condition persists until, at trequency o, ,, x""! ceases to exist and the only solution is
x™ a4 jump to this solution occurs gwmg a discontinuity in the FRF. Beyond @, the
sulutmn stays on the continuation of x**, which is the unique solution in this range. The
amplitude follows path ABD in Figure :8. The type of FRF obtained from such g test iz
shown in Fig. 39 The downward sweep 15 stmilarly described and follows path DCA .
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Figure 38. Possible response amplitudes for Duffing oscillator under
high level excitation.
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Figura 39, Composite FRF A: for Duffing oscillator at high
excitation (upward sweap).
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If &, =0, the resonance peak moves to higher frequencies and the jumps occur on the
right-hand side of the peak as descnbed above. If &, < 0, the jumps occur on the left of the
peak and the resonance shifts downward in frequency. These discontinuities are frequently
observed in experimental FRFs. All this is fairly well-known; however, despite the fact
that this was one of the first calculations carried out for a nonlinear system, il retains its
predictive power and hammonic balance, and its more modern vanants are indispensable
tools in the analysis of nonlinear systems.

6.6 Frohability Density Function

When a linear system i3 subject te a random input whose amplitudes are described by a
Gaussian distribution, the response amplitudes will also have a Gaussian distnbution [29].
Also, it is known that a Gaussian distribution has well defined properties such as skewness,

- 1
Fx 3Fu,x} -0
o

I

(33}

and the normalized kurtosis,

E(¥-p,)' _

o,

3, (36)

where F designates the expectation cperator, g is the sample mean for an acceleration
response, Xand ais the sample variance.

When the input is known to be Gaussian in nature, deviations of the acceleration
response statistics can result when nonlinearities associated with damage are present. As an
example, an estimate of the acceleration response pdf obtained with a kemel density
estimator from an 8 DOF system is shown in Fig. 40{a) along with skewness and kurtosis
values. This response corresponds o the end mass and the excitation is applied to the mass at
the opposite end [30, 31]. The estimated pdfis plotted over the Gaussian distribution that has
been fit to these same data. For this undamaged condition the small deviaticns in the pdf and
the assoclated statistcs from those anticipated for a Gaussian input are atinbuted to an open-
loop control system on the shaker that does not allow for a true Gaussian signal to be input to
the system. Figure 40{b) shows a similar plot and similar statistics when the same eight DOF
system 1s modified such that impacting occurs between the two end masses located at the
opposite end from the shaker. This impacting produces an asymmeiry in the response that
manifests itself as a more than 500% change in the skewness value as well as a more
significant deviation in the pdf from the normal conditicn.

If baseline statistics are available from the undamaged system, examination of the pdf
and the associated statistics can be an indicator of nonlinearities associated with damage.
These statistics are used extensively as low-dimension features to diagnose damage to
roller bearings [32]
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Figure 40. The & DOF system (top) and (a) The pdf of the acceleration response measured on the end
mass of the system in its undamaged condition averlaid with a Gaussian distribution fit to these same
data. (b) a similar pdf obtained when the end two masses impact.
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6.7 Correlation Tesis

There are two simple correlation tests that can signal ncolinearity by analyzing
measured time data. If records of both input # and output x are available, it can be shown

that the correlation functicn, ib_ e x,{k] . defined as

b, (k)= Elrayx ¢+ i) 37)

where £ designates the expectation operator, ¢ A vanishes for all discrete time delays, &, if
and only If the system is linear [33]. The apostrophe signifies that the mean has been
removed from the output signal.

If only sampled outputs are avaable, it can be shown that under certain condihons
[24], the correlation function defined as,

¢ .o (k)= E[X'( + £)x ()] (38)

is zero for all & if and only if the system is linear. In practice, these functions will never be
identically zero; however, confidence intervals for a near-zero result can be caleulated. As
an example, acceleration data were obtained from single degree of freedom system with an
offset bilinear stiffness whose force-deformation plot is shown in Fig. 41. The system was
subjected 1o a random excitation. The correlation functions for the response at both low
and high excitation are shown in Fig. 42, The dashed lines are the 95% confidence lirmts
for a zero result based on a linear system with the initial stitfness. The function in Fig. 42b
indicates that the data from the high-excitation test arises from a nonlinear system. The
low-excitation test did not exaite the nonlineanty and the corresponding function {Fig. 42a)
shows that only approximately five percent of the points are cutliers as would be expected.

Force

Defonmalion

Figurs 41, Ofset bllinear stifnacs systom.
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Flgure 42, Correlatien functions far a (a) llnear system and (b} nanlinear system.

Note that Eq 38 as it stands only detects even nonlineanty such as quadrate stiffness
In practice, to identify odd nonlinearity, the input signal should comtain a D€ offset This
offsets the output signal and adds an even component to the nonlinear terms

A further restoction on Eq 38 is that it cannot detect odd damping nonlinearity as it1s
not possible to generate a D C  offset in the velocity to add an odd component to the
nonlinearity There are implications for damage detection here as the occurrence of
damage in a structure may result in the appearance of a fmiction nonlinearity when the
damage allows two surfaces to slide over each other

6.8 The Holder Exponent

Robertson, et al [35] have used the Holder exponent as another damage-sensitive feature
Thizs feature identifies nonlinearities associated with discontinuities introduced into the
dynamic response data as a result of certain types of damage such as cracks opening and
closing In [33) a procedure for capturing the time varying nature of the Holder expenent has
been developed based on wavelet transforms This procedure has been successtully applied to
detect 100s¢ parts in 3 harmonically exaited mechamcal systerm as descnbed below
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The Holder Exponent, also known as the Lipschitz Exponent [36], i3 a tool that
provides information about the regularity of a signal. In essence, the regularity identifies to
what order the signal 15 differentiable. For instance, if a signal #2) is differentiable at 7 =0,
it has a Holder Exponent of 1 or greater. If the signal is discontinuous but bounded in the
neighborhood of t = 0, such as a step function, then the Holder Exponent is 0. The Dirac
Delta function then has a Holder Exponent of -1 because it is unbounded at t = 0. From
these examples, cne can see that there is a relaticnship between the Holder Exponent of a
function and its derivatives and primitives. Taking the denivative of a function decreases its
regulanty by 1 and integrating in¢reases it by 1. For SHM applications the assumption 15
that a lincar system will have a continuous response to randem, transient or steady state
excitation. When a nonlinearity is introduced such as a crack opening and closing, the
response signals will have discrete portions that are discontinucus and the Holder exponent
will identify such discontinuities.

The Holder regularity is defined as follows. Assume that a signal 7 (1} can be
approximated locally at £, by a polynomial of the form [27]:

Fiy=co+er=t)+ e, (1=1)" +C|r=1] (39)
=P (r—1,)+Ct-1| !

where Py is a polynomial of order 7 and C is a coefficient. The term asscciated with the
exponent & can be thought of as the residual that remains after fitting a polynomial of
order # to the aignal, or as the part of the signal that does not it info an #+f term
approximation [37]. The local regularity of a function at 7y can then be characierized by
this “Holder™ exponent:

F 0= P -1 =0t -5 (40)

A higher valve of o indicates a betier regularity or a smoother function. In order to
detect singularities, a transform i3 needed that ignores the palynomial part of the signal. A
wavelet transform that has s#~vanishing moments 15 able to 1gnore polynomials up to order a:

ol

j':"w(:}d: =0 (41)

=

Transtormation of Eq. 40 using a wavelet with at least »# vamishing moments then
provides a methed for extracting the values of the Holder exponent in time;

|Wf ()| < Cs& (42)

=] |
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The wavelet transform of the polynomial is zero and so what remains is a relationship
between the wavelet transform of fi7) and the emror between the polynemial and 1), which
relates to the regularty of the function. When a complex wavelet such as the Morlet
wavelet i1s used, the resulting coefficients are also complex. Therefore, the magnitude of
the modulus of the wavelet transform must be used to find the Holder exponent. As
detailed below, the exponent ¢ can be caleulated at a speafic ime point by finding the
slope of the log of the modulus at that time versus the log of the scale vector s.

For the SHM applications, singularities are defined as points in the sensor time history
that are discontinucus, As discussed above, bounded discontinuities have a Holder exponent
of 0. Therefore, measuring the regularity of the signal in time can be used to detect these
singularities. The Holder exponent ¢an pertain to the global regularity of 2 function, or it can
be found lecally. A common method for finding its value is through the use of the Fourier
transform [36]. The asymptonc decay of a signal’s frequency spectrum relates directly to the
uniform Heolder regularity. However, the Founer transform approach only provides a
measure of the minimum global regularity of the function, and cannot be used to find the
regulanty at a partcular point in ime. Wavelets, on the other hand, are well localized in ime
and can therefore provide an estimate of the Holder repularity both over time intervals and at
specific time points. The wavelet method for estimating the Holder exponent is similar to
that of the Fourer transform. The wavelet provides a time-frequency map called the
scalogram. By examining the decay of this map at specific points in time across all scales
(frenuencies), the point-wise Holder regularity of the signal can be determined.

It iz logical therefore to wonder if a shon-time Fourier transform (STFT) can be used
to extract a hme-varying Holder exponent function as well. In fact, any time-frequency
transform can be used for Holder exponent extraction, but certain charactenistics of the
wavelet transform make it particularly well adapted for this application. Specifically, these
charactenstics are: the decay of the wavelet basis functions in the frequency domain, whuch
is associated with the number of vanishing moments, and the variability of the bandwidth
of the wavelet transform in time and frequeney. The order of the wavelet limits the degree
of regularity that can be measured in a funchon. Therefors, wavelets Gan be tuned to the
signals that are being analyzed. Also, the variability of the time and frequency bandwidths
provides a finer time resolution at the higher frequencies than the STFT, which can be
helpful in detecting the point in time when sudden changes occur in a signal.

The easiest way to identify a discontinuity in a signal is by looking for a distinct
downward jump in the regularity (Holder exponent) versus time plot. As previously
mentioned a discontinuous point should have a Holder Exponent value of zero, but
resolution linitations of the wavelet transform will result in shghtly different valugs. So,
identifying time paints where the Holder Exponent dips from positive values towards zero,
or below, will identify when the discontinuities in the signal occeur. A procedure for
wentifying the discontinuities wall be presented m the following sections.
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The steps for calculating the Holder exponent in time are as follows. First, take the
wavelet transform of the given signal and take the absolute value of the resuling
coefficients to cbtain the wavelet transform modulus:

F 1 #f F—N
¥ 9l = —_— ul— "
[f ta, 5) L ) - w[ - ] f (43)

Amange the ceefficients in a two-dimensional time-scale matrix. One dimension of
the time-scale matrix (v} represents a different time peint in the signal, and the other
dimension denotes a different frequency scale (s} Take the first column, which represents
the frequency spectrum of the signal at the first ime point, and plot the log of it versus the
log of the scales, s, at which the wavelet transform was calculated. This can be shown
mathematically by taking the log of each side of Equanhon 43:

log | (u,5) = leg(CT}+alog(s) . (44)

Ignoring the offset due to the coefficient 7, the slope # of a straight line fit to the
spectrum 15 then the decay of the wavelet modulus across its scales. Negating the slope
will give the decay versus the frequencies of the transform rather than the scales, due to the
inverse relationship between scale and frequency. The Helder exponent ¢ is then simply
the slope #. This is the Holder exponent for the first ime point in the signal. To find the
Holder exponent at all ime peints, repeat this process for each ome point of the wavelet
modulus matrix.

Wilu, s
m=log| i (u &)lza

log(s) )
The following example shows the application of the Holder exponent to data from a
mechanical system with a loose part that was subjected to a harmonic base excitation. A
schematic of the test structure is shown in Fig. 43. The non-symmetric bumpers cause the
structure to exhibit a rattle during cne portich of the excitation. Figure 44 shows the
response of the structure as measured by accelerometers mounted on the outer structure in
the in-axis and off-axis directions. The rattle produced by these impacts is evident in the
sensor measurements that are off-axis from the excitation. The short oscillations of
ncreased magmtude o these measurements are indicative of the rattle. These same
oscillations are not readily apparent in the in-axis data, particularly if one does not have the
off-axiz measurements for reference.
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Figure 43. Schematic diagram of the test structure that had
a loose internal part.
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Figure 44. Acceleration response of the test structure as measured in the in-axis and off-axis
directions by accelerometers mounted on the outer structure,

In Figure 45 the Fourier transform of the first quarter (1024 points) of the in-axis
response, which contains no rattle, is compared to the Fourier transform of the second
quarter of this same signal, which does contain a rattle. Examination of the two frequency
spectra reveals that the presence of the rattle in the second set of data is not discernable
using a Fourer transform. In Figure 46, the wavelet and STFT transforms of each of the
signals is given. Lines of high magnitude coefficients are visible in these plots
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Figura 45, A comparison of the Fourier transforms of the signal with (second
quarter of signal) and without (first quarter of signal) the rattie present.
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Figure 48. Transforms of test structure response: (a) wavelet transform and (b) short term
Fourier Transform.
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Extraction of the Holder exponent was then performed using the wavelet transform for
the in-axis data, as shown in Figure 47. When compared to Fig. 44, which is plotted on the
same time scale, the singularities associated with the rattle are clearly visible in this plot at
each time they occur during the oscillatory cycles. For this example, the number of scales
was 64, and a Morlet wavelet, 16, was used, The larger width wavelet helped to smooth the
Holder exponent function in time, bringing out the more significant changes.

2 05f | T ' r | . ,|I| ; —
o P
205} | 'y | &

Time (s)

Figure 47. The Holder exponent extracted from the wavelet modulus for the in-axis
acceleration data.

6.9 Linear Time Series Prediction Errors

A general approach to feature extraction for systems that exhibit the transition to
nonlinear response characteristics as a result of damage is to first fit a linear model to the
data obtained from the undamaged structure that is assumed to be responding in a linear
manner. This model is then used to predict the measured system response and a residual
error is calculated at each time step, which is the difference between the measured and
predicted response. This same model is then used to predict the response from data
obtained in the potentially damaged state. The assumption is that this linear model will no
longer accurately predict the response of the damaged system that is exhibiting nonlinear
response and there will be a significant increase in the residual errors associated with this
latter prediction. This approach can also signal damage even if the damage does not cause
nonlinear response. In this case the procedure does not detect nonlinearity, but rather a
deviation from the baseline linear model.

In theory, this approach can be taken with either physics-based models such as finite
element models or with data-driven models such as time-series models. The time series
models are relatively simple to fit to measured response data and the application of one
such model to damage detection in a system that exhibits nonlinear response in its
damaged state is illustrated below.

A 1™ order autoregressive (AR) time-series model is defined as

M

£ =2 aix )te,, (46)

J=1

- “ Al L + v <1k &
where X is the estimate of the i" time series value. n is the model order, s 3 previous
measured time series values, « are the AR coefficients and & is assumed to be an
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unobservable random emor with zero mean and constant vardance, If X, denctes the
estimated acceleration measurement from the fitted AR model, then the residual at time 713

E =X —X . {17}

If the fitted model accurately represents the measured signal, the residuals should be
nearly uncorrelated. Note that for a fitted o' order model residuals cannot be computed for
i < n From a pattern recognition perspective, the residuals can be thought of as features
derived from the measured time histories. This feature 1s of dimension one and many

estimates of this feature are obtained from a typical time series.

A key to employing this method is to determine the appropriate model order. A igher
order model may end up {itting the noise in the data and, hence will not generalize to other
data sets. On the other hand, if one selects a low order model it will not necessarly capture
the underlying physical system response. There are a vanety of techniques for choosing the
model order, such as Akaike's information criterion or a partial autocorrelaticn function,
which is a plot of the magnitude of the last coefficient as a function of model order, often
employed to help decide the appropaate model order. A summary of these techniques can
be found in most textbooks on time series analysis [38]. In the example below a fifth-order
AR model (AR{5)}1s applied to the 8192 point acceleration time series data from Sensor 1
on the concrete column tests described in Appendix A. This model has the form:

=X gt ax.tax. T aastasnst s [48‘}

Typical time series lead to an over determined set of equations that must be solved to
obtain estimates of the AR coetficients. For a 8192 point time series the cocfficients g, are
solved for by applying the pseudoinverse technique to the following equation to obtain a
least square solution for the AR coefficients:

X, x,  x X, x |[a X,
X, X ¥, x x |la, X,
' R =T (49)
gt Xoge Noge Yaow Yo |14 Xgiea

To compare the residual errors obtained from data measured on the undamaged
structure with similar quantities oblained from the structure in its various states of damage,
an X-bar centrol chart 15 develeped using the hme lastory acceleraton measurements taken
before the column was damaged {Test 6), denoted as damage level 0. An AR{5) model is
fit to these data. Figure 48 shows plots of the original signal and an overlay of the signal
generated with AR model. From these plots one can qualitatively observe that the AR
model developed from the undamaged data appears to do a pretty good job of predicting
these data. Figure 49 shows 3 histogram of the residual errors from this fit and a Gaussian
distribution that was fit to these data. One indication that the AR model is accurately
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predicting the time series is indicated by a Gaussian-distributed residual error. Figure 49(a)
shows that these residual errors are normally distributed. Depending on the type of
nonlinearity introduced by the damage, the distribution of residual errors obtained when
the AR model developed for the undamaged case 1s used to predict data from the damage
case may or may not be Gaussian
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Figure 48. A comparizon of the measured acceleration time history and the time series generated by
the AR model for the column in its undamaged state.
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Figure 49. (a) is a histogram of the AR model residual errors for the undamaged case and a Gaussian
distribution fit to these same residual errors. (b) is the same plot for the mean of groups of four
residual errors.

58



Moplingar Bysiem idenlificalion for Damage Dalaction LA-143563-MS

Next, an X-bar control chart is constructed based on the residuals from this fitted
model using subgroups of size 4. Ag mentoned previcusly, there are 8192 acceleration
measurements. Residuals can be computed for accelerabon measurements 6-8192. For
convenience, the last 3 residuals are discarded which leaves 8184 residuals. Subgroups of
size 4 are constructed by placing the residuals for observations 6-9 in the first group, 10-13
in the second group and so on. This process produces 2046 subgroups of residuals each of
size 4. Prior te computing subgroup means and variances, the 3184 residuals, from damage
level O, are normalized by subiracting the mean, ., , and dividing by the standard
deviation, o, of the entire ensemble. The residuals from the incipient damage level
{Test 7) where the column was deformed to a point where the rebar first yields and two
subsequent damage levels (2.5 and 7 times the deformation that caused incipient yielding,
tests 9 and 11) are alse adjusted by subtracting p. and dividing by & from the damage level
0 data. The histogram of the mean values of these subgroups for the undamaged case is
shown in Fig. 49 (b},

The centerline of the chart 15 the sample mean of the charted values, This centerline is
the sample mean of the residuals from observations 6-8182, and, after the normalization
just described, is 0. The sample variance of each subgroup iz determined and these
variances are then averaged to give a pooled estimate of variance. A simple average is
appropriate because each subgroup is of size 4. The square root of the pooled variance. s,
i3 used as an_estimate of the population standard dewiation. Control limits are drawn at
0tz 5,1 i where =4 and z. represents the o quantile of the standard normal
distribution. For this examples, o was chosen to be 0.01. A more detailed description of the
x-bar control chart development can be found in [39]. The X-bar control charts for the
undamaged case and for the three damage cases are plotted in Fig. 50.

MNote that the upper and lower control limits are determined only with data from the
undamaged column and then the control chart was subseruently used to 1dentify cutliers m
the feature vectors from the other tests. In Figure 50 the three plots comesponding to Test 7,
% and 11 all show a statstically significant number of features that are outside the control
limits. In this case the features are the mean of the 4-point data blocks extracted from the
residual error time series. The 3¢ confidence mtervals used imply that approximately 1% of
the data (or approx. 28 points for these 2046 point series) can be expected to fall outside the
control limits under normal conditions. For the undamaged case 13 points fall cutside the
confidence limits. For plots assocated with cach of the damage cases, the number of points
falling outside the control limits is significantly greater than 20.

The strongest indication of damage, as identified by the number of points outside the
conttrol limits, i1s associated with the incipient damage case {Test 7). Fewer outliers,
compared to the other damage levels, were detected for damage levels corresponding to
Tests 9 and 11, Although not rigorously verified, it is speculated that this rend in damage
indication is related to vielding of the rebar. The first damage level corresponds to
ngipient vielding of the rebar. Because of strain compatbility, this incipient yielding 15
accompanied by cracking of the concrete. The shaker, which was driven with the same
input voltage level during each test, is most likely to canse a non-linear response associated
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Figure 50. The X-har control plot of the mean of the residual error groups for (a) data from the
undamaged structure, (b) data from the incipient damage level, (c) data from structure that was
deformed to 2.5 times the incipient damage level, and (d) data from the structure when it was deformed
to 7 times the incipient damage lavel.

with the cracks opening and closing at this first damage level. At the higher damage levels,
the rebar has yielded significantly, When load was removed from the column, this yielding
tended to hold the cracks in an open configuration during the subsequent dynamic tests.
The excitation provided by the shaker, which was maintained at a consistent amplitude,
could not excite the nonlinearities associated with cracks opening and closing to the same
degree when the rebar had yielded significantly.
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6.10 Nonlinear Auto-Regressive Moving Average with Exogenous Inputs Models

Ini the previous section a linear time series model was fit to measured system data, and
then that model was used to predict system response when damage was present. The
underlying assurnphion was that 1f the damage caused a nonlingarity, the model would not
predict data from the damaged system well, which would manifest itself as an increase in
the residual errors between the measured and predicted responses. In this section 2 method
is described to predict the time series with a nonlinear model. This approach has the
advantage over the previous linear approach in that it can be better applied to a system that
responds in a nonlinear manner in its initial undamaged state. The parameters of the model
as well as the residual error can be uszed as damage sensitive features. In application of this
approach to damage detection, one must assure that the model accurately represents the
response of the system over the entire range of input. If this process is not dene, damage
could be inferred when in reality the model does not accurately predict the response to
somne new loading seenario.

Suppose one 15 interested in the previously defined SDOF linear system,

WX+ X+ e = f{t). {50}

This equation of motion can be converted by a process of discrete approximation to
the discrete-time form,

X =X, tdX,. b, {51}

where @, & and 5 are constants and functions of the original constants m2, ¢, & and the
sampling interval A7 =1 _ —f where the ¢ arethe sampling instants. In a mare general form,

X, :F(rr—wrr—:vfﬂ}- (52}

Equation 52 represents an Auto-Repgressive with eXogenous inputs{ARX) model. The
advantage of adopting this model form is that only the two states x and Fneed be measured
in order to ¢stimate all the model parameters @ @, and &, in Eq. 51 and thus identify the
system. It is & simple maiter 1o show that a general MDOF linear system has a discrete-
time representation,

L

x,=Yax_ +3bF (53)
il -1
or,
xrzp(‘xrln"'xr .!TJ,;J'r: I.*"',fr .!1),) : (54}
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As before, all parameters 4, ...a, ;4 ..., can be estimated using measurements of the x
and fdata only. ‘

The extension to nonlinear systems is straightferward, Consider the Duffing oscillator
represented by,

mi+ck+ ke + k3t = f{e). {35)
One can pass to the discrete-ime representation,

x,=ax,_ +a,x_,+bf, +ery,. (36}

The model defined by Eq. 56 i3 now termed a Noalinear ARX (NARX) model. The
regression functionx, = F{x, ,,x, ,. £, ,) is now nenlinear; it contains a cubic term. If a/
terms of order three or less were included in the model structure ie. (x_, ) 7, etc. a
much more general model would be obtained,

x =FPx L 0 h0) . (57)

where the supersenipt above & denotes the highest order product terms which would be
sufficiently general to represent the behavior of any dynamical systems with nonlinearities
up to third order i . containing terms of the form #*, #°x , etc.

The most general polynomial NARX model (n¢luding products of order =# ) 1s
denoted by,

X = fh{ﬂ.l-}[].']_l__l...xl_m ;J{r—'li""-f-r-ﬂ_lf J. {58}

It has been proved by Leontaritis and Billings [40, 41] under very mild assumpticns
that any input/output process has a representation by a medel of this form. If the system
nonlinearities are polynomial in nature, this model will represent the system well for all
levels of excitation, If the system nonlinearities are not polynomial, they can be
approximated arbitranly accurately by polynomials over a given range of their arguments
(Weierstrass approximation thecrem [42]). This means that the system can be accurately
modeled by taking the order », high encugh. However, the model would be input-
sensitive as the pelynomial approximation required would depend on the data. This
problem can be removed by including nen-polynomial terms in the NARX model as
described in Billings and Chen [43]. The NARX model can even be cast as a Neural
Network [44].
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The preceding analysis unrealistically assumes that the measured data is free of noise.
As shown below, if the system 15 nonlingar the noise process can be very complex;
multiplicative neise terms with the input and output are not uncommeon, but can be easily
accommodated in the discrete-time models [40, 41, 45, 46]

Suppose the measured output has the form,
x(#y=x (N +CU) (39)

where x,(t} is the “clean™ output from the system. If the underying system is the Duffing
oscillator of Eq. 55, the equation satisfied by the measured data is now,

mE A+ ok H e+ ket —ml ok R - kG -3 4 3 = FQD (60}

and the corresponding  discrete-time  equation will contain terms of the form
Con8ia, 8, pl, ete. Note that even simple additive noise on the output introduces cross-
praduct terms if the sysiem is nonlinear. Although these terms all correspond to
unmeasurable states, they must be in¢luded in the model. If they are ignored the parameter
eshmates will generally be biased. The system model described by Eq. 58 is therefore
extended again by the addition of a #oise model and takes the form,

xl =F”j{xr—1=‘r|—‘.‘,1l-f:'—l:1:w—1=c-'|—3:l+|;r . (ﬁ]}

This type of model is referred to as Nonlinear Auto-Regressive Moving-Average with
eXogenous inputs (NARMAX). The NARMAX model was introduced in Leontarits and
Billings [40,41].

Finally, the term ‘moving-average’ requires some explanation. Generally, for a linear
system a moving-average model for the noise process takes the form,

C =€ +0e |+ .+, (&)

implying that the system noise 15 assumed to be the result of passing a zerc-mean white
noise sequence {e} through a digital filter with coefficients ¢, c.,.... The terminclogy
comes from the literature of time series analysis. Equation 48 requires a generalization of
this concept to the nonlinear case. This generalization is incorporated in the NARMAX
model that takes the final peneral form,

¥, = anpl{xr_”.__xr_” o SR N SN S LY {(63)

¥

In this form the noise sequence or resicuc! sequence e, is now zero-mean white noise.
This allows the model te accommodate 2 wide class of possibly nonlinear noise terms.
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The input and output variables £ and x, are usually physical quantities like force and
displacement response, respectively. An interesting alternative approach to this was
followed by Thouverez and Jezequel [47], who fitted a NARMAX model using modal
coordinates.

Having obtained a NARMAX model for a system, the next stage in the identification
procedure is to determine if the structure is correct and the parameter estimates are
unbiased. It is important to know if the model has successfully captured the system
dynamics so that it will provide good predictions of the system output for different input
excitaticns, or if it has simply fitted the model te the data; in this case it will be of little use
because it will enly be applicable to cne data set. Three basic tests of the validity of a
model have been established by Billings et al. [48], and they are described below in
increasing order of stringency. In the following, », denotes a measured output while
denotes an output value predicted by the model.

For the NARMAX representation of a system given by Eq. 63, the one-step-ahead
prediction of ¥, is made using measured values for all past inputs and cutputs. Estimates of

the residuals are cbtained from the expression ¢, = x, —x, , that is,

o

- [H,, 1 B o
Ir =F g {xl I'-"""xl a !.ifl |5“"f !Er |

] 1 JI;

N (64)

o

The one-step-ahead senes can then be compared to the measured outputs. Good agreement
is clearly a necessary condition for model validity.

If the inputs, J, are the only measured quantities used to generate the model output,
then Eq. 63 takes on the form

FoEFGE R e fr, 0..0) (65}

The zeroes are present because the prediction errors will not generally be available when
one i3 using the model to predict output. In order to avord a misleading transient at the stant
of the record for X, the first #. values of the measured output are used 10 siart the
recursion. As above, the estimated outputs must be compared with the measured outputs,
with good agreement a necessary condition for accepting the model. It is clear that this test
is stronger than the previous cne; in fact the one-step-ahead predictions can be excellent in
some cases when the model predicted cutput shows complete disagreement with the
measured data.

These represent the most stringent of the validity checks [49]. The cormrelation
function ¢_(k) for two sequences of data # and v is defined by,

1

= E 1] =
ém (urln-k} N—k

=k
Z HY,, . (i)}
=1
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For a linear system the necessary conditions for model validity are,
P (k)=0,, (67}
and.

pLE)=0Vhk . (i)

The first of these conditions is true only if the residual sequence ¢, is a white noise

sequence. Tt is essentially a test of the adequacy of the noise model whose job it is to
reduce the residuals to white noise. If the noise model is correct, the system parameters
should be free from bias. The second of the conditions above states that the residual signal
is uncorrelated with the input sequence 7 i.e. the model has completely captured the
component of the measured output that is correlated with the input. Another way of stating
this requirement is that the residuals should be unpredictable from the input.

In the case of a nonlinear system it 15 sometimes possible 1o sansfy the requirements
gbove even if the model is invalid. An exhaustive test of the fitness of a nonlinear model
requires the evaluation of three additional comrelation functions [49]. The extra conditions are,

b () =0 TH20 (69)
d,-, (&)=0 Wk and (70}
b (k) =0 Vi {71}

The dash which accompanies # above indicates that the mean has been removed.
Normalized estimates of all the correlation functions above are usually obtained so that
confidence limits for a null result can be added.

6,11 Hilhert Transform

The Hilbert transforn (HI) can be used to diagnose nonlineanty on the basis of
measured FRF data. IF the structure is assumed to respond in a linear manner in its
undamaged state, then this diagnosis of nonlinearity can be used as a damage indicator. To
begin, the map on a FRF G{) is,

G

oy {72}

HIG(0)] = o) = —i[';m

This mapping reduces to the idemity on the FRFs of linear systems. Suppose Giw) is
decompaosed so,

Gla) =G {e)+ G (@) (73)

¥
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where &' (o) (respectively & (o)) has poles only in the upper {respectively lower) half
of the complex @ -plane. Then,

H[G {w)]= +G* (@) . (74)
The HT distortion is,
A} = H[(Ha]-Gle) = -2G (@) (75)

A major problem in using the Hilbert transform oceurs when non-baseband or band-
limited data are employed. The Hilbert transform can be recast in a shghtly different form
to that described above,

(76)

w(0)=-2 [ da 3R ang 3éie }_zﬂj pie! EHG{Q] |
T & —w

If zoomed data from (@ ) i3 measured, data 1s missing from the intervals {0,

and (..},

il ! 1% 14 ml.-.-r)

The problem is usually overcome by adding correction terms to the Hilbert transform
[50]. An altermative approach to the Hilbert Transform explots the pole-zere form of the
FRF. A general FRF may be expanded into a rational polynomial representacion,

S ¢ (2)
a(m}_P{m] . (77)

Once the rational polynomial model. G, is established, it can be converted into a
pole-zero form,

i
n(m_lj}

Gorl) = E—r (78)

]"1{@ 2)

Long division and partial-fraction analysis produce the decomposition [51],

Gie(@)= 3 = o Gm=3 - (79)

=1 P. =l = pr

COnce this decomposition 15 established, the Hilbert transform fallews.
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Consider the Dufling oscillator,
¥4 20%+10000x + 5% 10" x® = Fsin{ot) . (80)

Data were generated from 0 to 38.4 Hz. The data were then truncated by removing data
above and below the range 9.25-32 95 Hz.

Figure 51 shows the Hilbert transforms of the FRF calculated by the rational
polynomial method on the truncated data and by a standard numencal method that used the
full range of the data. An important thing to note in Fig. 51 is the departure from the
normal circular appearance of the appropriately scaled Nyquist plot - this is the Hilbert
transform distortion. The pole-zero decomposition method can also be used to compute
analytical expressions for the Hilbert transform [52].

T T ey
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Figure 51. Comparison of Hilbert Transforms from
rational polynomial approach and standard integral.

The Hilbert transform has also been used as a direct method of nonparametric
identification. The FREEVIB and FORCEVIB approaches espoused in Feldman [53 54].
can be used to construct the nonlinear damping or stiffness curves for a large class of
nonlinear systems. The method works by extracting the instantaneous phase and frequency
curves from experimental data. Alternative approaches have been constructed to yield the
same information, in particular the Wigner-Ville approach [531], the method based on the
Gabor transform in [55] and the wavelet approach of Staszewski [56]. All of these approaches
except FORCEVIB extract the information from the free decay response of the systems.
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6.12 Frequency Domain ARX Models

Fregquency domain avtoregressive exegenous (ARX) input models, based on discrete
frequency models developed in [37] and applied in [58,59], take the form

X(KY=BRYF(R)+ S A (&) x jm(}'{(&k} X[&k]] , (81)

Ll r q.f

where & ¥, 8, {pg )k, and (p gk are contained in the set of real integers, a1, k15 a simple
frequency counter (i.e. @ = kAwm}, Ark) is the response, F(%) 15 the input, and B{k} and
A, %} are complex frequency coefficients. The first term on the nght-hand side of Eq. 81,
the exogenous (X) component, accounts for the nomunal lingar dynamics and the second
term, the auto-regressive (AR) component, accounts for the nonlinear frequency
correlations. The raticnal number arguments, (p-y )&, are used to represent different
harmonies of the excitation frequency. Equation 81 inchcates that the harmonic response of
a nonlinear system at each frequency is correlated with both the input and response at
potentially all the hammonics of the input frequency. This multidimensicnal correlation is
due to nonlinear feedback 1n the system.

The linear forms of the functions f,..( .} indicate in what frequency ranges the nonlinear
correlations exist, but may not describe all of the nonlinear dependencies of the response
on the input. On the other hand, when the f.( ) are nonlinear functions of the harmonics of
the spectrum, A7%), then the model can more fully describe different types of nonlinear
behavior. In summary, the # () determine the degree to which the frequency domain AR
model is able to describe the behavior of the nonlinear system.

These models use frequency spectra of measured signals and spectra are easier to
obtain from signals with broad frequency content, therefere, experimental application of
this technique is suited to broad-band inputs {e.g., random).

Equation 81 ¢an be wnitten as,
Ak} =Dp (82)
where p are the exogenous and auto-regressive coefficients and D contains the input and

the termis f (). The optimum set of ARX coetficients, the ones that munimize the sum of
the squared error, efkFefk), is given by the psendo-inverse solution, 7, to the over-

determined Eq. (82):

P=D' X(k)=(D'D) D X{k) (83)

¥

where D)7 is the pseudo-inverse of D and D7is the transpose.
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The order of the nonlinear ARX model is determined by the number of auto-
regressive (AR terms that are included in the function f.(. ), on one side of the frequency
of interest, ay. Two forms of the ARX model are used here:

1* Order, Linear;

X(K)= BK)F(Ry+ Y AKX - 5) . (84)

J:-Izl.fl

where only correlations with one frequency above and one frequency below the input
frequency are considered.

1* Grder, Nonlinear:;

X{K) = B(KYF (k) + A_,(k}?{%}i—d,(#]}’iﬁk}, (85)

where correlations with the cubic sub- and superharmomics are considered.

The changes in the aute-regressive coefficients (related to nonlinear behavior) can be
used as indicators of damage, as damage often causes changes in the linear/nonlinear
behavior of a structural system. A number of other indicators can be used that signify the
onset and progression of damage in a system. The indicators vsed here are 4, (), the auto-

regressive coefficients, and
Ay, . (36}
/A

where ‘d’ indicates damaged and ‘wn’ indicates undamaged. This function indicates the
change in the nonlinear correlations compared to the undamaged case,

Damage was introduced in the suspension system of the antomobile by loozening the
bolt connecting the steering knuckle te the control arm, threugh a ball joint as shown in
Fig. 52, from an initial torque of 400 in-IH 10 230 jn-th, 100 in-f and finally removing the
bolt completely. Self-loosening is often 4 problem in bolted joints, especially n joints
under cyclic transverse loading [¢0]. This type of damage has great importance in
automotive applications because the fasteners generally represent the largest single cause
of warranty claims faced by automobile manufacturers [61].

The models were applied using random input data with a Gaussian disteibution for
varous input amplitudes ranging from 0.5 mm to 6.0 mm RMS displacements of the wheel
pan (i.e., tire patch of the car).
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Figure 52. Bolt damage location.

y " P " r 50 w0 7
Frequancy [Hz]

Figure 53. 1-Mag{Aa(A) Awn(k) for 12 order linear model (vertical
direction); 250 Ib-in torgue (- = =), 100 lb-in torque (-} and no bolt (-.-.-=).

First, the 17 order, linear model in Eq. 84 was applied to the data from points that had
the damage location in their path, and the damage features were estimated. Figure 53
shows the estimated damage feature defined by Eq. 86 for the vertical motion data,
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Figure 53 shows the feature defined by Eq. 80 for A,(k). Any nonzero value shows a
change in the auto-regressive coefficients and is an indicator of change in nonlinearity.
There is an obvious change in the 40-55 Hz range where the 100 Ib-in torque case exhibits
more nonlinear correlation than the other cases. It can be seen that the 250 lb-in torque
case does not introduce any significant changes in the nonlinear correlations, and the
undamaged case and the case with no bolt have very similar behavior. The coefficients A.

ifk) show the same trends,

Figure 54 shows a typical self-loosening sequence of a bolted joint caused by
transverse ¢yclic loading [60]. The symbol P represents the clamping force, Py represents
the initial clamping force or preload, and © is the rotation angle of the nut against the bolt
This figure is relevant as the loading on the ball joint bolt in the suspension system of the
vehicle under investigation is primanly transverse, Two distinet stages can be identified in
the figure. During the first stage. there is very little relative motion between the nut and the
bolt. The later stage 1s characterized by backing-off of the nut and rapid loosening of the
clamping force with relative motion between the bolt and the joint. The second of the two
loose bolt conditions (100 1b-in torque) that is simulated in the experiments belongs to the
second stage. These stages of bolt loosening suggest that there is a critical value of the
preload at the junction of the two stages seen in Fig. 54 where relative motion occurs at the
joint and nonlinear correlations increase, The indicators discussed show that as the bolt 1s
loosened, the nonlinearity in the path between x; and x; increases. due to the increased
friction between the bolt and the ball joint caused by relative motion [62, 63], showed that

- Stage |

o
-
-
ol
-
.I
-
-
.|
- |
)
o

P! Pl:l' %o
o ‘uoneioy NN

L]
L
-
.
[
[
W
W
L]
i
-
L]
a
]
.
.
-
-
L]

YT L b

F""‘.-.""f‘"'-'l"

Mumber of Cycles

TEARA RN KN

Figure 4. Self-loosening sequence of a bolted joint due to transverse cyclic loading;
parcentage preload loss (—), nut rotation {degrees) (.- ).
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loosening and relative motion can occur in the presence of vibration). This friction force is
govemned by the equation for fnction between surfaces in contact,

F o= uN

y (87)

1

where, p is the coefficient of friction (static or kinetic) and & is the normal load between
the joint threads. When the bolt is completely loosened or actually removed trom the joint,
the normal load goes to zero as there 1s no contact load and thus source of frnction force 15
no longer active. This condition results in the nonlinearity in the path between the two
measurement locations returning to the original undamaged level.

The increase in friction caused by the relafive motion bebween the bolt and the joined
components resulis in an increase in the nonlinear frequency correlations seen in Figure 53 On the
other hand, the removal of the source of increased friction (namely, the bolt) results in the nonlinear
correlations retuming to the undamaged levels. This behavior is similar to the behavior observed in
the restormg forces. The intermediate damage cases have different charactenstes from the
undamaged case and the most severe case (no bolt) behaves similar 10 the undamaged case.

The lateral direction data exhibits the same pattern, but to a lesser extent than the
vertical direction, as shown in Fig. 55, which 15 on the same scale as the vertical case. The
longitudinal direction indicator {Fig. 56) shows the least change In fact, it is almost
insignificant compared to the other two cases. The cause of this result is that the bolt axis
is in the longitudinal direction. Loosening of the bolt causes motion about the longitudinal
axis (motion along the longitudinal axis is restricted because the bolt still applies some
clamping force), hence, the vertical and lateral directions show greater changes in
nonlinear comelations. So, the axis of the bolt can also be identified.

As explained sarier, the output only formulation of the nonlmear ARX models allows the
damage to be located due to increasing sensitivity to changes in local dynamics, To verify this,
the 1% order linear model was applied to data from Jocations that did not have the damage in their
path. Figure 57 shows the estmated mdicater defined by Eq. 86 for the data from pomts on the
control amm and the sway bar. It is clear that there are no significant changes in the nonlinear
correlations in the path between these two points. Hence, the damage has been located.

A 1* order nonlinear model was also applied to the data. A cubic form of the
nonlinear model (Eq. {85)) was chosen as opposed to a quadratic form because the
Coulomb friction nonlinearity changes wath the leosening of the joint as discussed earlier.
This discontinuous nonlinearity can be approximated with odd polynemial functions (i.e,
x*, x", ete.). In addition, symmetric nonlinearities result in odd response harmonics. It was
observed that although there were significant quadratic harmonic correlations, they did not
show any significant changes with damage because the damage primarily affects Coulomb
friction. The same trends as before were observed (Fig. 58), with the nonlinear correlations
increasing for the 100 lb-in case and decreasing when the bolt is removed. In fact, the
100 Ib-in torque case shifts the nonlinear correlation with the third superharmonic
{(Fiz. 58{b)} of the input excitation at about 7.5 Hz to 8 Hz. The avto-regressive coeflicients
also show an interssting result. The superharmonic frequency correlations are much

72



Monlinear System Identification for Damage Detection LA-14353-MS

-] 1;3 EIEI :];] 4I] ﬁ E.I] T
Frequency [Hz)

Figure 55. 1-Mag{A1d(k)/ A1un{k)) for 1st order linear model (lateral
direction); 250 lb-in torgue (- —-), 100 lb-in torque () and no bolt (-.—.-).
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Figure 56. 1-Mag({Awa{k) Awn(k)) for 1= order linear madel (longitudinal
direction); 250 lb-in torgue (- - <), 100 |b-in torque (-} and no bolt (--.-).
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Figure 57, 1-Mag{Aa( &/ Aqup( &) for 15t order linear model applied to points with no
damage in their path (vertical direction); 250 Ib-in torque (- - =), 100 Ib-in torque
() and no bolt (--.-).

stronger than the sub-harmonic correlations. This result suggests that the nonlinear
feedback caused by the third superharmonic of the forced response of the system (which is
symptomatic of nonlinear behavior) is much greater than the subharmonic. In the nonlinear
model it is assumed that the nonlineanty is cubic in nature, hence, if the forcing function is
harmonic (e.g.. cos(wt)) the cube of the function gives frequency components at one and
three times the forcing tfrequency.

(cos(wr))’ = -z-ms{m )+ :;r- cos(3ar) (88)

Equation (88) shows that there are no submultiple components. The superharmonic
correlations interact with the forced response components at other excitation frequencies to
produce sub-harmonic correlations via frequency combinations, The resulting subharmonic
correlations are weaker in this case. The response of the system is primarily forced because
the data was collected for a broad-band input after the system had reached steady-state , i e
the system transients had died out. A more detailed discussion of higher order spectra can
be found in [64].
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Figure 58. Auto-regressive coefficients A &) (sub-harmonic) and A1 (4) (superharmonic)
for 1% order nonlinear model; Coefficients for undamaged case, 400 |b-in (—), and

damaged cases, 2580 |b-in (- - -}, 100 Ib-in (-} and no bolt (-.--).

6.13 Higher Order Spectra

The bispectrum, also called the third-order spectrum, is the first of the so-called
higher-order spectra, which are used to analyze non-linear systems or linear systems
subjected to non-Gaussian inputs. The bispectrum decomposes the skewness or third-order
moment of a signal and is useful for studying asymmetric nonlinearities. These are
nonlinear stiffness or damping characteristics that contain even-order polynomials in their
mathematical descriptions. The bispectrum [65] can be defined as,

E (il Yo X(EY X (L) X(5+E) . (89)

where E is the mathematical expectation operator, XY ) are the Fourier transform of the
signal and * indicated the complex conjugate Unlike the power spectrum, which presents
the contribution of each frequency component individually, the bispectrum is a function of
two distinct frequencies f; and f: and analyzes the interactions between the frequencies at
fi. f> and fi+f The bispectrum of a signal composed of two sinusoids of different
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frequencies, p; and po, will contain eight triple products. If one frequency is twice the
other, this will lead to a non-zero bispectrum at (p,p)in the (f,/f:) plane. Thus the
bispectra of signals from systems with symmelric nonlinearites (which lead to quadratic
frequency coupling) will be non-zero and will change as the nonlinearity changes. The
magnitude of the bispectrum is utilized in the example below to illustrate damage detection
based on this indicator.

A MTS® 810 Material Test System was used to perform tension-tension fatigue tests
on the front stabilizer bar link of an automobile. A picture of the experimental setup is
shown in Fig. 59. A fixture was designed to hold the link in the grips of the fatigue
machine and two single axis accelerometers with nominal sensitivity of 1000 mV/g were
attached to the two ends of the link to measure axial acceleration as shown in Fig, 60. An
initial tensile load was applied to the link and then the link was subjected to a eyelic load at
5 Hz, which can be thought of as a durability cvcle. Sine sweep and random input
characterization tests were run intermittently to estimate and track the nonlinear load and
damage indicators. The test parameters are given in Table 3.

Figure 59. Fatigue test setup.
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Figure 60, Fixture for placing link under test in fatigue machine grips.
Accelerometers attached to the ends of stabilizer bar link.

Table 3. Parameters for Sine Sweep and Random Inputs; Link 1

Input Type Amplitude (mm) Frequency Content Sampling Test Length
{Hz) Frequency (Ha) (sec)
Sine Sweep 005 -13 20000 L0y
Random 0,05 s =30 20003 )]

The front stabilizer bar link was subjected to an initial tensile load of 5500 N, Blocks
of 2500 cycles of a 0.10-mm amplitude cyclic load at a frequency of 5 Hz were used to
fatigue test the links. This displacement corresponded to a cyclic load range of about
8000 N. The cyclic loading led to the appearance of a circumferential crack at the lower
weld location (input side) as shown in Fig. 61 Sine sweep and random tests were
conducted between the cyelic loading blocks and the load and damage indicators were
estimated.

The bispectrum of the response acceleration of the top end of the link was generated as
the circumferential fatigue crack appeared and grew to failure. Figure 62 shows the
magnitude of the bispectrum for the undamaged case. It is large at the lower frequencies,
which can be anticipated from the power spectrum of the acceleration signal in Fig. 63.
Figure 64 shows the progressive change in the magnitude of the bispectrum as the crack
appears and progresses in the link. The lighter portions of the plots show areas where there
has been an increase in nonlinear coupling As the crack appears and grows, peaks
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Figure 61. Appearance and progressive growth of circumferential crack to failure in stabilizer bar link under
tension-tansion fatigue loading; (a) - (e).

suggesting localization of energy occurs signifying increased quadratic coupling in
frequency. It is apparent that the nonlinear coupling increases continually as the crack
progresses. Finally, just before failure, there is significant nonlinear coupling around
10 Hz. This coupling is evident from the larze peaks around 10 Hz along the two
frequency axes in Fig. 64(e). The peaks sigmfy strong quadratic coupling between
response components around 10 Hz and 1 25 Hz, respectively. The spread of the peaks
suggests that the coupling 15 actually in a band around the afore-mentioned frequencies.
The conclusion is that as the crack appears and grows there is increased quadratic coupling
signified by localized concentration of energy in the bispectra and the approach of failure
is signified by the appearance of large coupling around 10 Hz. Hence, the bispecira
qualitatively captures the increase in nonlinear frequency correlations with damage.

In order to quantify the nonlinear changes an index was developed by summing the
magnitude of the bispectra in the higher frequency range (above 5 Hz), which shows clear
nonlinear change (Fig. 64). The index is shown in Fig. 65. There is a clear increasing trend
in nonlinear content as the crack grows with a sharp jump as failure approaches. See
Reference [66] for a more detailed description of the bispectrum and its application to
damage detection in systems that exhibit nonlinear response.
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Figure 62. Bispectrum of undamaged acceleration response of
stabilizer link top; lighter portions have higher magnitude.

Magnitude

"
Frequency [Hz]

Figure &3. Power spectrum of undamaged acceleration
response of stabilizer link top,

T2



LA-14353-M5 Nonlinear System Identification for Damage Detection

Figure 64. Change in magnitude of bispectrum of stabilizer bar link response with the progress
of fatigue erack: (a) initial erack, (b) progression 1, (¢) progression 2, (d) progression 3, (e) just
befora failure.
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6.14 Nonlinear Acoustics Methods

Other approaches that capture the nonhneanty caused by structural damage are
nonlinear acoustic methods Damaged materials exhibit a nonlinear response because of
wave distortion caused by the irregularities of the damage. This nonlinear response can
manifest itself as the generation of harmonics or sum and difference {modulated)
frequencies. The premise of the method is the same as those described in the previous
sections, but the frequency ranges used in these nonlinear acoustics methods span up to
tens of MHz, typically vsed in the wave propagation regime,

Typical signal processing methods employed by these techniques are the “harmonic
distortion” and “frequency modulation” methods. Krohn et al. [67] described the
phenomena of generating higher harmonics caused by nonlinear damage. In brief, the
tangential movement of a crack causes hysterehic energy dissipation, resulting in distortion
of sinusoidal waves in a symmetrical manner. This dissipation will produce strong odd
harmonics. On the other hand, upon the application of a perpendicular load, the measured
frequency will have compenents of & sinusoidal part {excitation) and a square signal with a
time-dependent load duty cycle (side clapping). This clapping nonlinearity, resulting in a
{sin @Yo decay, generates even harmonics. These types of nonlinearity are highly
localized in the vicinmty of the defects, s0 that the imaging methods wtilizing a scanning
laser vibro-meter can easily identify the location of damage [67] As described in the
previous section, the hammonic distortion methods have been widely used in structural
damage identification, in particular, in the rotating machinery.
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Another interesting approach based on nonlinear acoustics is the “frequency modulation”™
method descnibed in Donskoy and Sutin [68], Zaitsev et al. [69], and Ballad etal. [70]. The idea is
to instrument a structure, for example, with two sinusoidal excitation sources of the frequencies of

Joand fi . When the response time history is converted to a spectrum, if the system is linear, the
spectrum contains a single line at f, as shown in Fig. 66(a). If the system is nonlinear, the
nonlineanty will result in the appearance of sidebands at the frequencies 7, = £, as shown in Fig.
66(b). The appearance of the sidebands are the indicator of nonlinearity and, hence, damage. An
index of damage extent can then be formed by recording the height of the sidebands [71] or the
spread of the sidebands [72]. In order to efficiently excite the nonlinearity, the low-frequency
excitation, f;, can come from ambient excitation, operation frequency such as pumps, or an impact
excitation. Some researchers utilize the two different types of actuators, piezoelectric stack and
patch actuators, for low and high frequency excitations, respectively [72]. The frequency
modulation method has its application in fatigue damage accumulation monitoring [73, 74, 75,
and an excellent review of this methods can be found in Donskoy [76].

3| (a) (b)
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Frequency

Figure 66. (a) Response to excitation at high fraguency £, (b} Response to simultansous
excitations at high £, and low f, frequencies.

Although the nonhnear acoustic methods are much more sensitive to small defects than
linear-based methods, there are some limitations, For instance, the level of the “background”
nonlinearities, such as those caused by material nonlinearity, joints, or structural contacts, must
be well understood and quantified in order to distinguish them from the nonlineanties caused
by structural damage. The calibration of modulated frequencies is also important to achieve the
repeatable measurement as it is obviously dependent on the magnitude of the low-frequency
excitation, Furthermore, most modern instrumentation generate the harmonics, therefore, the
method requires higher-cost data acquisition equipment, These issues must be addressed
before nonlinear acoustics methods can be reliably used in industrial practice.
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7. APPLICATIONS OF NONLINEAR DYNAMICS SYSTEMS THEORY

The main concept of this report is that, if a given type of damage converts a linear
system into a nonlinear system, then any observed manitestations of nonlinearity serve to
indicate that damage is present. This sechion discusses one of the most dramatic
manifestations of nonlineanty, namely chaos. It is well-known that, under certain
conditions of forcing, many nonlinear systems can be driven into a chaotic regime. Here a
chaotic regime is defined as one where there is sensitive dependence on mitial conditions.
Over the years, the dynamical systems communily has derived many indicators of chaotic
behavior like fractal attractor dimensions and Lyapunov exponents [77]. As only nonlinear
systems can behave chaotically, any feature that detects chaos, necessarily detects
nonlinearity and might potentially be put to service in detecting damage. The aim of this
section is to illustrate the use of such features. It will be shown that these features are
suboptimal for damage detection as they do not produce an indicator that monotonically
inereases with the damage extent The latter part of the section illustrates a feature
motivated by chaotic dynamics that does have this desired property

Consider a simply supported beam. In its undamaged state an assumption that the beam
can be modeled as a linear system is quite adequate, but consider what happens when a
crack 1s introduced halfway along i1s length, as shown in Fig. 67

| —

— SR S R—
\, ’/g?'f; FTATEL,

Figure 67. A cracked beam under positive and negative deflections.

When the beam sags, the effects of the crack are negligible because the two faces of
the crack come together and the beam behaves as though the crack was not there. When the
beam hogs however, the presence of the damage must affect the beam because the crack
opens and the effective cross-sectional area of the beam is reduced Under these
circumstances, an appropriate model of the beam would perhaps be that shown in Fig 68,
which has the general equation of motion

mi+ e+ kv = (1) . (90)
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Where

N k x <0 5i
= S5 : (91)

&
Ty

When the displacement x of the mass m is positive, the stiffness of the system x is
reduced by a factor a . The two siiffnesses produce an overall restoring force [ that is

bilinear. This type of model can be applied to a number of mechanical systems in which
moving parts make contact with each other at intermittent points in time.
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Figure 68. Single Degree-of-Freedom bilinear system.

Various studies both theoretical and experimental [77, 78, 79, 80, 81, 82, 83| have
shown that bilinear oscillators are capable of a variety of responses to a sinusoidal force.
As well as regular harmonic motions. the system can display sub-harmonic motions and in
certain circumstances the system can also exhibit chaotic behavior, This response has even
been evident in the experimental studies, for example [78].

The question of importance for damage detection purposes is whether the induced
bilinearity from a crack can be used to signify the presence of the fault More specifically,
can one or more features be extracted from the recorded dynamics that detect the crack
with a degree of statistical confidence? Further, can a feature be obtained that shows the
severity of the damage One might argue that the feature should at least grow
monotonically with the damage extent. Examples of features proposed in the past have
been the correlation dimension of the attractor (from embedding) and the highest
Lyapunov exponent. The use of such features is discussed in the next section.

7.1 Modeling a Cracked Beam as a Bilinear System

The single-degree-of-freedom system shown in Fig. 68 was used to model a simply-
supported aluminum beam, 0.8-m long, 50-mm wide and 10-mm thick. Different levels of
damage were given to the system by varying the value of the stiffness ratio coefficient a .
Putting the bilinear system into the context of a cracked beam made it possible to explore the
types of behavior that could be expected from such a beam as the damage level was increased.
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A density of o =2700kgm ™ and a Young’s modulus of £= 70 GiPa were assumed as
material properties. Using elementary theory of elasticity the undamaged stifthess of the beam
was found to be & =& = 27346Nm ' . With a mass of 1 = 0.6 kg, the undamaged beam had a
natural frequency of &, = 214 rad’s, which comesponds to 3dHz, A damping constant of
c=26Nsm ' was used, which corresponds to 1% of critical damping A sinusoidal force
with an amplitude of 10N was applied to the system 5o that 7 (1) = 10sm{ws) . As the system is
homogeneous the amplitude of the force merely scales the cutput of the system,

A numerical algorithm based on a tourth-order Runge-Kutta integration scheme was
used to integrate the equation of motion and caleulate the dynamics response of the beam.
The key to the success of the algorithm was its ability to detect each point in time when the
displacement of the system crossed x =0 This capability means that the algorithm knows
exactly when to change the value of & .

Examples of the phase portraits cbtained from the algonithm, after transient motions have
decayed, are given in Fig. 69. They show the displacement-velocity trajectories of the system in
response fo three different foremyg frequencies, but for the same value of the suffness reduction
factor, er = 0.6 In each case the system has setled onto a periodic motion or attractor.

Forcing the system at the undamaged natural frequency, @ = 214rad/s, resulted in a
harmonic motion, but for @ = 384 rad/s and & = 561 rad/s subharmonic motions of period
2 and penod 3 (ie twice and three times the forcing frequency) are found. This
subharmonic generation manifests itself in the time-series as a distortion from the
sinusowdal form which would be expected from a linear system.

As the forcing frequency is 1ncreased from @ = 214radls o @ = 384radls, at some
point there must be a qualitative change in the topology of the attractor for the period of
the moton to change The point at which such a change occurs 18 a bifarcation.
Bifurcations cnly occur in nonlinear systems.

If the response of the system is sampled at the forcing frequency and the resulting
points are plotied in the phase plane, one obtains the Poincare muap of the response A
moment’s thought shows that the map associated with a period 1 motion will be a single
point, a pericd 2 motion will preduce two points, ete. If a system is chaotic, the Poincare
map is usually much more complicated than this, and considered as a point set in the phase
plane will actually have a fractal (non-integer} dimension This point set can loosely be
called the chaotic atiracior of the system. A Aifircadion diagram 15 obtained by varying a
system parameter and plotting against this, a one-dimensional projection of the Poincare
map associated with each valug of the parameter. The bifurcabon diagram in Fig. 70, 15
obtained by varying the fercing frequency and plotting the displacement values from the
associated Poincare maps.
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Figura 69. Phase portraits of periodic motions for o =0.6.
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Figure 70. Bifurcation diagram for a = 0.2.

The diagram in Fig. 70 is easy to read. If there is only one point on a given vertical
line (value of tfrequency) the system exhibits a period 1 motion at that frequency. If there
are /1 points at a given frequency this is characteristic of a period # motion.

Figure 70 is the bifurcation diagram for e =02 There are many regions of sub-
harmonic motion, From @ = 79rad/s to @ = 83rad/s there is a region where the period
appears to be very high. In fact, it is infinite and this is characteristic of chaotic motions
that do not repeat even if the excitation is periodic. All the period » motions are indicators
of nonlinearity. However, only in the limited chaotic regions will features like chaotic
attractor dimension show nontrivial behavior {i.e, fractional dimension).

The simulations show the limitations of parameters like attractor dimension for the
detection and quantification of damage, Certainly if the undamaged system is linear, the
presence of a fractional attractor dimension would indicate nonlinearity and thus damage
However, such parameters will not be reliable. The simulations show that chaotic response is
not present at all frequencies. Similar runs have shown that fixing the frequency and varying
the stiffness ratio produces the same pattern of movement between subharmonic responses
with isolated regions of chaos. This result means that dimension parameters will not vary
montonically with the damage extent. The same will be true of any detectors of chaos such
as a Lyapunov exponent. The next section investigates a recently proposed feature motivated
by chaos theory that does appear to have the required monotonic property
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1.2 Chaotic Interrogation of a Damaged Beam

The use of a chaotic signal to excite a dynamical system presents some interesting
features. The structure can be thought of as a filter acting on the signal. Any changes to the
system resulting from damage alter the way in which the signal is filtered. The benefits of
using a chactic excitation of the system relate to the way attractor stability {in the
Lyapunov sense) and geometry (dimension} interact, and this is discussed in detail in [84].

7.2.1 Local Atiractor Varignce

The effects of the damage are evident when the atractors of the input and the output
are compared. The average local attractor vanance rane (ALAVR) 15 a simple means of
achieving this comparson. It is designed to analyze the geometry changes at a local level.

In many real situations it is only (practically) possible to obtain a single phase-space
variable from a system. This himitation is nat a problem because this vanable will still be affected
by all of the relevant dynamical vanables, and will therefore contain a relatively complete
histonical record of the system's dynamics. The ALAVR can be calculated as long as a tine
series of the input signal #+) and a time series of cne owiput variable x{#) can be cbtained. To
achieve a correspondence between the input and output attractors, the two time series must be
obtained over the same period of time and using the same sampling frequency such that,

SO =S F(2) f3)se, SN, and (92)
() = (x(1), x(2), x(3),... X(N)} . (93)

From these time series input and output attractors can be reconstructed by projecting
the time series into a pseudo-phase space. In each dimension of this space the time series
are delayed by some number of time steps r and a geometric structure is created that
recaptures the dynamics of the system. The recenstructed attractor is vsually topologically
equivalent to the actual attractor of the system. The dimensionality of the pseudo-phase
space requited to fully capture the dynamics is not known in advance, but as the ALAVR
i3 designed to merely detect simple geometric changes, a two-dimensional space is
adequate. The coordinates of the two reconstructed atiractors are then

fin)=(f{m), fn+1)} . (94)

ay=(x(n), x(n+71}), (95)

form=123. . N-r.

The local geometry of the attractors 15 analyzed by first selecting, at random, a pont
on the reconstructed forcing atiracior #(i}. The Euclidean distance from this point to the
other points on the attractor is calculated and the coordinates of the points nearest 10 f(7)
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are extracted from the atiracior to form a subset of poinis (7, ), (where j=123_.N )
that express the local geometry of the forcing attractor around the chosen point. There are
some subtleties to this process that are explained in [24].

The peints with the same indices 7 and 7 are then extracted from the response attractor
to give another subset of points x(7, j) that contains the local geometry of the
corresponding regicn on the response attractor,

The variance of the coordinates in each set of points D'j-(r‘ ,, and ﬂ'j{f_ . 18 used to
describe the geometry of each set of points, which means the ratio of the two variances Kfi)
can be vsed to describe the degree to which the local geometry of the input attracter has

been altered by the system,

-

R =M . (96)

ra

s r)

This process is then repeated for a total of &, random points and the average local
attractor vanance ratio {ALAVR} R 15 found

— 1
R:F‘Z_IR(:} . (27)

The ALAVR mefric discussed above 15 one of several features that have been presented
recently as damage indicators. Nichols, Todd, and colleagues have constructed attractor-based
auto- and cross-prediction error metrics for 2 number of bolted joint applications
[85,86,87,88,89] The concept here is that a reconstructed attractor may be used to auto-predict
itself (or cross-predict ancther simultaneously sampled attractor) in a baseline condition, and
subsequently this prediction will fail as the system changes due to damage.

The fundamental prediction error model! is as follows. First, a set of £ random fiducial
points is chosen from the baseline attractor, X, and a corresponding set of points is
obtained from the comparison attractor, Xx#), correlated in some way, typically either
temporally or geometrically (from the state space reconstruction), to the fiducial points from
the haseline attractor. Next, a set of P nearest neighbors to each point is found for both
attractors. These neighbor points will be separated by at least A points in time from the
fiducial point using a Theiler window [90]; in other words, nearest neighbors to a fiducial
point should not be highly comrelated temporally to the fiducial point on that individual
attractor. This verified that the neighbors are geometrically correlated to the flow dynamics
and insensitive to sampling rate. The size of the set of fiducial pcints, £, depends on the total
number of points on the attractor and should be chosen to produce invariant statistics
(completely ‘span’ the attractor). The number of nearest neighbors for 2 given fidusal point,
P, will also depend on the dynamics and inherent noise of the system. Classic choices for F
and P are N-10 and N-100G respectively, where & is the number of points on the attractor
[91]. The Theiler window, A, is typically a function of the delay cheice with the only
stipulation that it be larger than the delay T chosen to reconstruct the attractors.
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After the fiducial points and neighborhoods have been selected, they are time evolved
by s time increments, known as the prediction honzon Some simple statistic (typically, the
mean location)} of the neighborhood iz computed {or, the fiducial point 13¢lf} so that we
have set of means from a reference attractor ¢ and a similar set from a test attractor ¢
Finally, a comparisen is drawn between the sets by forming the Euclidean error distance
for ¢ach fiducial point n

o=

go{n+5)— ¢ (n + 5 (98)

This error metric may then be averaged over the whole data set to generate an average
prediction 2rror that relates how one attractor “predicts”™ another 85, 86, 87, 88, 89), or
local statistics may be computed [92] Begardless of how the specific emor metnc is
formed, the feature can be nommalized by either a representation of the geometncal size of
the attractor or by an undamaged reference error value in attempt to gstablish a quantitative
sense of the prediction error values Moniz et al [93] used this general concept of
correlation and predictability to binld a continuty statistic to detect changes in an electncal
circuit that was used 1o simulate a lumped mass structural system

Other researchers have focused on attractor-based measures derived straight from the
local probability structure of the data Bogdan and Yin [94] computed estimates of the
local probability density and then used the resulting distribution on the attractor as the
damage-indicating feature for a nonlingar acrcelastic plate subject to stiffness degradation
Trendafilova locked at the local prebability strocture of data in detecting static load shifis
in a reinforced concrete plate [35] Hively and Protopopescu used a phase space megsure
of probability to distinguish between healthy and damaged motor-doven systems [96]

Finally, some attention has been given to using Lyapunov Exponents (LEs} as a
damage-sensitive feature A system's LEs capture the rate at which trajectories in phase
space diverge or converge in each of the phase space directions Global LEs have been
uged in [27] and [98] to detect backlash in robot joints and in gears, respectively A more
complete discussion on the use of LEs in health menitoring, including a discussion of local
LE measures, may be found in [92]

7.2.2 Detection of Damage in o Cantifever Beam Using the Local Atiractor Variance

The technique just described was used to detect damage in a simulated cantilever
beam An eight-degree-of-freedom model was used and a crack at the root of the beam was
simulated by placing a bilingar stiffness between the wall and the mass element adjacent to
it, as shown in Fig 71 The equation of motion of this system is

[m]{x}+ [elix) + [x]{x} = {BLA() |

(99)
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where [m], [¢] and [x] are the respective mass, damping and stiffness matnices formed
from the elements in the model, with

-l e (100)
a |mfr b 0
The vector {8} simply selects where the force A1) is applied to the system, which in this

case 1s the end mass.
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Figure 71. Eight Degree-of-Freedom model of a cantilever beam with a bilinear
stiffness tosimulate damage.

A chaotic signal was created from the displacement response of a Duffing oscillator
[84], which is known to be chaotic. Details of this process can be found in [99]. The
attractor associated with the force is shown in Fig. 72. A time step of 0.07855 was used in
the integration. The system parameters of the structure were chosen as m =001,
c=015and k=2, Again, Fourth-order Runge-Kutta was employed for the simulation.
The displacement x, of the first mass element was chosen as the variable to use in the

calculation of the ALAVER because it was the most sensitive to the bilinear stiffness,

The ALAVR was calculated at each damage level over N = 5000 randomly selected
points and local subsets were created using the NV, = 40 nearest points. The values of ALAVR
obtained were normalized wath respect to the ALAVR of the undamaged system so that

R-R"|
Iy

AR = (101)

where R refers to the ALAVR of the undamaged system. The results are shown in Fig. 73.
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Figure 72. Reconstructed forcing attractor.

0.7 = = -
o8l e
0s5- s 1
D.4f
03

02

1-1x

Figure 73. Normalized values of ALAVR at different damage levels.

There is a change in the geometry of the attractors and this is reflected in the values of
ALAVR obtained. As the level of damage increased, the value of the ALAVR increased,
indicating that the local variance of the attractors was also increasing, It was shown in [84]
that the ALAVR can be used in a statistical procedure to flag damage with a given
statistical confidence. The same procedure is expected to work here. Moreover, the same
input/output attractor vanance “mapping” implied by this procedure may be applied to
output-only data. In other words. two measured responses can be compared in a similar
way, forming their own cross variance ratio. which detects refative geometric changes
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between responses. Such a formulation is useful when either one cannot measure the input
or it may reasonably be hypothesized that the damage mechanism is closely related to
synchromzation or coupling between two output measurements, for example, a
connectivity loss. A related attractor-based correlation metric was also discussed in [100].

8. NONLINEAR SYSTEM IDENTIFICATION APPROACHES

The system identification approach to damage detection proceeds in a different
manner. The idea iz to obtain estimates of the actual equations of motion of the system of
interest using measured time series data. The presence (and location to an extent) of
nonlinearities becomes immediately cbvious in this approach.

8.1 Restoring Force Surface Model

In order to illustrate the methodology, the restoring force surface approach to
identification will be discussed. This is a method developed by Masri and Caughey [101]
and independently by Crawley and Aubert [102].

The equation of motion of a standard SDOF mass-spring-damper can be written as,
mi+g(x,¥)= f(r) , (102)

where m is the mass of the system and g{x, ¥) is the internal restoring force which acts to

return the oscillator to equilibrium when disturbed. The function g can be a quite general
function of position x{#) and velocity x(¢). In the special case when the system is linear,

glx xp=cx+kx , (103}

where ¢ and & are the damping constant and stiffness, respectively. Becavse g i1s assumed
to be dependent only on x and X, it can be represented by a surface over the phase-plane,
Le. the {x, x)-plane. A tnvial re-arrangement of Eq. 102 gives,

glx.5y=fiH)—-mi¥ {104}

If the mass m is konovwn and the exatation 1) and acceleraton (/) are measured, all the
quantities on the night hand side of this equation are known and, hence, so is o If
§, — {i-1)'3 denotes the /¥ sampling instant, then at 7, Eq. 104 gives,

g =gx.x)=F-mx, (105}

where f = fi{t,) and ¥ = x(1) and hence g, are known at cach sampling instant. If the
velocities ¥ and displacements x, are alse known (1.e. from direct measurement or from
numerical integration of the sampled acceleration data), at each instant § =1,--- N a triplet
{x,x,x ) is specified. The first two values indicate a point in the phase plane, and the

third gives the height of the restoring force surface above that point.
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Given this scattering of force values above the phase plane, there are a number of
methods of interpolating a continuous surface on a regular grid. The various interpolation and
plotting procedures are discussed in some detail in [24]. Two simple approaches are followed
here. In the first case, a force surface is obtained by dividing the phase plane into a regular grid
and averaging the force values above the resultant cells. These average values are plotted
above the centers of the cells. The main disadvantage of this approach is that there may be
many phase-space cells that are empty of data points and, therefore, do net have force values.
Such cells will produce ‘holes’ in the surface, although there are some simple heuristics that
can be used to fill m some of the holes [24] The main advantage of this approach 1s that a
regular plotting gnd is obtained that 15 amenable to standard graphics seftware. The second
plotting procedure is to show a slice of the force data on a plane of constant velocity or
displacement. This plot gives the stiffness and damping sections respectively.

Naotwred dalq s
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1 2=1 I A=d | RITE] =E0s -l{l-ﬁ_,.—-—!ﬂf-ﬂ_'_ R T
e =
_,_,_,—'—"'"_'__-F.-.. T
— Displacement

Flgura T4 S3ilffhess section of SDOF system with sllnear
sliffnezs represanting a breathing crack.

In arder to illustrate the approach in the context of damage identification, consider a
bilinear system of the form shown in Fig. 74 that simulates a breathing crack. The k-value
used was 10* and the stiffness ratic & was chosen as 19, As usual the time data were
simulated using fourth-order Runge-Kutta integration scheme. In this case, because
random excitation is preferred for system identification, the forcing 1) was taken as
Guassian white noise. For the purposes of this simulation, the velocity and acceleration
data were taken directly from the numernical solution of Eg. 90, as described above In
practice one would probably measure acceleration data and numerically integrate these
data to obtain the corresponding velocities and displacements. The simplest representation
of the force surface is the stiffness section and this is shown in Fig. 74,
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A more comprehensive representation of the nonlinearity is given by the full restoring
force surface as shown in Fig. 75, Both representations show the bilimgar nature of the
internal force and thus detect the presence of the ‘crack’. In order to extract location
information for the damage it 15 necessary to move to a more sophisticated MDOF model
of the system.

Fexlaring lorce spaface
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Figure 75, Restoring force surface far SDOF kilinear stiifness system.

For a general N DOF system, it 15 assumed that the mass is concentrated at
measurement points, #2 being the mass at point 7, Each paint § is then assumed to be
connected to each other point 7 by a link /_, and to ground by a link /. The situation is
tllustrated in Fig. 76 for a three degree-of-freedom system.

It the masses are displaced and released, they are restored to equilibrium by intermnal
forces in the links. These forces are assumed to depend only con the relative displacements and
velocities of the masses at each end of the links. If 3, = x, - x_ i3 the relative displacement of
mass »1, relatve to mass a7, and &, = ¥, - X is the corresponding relative velocity, then,

Forcein linki, = g, (ﬁv.ﬁv}. {106}

where 6, = x, and 3,, = X, for the link 1o ground. It will be clear that, as links /, and [,
are the same,

£,45,.5,)=g,(8,,8,)=g,4(-8,.-5,). (107)
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Figure T76. Link model of nonlinear 300F system,

If an external force £ (£}1s now applied at each mass, the equathons of motion are,

mx, +ig.,(ﬁ,_,.5v]=,ﬁ(f], i=1...N (108)

It iz expected that this type of model would be useful for representing a system with a
finite number of maodes excited. In practice, only the N accelerations and input forces at
each point are measured. Differencing yields the relative accelerations &, , which can be
integrated numerically 1o give &, and &, . If a polynomial representation is adopted for
£, , this gives anodel,

mE + 'zfiaw,s:;a; - 7ty (109)

J=1 k=n t=n

Least-squares parameter estimation can be vsed to cbtain the values of the coefficients
mand g, that best fit the measured data If there is no excitation at point /,
transmissibility arguments vield the appropriate form for the equation of motion of w, |

Noroq
ar o
¥ 422 2 00,0, =0, (110}
I
r -
where . _—m L
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In principle, the inclusion of difference vanables allows the model to locate
nonlinearity, for example, if a term of the form &2, appears in the appropriate expansion
one can #fer the presence of a cubic stiffness nenlinearity between points 2 and 3 [103].

If one of the equations for an MDOF system has a non-zero input £ (f), then =, can
be estimated and it can be shown that this scale can be transferred to all equations so that
the wheole MDOF system can be identified vsing only ane input.

A further advantage of adopting this model is that it allows a natural definition of the
restoring force surface for each link. Afier obtaining the model coefficients the surface f,
can be plotied as a function of &, and &, for each link 7. In this case the surfaces are
purely a visual aid to the identification. They might still be important however, as the
polynomial representation does not ofter a clue to the type of nonlinearity if it 18 piecewise
linear for example,

To illustrate an MDOF application, a three mass system as shown in Fig. 76 was
simulated (again using a Runge-Kutia integration scheme and a white noise excitation}.
The exact values of the various parameters are not important here, but the nonlineanty was
placed between the central mass and ground. The nonlinearity used was a symmetric
piecewise linear stiffness, which 1s the type that might be observed for loss of preload at a
joint for example, After identification, the vanous restering force surfaces could be plotted.
Figure 77 shows the identified restoring force surface for the link £, and is linear as
expected. Figure 78 shows the identified surface for the link /,, and shows a symmetric
nonlinearity. In fact this 15 only a cubic approximation to the real piecewise lingar behaviar
and is a result of the cubic polynomial fit that was used to form the model, In order to more
accurately see the piecewise nature, a higher order polynonual fit would be required.

The final example given here comes from an experimental study, A fatigue crack was
grown at the center point of a J-meter-long concrete beam. A random excitation was
applied using an electro-dynamic shaker immediately below mid-span, the response was
measured at varicus points on the top surface In order te simplify matters, a SDOF
restoning foree surface analysis was carried out using the measured force and the response
from the nearest accelerometer to the crack. The resulting stiffness section is shown in
Fig. 79 with a ninth-order least-squares polynomial fit superimposed. Although the section
15 rather nosy {as a result of the neglected degrees of freedom), the smoothed curve fit
shows a very clear bilinear nature as one might expect from a breathing crack.
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Figure 79. Restoring force surface for a concrete beam with fatigue crack.

8.2 Gradient Descent Methods for Nonlinear System Identification

As previously discussed, many of the nonlinear system identification approaches that
are used for SHM require that a parametric model is fit to measured system input and/or
response data. Changes in the parameters of these models are then used as damage
indicators. Therefore, a fairly general description of the nonlinear system identification
problem may be given as follows. The obtained time series data, v, are assumed to have been
generated from a system that has a known functional form, but unknown parameters, such as

;. = f{i.m i, r! E}

; (111)
v =glxu.1.0)

where [ and g are some known functional forms with parameters @and input #, and ¥
and j are the estimated values of the states and outputs, respectively. The goal of the
identification procedure is then to determine the parameters & that best explain y and then
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look for changes in those parameters when the identification procedure is repeated with
new data. Such changes are inferred 1o be an indicator of damage This parameter
estimation 15 usually accomplished by minimizing some cost function, For example, given
data from ¢ = & to T and an estimate of a reasonable set of parameters, &,, a simple cost
function, ./, for the above model might be:

-f=?(y—.i=f@0’-ﬁ)+(ﬂ-ﬁr.)‘rﬁ{ﬁ—%}cfr , (112)

where Q) is a user defined n x n positive, semi-definite matrix, and R is a user defined m x
m positive-definite matrix, with o equal to the number of states and m equal to the number
of parameters.

Thus, minimizaticn of this cost function would seek © minimize the error in the
estimate 3, without allowing the parameters to assume “vnreasonable” values, This cost
funchon can only be mimmized teratively, as 1t can not be mimmized analytically. One
minimization technique that can be used is gradient descent. In this method, the gradient of
the cost function . with respect to the parameters # is computed, and & is updated so as to
decrease ./ This process 15 repeated untl ¢onvergence or some other stopping cntena 1s
achieved. Advantages to gradient descent include simplicity and, depending on the particular
problem, rapid determination of & /2&, even when & is very high dimensional. The key
disadvantage 15 susceptblity to local minuma. Global optmuzation techmques such as
evolutionary programming, surrogate management framework, and simulated annealing
[104] seek to avoid the problem of local minima, but are not discussed in this section.

Once f /38 15 obtained, one must decide how to use it to update &. There are many
methods that have been developed to perform this update. Among these methods are
steepest descent, Newton's method and the conjugate gradient method [105]. For the sake
of simplicity, this discuszion will focus only on steepest descent. The other methods may
loosely be viewed as modifications to the steepest descent method that seek to reduce the
number of iterations required for convergence.

The update to & using the steepest descent method 15 given by
af

a4 =8 - . 113
nt| n alﬁ&&%‘ [ }

where ¢ is the size of the step. A common method of selecting o is by means of a line

search, in which & is selected to minimize J[iﬂr +{I£3—i;|

minimization can be accomplished 1s to ficst perform an abbreviated Taylor senes
expansion of /.

]. {One appreach by which this

EH=E,

100



Monlinear System Identification for Damage Detection LA-14353-MS

af ;
J[Eﬂr b a (114)
[l &
then, setting &/ /fer = 0_ results in
it
@ =m0 (115)
a-J
oar’ |,

This procedure is easily demonstrated through an example. Consider the system in
Fig, 80 which consists of two masses connected with springs and dampers to ground,

Ky Ky Ks

Figure 80.Nonlinear 2-DOF system.

The spring between ground and the first mass is a cubic spring, and the governing
equations for the system are given by the following

mx, =—kx, —ﬁ:mrl': =X+ k:lir: —% }Tc'_,(r._. - J‘I]

m, %, = —k,(x, —x)-e.(x, - % )+ ulr) . (116)

y=x

The goal is to estimate &, given knowledge of all other parameters and only y as a
measurement, Given a measured time series y and some estimate &, of &, that results in
an estimated time series . the cost function is then given by

7= [l =g, a7

DI{E HEM can be easily determined via finite difference Let ﬁE",I -—..fEn, +d be a perturbed
k_, that results in an estimated time series 3. Then
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O I Vo [ e v

DI/ Dk, =2 3 (118)
For this case, the step size ¢ can be seen to be given by
ﬂ ! T g e i S E
I R A e R R I (i)
21 [T =3) (7 -3)a
i '

If welet m=m,=1, k,=k, =50, ¢,=c¢,=1, k, =10, and wequal to the random
input, shown in Fig. 81(a), then y is shown in Fig. 81(b). If we start with an initial guess
of k, =10, then after approximately 30 iterations of the gradient descent procedure,

k,=9.999 which is very close to the exact value of 10.0.
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Figure 81. a) Random input (top), b) Response of mass 2
(bottom) for the system shown in Fig. 80.

8.3 Using Nonlinear System Models to Design Inputs for Active Sensing

Most procedures discussed thus far do not use an input that is designed to enhance the
damage detection process. Instead, these methods work with whatever input and/or response
can be measured during the structure’s operation. However, with advent of active sensing
approaches there can be SHM applications where the excitation is selectable, and. indeed,
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where proper excitation selection is essential. As a simple example, consider a beam or
column with a crack which is nominally closed because of a preload. If the provided
excitation i3 not sufficient to cpen and close the crack, the detectability of the crack in the
measured cutput will be severely limited. Thus, if possible, it is important to answer the
question; “(Given ever-present physical limits on the level of excitation, and limited outputs
that can be measured, what excitation should be provided te a system to make damage most
detectable? When one considers that an excitation may be viewed as a time senies with
hundreds or thousands of free parameters, optimization in this high dimensional space might
be a daunting task. However, as 1s demonstrated in this section, a gradient based techmque
may be used in which the gradient can be calculated very efficiently.

First, assume that undamaged and damaged structures excited with an input # may be
modeled as follows:

X, = f{x 1)

e (120)
2, = filx,ui) (121)
¥s =Cx,

o,

X= fleni)
122
y:[f‘ —lr__‘]l‘ [ }

where x, and x, are the state vector of the undamaged and damaged systems respectively,
=[x, 5,1 and flxwiy=|f.(x 0.0) folx, w0 € is simply a matrix such that the
measurable output », and y, are some linear combination of the states.

The excitation design problem may then be stated as the following optimization
problem that seeks 1o make y (the difference between the outputs of the undamaged and

damaged systems}is big as possible, given constraints on &
max J = %j; vTadt | (123}

subject to Eq. 122 and IHL <y,

This may be rewritten as

max J = %J‘;‘CIQKC'I , (124}
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subject to Bq 122 and ], <y, where 0 =[CC -CJ ¢ -¢]

If the input # is perturbed by #', the perturbed state trajectory is given by the tangent
linear equation

x'= A{x+ B or £x = Bu' (125}

where f:%—A, and A and £ are obtained by linearizing Eq 122 about x and # The

resulting perturbaticn to ./ is then given by

1= lxgxa (126)

The goal of what fellows is simply to re-express /' as a function linear in &° To that
end, lets consider Eq 125 integrated against a test function, 1

[ rextdi= ] - Aot (127)

Using integration by parts, Eq 127 can be rewritten as

T
0

I:rfo *dt :Tai: ; —j;(i’+ATr]Tx'd[ =j [f'r}.r ax"do +rTx'|: ;- (128}

where £ = —% - A7 This is true for any test function, » IF » is selected such that

Py =
o (129)
Hit=10
then Eq 126 can be rewritien as
= JT{Ey wdt= JIreed = [ Ba = I:%u'dt (130)
Thus,
bi
—=¢'R 131
Du (131)

104



Monlinear System Identification for Damage Detection LA-14353-MS

Equation 129 is referred to as the adjoint equation. Therefore, given an initial guess at
an exeitation, u,, Eq. 122 1s solved for x. This x is then used to solve Eq. 129 in reverse-
time, because r(T) is known Thus, the gradient may be calculated from just two
simulations, no matter how many points are in the time series for u. A typical gradient
ascent procedure then follows, with the constraint being enforced by renormalizing the
updated input after each iteration.

If one considers again the example in Section 8.2 and treat &, =10 as the undamaged
case, k, =9 as the damaged case, and set the maximum input level p =35, then using the
same random input as shown in Fig. 81(a), we see very little difference in the outputs of
the undamaged and damaged systems, as shown in Fig. 82.

x 10"

0 a 10 15 20 25 30
Time (sec)

Figure B2. Difference in response due lo random excitation for
mass 2 shown in Fig. 80.

However, after just 20 iterations using the gradient ascent method outlined above, an
excitation, shown in Fig 83(a) is developed that vields a much larger difference in the
outputs of the undamaged and damaged systems (by approxmmately a factor of 10001), as
shown in Fig. 83(b).
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Figure 83. a) Optimized excitation, b) Difference in response
with optimized excitation for mass 2 shown in Fig. 80.

No claim can be made that this method can provide a globally optimal excitation.
However, if a particular excitation is being considered for a damage detection test, this
method does allow one to easily determine if another excitation would be better. The
method does require a model of the system and the accuracy of that model will influence
the results. A more detailed discussion of the optimal excitation design for active sensing
can be found 1n [106, 107].

3.4 Exitended Kalman Filter

Another, more tradiional method for parameter estimation is the Extended Kalman filter
(EKF). Predictably. the “extended” moniker is due to the fact that it is an extension of the
Kalman filter, which, for linear systems subject to Gaussian white noise disturbances to the
states and outputs, provides optimal state estimation, By moving to a nonlinear process. the
optimality guarantee is lost, and in fact, the estimate may diverge. This possibility for
divergence is true even in the case of trying to identify the parameters of a linear system (since
this 15 actually cast as a nonlinear system). However, in many cases, the EKF provides
acceptable results. There are no shortage of texts and other resources available for more
detailed information regarding the Kalman filter and EKF (e.g [108, 109]), thus the EKF
algorithm will simply be presented below, without proof. using the example problem above.

Recall that the goal is to estimate the value of &, in the 2-DOF system given by

peX = —kx—kx -k bl = )4-a 5 1) (132}
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%, = =k, (x, = x ) -, (%, = % }+ uli) (133)
y=ux, (134}

We rewrite this system to treat &, as cne of the states:

X =1,
o _
s =;(_klx| _kn.’xl-‘ — 6V +k1(r:, _xl)"""z(”: _"l})
|
TR (135)
L= — (k- x ) - (v, - )+ )
2
k, =0
y=1x

For convenience, we can use simple Euler integration to solve this set of ODE’s
and obtain

|m—| ﬁ! L{ l&lx"'lrll nfﬂl 1,2r — ¥ +k ( xl.n)-'_cz("ﬂ_"lr})J-l-vlﬂ

ml
Xy M(v )+ X, (136)
Yo :M[L(—k (xh, x,m)—cl(yh —-¥ )+w”)]+1jn

.,
kn!.m] =krﬂ'.n
L S
which is of the form

X, = flx,.u), y=Hhx), (137}

where x=[x, v, x, v, £,]1".
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We define
i 0 . 1 0 0 0 ]
ki th 43T ote ko _x_,3
@f # M ¥ " ",
A== A 0 0 0 1 0 |+{ (138}
o '8 e, ' F
. S
iy i m. :
i 0 0 0 0 0|
cg
(====[003010 139
pw [ 1 (139)

There are two basic steps in the estimation process. a prediction step and an update
step. In the prediction step, the state estimate is given by

X, = f{x,u,) (140)

and the error covariance matrix is given by
Pwr'l_ =AHPHART+Q []4]}

where {J is an estimate of the state (or process) error covariance matrix. For this simple
example we take 1t to be

(142)

o

I
=B == -
L e e
o = R e R e
e YN o Y S W < Y =
—_
=
gﬂﬂﬂﬂ

because the only state that we don't know at the beginning is &, and there isn't any
process noise that can perturb the states.

The update step is as follows:

jjm-l = Faa _-}tln+l
SHH :{'_.MIPMICH—IT +R
JR"-'rﬂ-rl = 'Plr-rlr T'Sml_l (]43}

A+l

xﬂ 1 = +| +Kw+l-}rﬂ+l

L =X,
Pr—l (!l' - KnHCwH )‘Fnﬂ

and K is the output noise covariance, which for our example, we take to be R=1.
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We start the filter by assuming x, =0,F, =0. Then, by following the above
procedure, and given the actual x, that would be obtained using the random input and
k., =10 we obtain the plot shown in Fig. 84 for the estimation of £,

Clearly, the estimate for &, is approaching the value of 10.

From this example one can envision applications to damage detection where changes
to the system are not only detected, but also quantified and assigned a physical meaning.
Assuming one has a model of the system. data would be acquired in the undamaged
condition and state variables associated with this model would be estimated using the
extended Kalman filter. Then at periodic intervals, or after a potentially damaging event
trigger a new measurement, the system identification process would be repeate. The new
state variables would be analyzed to determine if they have changed in a statistically
significant manner from the baseline condition. As with many other approaches discussed
in this report, the question arises regarding the suitability of a single model for both the
damaged and undamaged conditions. Also, environmental and operational variability can
cause changes in the system states that are not associated with damage. Such changes are
inherent in all damage detection procedures and must be dealt with through additional
measurements of conditions such as temperature and through additional statistical pattern
recognition procedures,

12,

0 5 10 15 20 25 i
Time {sec)

Figure B4. Extended Kalman filter estimate of the nonlinear stiffness coefficient.
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9. CHALLENGES AND FUTURE RESEARCH NEEDS

Sections 6-8 of this report discussed many approaches where nenlinearity is either
being identified, exploited, or actively used for structural health monitoring and damage
prognosis {SHM/DP). Despite the fact that many enginegred systems can and do behave in
often subtle nonlinear ways—particularly once damage has initiated—these nonlinear
identification or exploitation approaches rarely have made the transition into practical use.
Does this mean they are of academic interest only? The answer may seem affirmative at
present, and there are, very generally, three classes of related reasons why this may be tnie.

9.1 Nonlinear Behavior Does Not Generalize

In fact, nonlinearity cannot be defined per se; rather, it is defined by what it is not,
namely, any process that does not fundamentally obey the principles of homogeneity and
superposition, that is,

H[ia”an * iaﬂh’ (x.). {144}

"
where A is the system response to weighted inputs Zanx" :

For linear systems, an equality sign holds in Eq. 132, and a number of very
generalized concepts fellow, such as reciprocity, input level insensitivity, and certain
symmetries, as discussed in Section 4. These properties lead to a single class of approaches
for analysis. Linear systems have well-defimed and wellaunderstood behavior, and
mathematically they may be solved by fundamental numerical and analytical techniques
that are independent of the specific physics of the system. A classic example is the
analogous behavior of a simple elastic spring/mass/dashpot mechanical system to a simple
capacitorfinductor/resistor electrical circuit. Both have exactly the same form of dynamic
behavior, even though the solution parameters {¢.g., spring vs. capacitor) have very
different physical interpretations. In other words, the typical techniques uvsed to
charactenize the mechanical systern, or changes to it, would m general work equally well to
charactenze the electrical circuit and its associated changes . This is not the case for a
nonlinear system, where specific physics typically dictate the need for a specific nonlinear
model, which in most cases subsequently does not have a solution that generalizes for any
value of the system parameters. Thus, analysis techniques that may prove useful for one
nonlinear system may have little value for another.

With this in mind, perhaps the most directly adverse effect of nonlinear processes on
SHM strategies is the lack of mvertibility. SHM is inherently an inverse problem, data are
measured and mined for information that reveals something about the existence, location,
extent, or type of damage. Thus, the practitioner has an effect usuvally in the form of
measured system response data that requires diagmosing a particular cause, which in the case
of SHM is damage. Nenlinearity implies lack of a guaranteed unique inverse relationship, or
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that one even exists. The practitioner “forces™ the effect to match the cause and may very
well do so for the limited case or cases at hand, but there is no such guarantee that damage is
the only cause that leads to a particular damage szet. That is not to say that linearity
guarantees inverses or well-conditioned Inverses, however, one can much more readily find
data transformations in the linear domain that properly reduce and/or orthogonalize the data
in order 1o better condition the inverse by “orthogonalizing™ possible multiple causes. The
nonlinear problem may be parntially mitigated, although not “solved,” for nonlinear systems
by performing experiments in the forward direction, e g, damaging a system in a controlled
but fizld-realisae manner and observing what subsequent response changes cccur in order to
build an appropriate data- or physics-based model. Of course, such a forward approach
requires a heavily supervised learning mode, which system owners most often do not have
the economic or life-safety justification to implement.

9.2 Nonlinear Approaches are Computationally Cumbersome, Expensive. and
Require too Many Parameters to be Defined

In part, this point is related to the previous point about lack of generality. The less
general a model or technique is, the more input parameters (1.2, “knobs” or “tweak
parameters”} the model generally requires to make it function properly. Consequently, the
model or technique’s outputs are often highly sensitive o these inputs so that the
rcbusiness of the technique is called inte question. One example of this lack of generality
i3 with some of the information-based metrics such as transfer entropy that are being
applied to data to detect nonlineanty. While such a method was clearly shown te be an
efficient nonlinearity detector for composite delamination and bolt loosening applications,
the parameters chosen to construct the probabilines that go into the caleulaton {e.g.,
neighborhood size and kemel condition) have large effects on the quantitative transfer
entropy estimation that is directly used as the feature. In ancther example, the actual
calculation of the neighborhaods in the attractor-based methods of Section 7.2 can be very
time-consuming, especially for a large data set. While k-d tree methods [110] have given a
more computationally efficient means to padition state space in this case, un fimes for a
technique that requires this are an order of magnitude slower than a comparable linear
techmque thal does not require this partitioning. Furthermore, the memory and resident
libraries required to implement this makes system-cn-a-chip (SOC)Y soluticns less
attractive, although still possible. In general, specialized algorithms that do not peneralize
well, which by defimition include most nonlinear analyses, are generally not as conducive
to efficient mass production because of a lack of generalized market. They alse do nat
possess the kind of robustness required for consistent application and this lack of
robustness results in lack of confidence by owners, regulators, and users.

Finally, it 15 noted the mathematics, in general, i3 no setup to deal with nonlinear
systems. Historically, mathematics has been built with a complete dependence on linearity.
An immediate example of this focus on linearity is the entire framework of vector space
theory. This lack of a mathematical framework to address nonlinear problems is possibly
the biggest challenge to further development and adaptation of nonlinear system
identification approaches for SHM applications.
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9.3 Many Existing Engineers, Technicians, and System Certifiers are not Comfortable
with and/or Even Trained with Nonlinear Processes or Analysis Techniques

The previous points in part fuel this point. The fact that nonlinearity does not have well-
understood ubiquitous behavior and that nonlinear methods ¢an be too parameter-sensitive
(and thus nonrcbust) fail to give system owners and’or safety certifiers confidence in their use
for SHM applications. Economic and liability issues dictate, in most applications, relatively
stict or conservative guidelines for design and performance specificatons, including
momtorng systems, with very high required reliability. The SHM/DP svstem itself cannot be
the most unreliable component. This overall lack of confidence is rooted even earlier by a lack
of exposure in technical education programs; most technically-trained perscnnel do not study
nonlinear processes or any form of nonlinear behavior at the undergraduate level. Even at the
graduate level, exposure is very limited or narrowly focused and does not at all consider
uncertainty propagation of quantification, which are very important concepts linked to
assessing 4 model or technique performance. This issue is particulady acute for nonlinear
models where the physics may not be exactly known or characterized.

9.4 Other Techmical Challenges

There are still many other cutstanding issues for the application of nonlinear system
wlentification methods to SHM problems. In most cases reported herein, almost all studies
have been applied to laboratory structures of relatively simple geometry or to numerical
simulations of similarly simple structures. If these approaches to SHM feature extraction
are to make the transition from a research demonstration to practical application, studies
must be conducted on more complicated systems with numerous joints and mterfaces
between structural elements.

Alsq, this repont has been limited to applications where the structure of interest can
accurately be modeled as a linear system when in its undamaged state. Many real-world
structures, particulary those with numercus cemplicated joints and interfaces, will exhibit
nonlinear response in their undamaged state. Therefore, approaches that can distinguish
changes in nenlinear response associated with varyimg damage levels from the inherent
nonlinearities associated with the system in its undamaged condition are needed.

The studies reported herein have not addressed many other issues associated with using
nonlinear system identification for damage detection. These issues include the amplitude
dependence of many nonlinearities and the ability of the excitation sources {ambient of
prescribed} 10 excite the noolinearity. In most studies quantifying the location of the
nonlinearity, identifying the type of nonlinearity, identifving the extent of damage associated
with the nonlinearity, and the time-rate-of-change of the damage based on changes of the
measured response have not been addressed. Alsc, most studies of systems with
nonlinearities cansed by damage tend to focus on discrete source nonlinearities such as a
local crack or single-stiffness ¢lement. Most studies have not focused on dismbuted sources
of nonlinearities such a distributed crack ficld that may ocour in a concrete strocture,
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Almost all SHM/DP studies that make use of nonlinear system identification do soin
a4 passive sensing mode. By passive sensing, it is implied that a prescribed input with a
known waveform that is designed to enhance the damage observability has not been used.
The active sensing approaches associated with the nonlinear acoustic methods (Section
6.14), local attractor variance methods (Section 7.2), and the optimal input design (Section
8.3) are examples where researchers are starting to couple active sensing with nonlinear
system identification to enhance the damage detection process.

Finally, most of the experimental studies reported herein have been conducted in well-
controlled laboratory seftings. The ability of these methods to distimgansh changes n
system response associated with damage from changes associated with varying operational
and environmental conditions has not been established.

10. RECOMMENDATIONS

{nven these barners and challenges, a number of things can be dong to promote the
development, testing, and eventual deployment {if successtul} of nonlinear approaches faor
SHM/DP. The ultimate payoff of many nonlinear assessment techniques or modeling is
greatly increased sensitivity to damage characterization, but this cannot come at the cost of
eXCessive economic, execution {e.g., computational), or robustness burdens. Some
recommendations for future research and development are listed below.

10,1 Fundamental Benchmark Platforms

The SHM/DP community stakeholders (industry, government agencies, researchers)
should propose an array of fundamental platforms in key markets {civil, aerospace,
manufacturing, etc.) that will serve to host benchmark studies. Such studies should have
the following charactenistics:

1. With input from owners and regulatory agencies, develop several long-term test beds
that cover aerospace, mechanical and civil applications. A candidate mechanical
system might be as a wind turbine where damage to the composite blades and gear
boxes are te be identified. Developing a damage detection approach for wing of an
unmanned aeral vehicle is a possible aercspace application where damage may result
from debris impact. Many aspects of bridge damage detection such the identification of
fatigue cracks in welded plate girders is a possible candidate for the application of
nonlinear system identification methods.

2. Define realistic damage to be detected. Appropdate failure modes must be controllably
introduced and propagated under expected loading scenarios (a forward direction test).

3. Operational and environmental variables should be controllable to realistic conditions
observed in practice.

4. Sensor and actuator arrays should be defined and deploved to accommodate a wide
vanety of methods (hme and length scales).
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5. Have an independent panel run the tests and assess the ability of the SHM system to
detect the damage.

6. Make the test bed available to as many researchers as possible.

7. Require completely open disclosure of results. Include what didn’t work as well as
what did work in these presentations. Also, report information like required SHM
system maintenance, down time, false-positives, and comparisons with more traditional
linear methods of damage detection

All results should include full, detailed documentation of how each method was
applied and what the failures of the method were in addition to any successes. Method
‘performance metrics’ should be defined (energy budget, execution time, footprint/weight,
statistical confidences, resolution, accuracy, economic cost, elc.) and a global objective
function defined that each method may be independently and objectively characterized for
comparative purposes. These benchmark tests should be funded primarily by government
funding agencies (80%) with secondary buy-in from industry (20%).

The data sets being made available at the Engineering Institute web page
(www lanl. gov/projects/ei) and described in Appendices A and B are a start at providing
standard test structures and data to validate damage detection algorithms (both linear and
nonlinear approaches). However, these structures are laboratory test specimens and do not
have all the desired attributes listed above,

10.2 Increased Industry and Government Investment

Industry and government agencies such as the Department of Defense are ultimately
the ones that directly stand to benefit from SHM/DP technology. Therefore, after
benchmarks have been demonstrated that objectively compare methods on different
platforms, industry and government agencies must be willing to invest directly in
transitioning promising technologies to practice, including further long-term testing and
development, packaging. and appropriate calibrations and certifications

10.3 Education

The university system also plays a key role in overcoming these challenges, as
universities are usually the first major stop in an engineer or scientist’s career.
Universities must:

| Start actively deploying multidisciplinary educational programs that give a
systems-level perspective to students at both the undergraduate and graduate
levels. In particular for SHM/DP, the sensing, feature extraction, statistical
modeling. and predictive modeling components span almost all traditional
engineering departments and degree programs must be designed in which
students can transcend these traditional boundaries. Exposure to advanced
and emerging technologies such as some forms of nonlinear analysis must be
included in this transformation
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2. Actively encourage and reward their faculty for forming multidiseiplinary
teams to solve the systems-level problems that SHM/DP applications pose.
No one faculty member, department, or even university can claim to ‘corner
the market’ on SHM/DP expertise, and true collaboration—where the
rewards are both external (solving real problems for increased industrial
competitiveness in a global market) and internal (faculty/researcher careers
are promoted for teamwork )—is the only solution.

Be willing to form organizations with industrial partners to work in “1P-free”
zones where research and development can be performed in free and open
exchange without the restrictions of nondisclosure agreements. Such an
arrangement, for example, is currently in place for the sixth-floor laboratories
in the University of California San Diego division of the California Institute
of  Telecommunication and  Information  Technology  (Calit2)
(http://www calit2_net).

Ll

11. SUMMARY

The basic premise of this report is that in many cases damage causes a structure that
initially behaves in a predominantly linear manner to exhibit nonlinear response when
subject to dynamic loads associated with its operating environment. Therefore, many
approaches to nonlinear system identification are directly applicable to damage detection
This report has summarized a variety of these nonlinear system identification techniques
that have been reported in the structural health monitoring literature and classified them
into the following three groups:

Methods based on nonlinear indicator functions
Methods based on nonlinear dynamical systems theory

Methods based on nonlinear system identification approaches

This report has also addressed the levels of damage identification that can be obtained
with each method as well as the limitations of these various methods when applied to
SHM problems.

Several approaches to SHM based on nonlinear structural dynamics are discussed in this
report, First, features that can be used to identify nonlinear system response such as
harmonic generation. the coherence function. probability density function distortion,
correlation tests, and the Holder exponent were discussed and applications of these indicators
to analytical and experimental damage detection studies were presented, These techniques
can only identify the presence of a nonlinearity that would be indicative of damage.
Information about location or extent of damage can not, in general, be obtained with these
features. It was also pointed out that some of the indicators such as the coherence function
can change significantly as a result of other factors not related to damage.
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Next, a data analysis approach motivated by nonlinear dynamical systems theory was
developed to quantify features of chaotic attractors that can be related to damage. It was
shown that bilinear stiffness nonlinearity, typical of a breathing crack, cansed a chaotic
response when the systemn was subjected to a harmonic excitation and thus produced a
fractional-dimenszional attractor in phase space. This method was shown to be successful at
identifyring the presence of damage However, despite the fact that certain invariants are a
necessary consequence of nonlinearity, the simulations indicated that it is unlikely that
features of the chaotic response like fractal dimension of the attractor or Lyapunov
exponents would be of value for damage quantification. This statement 15 based on the fact
that the response moves between super-harmenic, subharmenic and chactic response in a
disorderly fashion as a function of forcing frequency or damage extent. Therefore, the
features are not monotonic functions of damage extent.

In the zecond illusteation motivated by nonlinear dynamical systems theory, the use of
2 chaotic signal to interrogate a damaged structure provided a sensiive methed of
quantifying the level of damage in the system. The damage, in the form of a bilinear
stiffness in one of the spring elements of a MDOF system, altered the geometry of the
input attractor to a great encugh extent for it to be measured using the average local
attractor variance ratio.

In Section 7 the applicabon of nonhinear system identification to the SHM problem
was considered. To simplify matters, a single technique known as the restoring force
method was illustrated. The analysis showed that for SDOF systems at least, a picture of
the nonlinearity can be obtained and this picture can be used to characterize the
nonlinearity. For MDOF systems, the analysis can potentially be extended to locate the
source of the nonlinearity. In both cases, the coefficient of the nonlinear terms in the
equations of motion can give guidance on the extent of the damage present. This portion of
the report concluded by showing how a nonlinear system model can be used to design an
optimal input for damage observability when the SHM process makes use of an active
sensing approach.

To conclude, the authors acknowledge that this report has only really just begun to
introduce possible nonlinear dynamics system assessment methods that are applicable to
the SHM problem. The literature on nonlinear structural dynamcs is extensive and other
nonlinegnty detectors have not been discussed. Similarly, idenfification methods like
Reverse Path Analysis [111] have been neglected. Readers may wish to consult one of the
major reviews or books [24] available on the subject of nonlinear dynamics to become
familiar with thesze various approaches to nonlinear dynamics system assessment.
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13. APPENDIX A. UC-IRVINE CONCRETE COLUMN TESTS

The University of California, Irvine (UCI) had a research contract with CALTRANS to
perform static, cvelic load tests on seismically retrofitted. reinforced-concrele bridge columns.
This project was under the direction of Professor Gerry Pardoen at UCI and Mr. Tim Leahy at
CALTRANS. The primary purpose of these tests was to study the relative strength and ductility
provided by two retrofit construction procedures. The first procedure extends the diameter of the
existing column with cast-in-place concrete. The second procedure extends the diameter of the
existing column using shotcrete that 1s sprayed onto the exterior of the existing column. With
funds obtained through Los Alamos National Laboratory’s (LANL) University of California
interaction office, staff from the LANL’s Engineering Analysis Group and a faculty member
from the Mechanical Engineenng Department at Rose-Hulman Institute of Technology were able
to perform experimental modal analyses on the columns. These modal tests were performed at
various stages during the static load cycle testing. Results obtained from the experimental modal
analyses provide further insight into the relative effectiveness of the two retrofit procedures, The
data from these tests are provided on The Engineering Institute web site
{www lanl gov/projects/ei) for others to analyze.

13.1 Test Structure Description

The test structures consisted of two 24-in-dia (61-cm-dia) concrete bridge columns that
were subsequently retrofitted to 36-in-dia (91-cm-dia) columns. The first column tested, labeled
Column 3, was retrofitted by placing forms around existing column and placing additional
concrete within the form. The second column, labeled Column 2, was extended to the 36-in-
diameter by spraving concrete in a process referred to as shotereting, The shotereted column was

then finished with a trowel to obtain the circular cross-section.

The 36-in-dia. portions of both columns were 136 in. (345 cm) in length. The columns were
cast on top of 56-in-sq. (142-cm-sq.) concrete foundation that was 25-in-high (63.5-cm-high). A
24-in-sq. concrete block that had been cast integrally with the column extends 18-in. above the top
of the 36-in-dia. portion of the column. This block was used to attach the hydraulic actuator to the
columns for static cyclic testing and to attach the electromagnetic shaker used for the experimental
modal analyses. As is typical of actual retrofits in the field, a 1.5-in-gap (3 8-cm-gap) was left
between the top of the foundation and the bottom of retrofit jacket. Therefore, the longitudinal
reinforcement in the retrofitted portion of the column did not extend into the foundation The
concrete foundation was baolted to the 2-fi-thick (0.61-m-thick) testing floor in the UCI laboratory
during both the static cyclic tests and the experimental modal analyses. The structures were not
moved once testing was initiated. Figure 85 shows the test structure geometry.

The columns were constructed by first placing the foundations on July 18, 1997. Then the 24-
in-diameter columns were placed on August 19° and the retrofits were added on September 19,
Corresponding portions of both test structures were constructed from the same batch of concrete.
The only measured material property for these columns was the 28-day ultimate strength of the
concrete and the test day ultimate strength, The 28-day ultimate strength of
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foundations was 4600 psi (32 MPa) Test day ulhmate strength was not measured for the
foundahons The 24-in-dia ¢olumn 28-day ultimate strength was 4300 psi (30 MPa} and the test
day ultimate strength was 4800 psi (33 MPa) The 28-day-ultimate strength of the retrofit portion
of the structures was 5200 psi (36 MPa} On test day the strength of the retrofit concrete was
tound to be 4904 psi (34 MPa)

Within the Z4-in=dia initial column reinforcement consisted of an inner circle of 10 #6 (3/4-in-
dia, 19-mm-dia) longitudinal rebars with a yield soength of 74 9 ksi (5316 MPa) These bars were
enclosed by a spiral cage of #2 (1/4-in-dia, 13 5-mm-dia) rebar having a vield strength of 30 ksi
{207 MPa) and spaced at a 7-in pitch (18 ¢m) Two-inch-cover (3- cm-cover) was provided for the
spiral reinforcement The retrofit jacket had 16 #8 (1-in-dia, 25-mm-dia) lengitudinal rebars with a
yield strength of 60 ksi (414 MPa) These bars were enclosed by a spiral cage of #6 rebar spaced at
a G-in pitch (15 cm) The spiral steel also had a yield strength of 60 kst Again, 2-in -cover was
provided for this reinforcement Lap-splices 17-in {(43-cm) in length were used to connect the
longitudinal reinforcement of the existing 24-in column to the foundation
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13.2 Static Loading

Before applying lateral loads, an axial load of 90 kips (400 kN) was applied to simulate dead
loads that an actual column would experience. A steel beam was placed on top of the column.
Vertical steel rods, fastened to the laboratory floor. were tensioned by jacking against the steel
beam that, in turn, applied a compressive load to the column. A photo of the test configuration is
shown in Fig. 86,

Figure B6. Test configuration.

A hydraulic actuator was used to apply lateral load to the top of the column in a cyclic manner.
The loads were first applied in a force-controlled manner to produce lateral deformations at the top of
the column corresponding to 0.25Ayr, 0.5AvT, 0.75Ayy and Ayy. Here Ayy is the lateral deformation
at the top of the column corresponding to the theoretical first yield of the longitudinal reinforcement.
The structure was cycled three times at each of these load levels

Based on the observed response, a lateral deformation corresponding to the actual first vield,
Ay, was calculated and the structure was cycled three times in a displacement-controlled manner
to that deformation level. Next. the loading was applied in a displacement-controlled manner,
again in sets of three cycles, at displacements corresponding to 1 5Ay, 2 0Ay, 2.5Ay, etc until the
ultimate capacity of the column was reached. Load deformation curves for columns 3 and 2 are
shown in Figs 87 and 88, respectively, This manner of loading put incremental and quantifiable
damage into the structures. The axial load was applied during all static tests.
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Figure 87. Load -displacement curves for the cast-in-place column.
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Figure 88. Load-displacement curves for the shotcrete column.
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13.3 Dynamic Excitation

For the experimental modal analyses the excitation was provided by an APS electro-magnetic
shaker mounted off-axis at the top of the structure. The shaker is shown in Fig 89 The shaker
rested on a steel plate attached to the concrete column, Hornzontal load was transferred from the
shaker to the structure through a friction connection between the supports of the shaker and the
steel plate. This force was measured with an accelerometer mounted to the sliding mass of the
shaker 0.18 Ib-s*/in (31 Kg). A 0 - 400 Hz uniform random signal was sent from a source module
in the data acquisition system to the shaker, but feedback from the column and the dynamics of the
mounting plate produced an input signal that was uniform over the specified frequency range.
Fig. 90 shows a typical input power spectrum. The same level of excitation was used in all tests
except for one at twice this nominal level that was performed as a lineanty check.

Figure 88. Shaker used during experimental modal analyses.
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Figure 90. Input power spectra.

13.4 Data Acquisition

Forty accelerometers were mounted on the structure as shown in Fig. 91. Note that locations
2, 39 and 40 had PCB 302A accelerometers. These accelerometers have a nominal sensitivity of
10 mV/g and were not sensitive enough for the measurements being made. Locations 33, 34, 35,
36, and 37 were Wilcoxon 736-t accelerometers that had a nominal sensitivity of 100 mV/g. All
other channels were PCB 336C accelerometers with a nominal sensitivity of 1V/g. During the
test on the shotcrete column (column 2) the 336C accelerometer at location 23 had to be replaced
with a PCB 308b02 accelerometer that had a sensitivity of 1V/g All calibration factors were
entered nto the data acquisition system prior to the measurements. A calibration factor of 1.0
was entered for the accelerometer that monitored the sliding mass on the shaker

Data were sampled and processed with a Hewleti-Packard (HP) 3566A dynamic data
acquisttion system. This system includes a model 35650 mainframe, 35653 A source module used
to drive the shaker. five 35653A 8-channel input modules; which provided power for
accelerometers and performed the analog to digital conversion of accelerometer signals, and a
35651C signal-processing module that performed the needed Fast Fourier Transform
calculations. A Toshiba Tecra 700CT Laptop was used for data storage and as a platform for the
HP software that controls the data acquisition system

Data acquisition parameters were specified such that frequency response functions (FRFs),
input and response power spectra, cross-power spectra and coherence functions in the range of
0-400 Hz could be measured. Each spectrum was calculated from 30 averages of 2-s-long time
histories discretized with 2048 points. These sampling parameters produced a frequency
resolution of 0.5 Hz. Hanning windows were applied to all measured time histonies before the
calculation of spectral quantities. A second set of measurements was acquired from 8-s-long time
histories discretized with 8192 points. Only one average was measured. A uniform window was
specified for these data, because the intent was to measure a time history oenly,
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Figure 81. Accelerometer locations and coordinate system
for modal testing. Red numbers indicate accelerometers
mounted in the -y direction. Accelarometers 1, 3 - 32 are
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replaced during test on the shotcreted column (Column 2)
with a PCB 308b02 that had 1 Wjg sensitivity.
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sensitivity. Accelerometers 33-37 are Wilcoxon 736-t with
100 my/g sensitivity. Accelerometers 36 and 37 are located
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13.5 Data Files

Data that were collected during the experimental modal analyses are described below n
Table 4. All files are in Universal File (Type 58) format In general, FRF and time-history
measurements made at each damage level were done both with and without the preload applied.

Files are designated TESTH##
Where # indicates the sequential test number and * 15 a suffix indicating the type of test. The suffixes are;

P — indicates preload was applied

T-indicates time history measurgment

L- test performed using twice the excitation level

Note that no “T" implies a test where FRFs based on 30 averages were measured. These files
include the last time history used to form the average. No “P” indicates a test where the preload

had been removed.

Table 4, Summary of Concrate Column Tests

Tests on Cast-In-Place Column 1072177 Tests on Shotcrede Column 10723797
Unidam amed Tests Undamaged Tests
TESTO TESTa
TESTOT TESTeT
TESTOL TESTGP
TESTOP TESTGPT
TESTOFT
Cycled to theoretical rebar firsi vield, Ay Cycled to iheoratical rebar first vield, Ay
TESTI TEST?
TESTIT TEST?T
TERTLP TESTP
TESTIPT TESTTPT
Oyched to 1.5 Ay Cyched to 1.5 Ay
TEST2T TEST:
TERT2P TESTAT
TESTIPT TESTEP
TESTAP
Crycled to 2.5 Ay Cycled io 2.5 Ay
TERTS TESTY
TEST3T TESTST
TEST3IP TESTSP
TERT3PT TESTYPT
Cyehed o 4.0 Ay Cycled to 4,0 Ay
TEST4 TESTIO
TEST4T TESTIOT
TEST4P TEST10P
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14. APPENDIX B: FOUR-DEGREE-OF-FREEDOM TEST STRUCTURE

14.1 Test Structure Description

A four-story building structure was used as a test bed, shown in Fig. 92, The structure consists
of assembled aluminum columns and blocks using bolted joints with a rigid base. At each floor,
four aluminum columns (17,78 » 2.54 » 1.27 ¢m) are connected to top and bottom aluminum
blocks (30 = 30 = 2.54 cm), which constructs a four-degree-of-freedom system. Additionally, a
center column (15 » 2.54 = 2 54 ¢m) is suspended from the top floor, shown in Fig. 92, which is
used to induce nonlinear behaviors when it contacts a bumper mounted on the bottom of the floor,
The position of the bumper can be adjusted to vary the extent of the nonlinearity. The structure
slides on rails that allow movement in the x-direction only, as shown in the figure,

Floor 3 (mass 4}

Floor 2 (mass 3}

Floor 1 {(mass 2)

Base (mass 1)

(a) Four-story building structure

(b} A bumper in contact with the
suspanded eolumn

Figure 92. Test structure setup,

14.2 Data Acquisition

An electromagnetic shaker provides the excitation to the base floor (mass 1) of the structure.
The structure and shaker are mounted together on a baseplate (762 < 30 x 2,54 cm). A force
transducer (sensitivity 2.2 mV/N) was attached at the end of stinger to measure the input force
from the shaker Four accelerometers of sensitivity 1 V/g were attached at the opposite side from
the excitation source to measure the response from each floor. Figure 93 shows the location of
the accelerometers, These accelerometers are mounted 1n the middle of the floor in order to avoid
measuring the torsion modes of the structure.

A Dactron Spectralbook FFT Analyzer was used to collect and process data. The output
channel of this system is connected to a Techron 5530 Power Supply Amplifier that drives the
shaker. The five input channels were utilized through out the testing shown in Table 5,
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Figure 93. Attachment of accelerometers.

Table 5. Data Acquisition Channels

Transducers Sensitivity
Channel 1 Force Transducer 22 mViN
Clannel 2 Accelerometer [rom Mass | 1000 mVig
Clannel 3 Accelerometer from Mass 2 1000 mVig
Channel 4 Apcelerometer [rom Mass 3 1000 mVfg
Clannel 5 Accelerometer from Mass 4 1000 mVig

14.3 Data Files

The data set correspond to testes performed with band-limited random excitation. The sampling
frequency was set to 320 Hz with 800 lines (2048 time domain data points, which correspond to
a frequency resolution of 0.156 Hz). A band-limited random excitation in the range of 20-150
Hz was provided to the system. This excitation signal was chosen in order to avoid the rigid body
modes of the structure that are present at lower than 20 Hz.

For the linearity check, two different levels of excitation were provided, one with 2 V RMS
and the other with 0.5V RMS, Three measurements were made with each excitation level, In
order to introduce the nonlinearity, the bumper was set in contact with the center column
between Mass 3 and Mass 4. The testing was then repeated at each excitation level, recording
two measurements under this condition,
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A Hanning window was applied to the time domain data for frequency response estimates
and 15 averages were performed to improve the signal to noise ratio. For each test, time domain
data, frequency response functions, and coherence functions were recorded.

Table 6 summarizes the band-limited random excitation data files that are available at
www lanl gov/projects/ei

Table 6. Band-Limited Random Excitation Data Files

Contents of File
Filename Test Conditions # of Tests
Lin 2VRMS. mat* 2% RMS input. Mo bumper 3
NonLin 2VRMS. mat* 2% RMS input, With bumper 2
Lin 03VRMS mat* 0.3% RMS input. No bumper 3
NonLin 03VRMS. mat* 0.3% RMS inpul. With bumper 2

* The files are in the Matlab structure data format. H: frequency response funclions: C: coherence
funcions; T: tune domain data; freg. tme; frequency and time axis respectively. The number corresponds
to the channel number.

Next a single-frequency harmonic excitation was used to excite the structure. The same
experimental setup as in the Band-limited random excitation was applied. Instead of providing
random excitation, a single frequency sinusoidal signal was provided to the system in order to
observe superharmonics caused by nonlineanity, Two frequencies (53 Hz and 70Hz) were
chosen, which corresponds to 3 and 4" resonant frequencies of the system.

Both sinusoidal signals were applied with the sampling frequency of 2560 Hz and 16384
data points. The same bumper was used to introduce the nonlinearity. Two measurements at each
condition (with and without bumper contact, 53 and 70 Hz) were made. Time domain data and
auto-power spectrum data were recorded for each test.

Table 7 summarizes the single-frequency harmonic excitation data files that are available at
www.lanl. gov/projects/e

Table 7. Single-Frequency Harmonic Excitation Data Files

Contents of File
Filename Test Conditions # of Tests

Lin 53 Hz ma® 53 He sinusoidal input. No bimper 2
NonLin_ 53 He mat® 53 He sinmsoidal input, With bumper 2

Lin_ 70 Hz ma® 53 He sinusoidal input. No bimper 2
NonLin_ 70 Hi mat® 53 He sinmsoidal input, With bumper 2

# The files are in the Matlab stmctore data formal. T: time domain data; G astospectruny, freq, (ime;
frequency and time axis respectively. The mumber corresponds to the channel number,
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Finally, an impact excitation was applied to the structure. For this testing, the stinger and the
force transducer used to connect the shaker were removed from the structure The excitation was
aiven to Mass 2 at the exact opposite location of the accelerometer connected to Channel 3. An
impact hammer (PCBO86ID20, 0.23 mV/N) was used. The sampling frequency was set to 320 Hz
with 400 lines (1024 time domain data points, a frequency resolution of 0.312 Hz). The
frequency response functions, auto-power spectra, and coherence functions were calculated wath
15 averages and no window. For the reciprocity test, an accelerometer was placed to the
excitation location and the impact was applied to the location where the accelerometer was
placed. The reciprocity test was done in sequence for all four accelerometers. These tests were
performed with and without the bumper contact.

Table 8 summarizes the impact excitation data files that are available at
www lanl.gov/projects/ei.

Table B. Impact Excitation Data Files

Conicnis of File
File Name Test Conditions No. of Tests
Lin_Tmpact.mat® [mpact inpul, No bumper 3
Lin_Tmpact. Reciprocity . mat™ [mpact input, No bumper®*® 2
MNonLin_Tmpact mat* [mpact input, With bumper 5
MNonLin_Impact_Reciprocity . mat® [mpact input, With bumper** 2

* The files are in the Matlab structure data Format, H: frequency response functions, € coherence
functions, freq: Mrequency axis. The number corresponds to the channel number,

=& Egch frequency response fanction 15 measured after the locations of the acceleromeler and the mmpact
location is switched.

I5. OTHER ENGINEERING INSTITUTE STRUCTURAL HEALTH MONITORING
REPORTS AND THESES

All reports and theses can be downloaded from www lanl gov/projects/ei
Reports

o “Power Harvesting for Embedded Struciural Healih Monitoring Sensing Systems, " Los
Alamos National Laboratory report, LA-143 14-MS (2007).

o A Review of Siructural Health Monitoring Literamre from 1996-2001," Los Alamos
National Laboratory report LA-13976-MS (2004).

o “Damage Prognosis: Current Status and  Futire Needs,” Los Alamos National
Laboratory report LA-14051-MS (July 2003).

o “Damage Detection in Mechanical Structures Using Extreme Value Statisties.” Los
Alamos National Laboratory report; LA-13903-MS (August 2002).
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“Applving the LANL Statistical Patiern Recognition Paradigm for Structural Health
Momitoring to Data from a Surface-Lffect Fast Patrol Boar” Los Alamos National
Laboratory Report Los Alamos National Laberatory report LA-13761-MS, (Jan. 2001},

"Structural Health Monitoring Studies of the Alamosa Canyon and [-40 Bridges." Los
Alamos National Laboratory report, LA-13635-MS (July, 2000).

*Damage fdentification and Health Monitoring of Structural and Mechanical Systems
From Changes in their Vibration Characteristics: 4 literature Review” Los Alamos
National Laboratory report LA-13070-MS (April 1996),

“Damage Detection Algorithms Applied to Experimental and Numerical Modal Data

From the I-40 Bridge" Los Alamos National Laboratory report LA-13074-MS (March
1996

“Finite Element Analysis of the 1-40 Bridge Over the Rio Grande," Los Alamos National
Laboratory report LA-12979-MS_ (February 1996).

“Dynamic Characterization and Damage Detection in the [-40 Bridge over ihe
Rio Grande," Los Alamos National Laboratory report LA-12767-MS. (June 1994).

Theses and Dissertation

Development and Integration of Hardware and Software for Active-sensors in Structural
Health Monitoring by Timothy Overly (LA-14342-T)

Structural Diagnostics of CFRP Composite Aircraft Components by Ultrasonic Guided
Waves and Built-In Piezoelectric Transducer by Howard Matt (LA-14319-T)

Development of an Impedance Method Based Wireless Sensor Node for Monitoring of
Bolted Joint Preload by David Mascarenas (LA-14303-T)

Pipeline Structural Health Monitoring Using Macro-fiber Composite Active Sensors by
Andrew Thien (LA-14285-T)

Software for Manipulating and Embedding Data Interrogation Algornthms into Integrated
Systems (Special Application to Structural Health Monitoring) by David Allen (LA-14180-
T)

Use of Response Surface Metamodels in Damage Identification of Dynamic Structures by
Amanda Cundy (LA-14045-T)
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