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1. Introduction

Cosmological observations and conceptual questions of quantum gravity motivate

string-theoretic models of de Sitter space and inflation (for reviews, see [1,2]). Several

general classes of constructions of metastable dS4 have been outlined in different corners

of string theory with various scales of supersymmetry breaking [3][4,5] [6]. These followed

earlier work on flux stabilization such as [7,8,9,10,11] and the original realization [12,13]

that string theory produces a finely-spaced discretuum of flux contributions to the moduli

potential.

Simple and explicit models of compactification down to AdS4 have been found using

this general framework1 in type IIB string theory [18,19,20] and IIA [14,16,21,15,22]. The

latter set are particularly appealing, as they make use of power law effects in the string

coupling and inverse radii to stabilize all the moduli in some examples [14]. A number of

works (e.g. [23]) have been developing a systematic treatment of the consistency conditions

for the ingredients involved in this class of compactifications (as well as more general

candidate models involving “nongeometric fluxes” such as [24,25,26]). Although some of

the previously outlined de Sitter constructions use only such power law forces [3,6], none

attain the explicit simplicity of the known AdS4 models.

In this work, we obtain a reasonably simple and explicit set of metastable dS4 minima

of the moduli potential by combining the most basic features of [6] and [14,16,21,15,22,23],

using classic classical results of [27]. From [6] we take the strategy of using negative scalar

curvature as a leading positive term in the potential, but in this case we use a simpler

compactification (an orientifold of a product of two Nil three-manifolds). The curvature

energy competes against – without overwhelming – the contributions from orientifolds,

branes, and RR fluxes in the subsequent orders in the expansion in the string coupling gs.

1 Some authors, notably T. Banks, have questioned the use of the effective field theories de-

scending from string theory in backgrounds such as de Sitter or anti de Sitter space which are,

globally, infinitely far away from the flat spacetime or linear dilaton backgrounds in which the

effective theories were originally derived. Moreover, as in [14,15,16], we will consider massive IIA

supergravity, which does not have an exactly flat spacetime solution and so has not been derived

precisely from a string S-matrix in any background (see [17] for an exploration of duality in this

context). However the energy densities in our solution will be small away from defects (whose

tensions and charges are well understood in weakly curved spacetime), and we regard it as a

conservative working hypothesis that the effective theory applies in this regime.

1



Nil manifolds are twisted versions of tori, allowing us to fairly straightforwardly generalize

the mechanism employed in [14] in the toroidal orientifold case.

In addition to providing positive potential energy, the geometry – and correspond-

ing topology – of our compactification manifold automatically plays two other very useful

roles. First, in contrast to the zero curvature case, the curvature yields positive mass

squared for some angular metric deformations, an effect which can be understood from the

reduced isometry group of the compactification (which corresponds to a reduced number of

massless vector bosons) [27]. Secondly, the topology of the Nilmanifolds support fractional

Wilson lines and corresponding fractional Chern-Simons invariants, which provide useful

small coefficients of the corresponding terms in our moduli potential. This feature of our

construction is similar to the strategy applied earlier to heterotic Calabi-Yau compactifi-

cations in [28]. In the present case of compactifications on nilmanifolds, there is an infinite

sequence of spaces with a finer and finer discretuum of fractional Chern-Simons terms.

The topology also supports new sectors of wrapped branes. In order to introduce

enough perturbative competing forces to obtain de Sitter solutions, we introduce KK

monopoles (which are five-branes filling space and wrapping a two-cycle in the compact-

ification). These branes break the supersymmetry at a high but controllable scale: the

supersymmetry breaking scale is at the lowest of the KK mass scales in the geometry. For

this reason – and also to exhibit the basic physical forces in the problem – we work directly

with the scalar potential in four dimensions. (See [29] for SUSY-breaking orbifolds of the

AdS4 models of [14] which also break supersymmetry at a high scale in a controlled way.)2

It would be interesting to investigate the possibility of a similar mechanism preserving

lower-energy SUSY, and we will mention some ideas in this direction. In any case, it is

perhaps worth emphasizing that after supersymmetry breaking, the methods for gaining

control of solutions in the effective theory are essentially the same at different scales of su-

persymmetry breaking: one requires control over perturbative quantum and α′ corrections

via a well-defined approximation scheme in which the forces used to stabilize the moduli

are the dominant ones. The non-renormalization theorems of supersymmetry, while helpful

in restricting the set of corrections to compute, can at the same time complicate moduli

stabilization by preventing useful contributions to the moduli potential in the first place.

For this reason we obtain our explicit solutions most easily without imposing low-energy

SUSY, although the simplifications of ten-dimensional SUSY will play a useful role.

2 For recent discussions of the SUSY packaging of the effective action from compactifications

on nilmanifolds with various fluxes, see e.g. [23,30].
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We will exhibit sequences of solutions which have parametrically small curvature,

flux densities, and string coupling as we take an integer quantum number M to be large.

Moreover, in the solutions there is a tuneably small ratio between the de Sitter Hubble

scale H and the masses of the scalar fields.

However, there is a subtlety in our construction. In the large M limit, although

the curvature becomes parametrically weaker we will have a small radius Lx

√
α′ ≪

√
α′

along two directions of the solution (the circle fibers of the nilmanifolds). Relatedly, in

the simplest version of the construction, the heaviest moduli masses end up of the same

order as the lightest KK and winding masses. Nonetheless, we will exhibit a representative

numerical solution at M of order 10, for which Lx is not substringy and for which the

corrections are expected to be small since the couplings and curvatures are weak. Finally,

in the parametric M ≫ 1 limit we will suggest a more elaborate method to push the

(otherwise marginally overlapping) moduli, winding, and KK scales apart from each other

(by introducing extra NS5-branes which locally reduce the inverse string coupling and

hence the KK fivebrane tensions). In any case, this small-Lx limit remains a regime of low

curvature and approximate supersymmetry as we will explain at the relevant points.

A nilmanifold by itself could simply be T-dualized along the circle fiber directions to a

torus with Neveu-Schwarz H flux [31], but our construction involves other ingredients such

as nontrivial Neveu-Schwarz B fields and H flux and we will stay in our original T-duality

frame for convenience. It is interesting to note that in the models of [14], the moduli

masses were of order the curvature scale of the AdS4. Here, this problem is avoided, with

the moduli masses ending up well above the Hubble scale of our de Sitter – but in the

simplest parametric limit they bump up against the next higher scale in the problem, the

mass scale of the KK modes.

In model building in general and moduli stabilization in particular, it is important to

separate the “forest” (the general mechanisms) from the “trees” (the idiosyncrasies of a

given construction). One of the general lessons of the present work – obtained via a simple

way of organizing the analysis – is that the AdS4 models [14,16,21,15,22] and the like admit

“uplifting” terms in their potential from a combination of negative scalar curvature and

branes. At the level of the overall volume and string coupling, the first point was also made

recently in the interesting work [32] which we received as this paper was in preparation

(and see [33] for an investigation of using quantum effects to obtain dS solutions). A

second general lesson is that the topology of spaces of negative scalar curvature naturally
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supports fractional Wilson lines and fractional Chern-Simons invariants, which yield useful

small coefficients in the potential.

Although a generic cosmological solution in the landscape is quite complicated – a

fact that may be crucial for modeling the observed scale of the dark energy as proposed

in [12] – specific models are useful. If completely explicit, such constructions remove

the possibility of a conspiracy working against the genericity arguments employed in the

general proposals. Conversely, their details expose limitations to tuneability of parameters

in specific contexts. In this spirit, recently a clean no-go result for inflation in IIA Calabi-

Yau compactifications (with a subset of the possible orientifolds, fluxes, and branes) was

given in [32]. In constructing de Sitter in IIA, we were naturally led to ingredients going

beyond the assumptions of [32], and together these results make it possible to focus on an

appropriate set of degrees of freedom to obtain accelerated expansion in IIA.

In particular – and this is one of the main motivations of the present work – explicit

constructions facilitate concrete study of the question of what microphysical degrees of

freedom are required to formulate cosmological spacetimes, perhaps in the same way that

concrete black brane solutions facilitated the development of black hole state counting and

the AdS/CFT correspondence. Nilmanifolds, like hyperbolic spaces, play a central role

in geometric group theory [34], and hence compactifications on them may be of further

conceptual interest (either at the perturbative level [35,36] or holographically [37]).

The organization of the paper is as follows. In §2, after recording our ten dimensional

action and conventions we provide a convenient way of organizing the problem of checking

for de Sitter minima of the moduli potential. In §3, we describe a particular class of

models on nilmanifolds in detail. We first describe each ingredient and its contribution to

the four dimensional potential, noting subtle features as they arise. Next, we demonstrate

the stabilization of the coupling and volumes analytically and numerically, noting the

behavior of the relevant scales in the parametric limit of interest and suggesting a more

involved setup which separates the scales further. We separately analyze the angular

moduli, showing how curvature and the other ingredients source them and can be arranged

to lift them; we also note various orbifold variants of the model which could be used to

project out many of the angular moduli. In §4, we outline a generalization to simple

de Sitter solutions on Sol manifolds. Finally, we conclude in §5. Illustrated step-by-step

instructions are included at the end.
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2. Preliminaries

2.1. Action and conventions

We will follow some of the conventions of [14] (which itself followed [15]); for example

our RR fields satisfy CRR = CPolch
RR /

√
2 relative to the conventions in [38]. We will start

from the ten-dimensional limit of type IIA string theory, for which the action contains

kinetic terms

Skin =
1

2κ2

∫

d10x
√
−G

(

e−2φ

(

R + 4(∂µφ)2 − 1

2
|H̃|2

)

−
(

|F̃2|2 + |F̃4|2 + m2
0

)

)

(2.1)

(with |Fp|2 = Fµ1...µp
Fµ1...µp/p! and 2κ2 = (2π)7(α′)4). Here the full field strengths

include Chern-Simons terms

H̃3 = dB + Hbg
3

F̃2 = dC1 + m0B

F̃4 = dC3 − C1 ∧ H3 −
m0

2
B ∧ B

(2.2)

where the RR zero-form field strength F0 is denoted m0 as in [14] We will need zero-form,

3-form and 6-form fluxes. As discussed in [14], the flux quantization conditions can be

written as

m0 =
f0

2
√

2π
√

α′ p = (2π)2α′h3 K =
1√
2
(2π)5(α′)5/2f6 (2.3)

where f0, f6 and h3 are integers. Here H = pω3 is the NS flux through a 3-cycle Σ̂3, with

ω3 normalized such that
∫

Σ̂3

ω3 = 1, and F6 = Kω6 where the integral of ω6 over the

compactification manifold is equal to one. We will also make use of fractional Wilson lines

descending from B and the corresponding fractional Chern-Simons invariants following

from (2.2) in the presence of nontrivial m0 flux. The B field is normalized in the conven-

tional way so that it appears in the worldsheet path integral via the factor Exp[ i
2πα′

∫

B].

Its periodicity is
∫

Σ2

B =

∫

Σ2

B + (2π)2n (2.4)

for integer n.

In the next section, the curvature and flux terms in (2.1) as well as orientifold planes

and KK5-branes will yield contributions to the potential energy U in four dimensions upon

compactification on a ZZ2 orientifold N /ZZ2 of volume L6
0(α

′)3/2. (The covering space N
of the orientifold has volume L6

0, hence our notation.) We will also mention the possibility

5



of further orbifolding prescriptions, which would modify the volume, flux quantization,

and tadpole cancellation conditions in a way which can be obtained via a straightforward

generalization of the unorbifolded case.

As reviewed explicitly in [1], it is most convenient to work in four-dimensional Einstein

frame obtained by scaling out of the kinetic terms the dependence on the dynamical scalars.

Denoting eφ ≡ gse
φ̃ and L6/2 ≡ (L6

0/2)e6σ, with φ̃ and σ fluctuating scalar fields, we

change variables to

G
(4)
µν,E = e6σ−2φ̃G

(4)
µν,S (2.5)

where G
(4)
µν,S denotes the four-dimensional components of the string-frame metric G ap-

pearing in (2.1). The four-dimensional potential energy density in Einstein frame is then

given by

U = M4
4

e4φ

(L6/2)2
Us. (2.6)

where M4 ∼ L3

0

gs

√
2α′

is the four dimensional Planck mass scale and Us ≡ − 1
2(α′)2

∫

N/ZZ2

e−2φR+

. . . is the potential energy in string frame.

2.2. Structure of the Potential

Starting from a type II perturbative string limit and defining the 4d coupling

g =
eφ

(L3/
√

2)
(2.7)

the moduli potential in four-dimensional Einstein frame has the form

U = M4
4 g2(a − bg + cg2) + . . . (2.8)

where a, b, c depend on other moduli σI . Taking the case with a, b, c > 0 at the minimum

in the σI directions, and solving the quadratic equation obtained from imposing g∂gU = 0

reveals [3] that at fixed a, b, c, a positive energy solution obtains if

1 <
4ac

b2
<

9

8
. (2.9)

Violating the lower constraint yields AdS rather than dS, while violating the upper con-

straint removes the local minimum in the potential in the g direction; i.e. for 4ac/b2 = 9/8

there is an inflection point in the potential. Parameterizing the third coefficient in (2.8)
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by c = b2

4a
(1 + δ), the range (2.9) corresponds to 0 < δ < 1/8 and the potential takes the

form
U

M4
4

= g2a

(

1 − b

2a
g

)2

+ δ
b2

4a
g4 (2.10)

Because the algebra involved in minimizing the potential can get somewhat complicated in

practice, it proves useful to organize the problem by first minimizing δ at a value slightly

above zero and then showing that there is a nearby minimum of U itself.

In particular, we will exhibit a compactification with the following property. Mini-

mizing the quantity 4ac/b2 as a function of the other moduli σI yields a value in the range

(2.9); we will explicitly use discrete quantum numbers to tune the minimal value of 4ac/b2

to be close to but slightly greater than 1. That is, we start in a configuration σI = σI,0

minimizing δ, with δ0 ≈ 0.

If we had δ0 = 0, then U would be minimized in the g direction at g0 = 2a0/b0, and

it is immediately clear that the potential (2.10) would rise quadratically in each direction

in field space away from the configuration σI0, g0 = 2a0/b0. That is, minimizing δ would

also minimize U (at fixed g = g0). For δ0 tuned to be small but nonzero, there is still a

local de Sitter minimum of the potential which is close to σI0, g0 in field space, as can be

seen as follows. For g = g0 = 2a0/b0 and σI = σI0 (the values minimizing δ), with small

positive δ0, the potential is of order

U ∼ δ0Ū (2.11)

and there is a small tadpole
∂U
∂σI

∼ δ0Ū (2.12)

where Ū is of the same order as the individual terms in the potential a0g
2
0 ∼ b0g

3
0 ∼

g4
0

b2
0

4a0

. The distance the fields are pushed by this tadpole is small, however, because in

this configuration σI0, g0 there is also a positive quadratic term which is not suppressed

as δ0 → 0:
∂2U
∂σ2

I

∼ ∂2δ

∂σ2
I

Ū ∼ Ū (2.13)

Similar scalings to (2.12)(2.13) apply to the derivatives with respect to the dilaton. The

result is that the small tadpoles shift the fields a distance of order δ0 in field space to a local

minimum. At this local minimum, the potential is still of order (2.11) (plus subleading

terms of order δ2
0).

After specifying our model, we will show analytically that there is a minimum δ0 of

δ, which can be tuned close to zero by appropriate choices of discrete quantum numbers,
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thus providing a de Sitter minimum of the potential. We will then check our results by

numerically exhibiting the corresponding minimum of the potential for the coupling and

volumes, for specific values of the discrete quantum numbers.

3. Models on Nilmanifolds

Let us start from type IIA string theory in ten dimensions and consider a compact-

ification on an orientifold of a product N ≡ N3 × Ñ3 of two Nil three-manifolds (a.k.a.

twisted tori, a.k.a. spatial sections of Bianchi II cosmologies, a.k.a. three-tori with “metric

flux”). These manifolds are obtained starting from the noncompact geometry

ds2

α′ = L2
u1

du2
1 + L2

u2
du2

2 + L2
x

(

dx +
M

2
[u1du2 − u2du1]

)2

+

+ L2
u1

dũ2
1 + L2

u2
dũ2

2 + L2
x

(

dx̃ +
M

2
[ũ1dũ2 − ũ2dũ1]

)2

= L2
u1

η2
1 + L2

u2
η2
2 + L2

xη2
3 + L2

u1
η̃2
1 + L2

u2
η̃2
2 + L2

xη̃2
3

(3.1)

where M is an integer and η1 = du1, η2 = du2, η3 = dx+ M
2

[u1du2−u2du1] are one-forms

invariant under the Heisenberg group of isometries of the nilgeometry (and similarly for the

tilded coordinates). We compactify this space by making identifications on the coordinates

by a discrete subgroup of the isometry group generated by elements:

tx : (x, u1, u2, x̃, ũ1, ũ2) → (x + 1, u1, u2, x̃, ũ1, ũ2)

t1 : (x, u1, u2, x̃, ũ1, ũ2) → (x − M

2
u2, u1 + 1, u2, x̃, ũ1, ũ2)

t2 : (x, u1, u2, x̃, ũ1, ũ2) → (x +
M

2
u1, u1, u2 + 1, x̃, ũ1, ũ2)

(3.2)

and similarly for the tilded coordinates. The Nil 3-manifold can be described as follows.

For each u1, there is a torus in the u2 and x′ ≡ x − M
2 u1u2 directions (under this change

of coordinates we have η3 = dx′ + Mu1du2). Moving along the u1 direction, the complex

structure τ of this torus goes from τ → τ + M as u1 → u1 + 1. The projection by tu1

identifies these equivalent tori. The directions u1 and u2 are on the same footing; similar

statements apply with the two interchanged and with x′ replaced by x′′ ≡ x + M
2 u1u2.

We will orientifold the space by an exchange of the tilded and untilded coordinates

combined with an exchange of left and right movers; hence the volume of our compactifi-

cation will be L6/2 where

L6 = L2
xL2

u1
L2

u2
(3.3)
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is the volume of the full compact space N in string units.

The projections (3.2) generate the fundamental group of N . They satisfy the relation

t2t1t
−1
2 t−1

1 = tMx (3.4)

The first homology is given by the abelianization of the fundamental group, obtained by

setting all commutators to the identity. For each nil three-manifold this is ZZ
2 × ZZM . The

last factor comes from cycles introduced by the projections tmx with m < M (since for

m < M these elements are not commutators in the fundamental group, and hence are not

set to the identity by the abelianization). The nilmanifold with M 6= 1 is a freely acting

ZZM orbifold of the a nilmanifold with M = 1, obtained by projecting by translations along

the x direction. The smaller cohomology group than that of the 3-torus arises because of

the relation

dη3 = Mη1 ∧ η2, (3.5)

which means η3 is not closed and η1 ∧ η2 is exact, reducing by one the dimension of

H1 and H2. As a result, there are fewer continuous moduli from NS and RR gauge

potentials on nilmanifold compactifications as compared to tori, and there are additional

vacua corresponding to discrete Wilson lines which we will employ.

The compact nilmanifold also has a reduced isometry group: upon compactification

(3.2), the nilmanifold retains only the U(1) isometry corresponding to continuous shifts of

x, in contrast to the U(1)3 isometry group of T 3. As mentioned above, this will help lift

some of the scalar degrees of freedom which are eaten in the generalized Higgs mechanism

explained in [27].3

We have chosen a symmetric configuration (3.1) to expand around. This renders the

analysis simpler since enhanced symmetry points are automatically extrema of the full

effective potential in symmetry-breaking directions. Of course we must lift all the light

scalar fields including the symmetry-breaking approximate moduli of the metric as well as

Lu1
, Lu2

, Lx and the string coupling gs. Throughout the construction, for simplicity we

will maintain a symmetry between (x, u1, u2) and (x̃, ũ1, ũ2), a symmetry which will be

enforced by an orientifold projection.

3 This fact that a non-Ricci-flat compactification introduces fewer moduli than its Ricci-flat

counterpart is an example of a more general phenomenon; hyperbolic spaces of dimension greater

than two are famously rigid, there being no continuous deformations of the isometry groups used

to compactify the space by projection from the hyperboloid.
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The scalar curvature of N = N3 × Ñ3 is

R = −L2
xM2

α′L4
u

(3.6)

where L4
u ≡ L2

u1
L2

u2
This contributes a positive term in the four-dimensional Einstein

frame potential energy (2.6)

UR =
M4

4

2

L2
xM2

L4
u

e2φ

(L6/2)
=

M4
4

2

e2φM2

(L6/2)

L4
x

L6
= M4

4

g2L4
x

2L6
(3.7)

descending from the 10d Einstein-Hilbert action, where we used (3.3) and the above defi-

nition of g (2.7). An important feature of (3.6)(3.7) is the fact that for MLx/Lu1
≪ 1 and

MLx/Lu2
≪ 1, the inverse curvature radius is smaller than the KK scales 1/Lx, 1/Lu1

,

and 1/Lu2
. This is related to the fact that the nilmanifold is T-dual, along the x direction,

to a T 3 with NS three-form flux – a system for which moduli masses are below the KK

scale of the T 3 [31]. As the x circle shrinks (Lx → 0) the curvature becomes weaker.

In our final solution, the curvature and flux densities will be small4 but M will be

large enough that L2
xM ∼ 1 parametrically as M → ∞. At modest values of M (e.g.

M ∼ 10), we will find numerically that Lx can be slightly greater than string scale. In the

parametric limit at small Lx, one can consider T-dualizing to obtain a large circle, but we

will continue to describe the system in the original T-duality frame. One reason for this is

that our solution will involve discrete Wilson lines from the NS B field as well as NS flux,

which complicate the T-duality transformation. Although Lx gets small in this limit, the

winding modes will remain parametrically at least as heavy as the moduli and the lightest

KK modes in all versions of the constructions.

In the most symmetric case where the lightest KK modes are not be parametrically

heavier than the heaviest moduli, but we will still analyze and stabilize the moduli fields

separately from the KK modes, for two reasons. First, the KK (and winding) modes –

treated separately themselves – are massive (those with winding or momentum on the T 2
x,x̃

exhibiting interesting Landau level degeneracies on the nilmanifold with H flux [36]). This

together with our analysis of the moduli masses will establish that the diagonal blocks

in the moduli and KK mass matrices are positive. The main remaining question in this

version of the construction is then whether large off-diagonal terms in the mass matrix

4 For substantial recent progress controlling worldsheet theories with substantial curvature and

H flux, see [39].
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could arise. As we will see after assembling our ingredients, the symmetries of the problem

help suppress mixing between the lightest KK modes and the heaviest moduli, suggesting

that this need not happen (though we have not analyzed this combined problem in nearly as

much detail as the moduli themselves). Because of this uncertainty, we will also suggest a

generalization of the model with an extra ingredient which allows us to push the marginally

overlapping scales apart.

This contribution (3.6)(3.7) pertains to the diagonal metric (3.1); the curvature will

also depend on a subset of the off-diagonal deformations, lifting them in a way originally

computed in [27]. The approximate moduli of nilmanifolds were laid out in a form respect-

ing the symmetry structure of the theory in [27]. They consist of metric deformations,

deformations of the NS NS two-form potential, and RR axions.

Let us start with the metric moduli. The metric modes are

∆ds2 = GIJηIηJ + GĨJ̃ η̃Ĩ η̃J̃ + GIJ̃ηI η̃J̃ (3.8)

with GIJ ≡ GĨ J̃ enforced by an orientifold action we will introduce below. Of these,

Gxui
,Gx̃ũi

, and Guiũj
are lifted in the Higgs mechanism explained in [27]. As discussed

above, in contrast to the U(1)3 isometry group of a T 3, only one U(1) isometry x →
x + λ survives from each Nil three-manifold. In compactification, isometries yields lower-

dimensional gauge bosons from off-diagonal metric modes. The would-be gauge bosons

corresponding to the broken U(1)2 still exist in the present case of a twisted three-torus,

but in a Higgsed phase.

Consider now the Gxx̃ mode. Dimensionally reducing first on one of the nilmanifold

factors, say N3, this is a component Amet
x̃ of a U(1) gauge boson Amet

µ arising from the

continuous isometry of the metric in the x direction. The Wilson line of this gauge boson

around the x̃ direction is constrained by the relation (3.4):

(e
i
∮

γx̃

Amet

)M = 1 ⇒
∮

γx̃

Amet = 2π
q′

M
q′ ∈ ZZ. (3.9)

In particular, there is not a continuous Wilson line degree of freedom associated with this

mode: the mode A3̃η̃
3 is massive, as can be seen from the formulae in [27] (where the

discrete Wilson line degree of freedom is not described directly). A similar statement

holds also for the NS B field. We will find that discrete Wilson line degrees of freedom are

very useful in our setup, and will describe them and their effects in more detail below.
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Among the angular moduli, this curvature potential leaves unfixed the modes

Gu1u2
,Gũ1ũ2

,Guix̃ = Gxũi (i = 1, 2). The modes which are lifted by the curvature can

also get contributions from other terms in the moduli potential, as we will discuss in ana-

lyzing the angular moduli below in §3.7. In addition, we must stabilize the diagonal moduli

GII = GĨ Ĩ , equivalently L2
x, L2

u1
, L2

u2
(one of which can be traded for the overall volume

mode (3.3), which is a runaway direction in field space).

Some of the B, C1, C3, and C5 fields will be lifted by a combination of the F̃ 2 terms

from (2.1)(2.2) and by the orientifold projection (and in more general examples, orbifold

projections). Others will be unsourced by the leading terms in the potential, and be fixed

by higher order, lower scale effects.

3.1. Orientifold and fluxes

In order to obtain a metastable solution, we will require a negative term in the poten-

tial, at an intermediate order in the expansion about weak coupling and large volume, since

the potential energy in four dimensional Einstein frame decays to zero at weak coupling

and low curvature [1]. To this end, introduce an O6-plane as in [14], as follows.5 Mod out

the worldsheet sigma model by an exchange of tilded and untilded embedding coordinates

(and Fermi partners) combined with an exchange of left and right movers:

Ω : (x, uj, x̃, ũk) ↔ (x̃, ũj, x, uk) L ↔ R (−1)FL (3.10)

As reviewed in [14], under the orientifold transformation, B, C1, and C5 are are odd.

Geometrically, (3.10) introduces on O6 plane wrapped on the 3-cycle traced out by the

fixed point locus (x, uj) = (x̃, ũj). The negative tension of the O6 plane leads to the

potential energy contribution

UO = −κ2(2µ6)
g3

s

(L6/2)2
(V olO6) = −23πg3 (3.11)

5 There are other, discretely distinct, options for defining the space group of the orientifold.

Another example would be to mod by the same orientifold action, but – in compactifying the

original space via the discrete isometries (3.2) – to project only by the group generated by elements

of the form tytỹ and tyt−1

ỹ
. This would yield 23 different O6-planes from the fixed points of the

group action, on a space of volume 4L6. We expect similar results for all these cases, but the

detailed factors in the potential would differ in different examples.
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where µ6 is the D6-brane tension (equal to π/κ2) and V olO6 is the volume of the cycle

wrapped by the O6-plane (which in our case is (
√

2)3L3).

We must cancel the O6-plane’s charge. Following [14], we can use fluxes to cancel

the tadpole for C7. The O6-plane constitutes a localized source of F2 within the 3-cycles

dual to the cohomology classes η1 ∧ η2 ∧ η3 − η̃1 ∧ η̃2 ∧ η̃3, η1 ∧ η̃2 ∧ η3 − η̃1 ∧ η2 ∧ η̃3, and

η̃1 ∧ η2 ∧ η3 − η1 ∧ η̃2 ∧ η̃3. The tadpole cancellation condition is that for each 3-cycle Σ3,

m0

∫

Σ3

H = −2
√

2µ6κ
2nO6 (3.12)

where nO6 is the net number of O6-planes sitting at points in Σ3. Writing

H ≡p1

(

η1 ∧ η2 ∧ η3 − η̃1̃ ∧ η̃2̃ ∧ η̃3̃
)

+ p2

(

η̃1̃ ∧ η2 ∧ η̃3̃ − η1 ∧ η̃2̃ ∧ η3
)

+ p3

(

η1 ∧ η̃2̃ ∧ η̃3̃ − η̃1̃ ∧ η2 ∧ η3
) (3.13)

where pi ≡ −h3,i(2π)2α′ (c.f. (2.3)), and imposing (3.12) (with nO6 = 1 O6-planes passing

through each cycle) sets f0h3,i = 2. We therefore take h3i = h3 for i = 1, . . . , 3, with

f0 = 1 h3 = 2 (3.14)

Note that this satisfies the flux quantization condition on both the covering space and

the orientifold itself. In evaluating (3.12), we took into account the fact that each of the

3-cycles is halved in volume by the action of the orientifold (c.f. [40]).

The O6-plane, H3 flux, and F0 flux together contribute the following terms to the

four-dimensional effective potential in 4d Einstein frame (2.6):

UOHm0
= M4

4

(

3p2g2

2(α′)2L6
− 2

√

2

α′ |m0p|g3 +
α′m2

0g
4L6

4

)

(3.15)

We will also include six-form flux

F6 = Kη1 ∧ η2 ∧ η3 ∧ η̃1 ∧ η̃2 ∧ η̃3 (3.16)

where K = f6(2π)5(α′)5/2/
√

2 in terms of the integer flux quantum number f6. This leads

to the following term in the moduli potential:

UF6
= M4

4 g4 K2

4L6(α′)5
(3.17)
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3.2. Fractional Chern-Simons invariants

The ZZM × ZZM homology cycles described above yield a set of discrete Wilson line

vacua, and corresponding fractional Chern-Simons invariants which we will use to obtain

contributions to the effective potential with tuneably small coefficients, as follows.6 As

discussed in §2.1, the effective action contains a term − 1
2κ2

∫

d10x|F̃2|2 where

F̃2 = dC(1) + m0B (3.18)

with m0 the RR 0-form flux (2.3) and B a Neveu-Schwarz two-form potential. In our

background solution, B will be flat (note that we separated the H flux from dB in (2.2) as

reviewed in [14]). Its fractional Wilson line vacua lead to fractional Chern-Simons forms

m0B, which will provide useful small coefficients in the moduli potential.

In general, a manifold with nontrivial fundamental group π1, can support discrete

Wilson line vacua of gauge fields of a gauge group G – flat connections with nontrivial

holonomy around non-contractible cycles. As reviewed in [41], they correspond to homo-

morphisms from π1 into G, since Wilson lines Uγ = PExp(i
∫

γ
A) must satisfy the group

multiplication law Uγγ′ = UγUγ′ . Since G is abelian in our case, the only discrete Wilson

lines arise from closed paths which are nontrivial in homology (which is the abelianization

of the fundamental group obtained by setting commutators to 1); elements g of π1 which

are commutators (elements of the form g = g1g2g
−1
1 g−1

2 ) have trivial holonomy Ug = 1.

The first homology group of N3 includes the ZZM factor, represented by the closed paths

γm introduced by the projection tmx with m < M (3.2).

Flat connections for gauge fields on nilmanifolds were derived explicitly in [42]. This

construction generalizes to the NS 2-form potential. In a local neighborhood of N , and

for 0 ≤ x < 1, 0 ≤ x̃ < 1, we can take B to be

B =
q

M
(2π)2α′dx ∧ dx̃ +

r

M
(2π)2α′ (dx ∧ η̃1 − dx̃ ∧ η1

)

+ (1 ↔ 2) + . . . (3.19)

The first terms of (3.19) contain the B field analogue of discrete Wilson lines. These are

projected in by the orientifold action (3.10) (using the fact reviewed in [14] that B has

an intrinsic parity under the orientifold, c.f. eqn (2.9) of [14]). The rest indicated by . . .

contains the continuous Wilson lines invariant under the orientifold; these are lifted by the

6 See [28] for a previous example using fractional CS invariants to help in heterotic moduli

stabilization.
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|F̃2|2 term in the potential. The form for B in different neighborhoods is then derived by

using the transition functions between them as in [42].

The discrete Wilson line terms in (3.19) yield

e
i

2πα′

∫

γx×γx̃

B
= e2πi q

M e
i

2πα′
(
∫

γx×γũ1

B−
∫

γx̃×γu1

B)
= e2πi 2r

M (3.20)

and introduces the potential term (from the |F̃2|2 and |F̃4|2 terms in (2.1))

UBWL = 4π4M4
4 m2

0α
′
( q

M

)2

g4 L6

L4
x

+ 16π4M4
4 m2

0

( r

M

)2 g4L3

Lx
+ 28π8M4

4 m2
0

( r

M

)4 g4

L2
x

(3.21)

We will ultimately choose q to be of order 1, and can use the ratio r/M to help tune

the cosmological constant, as well as to help stabilize some angular moduli (though in

that regard, orbifold variants of the construction which remove angular moduli could also

project out the terms proportional to r/M – this would be a consistent choice, since as

we will see these terms are not crucial for stabilizing the coupling and volume moduli).

In writing (3.21), we took L1 = L2, and will consider other ingredients which respect this

symmetry and consistently stabilize the system at this point.

Another way to describe the contribution in the first term of (3.19)(3.20)(3.21) is as

an example of discrete torsion [43]. The torsion cycles γ1 and γ1̃ in our compactification

manifold are obtained by the projection ZZM × ZZM starting from a finite cover (the same

space with M = 1). With the B field (3.19) turned on, the projection in the ZZM winding

string sectors are modified by the factor Exp[ i
2πα′

∫

B] in the worldsheet path integral.

This example has the interesting feature that the discrete torsion is not associated with

an orbifold singularity, since the projection is freely acting.7

3.3. KK5 branes

The nontrivial topology of our compactification manifold can also support wrapped

branes. Spacefilling KK monopoles [45] will play a useful role, providing a needed inde-

pendent “uplifting” term in the potential. These are objects magnetically charged under

a linear combination of the U(1) isometries along the x, x̃ directions, and are extended in

4d as well as along two internal directions. They are T-dual to NS5-branes [46], and we

will refer to them as KK fivebranes.

7 For recent studied of discrete torsion, see e.g. [44].
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As a specific example, we introduce the following set of KK5-branes. Start with nK

KK fivebranes magnetically charged under U(1)x × U(1)x̃ with charges (1,1). (These are

T-dual to NS5-branes at points on a circle of radius ∼ 1/Lx.) Wrap these KK fivebranes

along the the transverse direction from x, x̃ = 0 to txt−1
x̃ and from u1, ũ1 = 0, u2, ũ2 = 0

to tu1
tũ1

tu2
tũ2

. The latter cycle is subject to ordering ambiguities because of the relation

(3.4), but any order will give similar scalings in our moduli potential.8

Topological Consistency Conditions and nK

We must make sure our configuration is consistent with all of the previous ingredients,

and we must cancel all the relevant charges within the compactification. The number nK of

KK5-branes may be constrained to be a multiple of M or to be combined with antibranes

in order to accomplish this. One reason is charge conservation. Each of the nK branes wrap

an ZZM homology cycle. As such, it is not a source for gauge bosons of a continuous gauge

symmetry group, so Gauss’ law does not directly apply to impose charge cancellation.

However, for D-branes in this kind of situation, one does find that K-theory charges must

be cancelled in compact manifolds [47], and a similar constraint may arise in the present

case. To be safe, we will assume such a condition holds in our present context.

Moreover, in discussing the flat connection for B (3.19)(3.20) above, we used the fact

that our compactification manifold is a freely acting ZZM × ZZM orbifold of a nilmanifold,

giving torsion 1-cycles γ1, γ1̃ in the x, x̃ directions which led to the possibility of discrete

torsion (3.20). In the presence of nK < M KK monopoles, however, strings can only be

conserved mod nK [46], so the ZZM winding charge for strings wound around these cycles

is no longer conserved; the cycles γnK

1 and γnK

1̃
bound 2-cycles. By Stokes’ law, in this

situation the fractional Wilson line 1
2πα′

∫

γ1×γ
1̃

B is quantized in units of 1/nK rather than

1/M . For nK a multiple of M , with all the KK5-branes sitting at the same point in their

transverse directions, we recover the ZZM × ZZM symmetry and the consequent discrete

Wilson line (discrete torsion) taken in (3.19)(3.20).

8 As with the other ingredients, there are variants of this configuration which could also be

considered, with sets of KK5-brane stretched in various different directions. This is important for

example in versions in which one orbifolds the geometry, in which the KK5-brane configuration

would need to be invariant under the corresponding symmetry. This can be arranged by using

sets of fivebranes respecting the orbifold symmetry, or if necessary adding other sets rotated

appropriately relative to the original set. Also, NS fivebranes which play a similar role can be

used.
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There are in general further topological constraints on combinations of branes and

fluxes. A canonical example of this type of consistency condition is that of [48]: Dp-branes

with H flux on their worldvolume must have a corresponding number of D(p − 2) branes

ending on them. This type of condition has been generalized to KK monopoles and NS5-

branes in [23]. For KK 5-branes, Villadoro and Zwirner [23] find – using various U-duality

arguments – constraints on F̃2 flux along a two-cycle consisting of the fiber circle times

a one-cycle in the brane worldvolume. In our setup, if nK < M so that the brane wraps

a homologically nontrivial cycle in the x, x̃ directions, then the fractional Chern-Simons

invariant m0B coming from (3.19) (whose flux quantum number is q/M) is nontrivial. As

far as we can tell, more analysis would be required to determine if this leads to an anomaly,

and if so whether that anomaly could be cancelled by the addition of other branes.

Because of these subtleties, we will keep track of the nK dependence but will focus on

the cases where nK is a multiple of M , so that each set of branes is homologous to a single

brane wrapping a homologically trivial (but homotopically nontrivial) cycle. This evades

both generalized K-theoretic subtleties just listed, and also does not require additional

antibranes to cancel the charges (though these could be included).

In this case, the discrete torsion (3.20) is consistent with the KK5-branes, as long

as they are placed together. (In the T-dual description, the NS5-branes are arranged

symmetrically along the T-dual transverse circle, restoring the ZZM translation symmetry

in that description, but are together in the remaining transverse directions.) This provides

another example of discrete torsion helping to stabilize moduli [49], significantly simplifying

the problem of stabilizing the 5-brane positions since their relative motion is projected out.

Potential Contribution

For values of Lu ≫ MLx for which the fivebranes are well localized within the trans-

verse u, ũ and T-dual x+ x̃ directions, they are locally supersymmetric. The BPS formulas

for the tensions yield the following contribution to the potential U from nK such sets of

KK 5-branes:

UKK5 = M4
4 2

√

2(
L1

L2
+

L2

L1
)
nK√

η
g2 L

5/2
x

L9/2
(3.22)

where we defined

η ∼ Lx−x̃

Lx+x̃
(3.23)

This degree of freedom η is related to the angular metric discrete Wilson line degree of

freedom describe in (3.9). Starting from a given discrete Wilson line vacuum, varying

the continuous modulus G33̄ by changing the angle γ between the x, x̃ directions (at fixed
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volume) changes the lengths of the cycles generated by txtx̃ and txt−1
x̃ . More precisely,

starting from q′ = 0, in terms of the angle γ, the ratio η is given by

η =

√

1 − γ

1 + γ
(3.24)

In analyzing the angular dependence of our potential terms below in §3.7, we will

require their dependence on the (3.23), as well as on other similar angular moduli. In ad-

dition to the KK fivebrane contribution, the curvature, O6 and H, F2, F4 flux contributions

depend on η, reducing to (3.7)(3.11)(3.15) when η → 1. Since the Wilson line is discrete,

and the corresponding G33̃ deformation is massive, the curvature potential acquires a factor

of the form 1 + (η − ηq′)2 + . . .. The negative O6-plane tension acquires a factor of 1/
√

η,

since its length increases when η decreases. The H flux term, which threads the dual cycle

to that wrapped by the O6-plane, scales like 1/η, since the flux lives in a larger cycle when

η increases. Similarly, the second contribution in (3.21) acquires a factor of 1/η at small

η.

We should make one further comment about the formula (3.22). Since they are all

together, our M branes have substantial a throat cross section (the size of each KK5-brane

being given by the size Lx of its fiber direction [45]), which with M of them adds up to

a size MLx. We should compare this to the size of the compactification in the directions

transverse to them. In our simplest solution, both will be of order M1/2, so that the KK

fivebrane cores bump up against the size of the compactification. This, along with the

ratio of KK to moduli masses, motivates a more elaborate setup separating these scales,

and indeed we will ultimately find a method to push the transverse size of the space larger

than this. In any case, (3.22) gives a good estimate for the parametric scaling of the KK

fivebrane contribution to the effective action. We will return to discuss the angular and

fivebrane moduli after addressing the problem of stabilizing the runaway moduli g, Lu, Lx.

3.4. Stabilization of volumes and coupling

Altogether, we have a potential energy for g, L, Lx of the form

U
M4

4

= ag2 − bg3 + cg4

= g2

(

M2 L4
x

2L6
+ (4nK)

L
5/2
x

L9/2
+

3p2

2(α′)2L6

)

− g3

(

2

√

2

ηα′ |pm0|
)

+ g4α′
(

m2
0

4
L6 + 4π4m2

0

( q

M

)2 L6

L4
x

+
( r

M

)2 16π4m2
0L

3

Lx
+
( r

M

)4 28π8m2
0

L2
x

+
K2

4L6(α′)6

)

(3.25)
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where we set L1/L2 = 1, since this is where it is stabilized by (3.22), and where we

suppressed dependence on angular moduli to be discussed in the next subsection. Following

the discussion in §2, we will proceed to show that for suitable choices of discrete quantum

numbers, the quantity

4ac

b2
≡ 1 + δ(L, Lx)

=
(α′)2

2p2m2
0

(

M2 L4
x

2L6
+ (4nK)

L
5/2
x

L9/2
+

3p2

2(α′)2L6

)

×
(

m2
0

4
L6 + 4π4m2

0

( q

M

)2 L6

L4
x

+
( r

M

)2 16π4m2
0L

3

Lx
+
( r

M

)4 28π8m2
0

L2
x

+
K2

4L6(α′)6

)

(3.26)

has a minimum L0, Lx0 in the space of L, Lx which is in the range

0 < δ(L0, Lx0) <
1

8
(3.27)

with δ(L0, Lx0) tuneable to be small.

We need to make sure first of all that the minimum of (3.26) is not above 9/8, which

we can show as follows. First, note that at (3.26) includes a constant term q2/(16h2
3)+3/16

(from the 1st × 2nd and 3rd × 1st cross terms, respectively).

Next, consider the two terms (from the 1st × 1st and 3rd × 2nd cross terms, respec-

tively)
α′

2p2m2
0

(

M2m2
0α

′

8
L4

x +
6π4m2

0p
2q2

α′L4
xM2

)

(3.28)

The terms (3.28) are minimized at q
√

3
8h3

, with

L4
x ∼ 1

M2
(3.29)

At fixed Lx, the remaining terms in (3.26) diverge for L → 0 and for L → ∞. Thus

4ac/b2 has a minimum at finite nonzero values of L, Lx. We will next show that this

minimum is tuneable to lie in the range (2.9) as close as desired to the lower limit as

M → ∞, and show that the corrections to our solution are small. We will then verify

numerically that a de Sitter minimum of the potential (3.25) exists.

Plugging (3.29) into (3.26), it reduces to (3/16)+(q2/(16h2
3))+ q

√
3

8h3

plus a function of

L which diverges as L → 0 or L → ∞. The fact that it diverges as L → 0 is a consequence

of the six-form flux contribution (3.17); in the absence of this contribution, the minimum
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of 4ac/b2 would be at L = 0, with the value (3/4) + (q2/(4h2
3)) + q

√
3

2h3

. In the presence

of (3.17), the minimum can therefore be tuned to sit within the required range (2.9) by

adjusting q, r, M and K.

We will also keep track of factors of nK/M even though we will consider the case

nK = M for the topological reasons discussed above. The reason for this is that the

resulting formulas will make clear that in order to generalize the construction to separate its

mass scales further, it would be useful to introduce effects which decrease the contribution

of the KK fivebranes. We will ultimately propose to do this (below in §3.6) not by reducing

the number nK of them, but by reducing their tension by placing them in a local region

the compactification with an enhanced string coupling.

Now consider the two terms

(4nK)(α′)2L5/2
x

2p2m2
0

(

m2
0

4
L3/2 +

K2

4L21/2(α′)6

)

(3.30)

These terms are minimized at a value of order nK

M ( K
M )1/4 obtained for L ∼ K1/6. Taking

into account that Lx is constrained by (3.28), this term combined with the first term of

(3.30) prevents any decay mode with L → ∞ or L → 0.

In general all the terms in (3.26) are consistently of the same order at the minimum,

with the parametric scalings

(nK

M

)

∼
(

M

K

)1/4

L ∼ K1/6 Lx ∼ 1

M1/2
(3.31)

As emphasized above, Lx ends up small in our parametric limit (3.29). For finite values

of M , of course, the results depend on order 1 factors. Below, in §3.8, we will exhibit a

numerical local minimum of the potential (3.25) in the g, L, Lx directions for which Lx

ends up ∼ 2 at M = 10.

3.5. Scales and Mixing

Using (3.31) we can now indicate the physical scales of interest in our solution (again

assuming that as discussed below in §3.7, the angular moduli stay near the original point

(3.1) about which we have expanded). The string coupling gs = gL3 is

gs ∼ 2a

b
L3 ∼ 1

L3
∼ 1

K1/2
(3.32)
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Since we have a small cycle Lx, it is interesting to consider the T-dual coupling ĝs (even

though the T-duality affects the ingredients listed above in a somewhat complicated way).

This is

ĝ2
s ∼ g2

s

L4
x

∼ M2

K
∼ M

(nK

M

)4

(3.33)

Thus in our simplest setup with nK = M , this is large, but if we can elaborate the

model to lower the contribution of the KK fivebrane configuration, this could be small;

we will suggest a method for achieving this in the next subsection. Since the theory is

approximately supersymmetric, the corrections are parametrically at most of order ĝ2
sR ∼

ĝ2
s/L6 ∼ (M/K)2 ≪ 1. In the numerical solution of §3.8 at a modest value for M of 10,

we will see that both gs and ĝs can remain ≤ order 1 with small curvatures, leading to

suppressed corrections. Even in the parametric M → ∞ limit of the simplest version of

the construction, the estimate just given might be too pessimistic: if in the T-dual model

one crossed over into the M theoretic regime with ĝs ≫ 1, the corrections to the moduli

potential should not grow with increasing size of the eleventh dimension, but should fall

off at large radius.

Another scale of interest is the core size of our set of KK 5-branes as compared to

the size of the compactification. This is of order M1/2, and again will bump up against

the size of the compactification Lu ∼ (KM)1/4 in the simplest version, again motivating

increasing the ratio K/M .

Using the fact that the canonically normalized moduli fields are the logs of gs, L, Lx

we have that the scale of moduli masses squared (aside from the residual angular moduli

and fivebrane positions to be discussed in the next subsection) is

m2
moduli ∼ M2

4 ag2 ∼ M2
4

g2

L6
∼ M2

4

1

K3
(3.34)

The lightest KK modes are those propagating in the u, ũ directions, which scale like

m2
KK ∼ 1

α′L2
u

∼ M2
4

1

K3

(

K

M

)1/2

(3.35)

(where we used the relation 1/α′ ∼ M2
4 g2

s/L6 = M2
4 g2 between the string and Planck mass

scales).

The masses of the strings wound around the Lx direction are of order

m2
winding ∼ L2

x

α′ ∼ M2
4

1

MK2
(3.36)
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(This includes the effects of the B field (3.19), which adds a term of the same order

−BG−1B to the winding mass squared.)

Now let us compare these scales to the Hubble scale H of the de Sitter minimum:

UdS

M4
4

∼ H2

M2
4

∼ δ
b2

4a
g4 ∼ δ

1

K3
(3.37)

Since δ can be tuned to be small by adjusting the precise value of K/M and/or r/M given

nK/M , this gives a hierarchy between the de Sitter curvature scale and the scale of the

moduli masses:

H2 ≪ m2
moduli for δ ≪ 1 (3.38)

Of course as one adds small corrections, the precise tune in the discrete quantum

numbers which one must do to obtain small δ0 changes accordingly. As in the realistic

context, it would not be possible to explicitly tune arbitrarly finely to cancel all the loop

corrections, simply because we do not know the value of these loop corrections.

For K ∼ M we do not have a hierarchy between the heaviest moduli and the lightest

KK modes, and between the KK modes and the winding modes. Also, the fivebrane cores

in this case are of the same order as Lu. In the next subsection, we will elaborate the

model to separate these scales.

Before turning to that, in the marginal case let us discuss the question of mixing

between the lightest KK modes and the heaviest moduli. First, note that in the nilmanifold

by itself, the KK modes do not mix linearly with the moduli fields, to good approximation.

This can be seen by constructing the Laplacian on the space, but follows more intuitively

from the topology and the physics of the “metric flux”. The lightest KK modes – i.e.

those which are not parametrically separated in mass scale from the moduli – have no

momentum in the small x, x̃ directions or in the u1, ũ1 directions. Dimensionally reducing

on the x and x̃ directions, these KK modes are simply uncharged particles on a torus

with Kaluza Klein magnetic flux. Since the particles are uncharged, they have the same

spectrum as they would on a two torus, and modes of different momentum do not mix

linearly. This property continues to hold classically after the orientifold projection is made,

for the standard reason that tree-level amplitudes for untwisted modes are inherited. The

KK5-branes do however break the translation invariance in the u2, ũ2 directions, and their

effects would need to be included in a full analysis of the moduli+KK dynamics in the

K ∼ M case.
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3.6. Separating the Scales

Rather than including the KK modes in the analysis, it might be simpler to dress up

the model so as to push apart these marginally overlapping scales. Of course, additional

ingredients used to do this must be introduced in a way which does not destabilize the

model. There are several approaches to this; we will suggest one method here.

First, note that the relevant ratio of scales is

mKK

mmoduli
∼ L1/2

x L3/2 ∼ K1/4

M1/4
(3.39)

(This quantity also controls the ratio of Lu to the core size of the 5-brane collection, the

ratio of lightest winding to lightest momentum masses, and the dual 10d string coupling.)

In our setup discussed above, the combination of (3.29) and (3.30), combined with the

requirement (3.27), bounds the quantity L
1/2
x L3/2 to be of order M0 in our parametric

limit. However, as discussed above, from (3.31) we see that if the contribution from the

KK fivebrane tensions were reduced by some factor ǫ < 1, then the quantity (3.39) would

be larger, of order 1/ǫ. (To be clear: we will keep nK = M for the topological reasons

discussed above; lowering the tension of the KK fivebranes would feed into the scalings

(3.31) as if we had reduced nK .)

One way to arrange this is to introduce a source of varying string coupling eφloc(u,ũ)

within the compactification, so that the KK fivebranes (whose tensions scale like e−2φloc)

are reduced when they sit at a position within the compactification with increased string

coupling (which minimizes their energy). Our notation φloc here refers to the spatially

varying dilaton within the compactification – note that the Einstein frame conversion factor

(2.6) involves the ambient 4d string coupling eφ, so that the effect of an inhomogeneous

dilaton on the potential contribution (3.22) is to rescale it by a factor e−2(φloc−φ).

NS fivebranes provide one source of varying string coupling – eφloc increases as one

moves toward their cores.9 Moreover, in our setup, NS fivebranes which are wrapped on

the x, x̃ directions each introduce parametrically less potential energy than the leading

terms (3.25):

UNS5 ∼ g2 n5L
2
x

L6
(3.40)

9 There are variants of this approach – for D-(p ≥ 4)-branes the coupling grows away from the

cores of the solutions, suggesting a similar mechanism with the KK fivebranes drawn to positions

in between added sets of D-branes.
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Specifically, comparing this to the curvature term in (3.25) using (3.28)(3.29) we see that

as long as n5 ≤ M , adding a set of such NS5-branes provides a term in the potential which

is at or below the scale of the above ingredients. At the same time, it provides a varying

string coupling within the compactification, which we may be able to use to reduce the

KK5-brane contribution to the potential.

Since the KK 5-branes wrap one of the u, ũ directions, the configuration of interest

is one in which they skirt the cores of one or more clouds of NS5-branes as they stretch

across them, lowering their energy by passing through regions with lower string coupling.

Each NS 5-brane is localized in the u, ũ directions, but they may be distributed so as to

minimize the energy of the whole configuration. We will now estimate whether this effect

can be significant in our background.

The varying string coupling in the NS5-brane solution is

e2φloc(r) = gs +

n5
∑

i=1

α′

2π2(r − ri)2
(3.41)

where r is the radial coordinate, the transverse string frame metric being

e2φloc(r)(dr2 + r2dΩ2). (3.42)

To check if the NS5 branes can significantly change the string coupling – and hence KK5

tension – let us start from the previous results and estimate the magnitude of the effect

in that configuration. From (3.41) and the result (3.32) that without the present effect,

gs ∼ 1/K1/2 ∼ 1/M1/2, we see that within a radial position r∗ of order n
1/2
5 M1/4, the

string coupling is affected significantly by the NS5-branes. Moreover, the metric (3.42) at

most increases the minimal length of the path traced by the fivebrane in the u, ũ directions

by one power of eφloc , which cannot cancel the effect of the tension (which is quadratic,

of order e−2φloc). Also, the NS5-brane solution does not warp the string frame metric in

the directions along its worldvolume, including x, x̃. Since the KK5-brane core and Lu

are of size M1/2 in the original solution, we see that introducing even n5 ∼ M1/2 ≪ M

NS5-branes would begin to reduce the tension of the whole KK5-brane set.

Since the KK5-branes are extended in one direction in u, ũ, it is perhaps more natural

to distribute our n5 NS5-branes along this line, putting them out away from the origin

of their moduli space. (This is not crucial to get an effect from them, as we just saw,

but it is the most symmetric configuration and one to which the system could settle as it

minimizes its energy locally.) Since the relevant scales only overlapped marginally in the
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above solution, any reduction of the tension of the KK5-branes is sufficient to push the

setup in to a regime where the moduli masses are lighter than all KK masses and where

the other related scales discussed above are also separated. Obviously this collection of

KK 5-branes and NS 5-branes is rather complicated to analyze in detail, but because they

carry different charges we do not expect any catastrophic annihilation mode.

As in the above discussion of KK fivebranes, there are possible topological consistency

conditions which may constrain n5 to be a multiple of M , depending on the application

of [23] to the m0Bxx̃ contribution to the generalized fluxes (2.2). Because of this, we have

checked that the case n5 = M remains consistent with the window (3.27); it contributes

a new pair of terms going like L2
x and 1/L2

x which can be analyzed in the same way as

we did (3.28) above. The case n5 = M is also consistent with our geometry – even if all

NS5-branes were together, the coupling (3.41) does not grow to order 1 until r ∼ n
1/2
5 , and

hence before taking into account the improvement in the scalings from the varying dilaton,

their core would be about the size of the transverse space (as was true for the original KK

fivebranes).

3.7. Angular and Fivebrane Moduli

Having addressed the runaway moduli from the volumes and dilaton, let us return to

the angular moduli. These fall into two categories:

(1) Angular moduli sourced by the ingredients listed above

(2) Angular moduli not sourced by the ingredients listed above.

Those in category (1) must be analyzed on the same footing as the moduli L, Lx, g listed

above, to ensure that they do not turn on to large enough values to potentially destabilize

the dS minimum. Those in category (2), such as some of RR axions we will discuss, will not

destabilize the dS minimum wherever they end up, and will generically be lifted by higher

order, lower-scale corrections. Many of the moduli in both categories could be projected

out by an orbifold version of the above construction (with appropriate corrections to the

order one factors in the volume and potential). However, it is also interesting to pursue

their stabilization without using that crutch, since many of the existing ingredients provide

the requisite forces in a natural way.

First, recall that the continuous Wilson line moduli bIJ̃ coming from the B field (3.19)

are lifted by the F 2
2 term, since F2 = m0B +dC1. The metric flux renders the components

Bux̃ = −Bũx discrete because the x, x̃ circles are torsion 1-cycles. (These are some of the

discrete Wilson lines discussed in §3.2.)
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Next, consider the metric moduli. As discussed around (3.8), the curvature alone

gives positive mass squareds to Gxx̃,Guiũj
, and Gx̃ũj

= Gxuj
. However, we must consider

other contributions to their potential from the other ingredients in the construction.

Let us discuss first the angular degree of freedom η defined in (3.23)(3.24). Since this

comes from Gxx̃, this particular modulus is not easy to project out by an orbifold without

also projecting out the Bxx̃ contribution which played an important role above. Several

of the ingredients we have specified depend on this angle, as explained previously, in the

discussion following (3.23)(3.24). Including these effects, we obtain a potential energy of

the form

U
M4

4

= ag2 − bg3 + cg4

= g2

(

[1 + (η − ηq′)2 + . . .]M2 L4
x

2L6
+ (4

nK√
η
)
L

5/2
x

L9/2
+

3p2

2η(α′)2L6

)

− g3

(

2

√

2

ηα′ |pm0|
)

+ g4α′
(

m2
0

4
L6 + 4π4m2

0

( q

M

)2 L6

L4
x

+
( r

M

)2 16π4m2
0L

3

ηLx
+
( r

M

)4 28π8m2
0

L2
x

+
K2

4L6(α′)6

)

(3.43)

Correspondingly, the quantity (3.26) becomes

4ac

b2
≡ 1 + δ(L, Lx, η)

=
η(α′)2

2p2m2
0

(

[1 + (η − ηq′)2 + . . .]M2 L4
x

2L6
+ (4

nK√
η
)
L

5/2
x

L9/2
+

3p2

2η(α′)2L6

)

×
(

m2
0

4
L6 + 4π4m2

0

( q

M

)2 L6

L4
x

+
( r

M

)2 16π4m2
0L

3

ηLx
+
( r

M

)4 28π8m2
0

L2
x

+
K2

4L6(α′)6

)

(3.44)

As it stands, in (3.44) there is a runaway direction in which η → 0 with L3Lx ∝ 1/η. (In

this limit η → 0, we find also that the curvature potential has a term proportional to 1/η.)

But for sufficiently large η′
q, of order 1, the stabilizing mass from the curvature term com-

petes with the tadpoles from the other ingredients; we expect the two to balance to yield

a local minimum in this direction. However, since this depends on order one coefficients in

the system expanded about the solution, it is worth mentioning that it is also possible to

elaborate the model to ensure a finite global minimum for η. For example, consider adding

another sector of KK5-branes, wrapped on two of the u, ũ directions with fiber direction

x + x̃. These yield a potential scaling like g2 Lx

ηL3 . This term combined with the g4m2
0L

6/4

term yields a contribution to (3.44) scaling like L3Lx, which prevents the potential runaway

direction just mentioned. In our previous solution, this new contribution to the potential
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energy scales like g2/(M1/2K1/2) – at most this is of the same magnitude as the other

terms, competing with them to stabilize η without overwhelming them. Moreover, we can

also use the technique discussed in §3.6 to separate the scales, so that this contribution is

suppressed further. Altogether, we see that in this construction the angular modulus η is

relatively straightforward to stabilize.

Let us now discuss the other angular moduli, which have some similar features. In

general, turning on angles in one direction Gµν at fixed volume increases the size of the

cycle in either the µ or ν direction. For example, turning on Gu1ũ1
at fixed volume of the

two-torus in the u1, ũ1 directions increases the size of the cycle wrapped by the O6-plane

and the KK5 branes, and it decreases the size of the 3-cycle threaded by the H flux. Let

ρ11̃

√
2Lu1

denote the size of the cycle in the u1 + ũ1 direction (normalized so that ρ11̃ = 1

for the diagonal metric (3.1)). The O6-plane energy and the KK5-brane energy each get

multiplied by ρ11̃, and the H flux term gets a factor of ρ2
11̃

.

Taking these effects into account for all angles (defining ρµν similarly to how we just

defined ρ11̃), the quantity 4ac/b2 (3.26) takes the form

4ac

b2
≡ 1 + δ(L, Lx, ρ)

=
(α′)2

θ2
O(ρµν)(2p2m2

0)

(

θR(ρ)M2 L4
x

2L6
+ θKK(ρµν)(4nK)

L
5/2
x

L9/2
+

θH(ρµν)3p2

2(α′)2L6

)

×
(

m2
0

4
L6 + 4π4m2

0

( q

M

)2 L6

L4
x

+ θr,2(ρ)8π4m2
0

( r

M

)2 L3

Lx
+ θr,4(ρ)

( r

M

)4 26π8m2
0

L2
x

+
K2

4L6(α′)6

)

(3.45)

where we have schematically indicated by functions θ(ρ) the dependence on ρµν of those

ingredients which are sensitive to these angles.

There are two types of angles in our problem: those which are sourced by the O6-plane

and H flux, analogously to the Gxx̃ mode discussed above (Gu1ũ1
and Gu2ũ2

), and those

which are not (Gu1u2
= Gũ1ũ2

, Gu1ũ2
= Gũ1u2

, and Gx,ũj
= Gx̃,uj

).

Let us start with the former case. As in our discussion of Gxx̃, the mass squared

introduced by the curvature has the right shape and order of magnitude to provide a local

minimum when balanced against the tadpoles from the O6 and H flux, depending on order

one coefficients and on discrete parameters that can be tuned. We have not analyzed these

coefficients in detail, so let us mention two other methods for stabilizing ρu1ũ1
, ρu2,ũ2

.

First, similarly to our method above for avoiding the η → 0 runaway direction, we can add

an additional sector of KK fivebranes to avoid the ρ → ∞ direction in the present case.
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Namely, a KK5-brane wrapped on the x, x̃ direction, and with fiber circle u1+ũ1+u2+ũ+2

gives a potential term scaling like g2
sρ2Lx/L3. This prevents the potential runaway limit

of (3.45) to large ρ, and as in the above discussion of η, the new ingredient is at most

of the same order as the previous contributions to the potential, and so can be added

consistently. Alternatively, it is possible to enforce ρ = 1 by an orbifold. One example is

a ZZ2 orbifold under which uj → −uj , ũj → −ũj , x → x, x̃ → x̃ (either combined with a

transverse shift to remove twisted moduli, or with extra fivebranes wrapped around the

blowup cycles, carrying worldvolume gauge flux to stabilize their sizes). This introduces

an O6 fixed plane in the directions uj−ũj , x+x̃, whose linear potential for Gu1ũ1
and Gu2ũ2

cancels against that of the original O6-plane in the symmetric configuration (3.1), making

it manifest that the curvature mass term [27] suffices to lift this angular direction. (Various

other factors in the tadpole cancellation condition and in the potential also change in the

orbifold case, and the contributions proportional to r/M – which were not crucial in the

stabilization above – are projected out. A preliminary check of the coefficients resulted

in parameters still consistent with the window (3.27); it would be useful to systematically

study different orbifold space groups with regard to the question of the constant terms in

(3.26) resulting from the normalized volume and tadpole cancelation conditions.)

The angular moduli which are not sourced by the O6-plane and H flux are also

stabilized by curvature in the case Gu1ũ2
= Gũ1u2

. In the case Gu1u2
= Gũ1ũ2

they are

stabilized by the KK fivebranes: turning on angles between the u1, ũ1 and u2, ũ2 directions

at fixed volume increases the lengths of the cycles the KK5-branes are wrapped on, while

not affecting the volume of the cycle wrapped by the O6-plane or the cycle threaded by

the H flux. (A similar mechanism arises in intersecting brane models [50].).

This leaves us with Guj x̃ = Gxũj
(if the ZZ2 orbifold option described above is not

taken – this would simply project them out). These are metric Wilson lines. Recall that

the metric flux lifts the Bux̃ = −Bũx modes. H flux similarly lifts the modes Guj x̃ = Gxũj
,

by T -duality. In our case, the H flux potential is minimized at one of two values, since we

took the H flux quantum number to be 2. That is, these metric Wilson lines are discrete.

These modes are thus similar to those discussed above, but with the positive mass squared

contribution coming from H flux rather than from the curvature term.

The RR axions are either fixed by virtue of the Chern-Simons terms in (2.2), or

contribute subdominantly to the potential (hence falling in category (2) above). There are

28



three components of C3 invariant under the orientifold action (3.10). They are dual to the

components of H indicated in (3.13), and are stabilized by the H flux, since

F̃6 = dC5 − C3 ∧ H3 +
m0

6
B ∧ B ∧ B (3.46)

Similar comments apply to C1 and C5: components which are not projected out by the

orientifold action or lifted by the |F̃4|2 terms are fixed by higher order effects which generate

the axion potential.

Finally, let us return to the motion moduli of the KK fivebranes. As discussed above,

the discrete torsion requires the M branes to sit together, projecting out their relative

motions. Given the mechanism suggested in §3.6, the size of the set of nK = M KK

fivebranes is parametrically smaller than Lu, and in all versions of the construction it is no

larger than the transverse space. The overall position of the KK5-branes is inconsequential

to the stabilization of the runaway moduli, and hence directions which are not fixed by the

curvature potential are in category (2) above; again, if we invoke the method of §3.6, then

the position of the KK 5-branes is localized near the source of enhanced eφloc . There are no

isometries in the transverse directions to the KK fivebranes, so in any case their position

moduli will be lifted by effects to do with the ambient curvature of the space transverse

to the KK5-branes.

3.8. Numerical solution

We showed analytically above that a local minimum of (3.25) exists for appropriate

choices of discrete quantum numbers. We have checked this numerically using mathemat-

ica. In doing so it was again useful to follow the procedure used above, first finding a

minimum of 4ac/b2 at some L = L0, Lx = Lx0 (tuning the discrete quantum numbers

f6, M to arrange for the minimum value δ0 of 1− 4ac/b2 to be close to 0). Next, we mini-

mized U(g, L0, Lx0) with respect to g. Then searching near that point for a minimum in all

directions yields the expected solution. As a specific example, with nK = M = 10, f6 = 80,

q = 1, and r = 1 the minimum of 4ac/b2 is at approximately 1.0003 (so δ0 = 0003 ≪ 1 is

very small, putting us in the regime of applicability of the analysis in §2). The potential

is minimized at U/M2
4 ≈ 10−13 with g ≈ 0.00015, L ≈ 15.3, Lx ≈ 2.1.

Note that in this solution, with M taken to be 10, Lx is not substringy in size, the

string coupling gs is of order 1/2, and the T-dual string coupling is also not strong. Scaling

M up pushes Lx down as discussed in the text, but at modest finite values of the parameters

such as those given here one can obtain less extreme behavior.

29



Plotting the potential U/M4
4 in the g direction yields

fig. 1
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and in the L and Lx directions we obtain (note that the horizontal axis is not placed

at zero)

fig. 2
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Note that this numerical analysis does not explicitly include the angular variables

discussed in §3.7.

3.9. Metastability

As emphasized in [11,4], models of de Sitter which are obtained in a weak coupling

regime are only metastable.10 In the present case, the decay yields a ten-dimensional

generalization of a Bianchi cosmology, with different directions evolving anisotropically –

the x, x̃ directions shrinking and the others expanding. As discussed above, a nilmanifold

in vacuum can be T-dualized to an expanding space with H flux [31], but since the Bxx̃

field is nontrivial in our solution the element of the T-duality group which is relevant at a

given radius is not the simple one considered in [31]. The question of whether one can or

cannot T-dualize to large radius, perhaps via a time-dependent T-duality cascade11, is an

interesting one.

10 For a recent comparitive study of decays in a subset of string theoretic dS models, see for

example [51].
11 I thank S. Kachru for this suggestion. These questions are also related to those analyzed in

[52].
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4. Toward Simple de Sitter Sol-utions

We expect similar solutions from a compactification on a product of two Sol 3-

manifolds; let us sketch the analogues of the steps given above for the nilmanifold case.

The sol 3-geometry is

ds2 = α′ (L2
y(e2zdy2

1 + e−2zdy2
2) + L2

zdz2
)

= α′ (L2
yω2

1 + L2
yω2

2 + L2
zω

2
3

)

(4.1)

where ω1 = Lyezdy1, ω2 = Lye−zdy2, and ω3 = Lzdz. This geometry has three indepen-

dent isometries consisting of shifts of y1, y2 and shifts of z combined with rescalings of

y1, y2.

Compact solmanifolds S3 are obtained by projecting (4.1) by a discrete subgroup of

the isometry group. As one moves around the z direction, the τ parameter of the T 2 in the

y1, y2 directions undergoes an SL(2, ZZ) transformation. This is analogous to (3.2) except

that here the SL(2, ZZ) transformation must be more general than τ → τ + 1 in order to

provide a consistent compactification; it shrinks the torus exponentially in the y1 direction

and expands it exponentially in the y2 direction. (Related to this, the solmanifold has a

rich fundamental group, which is of exponential growth.)

As with the nilmanifold, the sol manifold has fewer massless moduli than the corre-

sponding T 3: the relations

dω1 = ω3 ∧ ω1 dω2 = −ω3 ∧ ω2 (4.2)

mean that the homology groups H1 and H2 are each reduced by two dimensions as com-

pared to a torus.

The scalar curvature of S3 is −2/L2
z = −2L4

y/L6 where L6 = L4
yL

2
z. Upon compact-

ification to four dimensions on a product of two solmanifolds this will lead to a positive

curvature potential analogous to (3.7), with discrete parameters analogous to M in (3.7)

which have to do with the choice of SL(2, ZZ) element used in the compactification proce-

dure. As in the case of the nilmanifold, the rich topology of S3 provides a place for branes

to wrap and a potential source of fractional Chern-Simons invariants. All this again leads

to a four dimensional scalar potential analogous to (3.25), with the role of x played by

y1, y2 and the role of u1, u1 played by z. It would be interesting to flesh this out explicitly

to see if again the discrete parameters available are sufficient to tune the system into the

range (2.9).
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5. Discussion

In this work, we proposed a relatively simple and explicit class of de Sitter models in

string theory. We showed how a few ingredients suffice to produce a potential for moduli

which exhibits metastable minima at positive vacuum energy, seven independent terms

being involved in the basic stabilization of g, L, and Lx. Clearly an important direction

for further work is fleshing out further the methods in §3.6 and §3.7 for stabilizing the

angular moduli and for separating the scales. A convenient feature of the background

is its weak curvature and 10d string coupling, and its 10d supersymmetry, which make

possible a controlled analysis of the moduli and the KK and winding modes. On the other

hand, the SUSY breaking effects of the curvature and KK fivebrane configuration facilitate

moduli stabilization by introducing useful competing forces (which would vanish in the

lower-energy SUSY models based on Calabi-Yau manifolds with the subset of ingredients

analyzed in the no-go theorem of [32]).

One of the main general lessons is that “metric flux” and wrapped KK 5-branes yield

forces whose dependence on the moduli is appropriate to “uplift” the potential for the

runaway moduli g, L, Lx in the type IIA AdS4 solutions of the sort studied in [14]. The

most complicated aspect of the specific models is probably the 5-brane dynamics.

One natural question is whether a version of this mechanism exists in which lower

energy supersymmetry is preserved. In [23] it was suggested that various “metric fluxes”

could cancel the charges of KK fivebranes as well as NS5-branes. Such a construction

could be analogous to the way fluxes cancel the O3-plane charges in the type IIB models of

[10,4]. Combining this idea of [23] with the mechanism described here might be a concrete

place to seek models with lower scale supersymmetry breaking.

It would be interesting to apply our construction to the problem of explicitly mod-

eling inflation in string theory (for recent reviews see [2]). One question is whether our

fractional Chern-Simons invariants could also help tune the inflationary ǫ and η parame-

ters to be small. It might also be interesting to introduce particle physics sectors to these

models, perhaps using stretched D-branes within the bulwark of KK5-branes to form brane

constructions of the relevant field theories.

Explicit models of de Sitter (and also anti de Sitter, if we reduce K/M) may facilitate

the derivation of concrete holographic duals. Some progress toward a general framework

for duals of metastable de Sitter space have appear in [53]. Ideas for unveiling the degrees

of freedom of the dual out on its approximate moduli space can be found in [54], by trading
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the flux for branes in analogy with the construction of the Coulomb branch in more familiar

versions of the AdS/CFT correspondence. In the present case, one might trade the H field

and metric flux for NS5-branes and KK monopoles.
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Quick Start Guide

1. Form a Nilmanifold
Twist  the two 2-tori around the two circles, deforming them by tau 
to tau+M as you go around the circles.  Your nilmanifold will try to 
relax toward zero curvature.  Hold it in place while you install the 
other components.

2.  Install KK monopoles stretched along the u 

directions as described in the manual.

3.  Install O-plane and H flux
Carefully fold your manifold, identifying your two Nil 3-manifolds, while 
SIMULTANEOUSLY introducing h3 units of H flux and f0 of zero 

Warning: Ignoring the H flux would violate 
Gauss' Law.

4. Install discrete Wilson lines
Thread the product of the two Z_M torsion circles with q/M units of B

5. Introduce Fluxes
Thread your manifold with 6-form flux

6.  Relax to minimum
Holding the angular directions fixed, gently release the g, Lu1,Lu2, Lx moduli.  Your 
model should relax to a local minimum in these directions.  Next, release the 
angular modes; check if they relax to a minimum.  If not, then add further 5-branes 
and/or orbifold as described in the manual (section 3.7).
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