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Abstract

A given set of data-points in some feature space may be associated with

a Schrödinger equation whose potential is determined by the data. This is

known to lead to good clustering solutions. Here we extend this approach

into a full-fledged dynamical scheme using a time-dependent Schrödinger

equation with a small diffusion component. Moreover, we approximate this

Hamiltonian formalism by a truncated calculation within a set of Gaussian

wave functions (coherent states) centered around the original points. This

allows for analytic evaluation of the time evolution of all such states, opening

up the possibility of exploration of relationships among data-points through

observation of varying dynamical-distances among points and convergence

of points into clusters. This formalism may be further supplemented by

preprocessing, such as dimensional reduction through singular value decom-

position or feature filtering.
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Clustering of data is, in general, an ill-defined problem. Nonetheless it

is a very important one in many scientific and technological fields of study.

Given a set of data-points one looks for possible structures by sorting out

which points are close to each other and, therefore, in some sense belong

together. This is a preliminary stage taken before investigating what are

the common properties of these data.

It has recently become quite popular to investigate such questions in a

dynamic framework, thus allowing for more fluid associations of data-points,

rather than rigid clusters. Diffusion geometry [2, 7, 9] is such a method,

based on a discrete analog of the heat equation

−∂Φ
∂t

= HΦ (1)

where H is some operator with positive eigenvalues, guaranteeing that the

temporal evolution of Φ(~x, t) is that of diffusion. Thus, starting out with

Φ(~x, 0), e.g. a Gaussian concentrated around some data point one would

expect Φ(~x, t) to spread over all space that is occupied by the data points.

Here we advocate the use of a Schrödinger Hamiltonian H that is inti-

mately connected to the data-structure, as defined by the quantum cluster-

ing method [5] and summarized below. We extend it into a time-dependent

Schrödinger equation which contains a small component of diffusion:

i

1− iε

∂Ψ(~x, t)
∂t

= HΨ(~x, t) (2)

The ensuing Dynamic Quantum Clustering (DQC) formalism allows us, by

varying a few parameters, to study in detail the temporal evolvement of
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wave-functions, representing the original data-points, and the associations

they form with each other. It is well suited for exploration of the data and

obtaining various clustering solutions.

The solution of the Schrödinger equation in a large number of dimensions

is a formidable task. We formulate an approximation scheme, based on

a truncated Hamiltonian defined within a system of coherent states, that

allows for analytic expressions of all the terms that are needed for such

computations. Thus we may simultaneously follow the time-evolution of

all Gaussian wave-functions centered at the original data points. This is

incorporated into visual tools allowing the user to search for cluster creation

under the dynamics defined by the Hamiltonian.

Quantum Clustering

Given a set of data one may use a Parzen-window estimator[3] of the proba-

bility distribution leading to the data at hand. The estimator is constructed

by associating a Gaussian with each of the n data points in a Euclidean space

of d dimensions and summing over all of them. This can be represented, up

to an overall normalization factor by

ψ(~x) =
∑

i

e−
(~x−~xi)

2

2σ2 (3)

where ~xi are the data points. Conventional scale-space clustering [11] views

the maxima of this function as determining the locations of cluster centers.

The Quantum Clustering (QC) method looks, instead, at the Schrödinger
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potential for which ψ(~x) is a ground-state. The minima of the potential are

candidates for cluster centers. Its Hamiltonian is defined by

Hψ ≡ (−σ2

2
∇2 + V (x))ψ = E0ψ. (4)

The potential V (x) can be uniquely determined, up to a constant, from

ψ(~x) [5]. For a single data-point it is the quadratic harmonic potential,

whose quantum mechanical ground-state is the Gaussian wave-function. The

Hamiltonian incorporates the interplay of two effects: attraction of points

to the minima of V and their scattering as modeled by the second derivative

(kinetic term). Thus H is a model framework for data distribution, based

on the known experimental realization.

In QC applications it turns out that the minima of V are very good indi-

cators of cluster centers. We refer to [5, 13] for examples. It should be noted

that in [5] the function ψ assumed the role of the probability function within

the Parzen-window approach. This choice, while unconventional in quan-

tum mechanics, was adopted in [5] for computational convenience. Here we

switch to the conventional quantum-mechanical interpretation of ψ∗ψ rep-

resenting a probability function, thus modifying slightly the interpretation

of the Parzen-window derivation of ψ.

Dynamic Quantum Clustering (DQC)

Converting the static QC method to a full dynamical one, let us consider

the time evolution of a wave function Ψ(~x) determined by the Schrödinger
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equation for a particle of mass m moving in d-dimensions under the influence

of the potential V (~x):

i
∂Ψ(~x, t)

∂t
= HΨ(~x, t) =

(
−∇

2

2m
+ V (~x)

)
Ψ(~x, t) (5)

If we set m = 1/σ2 then, by construction, ψ(~x) of Eq. 3 is the lowest energy

eigenstate of the Hamiltonian.

Employing conventional quantum-mechanical formalism, we may repre-

sent the time evoltion of the wave-function by

Ψ(~x, t) = e−iHtΨ(~x), (6)

and the expectation value of the operator ~x becomes

〈 ~x(t) 〉 =
∫

d~xΨ∗(~x, t) ~xΨ(~x, t) (7)

and satisfies Newton’s law:

d2〈 ~x(t)〉
dt2

= − 1
m

∫
d~xΨ∗(~x, t) ~∇V (~x)Ψ(~x, t). (8)

This is just Ehrenfest’s theorem [8] and it is significant because, if we let

|Ψi〉 be a Gaussian localized around the ith data point, then we may explore

the relation of this data point to the minima of V (~x) by following the time-

dependent trajectory 〈 ~xi(t) 〉 = 〈Ψi(t)| ~x |Ψi(t)〉. Given Ehrenfest’s theorem,

we expect to see any points located in, or near, the same local minimum of

V (~x) to oscillate about that minimum, coming together and moving apart.

In order to reduce somewhat the oscillatory behavior we introduce a diffusion
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component ε into the dynamics, as shown in Eq. 2. This means that the

evolution equation

|Ψ(t)〉 = W |Ψ〉 = e−itH e−εtH |Ψ〉 (9)

is no longer unitary. In order to keep using the expectation values we have

to modify the definition of |Ψ(t)〉 as follows:

|Ψ(t)〉 =
W (t)|Ψ〉√
〈Ψ|W (2t)|Ψ〉 . (10)

For problems with multiple minima, all states will asymptotically diffuse to

the ground-state of H. We advocate therefore using small values of ε and

evolving the dynamics for a finite time only, in order to trace the clustering

of points associated with each one of the potential minima.

By introducing m different from 1/σ2 we allow ourselves the freedom

of employing low σ, which introduces large numbers of minima into V , yet

having also low m which guarantees efficient tunneling, thus connecting

points that may be located in different potential minima. Under this more

general Hamiltonian, we expect to reduce the sensitivity of the calculation

to the specific choice of σ.

The Calculation Method

Assume there are n states, |Ψi〉, corresponding to the n points in the data-

set. They form a basis within which we calculate the evolution of our model.

We will denote by N , the n× n matrix formed from the scalar products

Ni,j = 〈Ψi|Ψj〉, (11)
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by H, the n× n-matrix

Hi,j = 〈Ψi|H|Ψj〉, (12)

and by ~Xi,j the matrix

~Xi,j = 〈Ψi|~x|Ψj〉. (13)

The calculation process can be described in five steps. First, begin

by finding the eigenvectors of the symmetric matrix N which have non-

vanishing eigenvalues. These vectors are linear combinations of the original

Gaussians which form an orthonormal set. Second, compute H in this trun-

cated basis, Htr. Do the same for ~Xi,j . Fourth, find the eigenvectors and

eigenvalues of Htr, construct e−itHtr
and use it to evolve the original states

|Ψi〉. Finally, construct the desired approximate trajectories

〈~xi(t)〉 = 〈Ψi|eitHtr ~X e−itHtr |Ψi〉 (14)

through repetition of small steps of ∆t until clustering of points occurs.

It is obvious that restricting attention to the truncated Hamiltonian

perforce loses some features of the original problem, however its advantage

is that we can derive analytic expressions for all operators involved (see

Appendices A and B). As a result, the numerical computations can be done

very quickly.

Example: Ripley’s Crab data

To test our method we apply it to a five-dimensional dataset with two-

hundred entries, used in Ripley’s text book [10]. This dataset records five
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measurements made on male and female crabs that belong to two different

species. This dataset has been used in the original paper on quantum clus-

tering by Horn and Gottlieb[5]. Our main motivation is to provide a simple

example which exhibits the details of the DQC method. In particular, we

wish to show that the simplest computational scheme for implementing the

general program captures the essential features of the problem and does as

well as one can reasonably expect to do.

The data is stored in a matrix M which has 200 rows and 5 columns. As

is typical in clustering computations, we preprocess it with a singular-value

decomposition

M = U S V †, (15)

where U is a unitary 200 × 200 matrix and S is the 200 × 5 matrix of sin-

gular values, the latter occurring on the diagonal of its upper 5× 5 entries.

The sub-matrix of U consisting of the first five columns, the so-called five

principal components (PCs), can be thought of as assigning to each sample

a unique point in a five-dimensional vector space. We may study the prob-

lem in the full five-dimensional space, or within any subspace by selecting

appropriate principal components. In [5] QC was applied to this problem in

a 2-dimensional subspace, consisting of PC2 and PC3. Here we demonstrate

DQC on a 3-dimensional manifold composed of the first three PCs. Since we

work within a sub-space of the original data-space, normalization of these

vectors is not guaranteed. Hence we employ the conventional approach of

9



projecting all points onto the unit sphere [14].

Figure 1: The left hand plot shows three-dimensional distribution of the
original data points before quantum evolution. The middle plot shows the
same distribution after quantum evolution. The right hand plot shows the
results of an additional iteration of DQC. The values of parameters used to
construct the Hamiltonian and evolution operator are: σ = 0.07, m = 0.2,
and ε = 10−6. Colors indicate the expert classification of data into four
classes, unknown to the clustering algorithm.

We study the temporal behavior of 〈~xi(t)〉, for all i, to which we will

henceforth refer as the ‘motion of points’. Figure 1 shows the distribution

of the original data points plotted on the unit sphere in three dimensions.

This is the configuration before we begin the dynamic quantum evolution.

To guide the construction of our tool we color the data according to its known

four classes, although this information is not incorporated into our unsuper-

vised method. The two species of crabs ((red,blue) and (orange,green)) are

fairly well separated; however, separating the sexes in each species is prob-

lematic. The middle plot in Figure 1 shows the distribution of the points

after quantum evolution, stopped at a time when some convergence into
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clusters has occurred. It is immediately obvious that the quantum evolu-

tion has enhanced the clustering and made it trivial to separate clusters by

eye. Once separation is accomplished, then extracting the clusters can be

performed by any conventional technique, e.g. k-means.

An alternative way of displaying convergence is shown in Figure 2, where

we plot the Euclidean distance from the first point in the dataset to each

of the other points. The clusters lie in bands which have approximately the

same distance from the first point.

Figure 2: A plot of Euclidean distance of each point i from the first data
point. Again, the left hand plot shows the distances for the initial distri-
bution of points. The middle plot shows the same distances after quantum
evolution. The right-hand plot shows results after another iteration of DQC.
The numbering of the data-points is ordered according to the expert classi-
fication of these points into four classes containing 50 instances each.

It is difficult to get very tight clusters since the points, while moving

toward cluster centers, oscillate around them, and arrive at the minima

at slightly different times. Given this intuition, it is clear that one way

to tighten up the pattern is to stop DQC evolution at a point where the
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clusters become distinct, and then restart it with the new configuration,

but with the points redefined at rest. We refer to this as iterating the DQC

evolution. The right-hand plots in Figure 1 and Figure 2 show what happens

when we do this. The second stage of evolution clearly enhances the clusters

significantly, as was expected.

By the end of the second iteration, there can be no question that it is

a simple matter to extract the clusters. As is quite evident, clustering does

not agree completely with the expert classification, i.e. points with different

colors may be grouped together. This is, however, the best one can do by

color-blind treatment of the information provided in the data-matrix.

The full 5-dimensional study of the crab data-set can proceed in the

same manner, although it does not lead to new insights. It is provided

in the Supplementary Material. Another data-set is studied there, that of

viruses discussed in a paper by Varshavsky et. al.[12]. Once again DQC is

shown to be a versatile tool.

Dynamic Distances

The fact that data-points of different classes happen to lie close to each

other in the data-matrix can be due to various factors: errors in data mea-

surements, errors in the expert assignment to classes, true proximity of

data-points in spite of differences of origin (extreme example would be sim-

ilarities of phenotypes in spite of differences in genotypes) or - the simplest

possibility - the absence of some discriminative features in the feature-space
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that spans the data measurements. But there is another important concep-

tual message to be learned here - clustering and/or classification may not

capture all the interesting lessons that may be derived from the data. A

similar message is included in the Diffusion Geometry approach [2, 7] that

advocates measuring diffusion-distances among points rather than Euclidean

ones. Diffusion distances are influenced by the existence of all other points.

In our DQC analysis this may be replaced in a straightforward manner by

defining dynamic distances among points

di,j(t) = || 〈~xi(t)〉 − 〈~xj(t)〉 || (16)

with the norm being Euclidean or any other suitable choice.

Clearly di,j(0) is the geometric distance as given by the original data-

matrix or by its reduced form that is being investigated. As DQC evolves

with time di,j(t) changes, and when some semi-perfect clustering is obtained,

it will be close to zero for points that belong to the same cluster. Figure 2

shows this change in time for all di,1(t) in the crab-data example studied

above. It is quite obvious that, in addition to the few cases in which clus-

tering disagrees with classification, there are many intermediate steps where

different data-points are close to each other in spite of eventually evolv-

ing into different clusters and belonging to different classes. Thus a close

scrutiny of the dynamic distances matrix di,j(t) may lead to interesting ob-

servations regarding the relationships among individual pairs of points in

the original data, a relationship that is brought out by DQC as result of the
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existing information about all other data-points. It may be used to further

investigate the reason for such proximities, along any one of the lines men-

tioned above, and thus may lead to novel insights regarding the problem at

hand.

Feature Filtering

Data exploration involves not only the instances, or data-points, but also the

features (coordinates) with which the instances are defined. By performing

SVD, and selecting a sub-set of coordinates, we define superpositions of the

original features within which we search for clustering of the instances. In

problems with very many features, it is adventageous to also perform some

feature filtering, employing a judicious selection of subsets of the original

features. Here we wish to demonstrate the power of feature filtering, as well

as its iterative employment in conjunction with iterations of DQC. This will

be demonstrated on the dataset of Golub et al. [4], consisting of gene chip

measurements on cells from 72 leukemia patients with two different types

of Leukemia, ALL and AML. The expert identification of the classes in this

data set is based upon dividing the ALL set into two subsets corresponding

to T-cell and B-cell Leukemia. The AML set was divided into patients

who underwent treatment and those who did not. In total the Affymetrix

GeneChip used in this experiment measured the expression of 7129 genes.

The feature filtering method we employ is based SVD-entropy, and is a

simple modification of a method introduced by Varshavsky et al.[12] and
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applied to the same data.

The method begins by computing the SVD-based entropy [1] of a dataset

M ( matrix of n instances by m features of Eq. 15) based on the eigenvalues

sj of its diagonal matrix S. Defining normalized relative variance values

vj =
s2
j∑

k s2
k
, the dataset entropy is defined through

E = − 1
log r

r∑

j=1

vj log(vj) (17)

where r is the rank of the data-matrix, typically much smaller than m .

Given the dataset entropy of the matrix M , define the contribution of the

ith feature to the entropy using a leave-one-out comparison; i.e., for each

feature we construct the quantity

CEi = E(M(n×m))− E(M(n×(m−1))) (18)

where the second entropy is computed for the matrix with the ith feature

removed. Our filtering technique will be to remove all features for which

CEi ≤ 0.

Figure 3 displays the raw data in the 3-dimensional space defined by PCs

2 to 4, and the effect that DQC has on these data. In Figure 4 we see the

result of applying feature filtering to the original data, represented in the

same 3-dimensions, followed by DQC evolution. Applying a single stage of

filtering has a dramatic effect upon clustering, even before DQC evolution.

The latter helps sharpening the cluster separation. In the Supplementary

Material we demonstrate the effects of further consecutive applications of
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Figure 3: The left hand picture is the raw data from the Affymetrix Chip
plotted for principal components 2,3,4. Clearly, without the coloring it
would be hard to identify clusters. The right hand picture is the same
data after DQC evolution using σ = 0.2 and a mass m = 0.01. The different
classes are shown as blue, red, green and orange.

filtering and DQC evolution, improving clustering quality. But what is even

more interesting, is that one may follow dynamical iterations tracing the

merger of clusters, and use the feature filtering leading to the merger as

an indication of which features are responsible for the previous distinction

between the clusters.

Summary

We have proposed a dynamical theory for exploration of proximity rela-

tionships among data-points in large spaces. Starting with the potential

function of quantum clustering [5] we have shown that its embedding into
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Figure 4: The left hand plot is the Golub data after one stage of SVD-
entropy based filtering, but before DQC evolution. The right hand plot is
the same data after DQC evolution.

a dynamical theory provides an exploratory tool. Formulating the theoret-

ical treatment within coherent (Gaussian) states, we have derived analytic

expressions for all necessary calculations of the temporal evolution. This

allows us to treat quite complicated data and put them into a visual frame-

work that can be easily manipulated by the user who wishes to search for

structures in the data. We have tested the system on random data to make

sure that it does not produce unwarranted clustering structures.

There are some preprocessing tools that we have employed. The first

is SVD, which is being used for dimensional reduction. This is a must for

handling data in very large dimensions and it helps to remove noise from

the data. Dimensional reduction implies that we select a set of leading
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principal components, thus performing a selection of a few preferred axes

composed of superpositions of the original features of the data. In addition,

or as an alternative, one may wish to perform selection of individual features

that are judged to be relevant to the data at hand. Since our problem is

unsupervised, we employ a feature filtering method that depends on the

contribution of the features to SVD-entropy. This method can be applied

in tandem with iterative applications of our DQC technique.

The computational advantages of our method are its ease of use and the

fact that, once one has formed the Hamiltonian of the system, the compu-

tational problem is carried out within a matrix which has no more rows and

columns than the number of data points. Moreover, the simplest reduction

of the analytic problem of assigning data points to minima of the multi-

dimensional potential function works remarkably well. Going beyond the

truncation procedure explained in Appendix B, while easily doable, seems

unnecessary for most problems, and this allows us to greatly speed up the

computations.

Finally, we observe that the DQC methods described in this paper can

be easily extended to general classification problems that are usually re-

solved by supervised machine learning methods. The point is that given a

training set, i.e., a data set that has been fully resolved by DQC once the

appropriate stages of dimensional reduction and feature filtering has been

applied, then one can use this set to classify new data. The key idea is that,

since the training set has been successfully clustered we can assign distinct
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colors to points which lie in the training set to visually identify them in all

subsequent studies. Once this has been done, the classification of new data

points can been accomplished in two steps. First, reduce the SVD matrix

containing both the training set and the new data points (using the previ-

ously determined features) to the an appropriate dimension, and construct

the QC potential using only the the training set. Next, apply DQC to study

the evolution of the full system using the new QC potential and see how the

new points associate themselves with the points in the training set. Note,

as always, both the intermediate dynamics and eventual coalescence of the

full set into clusters can give useful information about the full data set. The

fact that the old points have been colored according to the original classifi-

cation scheme makes it possible to see if the SVD reduction of the full data

set (training set plus new data) distorts the original classification. If this

happens, i.e. if the original points fail to cluster properly, then one can go

back and use the tools of feature filtering, etc. to analyze what has changed.

This sort of visual identification of aspects of the data which distort clus-

tering was already used in the case of the leukemia data set to see that

the existence of a strong cluster can distort the clustering of the remaining

data. Once this easily identified cluster was removed from the data set the

clustering of the remaining data was significantly improved.

A computational package for carrying out DQC using Maple is available

upon request from the authors.
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APPENDIX A. USEFUL OPERATOR IDENTITES

Using conventional quantum-mechanical notation we represent the Gaussian

wave function by

|σ〉 = (
√

πσ)−
1
2 e−x2/2σ2

, (19)

where we adopted Dirac’s bra and ket notation [8] to denote |ψ〉 = ψ(x)

and 〈ψ| = ψ(x)∗. Employing the operators x and p = 1
i

d
dx obeying the

commutation relations [x, p] = i, we define the annihilation operator

Aσ = i
σ√
2

p +
1

σ
√

2
x (20)

obeying Aσ|σ〉 = 0. Its Hermitian adjoint creation operator A†σ = −i σ√
2
p +

1
σ
√

2
x obeys

[
Aσ, A†σ

]
= 1.

We will need a few identities to derive the matrix elements we have to

calculate. First we note the normal ordering identity (meaning rewriting by

using the operator commutation relations so that Aσ
′s appear to the right

of all A†σ
′
s):

eα(A†σ+Aσ) = eα2/2 eαA†σ eαAσ (21)

which may be proven by differentiation with respect to α. Next we note

that

eg(α)A†σ Aσ e−g(α)A†σ =
∑

n

g(α)n

n!
[A†σ, [A†σ, [. . . , [A†σ, Aσ]]] . . .]n = Aσ − g(α)

(22)

which is easily derived by differentiating with respect to g and noting that

only the first commutator is non-zero. A similar calculation proves the
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equally useful result:

eα(A†σ−Aσ) = e−α2/2 eαA†σ e−αAσ (23)

Now, because the Parzen window estimator is constructed using Gaus-

sian wavefunctions centered about points other than x = 0, it is convenient

to have an operator expression which relates the Gaussian centered about

x = 0 to the Gaussian centered about x = x̄.

Theorem: |σ, x̄〉 = e−ipx̄ |σ〉 is a normalized Gaussian wave-function

centered at x = x̄; i.e.

|σ, x̄〉 = (
√

πσ)−
1
2 e−

(x−x̄)2

2σ2 . (24)

This state is known as a coherent state [6], obeying

Aσ|σ, x̄〉 = x̄|σ, x̄〉. (25)

The generalization to Gaussians in any number of dimensions is straightfor-

ward, since they are just products of Gaussians defined in each one of the

different dimensions.

APPENDIX B. MATRIX ELEMENTS

The states we start out with |σ, x̄i〉 have norm one and are, in general,

linearly independent; however, they are not orthogonal to one another. In

what follows we will need an explicit formula for the scalar product of any

such Gaussian |σ, x̄i〉 with another |σ, x̄j〉. This is easily derived given the
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operator form for the shifted Gaussian derived in Appendix A. Thus we find

that

〈σ, ȳ|σ, x̄〉 = 〈σ| e−ip(x̄−ȳ)|σ〉 = e−(x̄−ȳ)2/4σ2
, (26)

which is needed for computing the matrix of scalar products Nij = 〈σ, x̄i|σ, x̄j〉.

Similarly, by employing eipȳ x e−ipȳ = x + ȳ we find that

〈σ, ȳ|x |σ, x̄〉 =
(x̄ + ȳ)

2
e−(x̄−ȳ)2/4σ2

. (27)

It is straightforward to generalize this derivation to obtain

〈σ, ȳ|V (x) |σ, x̄〉 = e−(x̄−ȳ)2/4σ2〈σ|V (x +
(x̄ + ȳ)

2
) |σ〉, (28)

for any function V (x). Note that this expectation value can be evaluated by

expanding V in a Taylor series about the point (x̄+ ȳ)/2. The leading term

is simply e−(x̄−ȳ)2/4σ2
V

( x̄+ȳ
2

)
and the remaining terms, involving 〈σ|xn |σ〉

can be evaluated from the identity

〈σ| eα x |σ〉 =
∞∑

n=0

αn

n!
〈σ|xn|σ〉 =

∞∑

p=0

α2pσ2p

4p p!
. (29)

To speed up computations we chose to approximate all expectation val-

ues of V (x) by V ( x̄+ȳ
2 ), the first term in this series. One could obviously

get a more accurate approximation to the original problem by including ad-

ditional terms but explicit computation has shown that, for our purposes,

this level of accuracy is sufficient.

The final formula we need to derive is that for

〈σ, ȳ| p2 |σ, x̄〉 = 〈σ| p2 e−ip(x̄−ȳ) |σ〉 =
(x̄− ȳ)2

2σ2
e−(x̄−ȳ)2/4σ2

. (30)
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With these preliminaries behind us it only remains to describe the me-

chanics of the DQC evolution process, where we evaluate the Hamiltonian

truncated to an n× n matrix in the non-orthonormal basis of shifted Gaus-

sians:

Hi,j = 〈σ, x̄i|H |σ, x̄j〉. (31)

The time evolution of our original states is computed by applying the expo-

nential of the truncated Hamiltonian to the state in question; i.e., |σ, x̄〉(t) =

e−iHt|σ, x̄〉. Computing the exponential of the truncated operator is quite

simple, except for one subtlety: we have defined H by its matrix elements

between a non-orthonormal set of states. Hence, to perform the exponentia-

tion, we first find the eigenvectors and eigenvalues of the metric Nij and use

them to compute the matrix N
−1/2
i,j . 1 Then we construct the transformed

H by

Htr
i,j =

∑

k,l

N
−1/2
i,k Hk,l N

−1/2
l,j . (32)

Now we can construct the exponential of this operator by simply finding

its eigenvectors and eigenvalues. In order to compute the time evolution of

one of the original states we simply write them in terms of the orthonormal

basis.

The only step which remains is to explain how we compute the expec-

tation values of the operator x as functions of time: we first construct, for
1If our original set of states is not linearly independent, then Ni,j will have some zero

eigenvalues. Clearly, we throw their corresponding eigenvectors away when computing
N
−1/2
i,j . In practice we discard all vectors whose eigenvalue is smaller than 10−5.

23



each component, the operator

Xi,j = 〈σ, x̄i|x |σ, x̄j〉 (33)

and use N
−1/2
i,j to put this into the same basis in which we exponentiate H;

i.e., construct

Xi,j =
∑

k,l

N
−1/2
i,k Xk,l N

−1/2
l,j . (34)
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