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Abstract

Search for Rare Quark-Annihilation Decays, BT — D{*¢

J. Adam M. Cunha

We report on a search for the decay BT — Dg*)iqﬁ using 212.2 fb~! of data
collected with the BABAR detector at the PEP-II B Factory at the Stanford Linear
Accelerator Center between 1999 and 2004. This sample of 234 x 10° ete™ —
Y (4S) — BB events yields no significant signal. We report the Bayesian upper
limits B(B* — DZ¢)xB(D% — ¢nt) < 8.6x107% and B(B* — D*¢)xB(D* —
¢m%) < 5.4 x 1077 at the 90% C.L. Using the latest measurement of B(DF —
) [1], we report: B(B* — DZ¢) < 1.8x10 % and B(B* — D*¢) < 1.1x107°

at the 90% C.L.
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Chapter 1

Document Roadmap

In order to aid in the reading of this document, we provide here a brief roadmap.

In Chapter 2 we discuss the Standard Model expectations for B(B* — Dﬁ*)iqﬁ)
and why quark annihilation diagrams are interesting. We then follow with a
discussion of some of the beyond-the-Standard-Model theories that could lead to
enhancements of the rate for B* — D{"%¢.

In Chapter 3 we discuss details of the BABAR detector and the SLAC facility.

In Chapter 4 we discuss the data samples used in this analysis. Section 4.1
will cover the collection of efe™ — 71(4S) and ete”™ — ¢g (q = u, d, ¢, or s)
data samples while Section 4.2 will cover the generation and use of Monte Carlo

simulated data (MC).
Then we get to the meat of this document, the discussion of the B* — Dg*)iqﬁ

analysis. In Chapter 5 we present in detail the roadmap for our analysis. In

Chapter 6 we define our selection criteria, discuss the optimization of the selection
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criteria to obtain the best possible upper limit on B(B* — Dg*)iqﬁ), and explore
possible backgrounds. In Chapter 7 we finally take look at the data.

In Chapter 8 we discuss experimental systematic uncertainties. In Chapter 9
we calculate our final results for B(B* — Dg*)iqﬁ); and in Chapter 10 we discuss
conclusions we can draw from these results.

Finally, in the appendices we provide more detailed discussions of some of the
techniques, definitions, etc. used in this analysis. These detailed discussions were
moved to the appendices in order to aid in the readability of this document and

for ease of reference.



Chapter 2

Theoretical Aspects of the
Measurements

2.1 The Standard Model

In the Standard Model (SM), the decay B* — D{"*¢ occurs through annihi-
lation of the two quarks in the B meson into a virtual W. The Feynman diagram
of this type of process is commonly referred to as an annihilation diagram, see
Figure 2.1.

Until this year, no annihilation-type B decays have ever been observed — the
Belle Collaboration presented preliminary evidence for the decay, BT — 7,
in April (see below). The current 90% confidence level (C.L.) upper limits on
the branching fractions, B(B* — Df¢) and B(B* — D:*¢) are 3.2 x 10~* and

4.0 x 10~ respectively. These limits come from a CLEO analysis of 1.16 million
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Figure 2.1: The Feynman diagram for process, B* — Dg*)igb. This is an example
of an annihilation diagram

CLEO "93 Non—SM Physics SM

Figure 2.2: The bottom bar in this cartoon depicts the reach we will have on
the branching fractions B(B* — D{"*¢) using the current BABAR dataset. The
darkened area is out of our reach; the hashed area can be explored with the data
available from BABAR; the white area has been excluded by CLEO.

BB decays [2]. With the present BABAR dataset, we should be able to search for
these modes with two orders of magnitude more sensitivity (see Figure 2.1).
In the SM, annihilation diagrams of the B meson are highly suppressed due
to the smallness of |V,;| and the meson decay constant f, which describes the
(%)%

overlap of the constituent-quark wavefunctions. Calculations of the B* — D"~ ¢

branching fractions give predictions of 3 x 10~7 using a perturbative QCD ap-
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proach [3], or 7 x 10~7 using QCD-improved factorization [4]. Rescattering' could
also contribute to B¥ — Dg*)iqﬁ. Note, however, that there cannot be any rescat-
tering contributions from the dominant b — ¢ transitions, since starting from a
b quark in the initial state we must end up with a ¢ quark in the final state, see
Figure 2.1. Rescattering can only occur from the suppressed b — ucs transitions
where uu — sS, e.g., bu — ucsu — ¢sSs.

Since the SM predicts a small branching fraction, and since the current experi-
mental limit is about three orders of magnitude higher than the SM expectations,
searches for B* — D{"% 4 could be sensitive to non-standard-model contributions.
For example, in Reference [4] the branching fraction of B* — D{* ¢ is estimated
to be as high as 8 x 107% in a two-Higgs-doublet model and 3 x 10~* in the MSSM
with R-parity violation.

The decay that we are considering, B¥ — D{"%¢, is not the only example of
an annihilation decay. From a theoretical point of view, the decay B* — D{"*¢
is related simply to a few other decays. Another possibility is Bt — D®+ KO,
(Here and throughout the paper the charge-conjugated mode is implied.) The

Feynman diagram for this mode can be obtained replacing the ss pair with a

dd pair in Figure 2.1. BABAR has completed a search for this decay mode and

!Rescattering is a process in which, for example, u% <+ s3 in the final state. In general, this
process is not well understood and contributions could be large.
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placed upper limits on the branching fractions, B(Bt—DTK?) < 0.5 x 107° and
B(BT—D**K®% < 0.9 x 1075 [5].

The decay B+ — 7+, is also very similar to B — D{%¢. The left hand side
of the Feynman diagram is the same, but on the right hand side, replace our Dg*)i—
¢ system with 7v,. A few months ago, the Belle collaboration released a prelimi-
nary result claiming evidence for the observation of the B* — 7tv, decay [6], and
just three weeks ago at the ICHEP 2006 conference, they released an updated, yet
still preliminary, result, B(B* — 7+v,) = (1.791335 (stat) "0 32 (syst)) x 107 [7].

We note that our experimental signature should be quite clean because of the
D¥ and, especially, the ¢ requirement. For example, the BABAR searches [8] for
BY — D{*7~ and B — D{Y* K~ resulted in a handful of background events
in the signal region. Substituting a ¢ for a pion or a kaon (both of which are

ubiquitous at BABAR) should greatly improve the rejection of combinatorics, and

perhaps even result in a background-free search.
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=l

V)

D)-

Figure 2.3: Annihilation (left) and exchange (right) tree-level Feynman dia-

grams for possible NP contributions to B* — D{"*¢. Internal gluons (i.e. QCD
interactions within each meson) are suppressed for clarity.

2.2 Physics beyond the Standard Model

Non-Standard-Model physics (colloquially refered to as “New Physics”, NP)
can enhance the BY — D{"%¢ rate. Since NP has to compete with a SM tree
diagram, it is reasonable to expect that we could only be sensitive to NP that
comes in at the tree level. The only tree level diagrams that we can write down
are annihilation and exchange diagrams, see Figure 2.3.

The exchange diagram is mediated by some virtual particle that causes a flavor
changing neutral current (FCNC) at the tree level, and so it is very unlikely. The
annihilation diagram is the same as the SM diagram of Figure 2.1, except here
the propagator could be any charged particles that couples to a quark current.

For a NP annihilation diagram to compete with the SM diagram, one or both

of the following must be satisfied:
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1. The mass of the exchanged particles must be lighter or of the same order
as that of the W boson, otherwise the rate, which is inversely related to
the mass of the propagator, would be much suppressed relative to the SM
contribution. (Of course large couplings could conspire with the large mass

to enhance the rate.)

2. The couplings at the bu and/or ¢s vertices must be enhanced with respect

to the SM.

Because of the results from direct searches, it is quite unlikely that the NP
particle in the propagator is lighter than the W. So, in order to have an enhance-
ment of the NP contribution with respect to the SM, we need the NP couplings
to be large. Note that the SM couplings are suppressed by the smallness of |V;|.
In general NP contributions to B — D{’*¢ will depend on the mass of NP
particle(s) and on the couplings to bu and ¢s.

The two possibilities that have been explored in the literature [4] are R-parity
violating supersymmetry (RPV-SUSY) and a two Higgs Doublet Model (2HDM).
In RPV-SUSY the exchanged particle is a slepton and the couplings could in
principle be quite large. In the 2HDM, the exchanged particle is a charged Higgs,

and the couplings can be enhanced by factors of the ratio of vacuum expectation
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values for the two Higgs doublets, tan 8. The remainder of this chapter will be

devoted to the discussion of these two models.

R-PARITY VIOLATING SUPERSYMMETRY

In the RPV-SUSY model, the Lagrangian includes a term A}, L;Q; Dy, where
the \’s are coupling constants, L; is the SU(2) doublet lepton superfield for the '8
generation, @; is the SU(2) doublet quark superfield for the j* generation, and
Dy, is the SU(2) singlet down-type quark superfield for the k'™ generation. This
causes tree level couplings u — b — slepton and slepton — ¢ — s that can then drive
the annihilation diagram of Figure 2.3, where the exchanged particle is a slepton.

The RPV-SUSY contribution to B(B* — D{* ) depends on the quantity

% Y
W = 15\242113 (21)

i
where M; is the mass of the i'® generation slepton and i runs over the the three
matter generations. Mohanta [4] has performed this calculation at tree level and
in the context of factorization. Using values of X,,)\};; and M; not excluded by

other measurements, Mohanta predicts a rate as high as 3 x 107
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Two-HIGGS DOUBLET SUPER-SYMMETRY

In the type II 2HDM model?, for large tan 8 the NP contribution to B* —
Dg*)iqb depends on the ratio tan 3/Mpy+, where My+ is the mass of the charged
Higgs boson. As for the RPV-SUSY model, Mohanta has calculated the 2HDM
B* — D% contribution at tree level and in the context of factorization and
predicts a rate as high as 8 x 107%. The type II 2HDM model is quite popular
since the minimal super-symmetric standard model (MSSM) is a 2HDM model,
so it is worthwhile to spend some time trying to put our result in context.

First of all, searches at LEP resulted in a limit My+ > 78.6 GeV (at high
tan ) [9], [10]. In the 2HDM model, the most stringent indirect limits on My+
come from b — sy: My+ > 320 GeV (95% CL) [9], [11]. Information on B — D71v
yields tan f/Mpy= < 0.46/ GeV [12]. The decay B — 7v also probes the same
NP contribution, since it also proceeds via annihilation of the quarks in the B*
mesons into a W+ or H*. From the recently published Belle result, B(BT —
ry,) = (1.7970:55 (stat) 1939 (syst)) x 10™* [6] we can extract the tree-level limit
tan B/Mpy+ < 0.31/ GeV.

Note that at tree-level the 2HDM and MSSM models are the same. However,

once higher order corrections are included, the predictions can be quite different

2Tn a 2HDM of type II, one Higgs couples to the up-type fermions and the other Higgs couples
to the down-type fermions. This is in contrast to a 2HDM of type I in which one Higgs couples
to all fermions and the other Higgs couples to nothing.

10
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and model dependent, particularly at high tan 3, see for example Reference [13]

for B = Tv.

11



Chapter 3

The PEP-11 B Factory and the
B:B« detector

A schematic drawing of the SLAC linear accelerator and the PEP-II storage rings
is shown in Figure 3.1. The PEP-II B Factory [15] is an electron-positron collider
which operates at center-of-mass energies around 10.56 GeV. This energy was
chosen since it is the rest mass of the 7°(4S) resonance, a bb bound state which
decays almost exclusively to a pair of B°B? or BB~ mesons. The rate of produc-
tion at peak performance is approximately ten BB pairs per second. Figure 3.2
shows a scan across the 7(4S) resonance. The 1°(4S5) resonance has a peak cross-
section of 1.1 nb, but it sits on a ete™ — ¢g (¢ = u, d, ¢, s) background of almost
3 nb. This continuum background will prove to be the largest background in this
analysis and its suppression will be critical.

The BABAR detector was designed as a general purpose detector. Various

publications are available that discuss the detector design and the performance of

12
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Figure 3.1: The SLAC linear accelerator and the PEP-II storage rings.

the various sub-detectors. An overview, which the reader may use to familiarize
himself with the details of detector design, construction, and performance, can be
found in [14]. Here we will discuss briefly the design and performance pertinent
to this analysis of the sub-detectors that make up BABAR.

Figures 3.3 and 3.4 shows a schematic of the BABAR detector. It is comprised
of five sub-detectors concentrically placed around the e™-e~ interaction point.
From the inside out the detector consists of a silicon vertex tracker (SVT), a drift
chamber (DCH), a Cherenkov radiation detector (DIRC), and a CsI calorimeter

(EMC). This is followed by a superconducting solenoid which produces a 1.5 T

13
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Figure 3.2: ete™ scan over the 1'(4S) peak. Note the sizable continuum back-
ground upon which the peak sits. The continuum cross-section has been sup-
pressed using event-shape information. (Event shape selection criteria will be dis-
cussed in Chapter 6.) Eliminating this will be key to our success in this analysis.

magnetic field oriented along the beam axis. Finally, the magnet’s flux return is
instrumented for muon and neutral hadron detection.

The coordinate system of BABAR is such that the positive z-axis is along the
direction of the incoming electron beam. The x-axis is oriented away from the
center of the PEP-II rings and the y-axis oriented vertically upward. In reference
to Figure 3.3, the z-axis goes from left to right, the x-axis points into the page,
and the y-axis points to the top of the page. The azimuthal angle, ¢, and the
polar angle, 6, are the usual for a cylindrical coordinate system.

In the following sections we detail each of the BABAR sub-detectors. We will

not discuss the instrumented flux return since its primary purpose is the detection

14
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Figure 3.3: A schematic of the longitudinal cross-section of the BABAR detector.
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of muons and long lived neutral hadrons (K? mesons) of which we have none in

this analysis.
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Figure 3.4: A schematic of the end-view cross-section of the BABAR detector.
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3.1 Silicon vertex tracker

The SVT and DCH comprise the BABAR tracking system which is responsible
for measuring the position and momentum of charged particles. It sits fully inside
the superconducting solenoid and thus inside a uniform magnetic field parallel to
the beam axis.

The SVT is a silicon microstrip detector. It consists of five concentric layers
of silicon wafers centered about the beam pipe. Figure 3.5 shows the longitudinal
cross section of the SVT. Each wafer is instrumented on both sides to detect the
passage of charged particles through the wafer. One side of the silicon has strips
running perpendicular to the beam direction to record the z coordinate of a passing
particle while the other has strips running parallel to the beam direction to record
the ¢ coordinate. Thus, along with the radial component which is given by the
layer’s radial location, we obtain 5 3D points for each particle which traverses the
SVT!L

The SVT was designed to measure the angles and position of charged particles

as close to the beam pipe as possible and to provide stand-alone track reconstruc-

1This of course assumes that the particle has enough transverse momentum to exit the SVT
and enter the DCH, which, if not true, can lead to greater than or less than five position
measurements per charged particle.

17
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Figure 3.5: This is a longitudinal cross-section of the BABAR silicon vertex
tracker.

tion for particles with not enough transverse momentum to reach the DCH. The
mean three-dimensional vertex resolution? for the SVT is around 100 um.

The SVT can also measure a particle’s energy loss while traversing the de-
tector, dE//dz. Each particle species (pion, kaon, etc.) has a distinctive dE'/dx
distribution as a function of momentum, this can be used to aid in identifying the
type of particle traversing the detector. The dF/dz resolution of the SVT is about
14%, and charged kaons can be distinguished from pions up to a momentum of

500 MeV/c.

2The vertex is the point at which a particle decays. The vertex resolution is the distance
apart two vertices must be for our detector to be able to distinguish them.
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3.2 Drift chamber

The Drift Chamber consists of 40 cylindrical layers of drift cells centered
around the beam pipe, a cross section is shown in Figure 3.6. Each cell is a hexag-
onal configuration of six field-shaping wires at the corners and one sense wire at
the center. Some of the wires are aligned with an angle to the z-axis in order
to provide z-coordinate information about a charged particle’s track. The DCH
volume is filled with an 80:20 helium:isobutane mixture. This mixture keeps the
average density of the gas at a minimum to minimize multiple scattering. Tracks
are detected by ionization of the gas in the chamber as a charged particle passes
through. These ionized atoms and electrons then drift under the electric field
present to the wires and the charge is read off as an electrical signal.

As the other sub-detector that makes up the heart of the BABAR tracking
system along with the SV'T, the DCH complements the SVT. Longer lived particles
like the K? will not always decay inside the SVT volume, thus the DCH provides
much of the tracking needed to reconstruct the K9 — 777~ decays used in this
analysis. The tracking efficiency in the DCH is around 98% for pr > 200 MeV/c?
and polar angle greater than 500 mrad, and a dE/dz resolution of 7.5% allows for

K#*-m* separation up to transverse momenta of 700 MeV/c (see Figure 3.7).
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Figure 3.6: Longitudinal cross-section of the DCH.
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Figure 3.7: Here we show the dF/dx resolution for the DCH (arbitrary units).
Note that there is good K*-m* separation up to 700 MeV/c.
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3.3 Cherenkov radiation detector

The DIRC, an acronym for Detector of Internally Reflected Cherenkov (light),
is a novel Cherenkov-based detector devoted to particle identification (PID).
Cherenkov radiation is produced when a charged particle traversing a medium
is moving faster than the speed of light in that medium. A cone of radiation
is emitted around the trajectory of the particle. The apex angle, known as the

Cherenkov angle, f¢, is given by,

1 c
cosfc = e = (3.1)

The DIRC is made of fused silica which has an index of refraction of n=1.4723.
Figure 3.8 shows a longitudinal cross-section of the DIRC. It consists of 144 sil-
ica bars placed cylindrically around the DCH. When a charged track traverses the
bar, the Cherenkov light propagates through internal reflection down the quartz
bar and out the back end of the BABAR detector where it is incident on photo
multiplier tubes (PMTs). The geometric placement of the PMTs outside the de-
tector allows for minimal material inside the detector. As the quartz bars are in
front of the electromagnetic calorimeter, this geometry is key in maintaining a
good energy resolution in the calorimeter by minimizing material in front it.
Figure 3.3 shows the particle identification performance of the DIRC. The

DIRC can achieve 40 or better K /7 separation for most particles of momenta
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Figure 3.8: Longitudinal cross-section of the DIRC sub-detector.

higher than the threshold for the production of Cherenkov light (~ 460 MeV/c
for kaons) and up to 4.5 GeV/c. This is important in this analysis for the recon-

struction of the kaons from the D whose momentum peaks at around 1 GeV/c.
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Figure 3.9: Particle identification performance in the DIRC. Note the excellent
K*-1% separation out to 2 GeV/c.
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Figure 3.10: Longitudinal cross-section of the electromagnetic calorimeter.

3.4 Electromagnetic calorimeter

The purpose of the EMC is to measure precisely the energy of electrons and
photons by causing them to interact electromagnetically with the detector medium
and deposit energy. Only electrons and photons deposit most of their energy
in the EMC; this allows for discrimination between electrons and other charged
tracks and the identification of photons which is important for reconstructing the
D** — D¥~ in this analysis. The EMC is effective for all energies above 0.03.

A cross-section is shown in Figure 3.10. The EMC consists of an array of
finely segmented crystals made of thallium-doped cesium iodide. These crystals
have a high light yield and a short radiation length to provide the best detector

efficiency and electromagnetic shower containment possible. The single-photon
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energy resolution of the EMC can be expressed as

% _ 238 o19%. (3.2)

E  YE(GeV)
The first term is due to fluctuations in photon statistics, electronics noise, and low
energy beam-generated backgrounds. The second term arises from non-uniformity

in the light collection, leakage, or absorption in front of the crystals.
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Data Samples

4.1 BaBar data

In this section we document the data sets used in this analysis. Our results
are based on 234 x 10° 7(4S) — BB decays, corresponding to an integrated
luminosity of 212 fb~!, collected between 1999 and 2004 with the BABAR detector
at the PEP-II B Factory at the Stanford Linear Accelerator Center. A 12 fb~!
data sample taken with a center-of-mass (CM) energy 40 MeV below the 1°(45)
resonance peak (Recall Figure 3.2.) is used to study continuum events, ete™ — ¢g
(¢ = u,d, s, or ¢)'. The number of B mesons in our data sample is two orders of
magnitude larger than in the previously-published B* — D{"% 4 search [2]. The
event sample used for this analysis was taken during four separate data-taking

periods referred to as Runs 1, 2, 3, and 4. This analysis was originally to use

I This data sample is know as the off-resonance data sample. The data sample collected at
the 7°(4S5) mass is referred to as the on-resonance data sample.

26



Chapter 4. Data Samples

data from Runs 1-3 and then extended to include data from Run 4, thus, at times
will refer to a distinction between these two groups of data. Also, portions of this
analysis, selection criteria optimization for example, were done on the Runs 1-3
dataset. As there is no significant difference between the Runs 1-3 and the Run
4 datasets we chose not to repeat these studies for the Run 4 dataset. It is noted
were only Run 1-3 data was used.

In addition, we utilize large samples of Monte Carlo simulated data (MC)
events to understand continuum (¢g MC) and B-meson (B°B° and B*B~ MC)
background events as well as to understand the detector response to our signal

events (B — D{"*¢ MC). The data sets used are summarized in Table 4.1.

4.2 Monte Carlo simulated data

Monte Carlo simulated data is an essential tool in this analysis. The BABAR
collaboration has on hand simulations of many 7(4S) — BB and non-resonant
interactions which can be used to study the detector response to various signals.
The BABAR MC used the GEANT42 software package along with detailed detector-
geometry and detector-materials models for event simulation. The flow chart
depicted in Figure 4.1 shows the steps involved in producing the MC. The main

steps to MC production discussed below are:

Zhttp:/ /geant4.web.cern.ch /geant4
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Table 4.1: Summary of the data sets used in this analysis. The signal Monte
Carlo samples, B* — Dg*)iqb, are generated using the appropriate fractions of the

decay modes of the D%

Data Type Number of events (Equivalent luminosity) Run
On resonance data 124 x10% BB events (112.4 fb™1) 1-3
On resonance data 110 x10% BB events (99.8 fb1) 4
Off resonance data 12 fb! 1-3
¢¢ Monte Carlo 150 bt 1-3
uds Monte Carlo 155 bt 1-3
B°B° Monte Carlo 252 x10° events 1-3
B*B~ Monte Carlo 254 x10° events 1-3
B* — D¢ Monte Carlo 60K events 1-3
B* — D*¢ Monte Carlo 60K events, longitudinally polarized 1-3
B* — D*¢ Monte Carlo 60K events, transversely polarized 1-3
B* — D¥¢ Monte Carlo 57K events 4
B* — D*¢ Monte Carlo 57K events, longitudinally polarized 4
B* — D*¢ Monte Carlo 57K events, transversely polarized 4

Generate the physics event

Propagate the particles through a detector model

Record positions and idealized energy deposits of the particles

Simulate detector response

Add background events

Reconstruct tracks and clusters as in data

GENERATING THE PHYSICS EVENT
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The physics of the ete™ collision is simulated by software called an event
generator. The initial positron and electron collision is simulated. Then, based
on production and decay rules given to the generator, an ete™ — X event is
generated. The production and decay rules are given by the physicist to specify
what X should be, e.g. efe”™ — ¢ or efe™ — T(4S) —» B'™B~ — Y. The
generator output is a set of four-vectors which represents the final state of the

collision near the ete™ interaction point.

PROPAGATE PARTICLES; RECORD IDEALIZED INFORMATION

The four-vectors from the generator stage are transported through a GEANT4
simulation of the detector where energy loss, production of secondary particles,
multiple scattering, and decay can occur. As these particles pass through sensitive
regions of the detector model, energy, charge, and angle information are used to
calculate positions and idealized energy deposits in the detector. These quantities

are stored for use in calculating the detector response.

SIMULATE DETECTOR RESPONSE; ADD BACKGROUND EVENTS

At this stage the idealized position and energy information are transformed
into realistic signals which mimic those collected from the detector electronics.
In order to better mimic real data, random snapshots are taken of the detector

occupancy. That is, at regular (but uncorrelated with the collisions of the two
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beams) intervals, the status of all the detector elements is read out and saved as
an underlying-background event. These real background events are mixed in with
the simulated event to more closely reproduce signal data. The final output from

this stage is stored as data for the reconstruction phase.
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RECONSTRUCT TRACKS AND CLUSTERS

The simulated detector signals are combined into candidate events consisting
of particle tracks, energy clusters, probable particle identifications, etc. From this
stage on the MC and data are treated the same.

Note that there are two types of signal Monte Carlo data for the B* — D!*¢
modes, longitudinally polarized and transversely polarized. The B* — D:*¢
decay is a decay of a scalar meson to two vector mesons. Because of this the
spin of the D** and the ¢ can have two orientations. The transversely polarized
particles have helicity £1 while the longitudinally polarized particles have helicity

0.
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Figure 4.1: Stages of development for Monte Carlo simulated data.
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Roadmap to the analysis

This analysis is a search for a process that in the standard model has a cross
section too small for any significant number of events to be seen in our data
sample, see Figure 2.1 and Chapter 2. Thus, we tailor our analysis to place the
best possible upper limit on the number of signal events observed and therefore
the best upper limit on the branching fraction, B(B* — D{"*¢).

We will perform this analysis blind. That is, we will not look at the on-
resonance data sample in the final signal region prior to completing all studies of
selection criteria, optimization, etc. In this way, we do not directly see the effects
of any analysis choice on the data signal yield. Thus, we do not bias ourselves
toward tailoring our analysis to get the largest (or the smallest) signal yield.

The analysis strategy is the following. First, in Section 6.1 we define the full
decay chain of the B that we will use. Then we impose loose requirements on

the various observables available in the analysis to reduce the size of the data
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sample by removing events which are clearly background. We call this “level one
selection”; it is described in Sections 6.2 and 6.3. The dataset we have at this
point consists of a sample of B* — Dg*)iqb candidate events that is clean enough
to make some observations about our selection efficiency and yields. This is done
is Sections 6.4 and 6.5. At this stage in the analysis the main background is
from continuum events (i.e. ete™ — ¢q), so we study the kinematic distributions
and event rates to see how the continuum MC compares to signal MC and off-
resonance data in Section 6.6. And in Section 6.7, we compare MC event rates
and distributions to the on-resonance datasample in the sideband of our final fit
variable.

There are many variables that distinguish between signal and background.
Instead of making many cuts (one for each variable), we construct a single variable
to cut on. We use a simple likelihood rather than a more sophisticated multivariate
(e.g. neural net) because we do not have enough background Monte Carlo events
to train a multivariate properly. The likelihood is described in Section 6.8. We
optimize this likelihood requirement to get the best expected branching fraction
upper limit (Section 6.9).

Now that the selection criteria are determined, in Section 6.10 we take a look
at the on-resonance data sample. Note that our final result will be a fit to the

number of events in a pre-defined signal region. At this stage we will not look at
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the data in this region to keep our analysis blind. The final step before unblinding
the signal region is to investigate possible backgrounds that could have a peaking
structure in our signal region. We study these backgrounds in Section 6.11 by
doing our analysis in a sideband of the D mass.

Finally, we are ready to look at the on-resonance data sample and unblind
our signal box. This is done in Chapter 7 and covers the results for both the
B* — D¢ and the B* — D!*¢ analyses using Run 1-4 data. The presence of
a signal is determined by a fit to a signal-plus-background distribution. (Recall,
the fit variables will be described in Section 6.2.) Systematic uncertainties due to
normalizing PDG branching fractions, particle identification, track reconstruction,
signal Monte Carlo statistics, cut efficiency, and determining the number of B
mesons in our data sample are detailed in Chapter 8.

Finally in Chapter 9 we discuss the determination of the branching fractions

of the B* — D{"*¢ decays. The branching fraction is given by

N, obs

B= o
Npg i€ B

(5.1)

where Nops is the observed number of events (or an upper limit of the number of

events observed in which case the equality becomes an upper limit), Ny5 is the
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number of B mesons in our data sample, ¢; are the efficiencies for each DF decay

mode, and B; are the total branching fractions of each DF decay mode.

IThis, of course, includes the B for the decay modes of the DF, e.g. the B(K*® — K*n~);
we call these the sub-decay modes.
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Event selection

6.1 Reconstructing the B* — Dg*) igb decay

The decay modes used in the search for B¥ — Dg*)igb and their branching
fractions are given in Table 6.1. The total branching fraction of each D% mode
is summarized in Table 6.2. Note that the latest BABAR result for the branching
fraction of D¥ — ¢7* has not yet been included in the world average published by
the Particle Data Group (PDG) [16]. This branching fraction comes up in every
part of the analysis since the branching fractions for the other DF decay modes
are normalized to the D — ¢7r* branching fraction. Thus, we use this latest

result, B(DX — ¢nt) = (4.8 4+ 0.6)% to calculate the total branching fractions

for the secondary and tertiary decays of the B meson®.

1To be complete, we redo all calculations using the 2004 PDG [16] world average for B(D; —
¢n~) = 3.6 £0.9 in Appendix F.
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Table 6.1: World-average and most recent branching fractions for all decays used
in this analysis. The PDG values were used in the generation of the MC datasets.
The most recent DT branching fractions are from BABAR [1].

Decay Value (2004 PDG) Value (latest)
¢ — KtK- 0.491 + 0.006 —
D — Dy 0.942 4 0.025 —
Dy — ¢~ 0.036 += 0.009 0.048 £ 0.006
D; 5> K-K%  0.036+0.011  0.049 4 0.010
D; - KK~ 0.033 £ 0.009 0.044 £+ 0.007
KO — mtr—  0.6895 +0.0014 -
K’ — K? 1/2 —
K* — Ktn— 2/3 —

Table 6.2: The total branching fractions for the secondary and tertiary decays in
the modes considered in this analysis. The uncertainties listed are the correlated
and uncorrelated, respectively.

B decay mode D:* mode DZF mode DZ/D:* branching fraction

D¢ - o~ (1.16 £ 0.15 + 0.02)%

D¢ - K*K? (0.82 £ 0.10 + 0.13)%

D¢ - KOK* (1.45+0.18 + 0.14)%

D¢ Dy o (1.09 = 0.14 £ 0.04)%
*t + + 770

D¢ Dy K*K? (0.77 £ 0.10 + 0.13)%

D¢ Dy KoK (1.36 £ 0.17 + 0.14)%
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6.2 Kinematic variables for B-meson selection

In an experiment using electron-positron collisions the environment is very
clean. At hadron colliders, the accelerated particle is not fundamental and there-
fore the energies of its constituents are unknown; but at eTe™ colliders, we know
precisely the energies of the two initial particles involved. Thus, we can use the
beam energies to constrain the kinematics of the efe~ — 71(4S) — BB event.
The way to use this information is not unique and the most optimal will vary de-
pending on the type of analysis performed. We use the energy substituted mass,
mgs, and the difference in energy between the reconstructed B meson and the

center of mass single-beam energy, AFE:

AE

* 1 * %
EB - 5\/5 = EB - Ebeam’ (61)

VBl (5 =[G+ Fo- /B2~ B (62)

mgs

The asterisk denotes the center-of-momentum reference frame and the superscripts
0 and B refer to the initial 7°(4S) and B candidate, respectively. The mgg and
AFE variables are nearly uncorrelated and will serve as our final fit variables that
we use to determine our BE — D{"%¢ yield. Note that the 7(45) has two main
decay modes, 7(4S) — B*B~ and 7 (4S) — B°B°. For this analysis we do not
retain the neutral B events; however, we do assume that B(Y'(4S) - B™B™) =

B(Y(4S) — B°BY).
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6.3 Level one selection criteria

The reconstruction process consists of combining tracks and energy clusters in
the BABAR detector into D candidates, ¢ candidates, and, in the case of B —
D**¢ (D:* — DZv), photon candidates. These daughter particle candidates are
then combined into B-meson candidates. At each stage in the reconstruction, the
measurement of the momentum vector of an intermediate particle is improved by
refitting the momenta of the decay products with kinematic constraints. These
constraints are based on the known mass [16] of the intermediate particle and on
the fact that the decay products must originate from a common point in space.

The primary purpose of the level one selection is to reduce dramatically the
size of the data set by weeding out events in which there is no chance of a signal
candidate. The level one selection consists of a set of basic requirements (otherwise
referred to as cuts) that are imposed at the very beginning of the analysis. These
requirements are quite minimal, they will be tightened at a later stage.

In order to be considered for this analysis an event much satisfy the following

level one requirements?

2Note that BABAR has a set of standard requirements for particle identification and track
reconstruction. This is described in more detail in Appendix C and D. Here we simply men-
tion that the categories for distinguishing kaons from pions to increasing degrees of confidence
are NotPion, Loose, Tight, and VeryTight; and the categories for track reconstruction of
increasing quality are ChargedTracks, GoodTracksVeryLoose, and GoodTracksLoose.
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All charged kaons must satisfy the particle identification requirements of

NotPion® or better.

Tracks from the K0 — 77~ decay must satisfy at least the track-quality

requirements of the BABAR track reconstruction category, ChargedTracks®.

All other charged tracks must satisfy all the requirements necessary to make

it into the GoodTracksVeryLoose particle identificaion category.®

M(K?) within +£9 MeV/c? (= 30) of the Particle Data Group (PDG) world

average
Three dimensional flight distance of the K2 must be > 3mm ©
M(K*%) within £75 MeV/c? (=~ 1.5T) of the PDG world average
M ($) within £10 MeV/c? (~ 2.5T) of the PDG world average
M (D¥) within +£15 MeV/c? (= 30) of the PDG world average

8

p*(D%) > 1.3 GeV/c (Runs 1-3)

3See Appendix C for details on particle identification
4See Appendix D for details on track-quality definitions at BABAR
5 .y .
ibid.
6The K? has a relatively long lifetime and therefore does not always decay instantaneously.
Thus, for any K? with non-zero momentum, its production and decay do not occur at the same

point.

The distance between the production and decay of the K9 is known as its flight length.

We can reduce drastically the backgrounds from the random combination of two pion tracks by
requiring a flight length of at least few millimeters. The characteristic flight length of a K is 3

cm.
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o p*(D¥)>1.6 GeV/c (Run 4)7

e mgs > 5.20 GeV/c? 8

o |AE| < 200 MeV

For the B* — D?*¢ analysis the following are also required:

e The reconstructed mass difference, Am = m(D?) —m(Ds), is required to be

130 < Am < 156 MeV/c2.

e Photons considered for the D:* — DZFvy decay are reconstructed starting
from an energy cluster in the EMC with the following added criteria:
— Minimum energy: 0.03 GeV,

— Maximum lateral moment: 0.8°.

The PDG world averages for various particle masses are given in Table 6.3.
After requiring that the candidate events pass these criteria, there is a possi-

bility that one event will contain more than one valid B-meson candidate. At this

"The difference between Runs 1-3 and Run 4 has no effect on the analysis since D candidates
for this analysis all have p*(DZ) > 1.6 GeV/c; between Run 3 and Run 4 the definition of a DF
simply changed to reflect this.

8Note, for the off resonance data sample, the value of mgg for each event was increased by
20 MeV, to keep the kinematic endpoint the same as in the on-resonance data.

9The lateral moment contains information about the azimuthal distribution (with respect
to the particle’s initial direction) of the shower shape in the EMC. The moment is zero for an
energy distribution that is isotropic in azimuth. Hadronic showers are much more irregular than
EM showers and thus have a much higher lateral moment.
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Table 6.3: World-averages masses of particles used in this analysis. We also
include the experimental resolutions for the D, the ¢, and Am, which are used
in the best-B-candidate arbitration.

Variable PDG world average Mode Experimental
Mass (MeV/c?) resolution ( MeV/c?)
M(K?) 497.6 — —
M(K*0) 896.1 — —
M(D:¥F) 2112.1 — —
D — ¢m~ 5.0
M(D¥) 1968.5 D; - K K? 6.4
Dy —» KK~ 5.3
M(4) 1019.5 — 5.7
Am 4.6 All D* modes 144

point we choose the best possible candidate to pass on to the next stage of the
analysis. Arbitration between multiple candidates is performed using a x? test in
which the best B candidate is defined as that candidate with the smallest value

of

Xb, = (m(DS)UQ mene)” | (m(¢);?PDG)2. (6.3)
exp ex

Here, m(D,) and m(¢) are the reconstructed DF and bachelor ¢'° masses, respec-
tively, mppg represents the Particle Data Group world average for that value, and
Oexp 18 the experimental resolution.

Arbitration between multiple candidates is again performed using a x? as in the

B* — D%¢ channel, but with the addition of a term for the Am mass difference,

0Ty avoid confusion with the ¢ in the D; — ¢~ decay, we will refer to the ¢ from the
B* — D% ¢ decay as the “bachelor ¢.”
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Am — AmpDG 2
XZD; = XQDS + ( )

4
R (o4

where X3, is the x? for the B* — D¢ analysis defined above.

6.4 Level one selection efficiency

The selection efficiency can be studied using signal MC data. The analysis
performed in this and the remaining sections of this chapter were done on the
Runs 1-3 dataset. These numbers are used in the process of understanding the
MC and its relation to the data, but never directly used in the calculation of the
final result.

In the final stages of this analysis, the mgs and AFE selection criteria will be
tightened. Thus it makes sense to anticipate these additional requirements and
impose a tighter selection on these variables for this study so that we may get
a better feel for MC and data that will fall within our final signal region. The
level one efficiencies on signal MC we report here include the tighter requirements
(otherwise referred to as the “signal box”) mgs > 5.27 GeV/c? and |AE| < 30 MeV
(= 30)'. These efficiencies, summarized in Table 6.4, are calculated as the ratio

of the number of reconstructed events passing all requirements to the number

"1 These tighter restrictions are very close to what will later be our final cuts in mgs and AE.
They carve out a box in the mgs-AF plane and we therefore refer to it as the signal-box.
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Table 6.4: Signal Monte Carlo data efficiencies for the level one selection require-
ments, including the tighter requirements mgs > 5.27 GeV/c?> and |AE| < 30
MeV. PID and tracking corrections have not been applied. Uncertainties are
statistical only. Each D:* polarization is listed.

B decay mode D, decay mode MC efficiency
B~ — D, ¢ D; — ¢ 26.1+£04 %
B~ —>D.¢ D; 5 K K° 244404 %
B~ — D¢ Dr — KK~  21.6+0.3 %
B~ — D}~ ¢ (longitudinal) D; — ¢~ 14.44+0.3 %
B~ — D! ¢ (longitudinal) D; — K™K 13.4+0.3 %
B~ — D! ¢ (longitudinal) D; — K**K~ 11.6+0.2 %
B~ — D*~¢ (transverse)  D; — ¢m~ 148 +£0.3 %
B~ — D:~¢ (transverse) D7 — K~ K 145+0.3 %
B~ — D:~¢ (transverse) D; — KK~ 124402 %

of generated events. These efficiencies do not yet include particle identification

(PID) and tracking corrections.

6.5 Level one selection yields

We would like to examine the yields of events passing the level one selection
requirements in continuum and BB MC. We compare these yields in two cate-
gories: one, imposing just the level one selection criteria; and two, also applying
the tighter restrictions, mggs > 5.27 GeéV/c¢? and |AE| < 30 MeV. We can also

use these numbers to get a preview of whether we will encounter peaking back-
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grounds'?. If we see no enhancement of events in the signal region versus the
larger mgs vs. AFE region allowed by the level one selection we can expect to have
small peaking backgrounds.

The yields are summarized in Tables 6.5 and 6.6. There are some immediate,

not too surprising, conclusions that can be drawn:

e The main backgrounds are from continuum, mostly ete™ — cc.
e There is no sign of peaking backgrounds in the BB Monte Carlo datasets.

e The D; — K**K~ mode is the least pure mode.

In Table 6.7 we compare the continuum MC yields to the actual off-resonance
data yields. (The MC yields are the same as those listed in the last column of
Tables 6.5 and 6.6.) We note that that the MC overestimates the background
levels, especially in the cleaner D modes (D, — ¢m and, to some extent,

D; — K-KD).

12Peaking background events are events that come from particular real B mesons. Not all
B backgrounds are considered peaking, however some decays of the B could show a peaking
structure in the mgs and AFE signal regions. This is in contrast to other backgrounds (non-
peaking B decays and continuum) that tend to have a flat distribution in the signal region.
Peaking backgrounds will be discussed in Section 6.11

46



Ly

Table 6.5: B* — DF¢. Number of events passing various levels of selection requirements in Runs 1-3 MC: 1)
The level one selection requirements and 2) the level one selection requirements plus mgs > 5.27 GeV/c? and
|AE| < 30 MeV (the “signal box”). The generated number of events in the MC samples are listed in Table 4.1.
“On res” and “Off res” indicate the on-resonance and off-resonance datasets.

MC L1 Selection L1 Selection Signal Box Signal Box L1 Selection
B mode Dg; mode Dataset MC events expected on res. MC events expected on res. expected off res.
Df ¢ ¢ e 273 205+12 5 442 22+ 1
D ¢ K K! cc 252 190+12 5 442 20+ 1
Df ¢ KYK~ ¢ 741 555420 22 17+4 59 + 2
DF ¢ T uds 33 24+4 1 1+1 3+1
Df ¢ K KV  wuds 80 5846 1 1+1 6+ 1
Df ¢ KOK—  uds 247 179+11 6 442 18+1
Df ¢ P BB° 13 642 0 < 1.1 90% CL N.A.
Df¢ K K BB 31 15+3 0 < 1.1 90% CL N.A.
Df ¢ KK~ BB 70 34+4 2 1+1 N.A.
Df ¢ - Bt B~ 21 1042 1 0.5+0.5 N.A.
Df¢ K K BB~ 27 1342 1 0.5+ 0.5 N.A.
Dt ¢ KY9K- Bt B~ 113 55+5 4 241 N.A.

uor1)09[9s JuAs -9 1ojdey))
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Table 6.6: B* — D:*¢. Number of events passing various levels of selection requirements in Runs 1-3 MC: 1)
The level one selection requirements and 2) the level one selection requirements plus mgs > 5.27 GeV/c? and
|AE| < 30 MeV (the “signal box”. The generated number of events in the MC samples are listed in Table 4.1.
“On res” and “Off res” indicate the on-resonance and off-resonance datasets.

MC L1 Selection L1 Selection Signal Box Signal Box L1 Selection

B mode Dg; mode Dataset MC events expected on res. MC events expected on res. expected off res.
D:F ¢ ¢n e 170 128410 6 542 14+1
D:* ¢ K K cc 141 106+9 3 241 11+1
D:* ¢ KOK T 436 328+16 12 9+3 35+ 2
Dt ¢ pn uds 21 1543 0 < 1.7 90% CL 1.6 +£0.3
D:* ¢ K K uds 49 36+5 2 1.5+1.1 3.8+0.5
D ¢  KOK~  uds 121 89+8 1 1+1 9+1
D:F ¢ ¢n B°BY 20 942 1 0.5+0.5 N.A.
D:*¢ K KY BB 27 13+3 0 < 1.1 90% CL N.A.
Dt ¢ KOK- BB° 57 27+4 1 0.5+ 0.5 N.A.
Dt ¢ pn BT B~ 19 942 0 < 1.1 90% CL N.A.
D:* ¢ K K Bt B~ 23 1142 1 0.5+0.5 N.A.
D* ¢ KI9K- Bt B~ 106 49+5 2 0.9+0.6 N.A.

uor1)09[9s JuAs -9 1ojdey))
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Table 6.7: Comparison of the number of events passing the level one selection
in the continuum MC (see Table 6.5) and off-resonance data.

B mode D; mode wuds+c¢ MC prediction Off-resonance data

D¢ o 25+ 2 9
D%¢ K K? 26 4 2 14
D¢ KK~ e 64
D¢ pm 16£1 6
D*¢  K~K? 15+1 7
D¢  KOK- 4443 38
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6.6 Kinematics of events that pass Level One

selection

We now compare various kinematic distributions of signal, background, and
off-resonance Monte Carlo data for events that pass the level one selection. As seen
in Section 6.5, Tables 6.5 and 6.6, our biggest backgrounds will be from continuum
events, as opposed to backgrounds from B decays other than B* — Dg*)iqﬁ. We
now introduce two discriminating variables that are based on the distribution of
charged tracks and neutral EMC clusters in the event that are very efficient at
reducing backgrounds from continuum events

At BABAR, the Y (4S) is created at rest in the center of mass frame; and
the mass of the two daughter B mesons is almost equal to the rest mass of the
7(4S). Because of this the B mesons are moving very slowly in the center of mass
frame. Thus when the B mesons decay they do so isotropically in the center of
mass frame and the event as a whole has a spherical distribution of reconstructed
charged tracks and neutral EMC clusters.

The tracks-and-clusters distribution for a continuum event is very different.
In the case of an ete™ — ¢g continuum event, the two quarks in final state
system must be moving away from each other rather quickly in order to conserve

momentum. Then, as each quark hadronizes the tracks and clusters from these
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Figure 6.1: The thrust angle, O is represented by the thick solid arrow. The
dotted arrows represent the tracks and neutral EMC clusters in the center of mass
frame that are used to make up the B we reconstruct as B — Dg*)iq&. The solid
arrows are the other tracks and clusters in the event. The left figure is an example
of a BB event. Notice that the event has an overall circular shape. The figure
on the right is an example of a ete” — ¢g, continuum, event. Notice that the
continuum event has much less circular shape.

hadrons tend to be grouped in a cone around the momentum vector of the parent
quark. In this case, we say that the tracks and clusters have a jet-like distribution.

In Figure 6.6 we have drawn an example of the spherical and jet-like distri-
bution of tracks and clusters. On the left is a spherical, 7(4S) — BB, event,
while on the right is a jet-like eTe™ — ¢g event. In order to take advantage of the
difference in event shape, we define two event shape variables, the B thrust angle
and the Legendre Fisher.

The Legendre Fisher (or simply the Fisher) is a commonly used tool at BABAR.

A Fisher Discriminant [17] is used to maximize the discrimination power between
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two or more variables that are correlated to any degree. The two variables we are
trying to distinguish are the momentum-weighted Legendre moments, Ly and L.

Hence the name the Legendre Fisher. It is given by'3,
f = C()L() + OQLQ, (65)

where

L= Y.n (6.6)

r.o.e.

L2 = Z Di COS2 eTj- (67)

The term “r.o.e.” stands for the rest of the event. The sum is over all the tracks
and neutral clusters in each event that are not associated with the B that we are
reconstructing. The B thrust angle, 67, is the angle that the track or neutral
cluster makes with the thrust vector. The thrust vector is defined as the vector
that satisfies maz(| ;T - B;])/(Z;] B;|) for any group of tracks and clusters, j.
The thrust vector is defined over all the tracks and clusters in the event. Since we
want to maximize the discrimination between continuum events and signal events
and the main component of the continuum background is from ete™ — ¢¢ events,
we determined the constants Cjy and C5 from signal and ¢¢ MC.

Figures 6.2-6.12 for the B* — DZ¢ mode and Figures 6.13-6.23 for the

B* — D!*¢ mode show the distributions for the variables that we will use in

13Gee Appendix A for more details
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this analysis. Some observations about these kinematic distributions are summa-

rized below!

e Background MC and off-resonance data show a hint of a D peak (Fig-
ures 6.2 and 6.13), but a large fraction of the reconstructed D are actually

just combinatoric.

e The invariant mass distributions for the bachelor ¢ (Figures 6.3 and 6.14)
show that many bachelor ¢ candidates in background events are real. Thus,
we do not expect to gain much background rejection by cutting tighter on the
bachelor ¢ mass or by requiring more stringent kaon particle identification

requirements on the bachelor ¢ daughters.

e It appears that the background bachelor ¢ mesons are largely unpolarized
(Figures 6.4 and 6.15). The decay (helicity) angle!® of the ¢ candidate is
then a good discriminant against backgrounds in the B* — DZ*¢ mode,

where the ¢ has a known polarization.

e The cos 6 distributions. The angle p is the polar angle of the B candidate

in the CM frame'®. It should be roughly flat for combinatoric backgrounds

M4 For all these plots, the background MC normalized to the on-resonance data luminosity for
Runs 1-3 only, however since Run 4 almost exactly doubled our luminosity, one can easily make
the conversion. The shapes of the distributions do not change between Runs 1-3 and Run 4.

15Gee Appendix B for a definition of the decay angle.

16See Appendix B for a definition of the angle 0.
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and 1 — cos? A for real BB events. Figures 6.5 and 6.16 show that this is

indeed what we see.

e The continuum MC distributions of cos(f) peak at | cos(fr)| = 1 while the
signal MC is relatively flat. (Figures 6.6, and 6.17). This is the expected

behavior of continuum and signal events.

e Figures 6.7 and 6.18 show that we get good discrimination between the

signal and background with the Legendre Fisher variable.

e The distributions of decay (helicity) angle for the ¢ from D, — ¢7~ show
that backgrounds are largely uniform in the cosine of this angle (Figures 6.9

and 6.20).

e It seems that most of the K candidates in D; — K~ K_ are real K_
(Figures 6.10 and 6.21) Thus, there is no need to tighten the requirements

on the K? further.

e Most of the K** candidates in D; — K**K~ appear to be combinatoric
(Figures 6.11 and 6.22). Further study is necessary to determine whether

tighter kaon particle identification requirements should be used.

e The decay (helicity) angle of the K** candidate (Figures 6.12 and 6.23)

appears to be a useful variable for background rejection.
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e In the B* — D**¢ mode, the background MC and the off resonance data
do not show a peak in Am distribution, see Figure 6.24. Thus, it seems that

most D** candidates are combinatoric.

e In the B*¥ — D?*¢ mode, the energy of the photon from D!* — DZ*y in
background MC and off resonance data is on average lower than expected for

signal (Figure 6.25). This is also what one would expect for combinatorics.
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Figure 6.2: B* — DFf¢. Mass of the DF candidate for all events that pass
the level one selection criteria. From left to right: D, — ¢7, D, — K K2,

Dy

Top row:

— KK~

black=BB, blue=uds, yellow=cc.

Middle row: Off-resonance data.

Bottom row: Signal MC, arbitrary normalization.
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Figure 6.3: B* — DZ¢. Mass of the bachelor ¢ candidate for all events that
pass the level one selection criteria. From left to right: D; — ¢7, D; — K K,
D; — K*YK~.

Top row: Background MC, normalized to on-resonance data, black=BB,
blue=uds, yellow=ce.

Middle row: Off-resonance data.

Bottom row: Signal MC, arbitrary normalization.
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Figure 6.4: B* — DZ¢. Decay (helicity) angle of the bachelor ¢ candidate for
all events that pass the level one selection criteria. From left to right: D, — ¢7—,
D; - K K?, D; - K*K~.

Top row:
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Middle row: Off-resonance data.
Bottom row: Signal MC, arbitrary normalization.

o8

Background MC, normalized to on-resonance data, black=BB,



Chapter 6. FEvent selection

Off Res MC CosTheta_B PhiPi

Off Res MC CosTheta B _KsK Off Res MC CosTheta_B DKStK

L]

80 [

60 [

40 |-

20 [

07|

Figure 6.5: B* — DZ¢. Cosine of the CM polar angle of the B candidate (See
Appendix B) for all events that pass the level one selection criteria. From left to
right: Dy — ¢n~, Dy - K~ K% D7 — K*°K~.

Top row: Background MC, normalized to on-resonance data, black=BB,
blue=uds, yellow=ce.

Middle row: Off-resonance data.

Bottom row: Signal MC, arbitrary normalization.
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Figure 6.6: B¥ — DF¢. Cosine of the angle between the thrusts of the B can-
didate and of the rest-of-the-event for all events that pass the level one selection
criteria. From left to right: Dy — ¢n~, Dy - K~ K%, D7 — K*K~.

Top row: Background MC, normalized to on-resonance data, black=BB,
blue=uds, yellow=ce.

Middle row: Off-resonance data.

Bottom row: Signal MC, arbitrary normalization.
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Middle row: Off-resonance data.

Bottom row: Signal MC, arbitrary normalization.
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Figure 6.8: B* — DF¢. Mass of the ¢ from D, — ¢7~ for all events that pass
the level one selection criteria.

Left: Background MC, normalized to the on-resonance data, black=BB,
blue=uds, yellow=ce.

Middle: Off-resonance data.

Right: Signal MC, arbitrary normalization.
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Figure 6.9: B* — D¥¢. Decay (helicity) angle of the ¢ from D; — ¢n~ for all
events that pass the level one selection criteria.

Left: Background MC, normalized to the on-resonance luminosity, black=BB,
blue=uds, yellow=cc.

Middle: Off-resonance data.

Right: Signal MC, arbitrary normalization.
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Figure 6.10: B* — D¥¢. Mass of the K from D; — K~ K for all events that
pass the level one selection criteria.

Left: Background MC, normalized to the on-resonance data, black=BB,
blue=uds, yellow=cc.

Middle: Off-resonance data.

Right: Signal MC, arbitrary normalization.
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Figure 6.11: B* — DZ¢. Mass of the K*° candidate from D; — K**K~ for
all events that pass the level one selection criteria.

Left: Background MC, normalized to the on-resonance data, black=BB,
blue=uds, yellow=cc.

Middle: Off-resonance data.

Right: Signal MC, arbitrary normalization.
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Figure 6.12: B* — D¥¢. Decay (helicity) angle of the K** from D; — K*'K~
for all events that pass the level one selection criteria.

Left: Background MC, normalized to the on-resonance data, black=BB,
blue=uds, yellow=cc.

Middle: Off-resonance data.

Right: Signal MC, arbitrary normalization.
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Figure 6.13: B* — D:*¢. Mass of the DF candidate for all events that pass
the level one selection criteria. From left to right: Dy — ¢7—, D — K~ K2,

D7 — KK~

Top row: Background MC, normalized to on-resonance data, black=BB,

blue=uds, yellow=cc.

Middle row: Off-resonance data.
Bottom row: Signal MC, arbitrary normalization. Solid line: longitudinal po-

larization, dashed line: transverse polarization.
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Figure 6.14: B* — D!*¢$. Mass of the bachelor ¢ candidate for all events that
pass the level one selection criteria. From left to right: D; — ¢7—, Dy — K~ K2,
D; - K*K~.

Top row: Background MC, normalized to on-resonance data, black=BB,
blue=uds, yellow=cc.

Middle row: Off-resonance data.

Bottom row: Signal MC, arbitrary normalization. Solid line: longitudinal po-
larization, dashed line: transverse polarization.
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Figure 6.15: B* — D:*¢. Decay (helicity) angle of the bachelor ¢ candidate for
all events that pass the level one selection criteria. From left to right: D — ¢7~,

D; - K-K% D7 — KK~

Top row: Background MC, normalized to on-resonance data, black=BB,

blue=uds, yellow=cc.
Middle row: Off-resonance data.

Bottom row: Signal MC, arbitrary normalization. Solid line: longitudinal po-

larization, dashed line: transverse polarization.
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Figure 6.16: B* — D?*¢. Cosine of the CM polar angle for all events that pass
the level one selection criteria. From left to right: Dy — ¢7—, D — K~ K2,
D; - K*K~.

Top row: Background MC, normalized to on-resonance data, black=BB,
blue=uds, yellow=cc.

Middle row: Off-resonance data.

Bottom row: Signal MC, arbitrary normalization. Solid line: longitudinal po-
larization, dashed line: transverse polarization.
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Figure 6.17: B* — D:*¢. Cosine of the angle between the thrusts of the B
candidate and of the rest-of-the-event for all events that pass the level one selec-
tion criteria. From left to right: Dy — ¢n~, D7 - K~ K°, Dy — K*°K~.

Top row: Background MC, normalized to on-resonance data, black=BB,
blue=uds, yellow=cc.

Middle row: Off-resonance data.

Bottom row: Signal MC, arbitrary normalization. Solid line: longitudinal po-
larization, dashed line: transverse polarization.
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Figure 6.18: B* — D*¢. Legendre Fisher for all events that pass the level one
selection criteria. From left to right: Dy — ¢n~, D7 - K~ K?, D; — K*°K~.
Top row: Background MC, normalized to on-resonance data, black=BB,
blue=uds, yellow=cc.

Middle row: Off-resonance data.

Bottom row: Signal MC, arbitrary normalization. Solid line: longitudinal po-
larization, dashed line: transverse polarization.
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Figure 6.19: B* — D!*¢. Mass of the ¢ from D; — ¢~ for all events that
pass the level one selection criteria.

Left: Background MC, normalized to the on-resonance data, black=BB,
blue=uds, yellow=cc.

Middle: Off-resonance data.

Right: Signal MC, arbitrary normalization. Solid line: longitudinal polarization,
dashed line: transverse polarization.
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Figure 6.20: B* — D!*¢. Decay (helicity) angle of the ¢ from D, — ¢ for
all events that pass the level one selection criteria.

Left: Background MC, normalized to the on-resonance luminosity, black=BB,
blue=uds, yellow=cc.

Middle: Off-resonance data.

Right: Signal MC, arbitrary normalization. Solid line: longitudinal polarization,
dashed line: transverse polarization.
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Figure 6.21: B* — D:*¢. Mass of the K? from D; — K~ K for all events
that pass the level one selection criteria.

Left: Background MC, normalized to the on-resonance data, black=BB,
blue=uds, yellow=cc.

Middle: Off-resonance data.

Right: Signal MC, arbitrary normalization. Solid line: longitudinal polarization,
dashed line: transverse polarization.
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Figure 6.22: B* — D**¢. Mass of the K** candidate from D; — K*'K~ for
all events that pass the level one selection criteria.

Left: Background MC, normalized to the on-resonance data, black=BB,
blue=uds, yellow=ce.

Middle: Off-resonance data.

Right: Signal MC, arbitrary normalization. Solid line: longitudinal polarization,
dashed line: transverse polarization.
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Figure 6.23: B* — D:*¢. Decay (helicity) angle of the K** from D; — K*'K~
for all events that pass the level one selection criteria.

Left: Background MC, normalized to the on-resonance data, black=BB,
blue=uds, yellow=cc.

Middle: Off-resonance data.

Right: Signal MC, arbitrary normalization. Solid line: longitudinal polarization,
dashed line: transverse polarization.
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Figure 6.24: B* — D!*¢. Am for all events that pass the level one selection

criteria.

Left: Background MC, normalized to the on-resonance data, black=BB,
blue=uds, yellow=cc.
Middle: Off-resonance data.
Right: Signal MC, arbitrary normalization. Solid line: longitudinal polarization,
dashed line: transverse polarization.
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Figure 6.25: B* — D!*¢. Energy of the photon from D?* — DZ~ for all events
that pass the level one selection criteria.

Left: Background MC, normalized to the on-resonance data, black=BB,
blue=uds, yellow=cc.

Middle: Off-resonance data.

Right: Signal MC, arbitrary normalization. Solid line: longitudinal polarization,
dashed line: transverse polarization.
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6.7 Comparison with on resonance data

The continuum MC predictions for the yields are quite a bit off from what is
observed in off-resonance data, see Table 6.7. Also, some of the kinematic dis-
tributions, e.g. the bachelor ¢ mass, show poor agreement between off resonance
data and MC. For these reasons we now examine the larger on-1"(4S)-resonance
data sample. We want to determine whether the discrepancy in yields is real or
an unlikely statistical fluctuation, and we also want to examine the gross features
of the kinematic distributions. In order for the analysis to remain blind, we add
the requirement that mgg < 5.26 GéV/c? to the level one selection criteria.

The comparison of yields between the MC predictions and on-resonance data
are listed in Table 6.8. For the B — DF¢$ modes we see that these results confirm
that the continuum MC overestimates the rate of background events, especially
in the cleaner D; — ¢n~ and D; — K~ K modes. This is also the case for the
B* — D*¢ modes. Next, we examine the various kinematic distributions for on
resonance data. These are displayed in Figures 6.26- 6.33 for B* — D*¢ and in

Figures 6.34- 6.43 for B* — D:*¢. These distributions all look quite reasonable.
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Table 6.8: Number of events passing the level one selection criteria with mgpg < 5.26 GeV/c? in various samples.
The numbers in parentheses are normalized to the on-resonance luminosity. Prediction 1 is the prediction for
the number of on resonance events from the c¢, uds, and BB Monte Carlos. Prediction 2 uses the off resonance

data and the BB Monte Carlos.

Mode Off cc uds B°B° B* B~ On Pred.1 Pred. 2
B — Dy ¢
Dy — ¢~ 8 (75) 209 (157) 25 (18) 10 (5) 14 (7) 102 187+12 87+26
D, - K K 8 (75) 186 (140) 62 (45) 22 (10) 17 (8) 136 203+12 93 +26
D, - K"K~ 44 (414) 559 (420) 189 (137) 55 (27) 79 (39) 486 623 +21 480 + 62
B — D ¢
D — (¢n )y 5(47)  132(99) 19 (14) 13 (6) 13(6) 65 125+9 59+21
DY = (K K%y 7(66) 108(81) 38(28) 17(8) 14(7) 77 124+8 81425
D — (K*K~)y 25(235) 313 (236) 94 (69) 45 (21) 75(35) 254 361+16 291447
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Figure 6.26: B* — DZ¢. Mass of the DF candidate for on resonance candidates
passing the level one selection criteria and with mgs < 5.26 GeV/c?. From left to
right: D — ¢r~, D7 — K~ K% D7 — KK~
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Figure 6.27: B* — D*¢. Mass of the bachelor ¢ candidate for on resonance
candidates passing the level one selection criteria and with mgs < 5.26 GeV/c?.
From left to right: Dy — ¢7~, D - K~ K2, Dy — K*°K~.
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Figure 6.28: B — DZ¢. Decay (helicity) angle of the bachelor ¢ candidate
for on resonance candidates passing the level one selection criteria and with mgs
< 5.26 GeV/c%. From left to right: D; — ¢n, D, - K K2, D, — K*K .
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Figure 6.29: B* — DZ¢. Cosine of the CM polar angle for candidates passing
the level one selection criteria and with mgg < 5.26 GeV/cQ. From left to right:
D; - ¢, D; - K K% D; - K*°K~.
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Figure 6.30: B* — DF¢. Legendre Fisher candidates
selection criteria and with mgs < 5.26 GeV/c?. From left to right: Dy — ¢m~,
D; - K K?, Dy - K*K~.
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Figure 6.31: BT — D*¢. cos(fr) for candidates passing the level one selection
criteria and with mgs < 5.26 GeV/c%. From left to right: D; — ¢n~, D; —

K-K? D7 — K®K~.
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Figure 6.32: B — DF¢. Left plot: mass of the ¢ candidate from D, — ¢n—
decay. Right plot: decay (helicity) angle of the ¢ candidate from D, — ¢n—
decay. Distributions for on resonance candidates passing the level one selection
criteria and with mgpg < 5.26 GeV/c2.
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Figure 6.33: B* — DZ¢. Left plot: mass of the K? candidate from D, —
K~K? decay. Middle plot: mass of the K*° candidate from D; — K**K~ Right
plot: decay (helicity) angle of the K** candidate from D; — K*°K~ decay.
Distributions for on resonance candidates passing the level one selection criteria
and with mgs < 5.26 GeV/c?.
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Figure 6.34: B*¥ — D:*¢. Mass of the DT candidate for on resonance B* —
D**¢ candidates passing the level one selection criteria and with mgpg < 5.26
GeV/c?. From left to right: Dy — ¢7—, Dy — K- K%, D7 — K**K~.
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Figure 6.35: BT — D:*¢. Mass of the bachelor ¢ candidate for on resonance
candidates passing the level one selection criteria and with mgs < 5.26 GeV/c?.
From left to right: Dy — ¢7~, D - K~ K2, Dy — K*°K~.
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Figure 6.36: B* — D!*¢. Decay (helicity) angle of the bachelor ¢ candidate
for on resonance candidates passing the level one selection criteria and with mgs
< 5.26 GeV/c%. From left to right: D, — ¢n, D, - K K2, D, — K*K .
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Figure 6.37: B* — D:*¢. Am for on resonance candidates passing the level one
selection criteria and with mgs < 5.26 GeV/c?. From left to right: Dy — ¢,
D; - K K, D; - K*K".
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Figure 6.38: B — D!*¢. Energy of the photon from the D:* — D~y decay
for on resonance candidates passing the level one selection criteria and with mgg
< 5.26 GeV/c?. From left to right: Dy — ¢n~, Dy - K~ K% D7 — K*K~.
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Figure 6.39: B — D**¢. Cosine of the CM polar angle for candidates passing
the level one selection criteria and with mgs < 5.26 GeV/c?. From left to right:
D; = ¢r~, Dy - K~ K2, D; — K*K~.
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Figure 6.40: B* — D!*¢. Legendre Fisher candidates passing the level one
selection criteria and with mgg < 5.26 GeV/c?. From left to right: D, — o,
D; —» K K° D; — KK~
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Figure 6.41: B* — D!*¢. cos(fr) for candidates passing the level one selection
criteria and with mps < 5.26 GeV/c?. From left to right: D, — ¢, D; —
K K% D; - KK .
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Figure 6.42: B* — D**¢. Left plot: mass of the ¢ candidate from D; — ¢m~
decay. Right plot: decay (helicity) angle of the ¢ candidate from D, — ¢n—
decay. Distributions for on resonance candidates passing the level one selection
criteria and with mgg < 5.26 GeV/c2.
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Figure 6.43: B* — D:*¢. Left plot: mass of the K? candidate from D; —
K™K decay. Middle plot: mass of the K*° candidate from D; — K**K~ Right
plot: decay (helicity) angle of the K** candidate from D; — K*°K~ decay.
Distributions for on resonance candidates passing the level one selection criteria
and with mgs < 5.26 GeV/c?.
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6.8 Constructing a likelihood variable

It is clear that many of the quantities shown in Figures 6.2 to 6.23 can discrim-
inate at some level between signal and background. We have decided to combine
some of these quantities into a likelihood, in order to have a single discriminating
variable. In order to do this, we define a probability density function (PDF)'7 for
each variable. The likelihood is defined as the product of the PDFs over all the
quantities. This approach has the advantage that it is relatively simple. Other
approaches, e.g., neural networks, are more complicated, but in principle would
make optimal use of the available information. However, the statistics of the
available background data samples are too limited to train a neural network. In
Table 6.9 and 6.10 we list the quantities that were considered in the likelihood, and
the forms of the PDFs that we assume. Absent from the likelihood is the thrust
angle, cos(fr). This is because cos(fr) is correlated to the Fisher variable, which
is included in the likelihood. We will, however, still use the cos(fr) information
when we perform our selection criteria optimization in Section 6.9.

Thus our likelihood takes on the form,

L =Py (M) x Py(0) x ... (6.8)

TA  probability density function is normalized to wunity and is defined by:
Probability(result lies between z; and z3) = f;f PDF(z)dz
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Table 6.9: B* — DZ¢. Variables used in the definition of the likelihood, and
the functional form of the PDF for signal and background.

Mode Quantity Signal PDF Background PDF
ALL DY mass Double Gaus. Flat
ALL Polar angle of B in CM sin? 6 Flat
ALL Helicity of ¢ from B decay  cos?6 Flat
ALL Legendre Fisher Bifurcated Gaus. Bifurcated Gaus.
Dy — ¢~ Mass of ¢ from DF decay Voigtian Flat
D, — ¢ Helicity of ¢ from DF decay cos?8 Flat
Dy - K**K~ K* mass Breit-Wigner Flat
D7 — KK~ Helicity of K*° cos? 0 Flat

where, for example, Py, (M) is the probability obtained from the PDF represent-
ing a particle of mass M, and Py(f) is the probability obtained from the PDF
representing a decay angle of . We define this likelihood for both the signal
and the background — Lg and Lp, respectively. We combine these two likelihood

distributions into a single discriminating variable by taking the log of their ratio,

R = log (%) (6.9)

For simplicity, many of the background PDFs are taken as flat, even if some
of the distributions are not quite flat in the background MC datasets. The dis-
tribution that shows the largest departure from the flatness assumption is the
distribution of the mass of the ¢ from DF decay in the c¢ MC, see Figure 6.8.

However, the off-resonance data distribution appear to be quite flat in this vari-
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Table 6.10: B* — D:*¢. Variables used in the definition of the likelihood, and
the functional form of the PDF for signal and background.

Mode Quantity Signal PDF Background PDF
ALL D mass Double Gaus. Flat
ALL Polar angle of B in CM sin? § Flat
ALL DI Am Double Gaus. Flat
ALL Legendre Fisher Bifurcated Gaus. Bifurcated Gaus.
Dy — ¢ Mass of ¢ from DF decay Voigtian Flat
D; — ¢~ Helicity of ¢ from DT decay cos?6 Flat
Df - K*'K* K*° mass Breit-Wigner Flat
Df — K*K* Helicity angle of K*° cos? 6 Flat

able (again, see Figure 6.8)!8. The on-resonance distribution (Figure 6.32), looks
a little more peaked, but not very sharply.

The parameters of the non-trivial PDFs that enter the likelihood variable,
i.e., Gaussians, Voigtian'®, Breit-Wigner, are listed in Table 6.11. Examples of

the fitted distributions are shown in Figures 6.44, 6.45, 6.46, and 6.47.

18To verify this, we looked at this distribution in off-resonance data opening up the mass cuts
around the ¢ and we found no hint of a ¢ peak.
19 A Voigtian is a convolution of a Breit-Wigner lineshape with a Gaussian, see Appendix A
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Table 6.11: Summary of parameters used in the likelihood PDFs. Of course,
the Am is only for the B* — D?*¢$ mode. All means, width, and sigmas are in
GeV/c?, except for Fisher, of course. BW represents a Breit-Wigner lineshape;
Bifur. Gaus represents a Bifurcated Gaussian lineshape. Keep in mind that these
parameters are from a fit to signal MC, they simply are our best estimate for the
shape of these distributions. Thus, for example, one should not be concerned that
the parameters for the M(DZ) fits vary over mode.

Quantity PDF Mode Parameters

M(D¥) Dbl. Gaus D, — ¢m~ w1 =1.9681 o1 =0.0047 Frac; =0.795
uo = 1.9667 oo = 0.0178

M(D¥) Dbl. Gaus D; - K K? pu;=19691 o7 =0.0065 Frac; = 0.832
uo = 1.9646 o9 = 0.0176

M(D¥) Dbl. Gaus D, — K**K~ pu; =1.9679 o; =0.0051 Frac; =0.771
o = 1.9645 o9 = 0.0174

D:* Am Dbl Gaus  Signal p1 =0.1438 o1 =0.0044 Frac, = 0.702
wo = 0.1322 o9 = 0.0140

Fisher Bifur. Gaus Signal p=0.081 Olow = 0.82  opjgn = 0.52

Fisher Bifur. Gaus Continuum u=—1.00 Olow = 0.77  opigh = 0.62

M(¢) Voigtian Dy — ¢m— w=10195 T =0.0046 o =0.0011

M(K*%) BW D, - KK~ u=0.8961 T =0.0512

T T i

Figure 6.44: Mass of the D candidate for events passing the level one selection
in the signal MC. Double Gaussian fits are superimposed. From left to right:
D, - ¢r , D, - K K D, - KK .
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Figure 6.45: Fisher distributions for events passing the level one selection in
signal (left plot) and continuum (right plot) MC. Bifurcated Gaussian fits are

superimposed.
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Figure 6.46: Invariant mass of the ¢ in D; — ¢m~ (left plot) and the K*° in
D; — K*K~ in signal MC with superimposed Voigtian and Breit-Wigner fits,

respectively.
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Figure 6.47: Am for candidates where the photon from the D:* — DX+ decay
is verified to be the photon created by the signal-MC-generating software. Super-
imposed are the two Gaussians that compose our double Gaussian fit. Note that
the choice of two Gaussians is purely phenomenological in that it simply gives a
function with very nice agreement to the MC distribution.
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In Figure 6.48(6.49) we show the log of the likelihood function (n.b. we will
refer to this as the log-likelihood or simply log(L£)) distributions for MC and off-
resonance events passing the level one selection in the B* — DZ¢ (B — D!*¢)
sample.

To get a better visual feeling for the kind of background rejection that can be
achieved, we show the effect of cutting on log(L) for both signal and the dominant
background (ete~ — c¢) in figure 6.50 (for the B — DF¢ mode). In this figure
we show the efficiency in signal MC vs. the efficiency in ¢¢ MC as the log(£)
cut is moved. We also show, in the same figure, the effect of cutting only on
the Legendre Fisher, which is the most effective discriminant between signal and
background.

Figure 6.50 shows the improvement in background rejection we get when in-
cluding a cut on the likelihood over what we see when including only a cut on the
Fisher variable. It is possible to achieve a factor of order 5 (10) rejection against

continuum background with about 85% (65%) efficiency.
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Figure 6.48: B* — DZ¢. log(L) for candidates passing the level one selection
criteria. From left to right: Dy — ¢7—, D7 - K~ K?, Dy — K*K~.

Top row: background MC, normalized to on-resonance data, black=BB,
blue=uds, yellow=cc.

Middle row: Off resonance data.

Bottom row: Signal MC, arbitrary normalization.
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Figure 6.49: B* — D:*¢. log(L£) for candidates passing the level one selection.
From left to right: Dy — ¢7~, D - K~ K2, Dy — K*°K~.

Top row: background MC, normalized to on-resonance data, black=BDB,
blue=uds, yellow=cc.

Middle row: Off resonance data.

Bottom row: Signal MC, arbitrary normalization.
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Figure 6.50: B* — DF¢. Solid blue line: efficiency for a cut on log(£) in signal

MC vs. c¢c MC for events passing the level one selection. Dashed red line: same
but for a cut on Fisher only.

From left to right: D; — ¢m—, D - K~ K?, D; — K*°K~.
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6.9 Selection criteria optimization

In this section we describe the procedure that we used to optimize the selection
criteria for the best possible upper limit on the B — D{"*¢ branching fraction®.

The selection criteria we optimize are

The likelihood described in Section 6.8.

The kaon identification category (NotPion, Loose, Tight, and VeryTight)

of all kaons except the kaons from the decay of the bachelor ¢.

Cosine of the thrust angle, cos(fr).

The energy of the photon in D** — DZv decays, E(y). This applies to the

B* — D!*¢ mode only.

We don’t run the optimization for the kaons from the bachelor ¢ because,
as demonstrated in Figure 6.3, most of the bachelor ¢ candidates passing the
level one selection requirements are real ¢ — K1TK~ decays. Tightening the
kaon identification criteria on these kaons beyond the loosest requirements would
not provide an improvement in our background rejection power. Note also that
the cos(ft) variable was not included in the likelihood due to its high degree of

correlation with the Fisher variable.

20Recall, the optimization was performed only on data from Runs 1-3. The Run 4 data shows
no change in the shapes of the discriminating variables and thus the optimization results would
be negligible.
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Figure 6.51: Graphical representation of the contents of Table XII from Ref-
erence [18]. The horizontal axis is the number of expected background events
in a counting experiment. The vertical axis is the corresponding expected 90%
confidence level upper limit on the number of signal events. The curve is a 4th
order polynomial fit.

The optimization is performed using continuum, generic BB, and signal MC
samples. Since we expect no signal in the Standard Model at our luminosity,
the quantity that we optimize is the expected sensitivity. This is defined as the
branching fraction upper limit that we should obtain, on average, when performing
this experiment many times in the absence of a signal.

Although the signal and/or the upper limit will be extracted from a fit to
the mgg distribution, we approximate our experiment as a simple counting ex-
periment. A counting experiment is an experiment where we count the number
of events in the signal box and compare it with background expectations. Table
XII of the paper by Feldman and Cousins [18] shows the expected upper limit

on the number of events for a counting experiment as a function of the expected
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background ignoring systematic uncertainties (see Figure 6.51). Our procedure is

then the following:

1. For a given set of requirements, calculate Npg, the expected number of

background events with mgs > 5.27 GeV/c? and with |[AE| < 30 MeV.

2. Given Npg, calculate the expected 90% C.L. upper limit on the number of
events (Nyr). This calculation is based on the compilation of Table XII

from Reference [18] (Figure 6.51).
3. For the same set of requirements, calculate the efficiency on signal MC (e).

4. Finally, calculate the expected sensitivity on the branching fraction using

Equation 51, B = %
i i BE

5. Change the set of requirements and iterate until we converge on the set of

requirements that minimizes B.

The procedure outlined above is repeated three times, once for each DT decay
mode, however, there are a couple of subtleties associated with the calculation
of Npg. The first is that ideally one would like to simply count the number of
events found in the signal box (mgg > 5.27 GeV/c? and |AE| < 30 MeV) in the
background MC datasets (c¢, uds, and BB) for different selection requirements.

However, the statistics are too poor for this to be meaningful. Thus, we estimate
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Npg starting from the much looser level one selection criteria, mgg > 5.2 GeV/c?
and |AFE| < 200 MeV, and then rescaling the result by a factor of 0.025. This
factor of 0.025 is an empirical factor which relates the numbers of events for the
two selections, see Table 6.5%!.

The second subtlety is the following. As discussed in Section 6.5, the con-
tinuum MC overestimates the number of background events in the data, see Ta-
bles 6.5 and 6.8. On the other hand (within reason given of the lack of statistics)
the kinematic distributions show no deviation from the data distributions, see
Figures 6.2-6.23. Thus we scale down the predictions of the uds and c¢ MCs to
bring them in agreement with the data. We choose the scaling factors by con-
sidering the information in Table 6.8. In the B* — D¥¢ mode we choose 1.9
for D7 — ¢7—, 1.6 for D; — K~ K2, and 1.3 for D; — K*°K~; while in the
B* — D*¢$ mode we choose 1.7 for D; — ¢n~, 1.4 for D; — K~ K, and 1.6
for D; - K*°K .

As a graphical example of the optimization procedure, see Figures 6.52, 6.53,
and 6.54. In these figures we show the optimization of the likelihood and kaon
identification category for three different kaons in the various DF¥ modes. To

interpret these plots we refer the reader to the optimization procedure enumerated

21 This empirical factor is calculated from the background MC. It is approximately the ratio of
the number of events reconstructed in the B* — D¢ modes and found in the mps-AFE signal
box to all events reconstructed in the B* — DZ¢ modes.
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above. Step one — the calculation of the number of background events as a function
of the likelihood variable?? — is shown in the upper left plot. Step two — using the
number of expected background events from step one, calculate the expected 90%
C.L. upper limit on the number of events in the signal region, Ny — is shown in
the upper right plot. Note that there is a one-to-one correspondence between the
upper left and the upper right plots. Step three — calculate the signal efficiency
as a function of the log-likelihood — is shown in the bottom left plot. And finally,
step four — calculate the expected sensitivity on the branching fraction — is shown
in the lower right plot. The minima of the lower right plot is the value of the

log-likelihood that our optimization prefers for this step.

22These plots show the optimization as a function of the log-likelihood, in general the abscissa
can be (and was) any of the optimized variables.

99



Chapter 6.

BLACK=NP

45
4
35
3
2.5
2
1.5
1
0.5

EVENTS

BG

EXPECTED No.

SIGNAL EFFICIENCY

Figure 6.52: Optimization of the log(£L) cut for B¥* — D¢, D; — K~K°. Asa
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Figure 6.53: Optimization of the log(£) cut for B* — D¢, D; — K**K~. As
a function of log-likelihood cut value, we show Npg (top left plot), Ny, (top right
plot) € (bottom left), B(bottom right plot) for four choices of the PID require-
ment on the kaon from K** decay., NotPion (black), Loose (red), Tight (green),
VeryTight (blue). The kaon from D decay must pass a NotPion requirement.
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Figure 6.54: Optimization of the log(L£) cut for B* — D¢, D7 — K**K~. As
a function of log-likelihood cut value, we show Npg (top left plot), Ny, (top right
plot) e (bottom left), B(bottom right plot) for four choices of the PID requirement
on the kaon from D; — K**K~ decay. NotPion (black), Loose (red), Tight
(green), VeryTight (blue). The kaon from DF decay must pass a VeryTight
requirement.
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This procedure was carried out on all variables listed in the beginning of this
section. Upon convergence of the optimization we come to the following conclu-
sions.

In general we find that it is not advantageous to tighten any of the kaon PID
requirements beyond the least restrictive category, NotPion. (Note, since NotPion
is the least restrictive and is the PID category used in the level one selection, all
plots and numbers presented thus far in this paper remain valid.)

Recall we did not include the cos(ft) cut in the likelihood variable because it
is highly correlated with the Fisher variable (see Section 6.8). A posteriori, we
find that this decision was reasonable: after the log(L) requirement, the effect of
an additional cut on cos(fr) is rather minimal. The efficiency for signal MC is
rather flat, especially in the region 0.9 < cos(ft) < 1.0. One expects the same
upper limit on B for cos(ft) < 0.9 as for no cut on cos(ft). We have chosen to
apply the requirement cos(ft) < 0.9 because we prefer to err on the side of too
much background rejection rather than too little.

In performing the optimization procedure we found that the minima in the

curves of B are reasonably broad for all optimized variables. (See, for example, the
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Table 6.12: B* — D ¢. Summary of requirements obtained from the optimiza-
tion procedure.

DZ Mode Kaon 1D log(L) cut cos(fr) cut
DS — ¢m NotPion for all > 2.2 < 0.9
D; - K K? NotPion for all > 0.9 <0.9
D; — K*YK~ NotPion for all > 1.8 <0.9

Table 6.13: B* — D¥¢. Expected number of background events in the signal
box (Npg), broken out into the various components (cé, uds, and BB), and
expected upper limit on the branching fraction (B). The efficiency is that of the
log(£) and cos(ft) requirements from Table 6.12 on signal MC. Uncertainties are
statistical only.

D# Mode ‘ cc uds BB ‘ Nze B ‘ Efficiency

Dy - ¢ | 045 002 013|061 1.3x 107 |80.8+0.5%
D, - K K° | 039 011 027|078 22x107°|784+0.7%
D; - K*K~ | 089 022 052|164 18x107°|71.0+0.6%

bottom right plots of Figures 6.52, 6.53, and 6.54.) We are also rather insensitive
to our choices for the rescaling factors of the continuum MC?.

In Table 6.12 we show the results of the optimization procedure. In Table 6.13
we show an estimate of the number of background events we may see in our signal

region along with the efficiencies of the requirements in Table 6.12 on signal MC?%.

ZRecall in Section 6.5 the continuum MC overestimated the number of background events in
the data. The rescaling factors we mention here are those discussed just above that were used
to bring the MC yields in line with the data.

24The efficiencies quoted here are relative to the number of events in our sample after applying
the level one cuts, i.e. if we had 10 events after the Level One selection, and we have three after
the cuts in Table 6.12, than the efficiency quoted in Table 6.13 would be 30%
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Chapter 6. FEvent selection

At the beginning of this analysis, we made the claim that we would have a
good shot at producing a background-free signal region. Note that after applying
the requirements of Table 6.12 to the events which pass the level one selection
requirements (Section 6.3), the expected number of events in the signal box is
of order one for each DF mode, see Table 6.13. This is, however, not our best
estimate of the background level, which will eventually be extracted from a fit to
the mgg distribution, but it is a good indication of where we stand.

It is also interesting to note that, within a factor of order two, the expected
sensitivities (B) shown in Table 6.13 are the same for all three D decay modes.
The efficiencies on signal MC range between 70% and 80%, depending on mode
with, not surprisingly, the lowest efficiency being D; — K** K~ mode — this mode
has the highest background and therefore the optimization chooses tighter cuts
relative to the other two modes in order to get the best value of B.

In Figure 6.55 we superimpose the log(L£) expectations for signal and back-
ground, and we also indicate, graphically, the value of the log(L) requirement

from Table 6.12.
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Figure 6.55: B* — DZ¢. log(L) distributions for signal and background.
All distributions are normalized to unity. Black histogram: signal MC. Red
histogram: background MC. (a) B* — D¢, D; — ¢n~, (b) B — DZ¢,
D; - KK, and (¢) B* — D%¢, D; — K**K~. The vertical dashed lines
indicate the value of the log(L£) cuts obtained from the optimization procedure,
see Table 6.12.
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Table 6.14: B* — D:*¢. Summary of requirements obtained from the opti-
mization procedure.

Mode Kaon ID log(L) cut cos(fr) cut  E(y) cut
DS — ¢m NotPion for all > 3.7 < 0.9 > 60 MeV
D; - K K? NotPion for all > 2.5 < 0.9 > 60 MeV
D, - K**K~ NotPion for all > 3.3 < 0.9 > 60 MeV

Table 6.15: B* — D!*¢. Expected number of background events in the signal
region (Npg), broken out into the various components (c¢, uds, and BB), and
expected upper limit on the branching fraction for longitudinal (B;) and transverse
(B2) polarization.

D Mode ‘ c¢ uds BB | Npg B, B

D; — ¢~ 0.38 0.01 0.1 |049 1.7x10™° 1.7x107°
D; - K K? | 033 004 0.05|042 26x105 2.6x10°
D, — K*K~ | 056 0.08 0.31]095 21x105 20x10°

The optimization of the requirements for the B* — D?*¢ mode is performed
in the same way as for B — D*%¢. The two helicity states were optimized sepa-
rately, but the results are independent of polarization assumptions. In Table 6.14
we show the results of the optimization procedure. After applying the require-
ments of Table 6.14 to the events which pass the level one selection criteria, the
expected number of events in the signal box and the sensitivity of the search are
given in Table 6.15. The efficiencies of the requirements of Table 6.14 on signal
MC are given in Table 6.16. They range between 74% and 83%, depending on

mode.
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Table 6.16: Efficiency of the log(L), cos(fr), and E(7y) requirements from Ta-
ble 6.14 on B* — D**¢ signal MC. Uncertainties are statistical only.

D¥ Mode Polarization  Efficiency

D — ¢n~ Long. 83.1+0.7 %
Dr - K"K  Long.  82.5+0.9 %
D - KK~  Long.  76.2+0.8 %
D; — ¢n~ Trans. 81.3+0.7%
D, 5K K'  Trans. 77.6+09 %
D, — KK~ Trans.  T48+08 %

As we did for the B — DZ¢ mode, in Figure 6.56 we superimpose the log(L)
expectations for signal and background, and we also indicate, graphically, the
value of the log(L£) requirement from Table 6.14. We can see that the optimization

produces reasonable results.

6.10 Signal-box excluded look at the on-resonance

data

We now take a preview look at the on-resonance data. We will continue to keep
our final fit region blinded so as to not bias ourselves in any way. We start with the
events passing the level one selection, and we apply the additional requirements
on log(L) and cos@p listed in Table 6.12. We keep an enlarged signal region

mgs > 5.27 GeV/c? and |AE| < 40 MeV blind. As we will discuss in Section 7,
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Figure 6.56: B — D:*¢. log(L) distributions for signal and background. All
distributions are normalized to unity. Here the longitudinal polarization is shown.
Solid histogram: signal MC. Dashed histogram: background MC. (a) D; — ¢,

(b) Dy - K~ K2 and (c¢) D; — K*®*K~. The red vertical lines indicate the value
of the log(£) cuts obtained from the optimization procedure, see Table 6.14.

our AF signal region will be £30 MeV around the mean AFE from signal MC.
The mean AF in signal MC is shifted by a few MeV from zero, thus, for now we
keep a larger AE window (+40 MeV) blind.

The mgps vs. AE scatter plot for the surviving B* — DF¢ candidate events

is shown in Figure 6.57. The number of events for each mode is summarized in
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Table 6.17: B¥ — DF¢. Comparison of the number of data events in Figure 6.57
with the prediction from the MC. An explanation of the method used to obtain
the MC prediction is given in the text.

Mode Data Prediction
B* - D¥¢, D; — o7~ 26 24
B* — D;tqﬁ, DS — K*Kg 33 30
B* — D;tqﬁ, DS — KK~ 56 63

Table 6.17, together with an expectation from MC. The agreement between data
and expectations is excellent. We see nothing out of the ordinary.

The MC expectation in Table 6.17 is derived from the uds, c¢, and generic
BB MC, after rescaling the c¢ and uds MC predictions by the scaling factors
described in Section 6.9. These scaling factors were chosen to make the MC
predictions agree with the on-resonance data with mps < 5.26 GeV/c? after the
level one selection (see Table 6.8). Therefore the comparison between data and
expectation in Table 6.17 is essentially a test of the ability of the MC to reproduce
the efficiency of the log(L) and cos 67 requirements on backgrounds. The MC does

quite well.
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Figure 6.57: B* — DZ¢. Scatter plot of mgg vs. AE for events in the on-
resonance data sample with all cuts applied. The region mgg > 5.27 GeV/c?
and |AE| < 40 MeV is kept blind. Blue circles: D; — ¢n~. Black crosses:
D; — K~ K?. Red asterisks: Dy — K*K~.
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Table 6.18: B* — D:*¢. Comparison of the number of data events in Fig-
ure 6.58 with the prediction from the MC.

Mode Data Prediction
B* - D*¢, D, — ¢n— 20 22
B — D;‘iqb, D; — K*K‘S) 21 20
B > D:i(b, D; — KK~ 41 40

The mgs vs. AE scatter plot for the surviving B — D!*¢ candidate events
is shown in Figure 6.58. The number of events for each mode is summarized
in Table 6.18, together with an expectation from MC. The agreement between
data and expectations is excellent. We see nothing out of the ordinary. The MC

expectation in Table 6.18 is derived in the same was as that for Table 6.17.

6.11 Peaking background

In this section we study possible backgrounds that peak in both mgs and AFE.
These could arise, for example, from B — ¢¢pm, B — K?Km, B — K*Km. The
branching fractions for these modes are not well measured or not measured at all.
We choose to estimate these backgrounds directly from the data.

The modes that could contribute to peaking backgrounds do not have a real

D%. Thus, we estimate the peaking backgrounds by repeating the analysis in
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Figure 6.58: B* — D:*¢. Scatter plot of mgs vs. AFE for events in the on-
resonance data sample with all cuts applied. The region mgs > 5.27 GeV/c?
and |AE| < 40 MeV is kept blind. Blue circles: D; — ¢n~. Black crosses:
D, — K K. Red asterisks: D, — K*K .

the sideband of the DE. The only assumption that needs to be made is the very
reasonable assumption that these backgrounds are linear in the DF mass region.

The DF signal region is defined as +15 MeV/c? around the PDG value of the
D mass. We define two sideband regions, each of them 15 MeV wide, and well

S

separated (by 15 MeV) from the D signal region, see Figure 6.59. Note that the

113



Sideband Sideband
15MeV 15MeV Sional Region <MY 15 MeV
wide 30 MeV wide wide

M(Dy)

Figure 6.59: A graphical view of the DT signal and sideband definitions.

total width of the D mass ranges covered by the signal and sideband selections
are the same.

There are a few subtleties when repeating the analysis in the DF sideband:

e We remove the selection criterion on the DF which had been imposed in the

level one selection.

e We modify the arbitration procedure, which uses the PDG D mass (Mppg),
in the obvious way, i.e., we replace Mppg with Mppg + A, where A = 30

MeV/c?, see Figure 6.59.

e Since the Df mass is used in the calculation of the likelihood (see Sec-
tion 6.8), we redefine the likelihood for sideband events to make it consis-
tent (including the normalization) with the likelihood defined for DT signal
region events. To visualize this, say the D mass is represented by a sin-

gle Gaussian. In the normal (i.e. non-sideband) analysis, this is centered
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Figure 6.60: B* — DZ¥¢. Scatter plot of mgpg vs. AE for events in the on-
resonance data sample with all cuts applied but selecting events from the DT

sideband. The box delineates the region mgs > 5.27 GeV/c?
MeV. Blue circles: D — ¢m™.
D; - K*K~.

and |AE| < 30

Black crosses: D; — K~ K2. Red asterisks:

at the D¥ mass. Draw a Gaussian centered at the DF mass in the figure

above. For the sideband analysis, we cut this Gaussian in half (draw half the

Gaussian in the upper sideband box above and half in the lower sideband

box), and define the likelihood in this way. We do this without changing

the normalization or the width parameters of the Gaussian. This preserves

all attributes of the Gaussian including the normalization.
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The resulting scatter plots of mgg vs. AE are shown in Figure 6.60 for B* —
D%¢ and Figure 6.61 for B¥ — D**¢. If there were no real DF mesons in our
background, the number of events in Figure 6.60(6.61) should be the same, within
statistics, as the number of events in the equivalent plot for the D¥ signal region,
Figure 6.57 (6.58). (See also Table 6.17)%.

For the B*¥ — DF¢ sample, we find 95 events in Figure 6.60. Of these, 21
are D7 — ¢n~, 25 are D; — K~ K?, and 49 are D; — K*°*K~. These numbers
are about 20% lower than the number of events in the DF signal region. This
is in qualitative agreement with the D content of our background that can be
inferred from examining Figures 6.2 and 6.26.

There are three events with mgs > 5.27 GeéV/c? and |AE| < 30 MeV in
Figure 6.60. This is in good agreement with the rough background expectation
of 0.025 x 95 = 2.4, where 95 is the total number of events in Figure 6.60 and
0.025 is the empirical scaling factor in extrapolating from the larger mgps-AE
region into the signal box?%. Thus, we see no evidence for peaking backgrounds
in B* — Df¢.

For the B¥ — D!*¢ sample, we find 49 events in Figure 6.61. Of these, 12

are D; — ¢m, 16 are D, — K K, and 21 are D; — K**K . While there

ZWe neglect the fact that a small region of the plots in Figures 6.57 and 6.58 has been
excluded by the blinding procedure.

26This factor of 0.025 is derived from Table 6.5 and was used in the optimization procedure
described in Section 6.9.
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are zero events with mggs > 5.27 GeV/c? and |AFE| < 30 MeV in Figure 6.61, this
is still in agreement with the rough background expectation of 0.025 x 49 = 1.2.
Thus, as for the B* — DZ¢$ modes, we see no evidence for peaking backgrounds

in B — D¢,

| On Resonance Data, Ds Mass Sideband
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Figure 6.61: B* — D!*¢. Scatter plot of mps vs. AFE for events in the on-
resonance data sample with all cuts applied but selecting events from the DT
sideband. The box delineates the region mgg > 5.27 GeV/c? and |AE| < 30
MeV. Blue circles: D; — ¢n~. Black crosses: D; — K~ K?. Red asterisks:
D: = KK~
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Data unblinding and signal
extraction

7.1 B* = D¢

In this section we discuss the final unblinding of the data. That is, we open up
the mgs-AFE signal box to see what is there. Then we will fit the signal region to
a signal-plus-background shape and determine our signal yield. We define the AE
signal region as +£30 MeV (& 30) around the means of the AE distributions in
signal MC: < AE > =-3 MeV, 0 MeV, and -1 MeV for D] — ¢7~, D; — K~ K?,
and D; — K**K~, respectively (see Figure 7.1). The signal yield will then be
extracted from a fit to the mgg distribution of events passing the AFE selection.

The unblinded mgs vs. AFE scatter plot for the B¥ — DZ¢ mode is shown
in Figure 7.2. We see no enhancement of events in the region where signal is

expected. There are two events with mgg > 5.27 GeV/c? in the AF signal region
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Delta E {KsK} | Delta E {PhiPi} Delta E {K*K}
-------- 3691 f Entries 5783 f Entries 5950
Mean 0001137 Mean -0.003613 Mean -0.002355
900F RMS 0.01927 900 RMS 002248
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800 Prob 0.001648 800F Prob 0.002a1
po 8753169 po 8912169
700 Pl -0.002508+0.000170 700F Pl -0.001372+0.000156
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Figure 7.1: AFE distributions for the three signal MC samples. From left to
right: Dy — K~ K2, D; — ¢n~, Dy — K*K~.

Table 7.1: B* — D ¢. Summary of the mgs and AFE values for the five events
in the on-resonance data sample with mgs and AFE near the signal region.

D# Mode mes (GeV/c?) AE (MeV) Passes AE?
Dy - K K° 5.271 264  YES

D; — K K° 5.277 302  NO

Dr — K"K~ 5.273 3.0  YES

D; - KK~ 5.279 29.8 NO

Dr — KK~ 5.273 305  NO

and three events just outside it. The mgs and AFE values of these five events are
listed in Table 7.1. Note that the background predictions from the optimization
procedure was 5.7 events (using the numbers from Table 6.13 scaled up to include
Run 4 luminosity).

Next, we perform an unbinned extended maximum likelihood fit of the data
mgs distribution. The fit method consists of fitting simultaneously the mgs dis-

tributions for the AFE signal region and the AFE sideband region (JAE| < 200
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Figure 7.2: B* — DZ¢. Scatter plot of mgg vs. AF for events in the on-
resonance data sample with all cuts applied. This is the same as Figure 6.57 but
with the signal box revealed and including Run 4. There are 206 entries in this
plot; if one assumes a flat background, one can get an idea as to the number of
background events in our signal box by multiplying this by 0.025 (206%0.025 = 5.2)
which is an empirical factor which relates the numbers of events in this whole plot
to the number in the signal region. The box delimits the region mgg > 5.27 GeV/c?
and |AFE| < 30 MeV. Blue circles: D; — ¢n . Black crosses: D, — K K.
Red asterisks: D, — K*'K .

MeV, excluding the signal region). The AFE signal region is fit to the sum of a
background distribution and a signal distribution. The signal distribution is a
Gaussian with mean and width fixed at 5.2799 GeV/c¢? and 2.7 MeV/c?, respec-
tively. For the background distribution we use a threshold function first used by
the ARGUS experiment [19] (See Appendix A). Its endpoint is determined by the
total CM energy of the electron and positron beams and is set to 5.291 GeV/c?.

The AFE sideband region is fit to an Argus function only, and the slope parame-
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%

Figure 7.3: B — DZ¢. The mgg distribution of the events in the AFE signal
region, with the superimposed Argus + Gaussian fit.
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ter of the Argus is taken to be the same in the AFE signal and sideband regions.
This allows us to use the events in the AFE sideband region to help pin down the
background in the signal region. Note, we make the reasonable assumption that
the slope of the Argus is independent of AFE.

In the fit, we allow the Gaussian yield to fluctuate negative, but we constrain
the sum of the Argus and Gaussian function to remain positive. We need to
do this because otherwise the fit is highly unstable and tends to converge to an
infinitely negative yield. This can happen in low statistics maximum likelihood
fits when there are no events in the signal region [20].

The data and the corresponding fit are shown in Figures 7.3 and 7.4. The

result of the fit for the number of signal events is Ny, = —1.6707, where the
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Figure 7.4: B* — D*¢. The mgs distribution of the events in the AFE sideband
region, with the superimposed Argus fit. This is the result of a simultaneous fit
to the signal and sideband AFE regions.

uncertainty corresponds to a change in 0.5 in log(£). The value of the Argus
slope parameter returned by the fit is kK = —7.5 £ 7.8.

In Figure 7.5 we show the likelihood as a function of Ng,. The likelihood
function is precisely an exponential function, exp(—2N;y). This is simply because
there are essentially no events in the mgg signal region®, so the likelihood as a
function of Ny, is just the Poisson probability for zero events observed, which

goes like exp(—Njq).

1The closest event to the mean expected signal mgsg is at mgs = 5.273 GeV/c?, i.e., over 3o
away from the mean, see Table 7.1
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Figure 7.5: B* — DZ¢. The likelihood function, in arbitrary units, from the fit
of Figure 7.3 as a function of the number of signal events (Ny,). The likelihood
function is identical to exp(—Nyq4). Note that at Ny, = —1.6 the likelihood
function hits a “brick wall”, since for Ny;, < —1.6 the total fitted function (Argus
+ Gaussian) becomes negative and this is not allowed in the fit. The fact that the
likelihood function goes to zero at Ny, = —1.6 is simply an artifact of plotting.
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7.2 B - D¢

Just as for the B* — D¥¢ mode, we define the AE signal region as +30 MeV
(~ 30) around the means of the AF distributions in signal Monte Carlo. In this
mode with a D?* there is a large tail at negative values of AE which is due to
picking the wrong photon in the D** — DZ*~y decay, see Figure 7.6. Thus, we
use the means of the AFE distributions for which the photon in the reconstructed
D*¥ is required to be the photon that was produced in the MC generation for the
D** — D~ decay. These give similar results for both helicity states: B* — DZ¢,
< AE > = -3 MeV, 0 MeV, and -2 MeV for D; — ¢n~, D; — K~ K?, and
D; — K**K—, respectively. The signal yield will then be extracted from a fit to
the mpgg distribution of events passing the AFE selection.

The unblinded mgs vs. AE scatter plot for the BX — D**¢ mode is shown
in Figure 7.7. There are seven events with mgg > 5.27 Ge\//c2 in the AFE signal
region and one event just outside it. The mgs and AFE values of these eight events
are listed in Table 7.2. The (rough) background predictions from the optimization
procedure was 3.6 events in the signal box, (using the numbers from Table 6.15
scaled up to include Run 4 luminosity).

We use the same method as for the B — D_ ¢ modes (see Section 7.1), to per-

form on the data an unbinned extended maximum likelihood fit of mgg. The data
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Figure 7.6: B* — D!*¢. AE distributions in B*¥ — D!*¢ Monte Carlo for
the three D modes. From left to right: D; — K K%, D; — ¢7, D; —
K*°K~. The bottom row of plots includes the requirement that the photon from
the D:* — DZv decay be the same photon that was generated in the MC. The
top row of plots does not include this requirement. Note, the low mass tail is the
result of making a D:* from a DF and a random photon found in the detector.
Since there are a lot of low energy photons we make lots of D** mesons (and
hence B* mesons) with too low of a mass. This leads to a negative AE (see 6.1).

and the corresponding fits are shown in Figure 7.8 and Figure 7.9. In Figure 7.10
we show the likelihood as a function of Ny4. The result of the fit for the number
of signal events is Ny;; = 3.4757, where the uncertainty corresponds to a change

of 0.5 in log(L). The value of the Argus slope parameter returned by the fit is

k= —30.8 £9.1.
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Figure 7.7: B* — D:*¢. Scatter plot of mps vs. AF for events in the on-
resonance data sample with all cuts applied. This is the same as Figure 6.58 but
with the signal box revealed and including Run 4 data. There are 151 entries in
this plot; if one assumes a flat background, one can get an idea as to the number of
background events in our signal box by multiplying this by 0.025 (151%0.025 = 3.8)
which is an empirical factor which relates the numbers of events in this whole plot
to the number in the signal region. The box delineates the region mgg > 5.27
GeV/c? and |AE| < 30 MeV. Blue circles: D; — ¢m . Black crosses: D; —

K K. Red asterisks: D, — K*K .

Table 7.2: B* — D:*¢. Summary of the mgs and AFE values for the eight
events in the on-resonance data sample with mgg and AFE near the signal region.

Mode mgs (GeV/c?) AFE (MeV) Passes AE?
Dy — ¢ 5.284 ~73  YES

D; — ¢ 5.280 5.2 YES

D; - K K° 5.280 168  YES

D — K K° 5.284 356  NO

Dy - KK~ 5.284 9.1 YES

Dy - KK~ 5.274 11.9 YES

D, — KK~ 5.280 —29.7  YES

D; - K"K~ 5.272 —32.0 YES
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Figure 7.8: B* — D!*¢. The mgg distribution of events in the AFE signal region,
with the superimposed Argus + Gaussian fit. This is the result of a simultaneous
fit to the signal and sideband AFE regions.

[ m_ES (Delta E Sideband) |

~ 10—
<
S o
K
S o
[ L
o
~ -
o 8
8 o
o -
-
= o
%)
— > *
£ 6
g o
] - . rs > &
4 s e >9 > *
s
2
v b b b b b b b bt gy

0
52 521 522 523 524 525 526 527 528 529 53
m_ES (GeV/cr2)

Figure 7.9: B* — D:*¢. The myg distribution of events in the AE sideband
region, with the superimposed Argus fit. This is the result of a simultaneous fit
to the signal and sideband AF regions.
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Figure 7.10: B* — D!*¢. The likelihood function, in arbitrary units, from the
fit of Figure 7.8 as a function of the number of signal events (Nyq).
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7.3 Data unblinding: summary

Now that we have unblinded the signal region, we would like to make a few
comments about what we see. It is interesting to note that while we see no signal
in either the B — DZ¢ or the B¥ — D?*¢ modes, in the former, the background
fluctuated low, while in the latter, the background fluctuated high. If we had not
done this analysis in the B* — D¢ mode, after seeing Figure 7.7 one might have
jumped to the conclusion that we are beginning to see a signal in the B* — D:*¢
mode. However, the fit yield is less than 20 above zero and this is certainly not
the least bit a decisive signal. As we can see from the B* — DZ¢ there is just as
good of a chance for the us to see not only zero signal events, but zero background
events.

This is a good example of how much background events can actually fluctuate
in any type of statistical analysis such as this. It should be kept in mind when one
is trying to claim discovery how easily it is for backgrounds to fool us into seeing

something that is not really there (especially if we really want to see something).

129



Chapter 8

Evaluation of Systematic
Uncertainties

Now that we have fit for our signal yield we would like to calculate our limits on
B(B* — Dg*)iqﬁ). Prior to doing this we need to evaluate the reliability of the MC
to correctly model the signal selection efficiency of the data and determine our
systematic uncertainties. Section 8.1 will discuss corrections necessary to bring
the MC efficiencies into line with the data.

Systematic uncertainties take various forms but each enters into the calculation

of the B — D{"*¢ branching fractions using (Recall Equation 5.1):

Nyt

B <
NB§2i6i X BZ

Each of the quantities in the denominator will have a systematic uncertainty
associated with it, but the experimental systematic uncertainties from this analysis

all relate to the determination of the efficiency, e.
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The uncertainty in € is discussed in Sections 8.2, 8.3 and 8.4. The uncertainty
associated with identifying kaons is discussed in Section 8.2, with finding tracks
in the detector in Section 8.3, and with our choice of the selection criteria in
Section 8.4. Monte Carlo simulated data statistics are covered in Section 8.5.

Remaining in the denominator of Equation 5.1 is the number of B mesons
in our sample, Nz5, and the branching fractions of all the daughter particles in
the BT — Dg*)igb decays, B;. The systematic uncertainties associated with these
quantities are discussed in Sections 8.6 and 8.7.

One final note: Since our final result is the sum of three different decay modes
of the DF, the treatment of correlations between uncertainties is a non-trivial
calculation. All care was taken to account for correlations between systematic
uncertainties, but in presenting the uncertainties here we will present them as

averages over all modes so the reader may get a feel for their magnitude.

8.1 Corrections to MC efficiencies

Monte Carlo simulated data is a very useful tool in this type of analysis. In
a perfect world, our MC would precisely mimic real data. This, of course, is not
the case. Even given the high level of sophistication of the BABAR MC, there

are still differences between the simulated data and the real thing. One of the
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most noticeable places where this difference could occur is in particle identification
(PID) and track reconstruction. In both cases, we are dealing with a situation in
which the MC might over- or underestimate compared to the data our efficiency
for selecting our signal events. In the case of track reconstruction, our ability
to correctly identify a charged track in our detector may have a dependency on
momentum, or the geometrical location of the track in the detector that is not
perfectly modeled by the MC. In the case of PID, our ability to correctly identify
whether a track should be a kaon rather than a pion may be imperfect — The
following two sections discuss in turn studies performed to determine the extent

to which the MC efficiency misrepresents the data.

8.2 PID uncertainties

To study if this is a potential source of error we would like to compare how
well we identify kaons in the data to how well we do using MC in a way that
does not use any particle identification techniques. To do this we start with a
sample of D** decays (D*T — D% with D® — K~7T) that are kinematically

identified!. We obtain this sample for both data and MC. Since the kaons and

!The mass difference between the D** and the DO is 145MeV/c?. The mass of the 7t is
140 MeV/c?. Because most of the energy available in the D** — D%+ decay must go to the
masses of the D° and the 7+, there is only 5MeV/c? to be shared for the momentum of the
DO and the 7+. For this reason we call the 7+ a “slow pion”. The daughter particles of the
D° decay have much higher momentum (they share the mass energy of the D%, 1869 MeV/c?).
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pions are absolutely identified by the kinematics, we can determine how often the
tracks that are combined to make the D*T are correctly identified as kaons and
pions.

These studies lead us assign a 2% systematic uncertainty per kaon. In addi-
tion to this we assign another 2.5% uncertainty due to the fact that our kaons
have a slightly different momentum spectrum from the control sample. These
are added in quadrature to obtain 3.6% systematic uncertainty per kaon. This
results in a systematic uncertainty of 14% for the efficiency of the modes with four
charged kaons (D; — K*K~, D; — ¢é7 ), and 11% for the mode with three
charged kaons (D; — K~ K?). This may seem high, and indeed it is our largest
experimental systematic uncertainty. However, as we shall see in Section 8.7, the
branching fractions of the DF sub-decay modes have a comparable uncertainty.

In the B* — D:*¢ search, there is an additional systematic due to the un-
certainty on the efficiency to reconstruct the photon in D** — DZF~. The photon
reconstruction efficiency is studied using a sample of 7° mesons. 7° meson can-
didates are reconstructed from the kinematic combination of any two photons in
the detector. The photon uncertainty is determined from the efficiency to re-

construct neutral pions. (Neutral pions decay via 7° — ~v.) The efficiency for

reconstructing 7 — p*v is compared to that for reconstructing 7 — 7*v. Since

Because of these two reasons, it is entirely possible to identify this D*T decay chain with solely
kinematic information.
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0 reconstruction effi-

pt — 77 this comparison gives us information on the 7
ciency. The extent to which these two efficiencies agree is taken as a systematic
uncertainty in the pion reconstruction efficiency and since 7° — v the photon
systematic uncertainty is half this value, or 1.8%. The reconstruction efficiencies
of the signal MC differ by at most 1% between two polarization states of the D%

thus we take a 1% uncertainty due to the fact that in the data, the polarization

of the D** is unknown.

8.3 Track reconstruction uncertainties

Determining the quality of track reconstruction has two parts: correcting the
MC efficiency to bring it in line with the data, and assigning a track reconstruc-
tion systematic uncertainty. There are many methods employed at BABAR to
understand our charged track reconstruction efficiency. The main strategy is the
following. In order to measure the efficiency for charged track reconstruction one
can isolate a sample of events for which the physics requires a definite track mul-
tiplicity, N. If one can select such events by criteria placed on N-1 of the tracks,
the fraction, fu, of selection events in which an N track is found is a measure

of efficiency times acceptance for that track. By measuring fy for data and MC
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one can determine any correction that is necessary to bring the MC in line with
the data.

This strategy is applied to the process ete™ — 7t77. Two common decay
modes of the tau are called one-prong and three-prong. In the one-prong decay
mode, the tau decays to one charged particle (e.g. a muon, electron, kaon, or
pion) and any number of neutral particles. The three-prong decay mode has three
charged tracks in the final state and any number of neutral particles; the charged
tracks are either kaons or pions. A sample of ete™ — 777~ events where one tau
decay is three-prong and one tau decay is one-prong is selected using only criteria
based on two of the tracks on the three-prong side and the single track (lepton)
of the other tau. One measures the fraction of selected of events which contain a
reconstructed fourth track (according to some criteria, such as GoodTracksLoose).
This fraction, corrected by the detector acceptance, gives the absolute tracking
efficiency.

As usual, data and MC efficiencies are then compared. If the data efficiency
differs from the MC efficiency, the MC efficiency is multiplied by a correction fac-
tor to make it agree with the data. The corrections for this analysis are tracking-
category dependent. For GoodTracksVeryLoose the MC efficiency is too high and
must be reduced by 0.5% per track. For GoodTracksLoose the MC efficiency is

again too high and must be reduced by 0.8% per track. The systematic uncer-
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Table 8.1: The track reconstruction Systematic uncertainty assignment per track.
The total systematic uncertainty is a weighted sum of the tracks that fall into each
category.

Track-Quality Category pr < 200MeV/c pr > 200MeV/c

GoodTracksVeryLoose 1.4% 0.9%
GoodTracksLoose 1.4% 0.6%

tainties on the tracking efficiency can be obtained by comparing the results from
the different three-prong and one-prong decay modes (i.e. where the three prongs
are kaons vs. where they are all pions).

Our total tracking uncertainty is calculated by adding linearly the uncertainty
from each track. All tracks in our sample are either GoodTracksVeryLoose or
GoodTracksLoose. Table 8.2 shows which category is used for each track in
this analysis. The uncertainty associated with the tracking correction of the MC
is dependent on whether or not the tracks have transverse momentum, pr >
200MeV/c. Except for the pion from the K*° decay, more than 99.5% of tracks
for each particle have pr > 200 MeV/c?. For the pion from the K* decay, 90% of
the tracks have p; > 200 MeV/c. For this pion (GoodTracksVeryLoose), we split
the pion tracks into two subsets, pr < 200MeV /c and pr > 200MeV/c and assign
a systematic uncertainty weighted by the distribution across these two categories.

Table 8.1 gives the uncertainty assignment for each set of tracks.
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Table 8.2: The track quality categories for all tracks used to reconstruct the
B* — DY decay.

Mode Track Track Quality

B* — Dg*)iqﬁ Charged kaons One K is GoodTracksVeryLoose
from the ¢ the other GoodTracksLoose
T GoodTracksVeryLoose

D, — ¢ Charged kaons One K is GoodTracksVeryLoose
from the ¢ the other GoodTracksLoose

D; - K K K= GoodTracksLoose
K* GoodTracksLoose

D; - K**K~ K%* from the K*® GoodTracksLoose
7% from the K** GoodTracksVeryLoose

For K mesons, we include a 1.9% total systematic uncertainty for every K.
The K? has a non-zero flight length and thus the pion tracks from its decay do
not come from the beam line (or more precisely the eT-e~ interaction point).
The 1.9% uncertainty comes from the fact that the BABAR track reconstruction
assumes tracks come from the interaction point and thus the K9 reconstruction
efficiency is affected. In table 8.3 we list the total systematic uncertainty due to
tracking for each mode. The results are independent of DF vs D**. Note, this is
reasonable given that the transverse momentum distribution of the D daughter
particles in the B* — D¥¢ vs. B* — D!*¢$ modes is such that the ratio (#
tracks with pr < 200 MeV/c)/(# of tracks with pp > 200 MeV/c¢) is the same for

B* — D¢ and B* — D*¢. The average tracking uncertainty is 3.7%.
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Table 8.3: Corrections to and systematic uncertainties of the charged track re-
construction efficiency for each mode.

Total Efficiency Total
Correction for MC Uncertainty
Mode Runs 1-3 Run4 Runs 1-3 Run 4
D; — ¢~ 0.969 0.969 4.0% 4.0%

D; - K K? 0.967 0.946 2.9% 3.1%
D; - KK~ 0.966 0.966 3.8% 3.8%
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8.4 Selection criteria efficiency uncertainties

There is also an uncertainty associated with the efficiency of all the other
requirements in the analysis; e.g., the uncertainty associated with the efficiency of
the mass requirements in the level one selection criteria, the uncertainty associated
with the efficiency of likelihood requirements, etc. These efficiencies have been
computed from MC, and we know that the MC is not perfect.

We consider separately the systematic uncertainties on the following compo-

nents of the selection:

e The efficiency of the AF requirement. Experience with previous BABAR
analyses suggests that the central value of AE could be off by a few MeV
in the MC. We artificially shift the reconstructed AFE in signal MC by 3
MeV, keeping the AFE requirements unchanged. When we do this we find a

change of 0.3% in the acceptance.

e Effects of mass shifts in the likelihood. The likelihood described in
Section 6.8 is constructed using several invariant mass variables. Again,
experience with previous BABAR analyses suggests that the the MC could
be wrong by of order 1 MeV in reconstructing mass states. We artificially
shift the reconstructed D and ¢ masses in signal MC by 1 MeV. We then

construct the standard likelihood (using unshifted PDFs), and apply the
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likelihood cut. We find a change of 0.2% (for the DF) and 0.1% (for the ¢)
in the efficiency of the likelihood requirement. In the case of B* — Di*¢,

we also move Am by 1 MeV. We find a change of 0.2% in the acceptance.

o Effects of mass resolution effects in the likelihood. We also add an
extra smear to the reconstructed DF¥ mass and Am in signal MC in such
a way that the o of the reconstructed quantity increases by 1 MeV. The
efficiency of the likelihood requirement changes by 1.5% for both the DF

and 1.5% for Am.

e Effects of Fisher discriminant simulation. We use a sample of data
BT — DK™ with D — K~7* events from another analyses. From this
sample we obtain a data Fisher distribution, see Figure 8.1. This can be
compared with the Fisher distribution from our signal MC, see Figures 6.45
and 8.2. We replace the reconstructed Fisher discriminant in signal MC with
a random variable drawn from the distribution of Figure 8.1. We then use
this new variable to calculate the likelihood for a signal event. The efficiency

changes by about 3%.

The results of these studies of the selection criteria efficiencies are summarized in
Table 8.4. Based on these results, we assign a systematic uncertainty of 5% to the

understanding of the cut efficiency.
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Figure 8.1: Fisher discriminant from a data B — Dw sample, with a superim-
posed bifurcated-Gaussian fit.
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Figure 8.2: Solid black line: bifurcated-Gaussian fit to the B — D7 sample of
Figure 8.1. Dashed red line: bifurcated-Gaussian fit to the signal MC sample of
Figure 6.45.
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Table 8.4: Summary of studies of cut systematic uncertainties. Obviously the
Am just applies to the D* modes.

Source What was done Acceptance shift
AE 3 MeV shift 0.3%
D* mass 1 MeV shift 0.2%
D¥ mass Increase o by 1 MeV 1.5%
¢ mass 1 MeV shift 0.1%
¢ mass Increase o by 1 MeV 0.4%
Am 1 MeV shift 0.2%
Am Increase o by 1 MeV 1.5%
Fisher Use data B — Dn,D — K7 3 %
Total ~5 %
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8.5 Signal Monte Carlo statistics

We take as systematic the uncertainty associated with the finite statistics of the
signal MC sample. We calculate the uncertainty separately for each mode so that
we can correctly combine correlated and uncorrelated errors when we combine all
modes in our final measurement. The uncertainty is that associated with binomial
statistics. Recall in binomial statistics, the variance is simply 1/Np(1 — p), where
N is the number of trials and p is the probability of success. We apply these
statistics to our MC sample by letting N be the number of events generated in
each sample (e.g. B*¥ — DZ¢, D7 — ¢7~) and p be the acceptance, ¢, for that

mode:

OMC stat — Ngene(l — 6) . (81)

The total acceptance and its error are calculated from the weighted average of the

MC samples associated with Runs 1-3 and Run 4.

8.6 B-counting uncertainties

In order to calculate a branching fraction we need to know the number of B
mesons we started with, otherwise the number we observe is meaningless. The
process used to count the number of B mesons we have in our data sample is

conceptually simple: we count the number of hadronic events in our sample and
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then subtract off the number of hadronic events that are not due to the process
ete™ — T(45) — BB. We determine the number of events not due to 7°(45)
production by looking at a data sample that was taken with a center-of-mass
energy just below the bb production threshold (off resonance data). To do this
calculation we need to know the luminosities in our data sample and our off
resonance data sample; these are calculated by counting the number of ete™ —
putp~. The systematic uncertainty in our knowledge of BB pairs is 1.1%. In Runs
1-3 we have N5 = (123.84+1.4) x 10%. For Run 4 we have Ny5 = (110.34+1.2) x

106.

8.7 Branching fraction uncertainties

The uncertainty on the branching fractions of the daughter decays, B; con-
tribute the largest uncertainty to the extraction of the limit on the B* — Dg*)iqﬁ
branching ratio. Using the latest BABAR measurement of B(D, — ¢7 ) [1] and
including all correlations between the modes?, we calculate these uncertainties to

be 13%, 20%, and 16% for the Dy — ¢n~, Dy — K~ K?, and D; — K"K~

branching ratios respectively. They are all correlated, since the D — ¢m~ mode

2 All branching fractions of the DZ are calculated in reference to B(D; — ¢n—). So a change
in the uncertainty in the Dy — ¢n~ mode will affect all others.
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is used to normalize the branching ratios of the two other modes. (See Table 6.2
for a breakdown.)

We calculate the uncertainty on ) . ¢;- B; due to the uncertainty on B; starting
from the values in Table 6.1, and taking account the correlated and uncorrelated
uncertainties on the D¥ branching ratios. The resulting uncertainty on B; is 14%.
Uncertainties due to the K** — K*7~ and K? — 7"n~ branching ratios are

negligible.

8.8 Summary of systematic uncertainties

The systematic uncertainties are summarized in Table 8.5. Note, these are only
approximate as all calculations were done using spreadsheet software in order to

correctly account for correlations.
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Table 8.5: Systematic uncertainties on ) _, €;- B;. The index ¢ runs over the three
D¥ modes used in this analysis, €; are the experimental efficiencies, and B; are
the branching fractions for the i mode.

Source Applies To B* — Df¢ B* — D*¢
D7 branching fraction B; 14 % 14 %
D?~ branching fraction B, — 2.5%
Other branching fractions  B; 1.5% 1.5%
Charged kaon ID € 13.2% 13.3%
Tracking and K efficiency ¢; 3. 7% 3.7%
Photon efficiency €; - 1.8%
Final state polarization € - 1 %
Selection requirements € 5 % 5 %
Simulation statistics € 0.6% 0.6%
B counting Ng5 1.1% 1.1%
Total 20 % 21 %
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Upper Limit Calculations

We see no evidence of an enhancement in the signal region. Thus, we choose
to extract the upper limit on the number of events and therefore the branching
fraction. We choose to use a Bayesian approach with a flat prior. That is, we
start from the likelihoods £(N) from Figures 7.5 and 7.10, where N is the number
of events. We then define the 90% confidence level upper limit on the number of

events, Ny, to be such that
Nyr “+o00
/ LIN) AN = 09 / L(N) dN (9.1)
0 0

Then, if we neglect systematic uncertainties, we can simply set the 90% con-

fidence level upper limit on the branching fraction, B, as'

Nyt
NBEZ@' €; X Bz

! This implicitly assumes that BR(1'(4S) — BTB~) = BR(Y(4S) — B°B°).

B <

9.2)
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where (Npp) = (233.9 & 2.5) x 106, is the number of BB events in Runs 1-4; i is
an index that runs through the three D decay modes, and ¢; is the experimental
efficiency in the " mode?.

Section 9.1 summarizes and tabulates for reference the values of and uncer-
tainties for the quantity ), €; - B; which is used in the final calculation of the
upper limits on the branching fractions B(B* — D{"*¢). These calculations are

summarized in Section 9.2 for the B* — DZ¢ mode and in Section 9.3 for the

B* — D*¢ mode.

2The efficiencies are the luminosity-weighted average of Runs 1-3 and Run 4.
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9.1 Final efficiencies

We tabulate here for succinctness the acceptance efficiencies we use for our
limit calculations. For all calculations we use the latest result, B(D; — ¢7~ )=
(4.8 +£0.6)% [1]. As of the time of writing this result has not yet been included in
the world average set by the Particle Data Group. Thus, in Appendix F we redo
all calculations using the 2004 world average of B(D,; — ¢n ™).

The efficiency of all our selection criteria on signal MC is called the raw effi-
ciency. They are shown in Table 9.1 along with the track reconstruction efficiency
correction. The efficiency, €, used in Equation 9.2 is the product of the raw effi-
ciency and the tracking correction.

Table 9.1 shows the raw efficiency, the charged track reconstruction efficiency
correction to be applied to the MC to bring it in line with the data, and the final
efficiency, ¢;. The uncertainties on the raw efficiency are from the limited MC
statistics (Section 8.5).

Note that the tracking corrections are identical for Runs 1-3 and Run 4, except
for the D; — K K? and D:~ — (K K2)y modes since the prescription for
tracking corrections is the same for all tracks, but differs for the K? reconstruction.

Table 9.2 summarizes our knowledge of ¢; - B;. The branching fractions, B,

include the branching fractions for all the daughter meson decays, D%, DE ¢,

S
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K?, and K*°. Note that we tabulate these numbers so the reader might get a
feel for the level of uncertainty and efficiency that is present in this analysis. The
actual calculation of the total systematic uncertainties and the final branching
fraction upper limits were performed via spreadsheet software. All correlations
between systematic uncertainties were taken into account in the spreadsheet. The
final uncertainty for both the B* — DF¢ and B* — D:*¢ modes is 20%.

Table 9.3 is similar to Table 9.2, except we average over the Di* decay modes
and not over the Runs. The values for Runs 1-3 and Run 4 are shown separately for
the B — D¢, the B — D:*¢ longitudinal polarization, and the B* — D!*¢
transverse polarization modes.

In Table 9.4 we list the values of the Y¢; - B; for B — D;tqﬁ and BT — D;‘igb
averaged by luminosity over all runs and broken down into uncertainties on € and
B respectively. Here we include all systematic uncertainties on ¢; and B; (recall

Table 8.5). The Ye; - B; and its uncertainty are independent of D!* polarization.
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Table 9.1:

ing efficiency correction factors,

This table shows the raw MC efficiency,
and the

final MC

the MC track-

efficiency, ¢ =

(Raw Efficiency)*(Tracking Correction). The uncertainties on the raw efficiency
are from the limited MC statistics (Section 8.5).

Runs 1-3
D{* Decay Mode Raw Tracking Final
Efficiency (%)  Correction  Efficiency, ¢; (%)
DT — o™ 21.0£0.3 0.969 + 0.039 20.3+£0.9
D; - K K? 189+ 0.3 0.967 £ 0.028 18.3 £ 0.6
D; - KK~ 15.24+0.2 0.966 4 0.038 14.7 £ 0.6
Long. Di~ — (¢77)y 119402  0.969+0.039  11.5+05
Long. D'~ — (K~K%y 109403  0.967+£0.028  10.5+0.4
Long. D'~ — (K*K~)y  88%0.2  0.966+0.037  85+04
Trans. D'~ — (¢7 )y 119402  0.969+0.039  11.6+0.5
Trans. D~ — (K-K%y  11.1+03  0.967+0.028  10.8+0.4
Trans. D — (KK )y 92402 096640037  89+0.4
Run 4
D{Y* Decay Mode Raw Tracking Final
Efficiency (%)  Correction  Efficiency, ¢ (%)

Dy — ¢m™ 18.5+0.3 0.969 + 0.039 18.0 £ 0.8
D; - K K? 18.0+ 0.3 0.946 + 0.029 17.0 £ 0.6
Dy — KK~ 13.8+0.2 0.966 + 0.038 13.3+0.6
Long. D™ — (¢7m )y 10.5+£0.2 0.969 + 0.039 10.1 £0.5
Long. D! — (K K%y 9.9+0.3  0.946 £ 0.029 9.4+0.4
Long. D™ — (K**K ™)y 8.3+0.2 0.966 £ 0.037 8.0+ 0.3
Trans. DI~ — (67 )y 105£02  0.969+0.039  10.2%0.5
Trans. D~ — (K~K%y  9.7+£0.3  0946+0.029 92404
Trans. D~ — (K*K-)y 80402  0.966+0.037  7.7+0.3
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Chapter 9. Upper Limit Calculations

Table 9.2: Signal MC efficiency (¢;), averaged between Runs 1-3 and Run 4
according to luminosity (see Table 9.1), total branching fractions (5;) of the re-
constructed daughter decay modes, and product of acceptance and branching
fraction for each of the three modes used in the B — D!*¢ search. When two
uncertainties are listed, the first is the uncertainty associated with the ¢; (only the
uncertainties due to MC statistics and tracking efficiency corrections, i.e. those
in Table 9.1, are included) and the second is that associated with B;.

D{* Decay Mode Polarization ¢ (%)  B; (107°3) e - B; (1073)

DT — ¢~ — 19.2+0.6 11.57+1.46 2.22 +0.07 £ 0.28
D; — K~K? - 177404 821+£1.66 1.45+0.04+0.29
Dy — KK~ — 14.0+04 1446 £2.30 2.03 = 0.06 & 0.32
D~ — (¢p7 )y Longitudinal 10.9+0.4 10.90 +1.41 1.19+0.04 +0.15
D — (K K%y Longitudinal 10.0+0.3 7.73+1.58 0.77 +£0.02 +0.16
D~ — (K*K~)y Longitudinal 8.3+0.3 13.624+220 1.13+0.03 +0.18
D = (g7 )y Transverse  10.9+£0.4 10.90 £1.41 1.19 +0.04 £0.15
D~ — (K~K%y  Transverse 10.0+0.3 7.73+1.58 0.77 £0.02 £0.16
D~ — (K®K~)y Transverse 8.3+0.3 13.62+220 1.14+0.03+0.18

Table 9.3: The sum over modes of the acceptance times branching fraction. The
index 7 runs over the DF decay modes. When two uncertainties are listed, the first
is that associated with ¢; (only the uncertainties due to MC statistics and tracking
efficiency corrections, i.e. those in Table 9.1, are included) and the second is that
associated with B;. The row marked “All” is the weighted-by-luminosity average
of the Runs 1-3 and Run 4 results. See Table 9.4 for the final result including all
systematic uncertainties. Note that these results are independent of D}* helicity.

B* - D*¢ B* — D**¢ Long. B* — D!*¢ Trans.
Runs Zz € - B; (1073) Zz ¢ - B; (1073) Zz € - B; (1073)
1-3 5.97+£0.224+£0.81 3.23+£0.08£0.44 3.30+0.08+0.45

4 5.40£0.21 £0.74

2.92+£0.08 £0.39

2.87+0.07£0.38

All 5.70£0.21 £0.78

3.09 £0.08 £0.42

3.10£0.09 £ 0.42
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Table 9.4: The sum over modes of the acceptance times branching fraction with
all systematic uncertainties involving € and B; listed in Table 8.5 included except
that for the number of BB pairs. The first uncertainty is that related to ¢;. The
second uncertainty is from the uncertainty in B;.

B decay mode Y€ - B; (1072)

B* - D¥¢  570+0.57+0.78
B* = D¢ 3.09+0.31 £ 0.42
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. . :l: :l:
9.2 Upper limit on B(B* — D ¢)

The likelihood curve for the number of signal events was obtained by scanning
over the number of signal events when determining the yield in Section 7.1, it is
shown in Figure 9.1. To obtain the Bayesian 90% confidence level upper limit on
the number of signal events we first multiply the likelihood curve by our Bayesian
prior. Since the number of signal events must a non-negative number, our prior
function is simply the step function, ©(0). ©(0) evaluates to zero for all negative
values of N and to unity otherwise. After applying the prior to the likelihood
function (see Figure 9.2), we then use Equation 9.1 to calculate, Ny, = 2.3. If we
were to assume no experimental uncertainties, we would calculate directly from
Equation 9.2, B(B* — D ¢) < 1.7 x 107% at 90% C.L.

In order to account for the systematic uncertainties described in Chapter 8, we
use a Monte Carlo technique to obtain a PDF for B starting from £(/N) and a PDF
for NggY . € - B;. (See Appendix E for justification of this method.) For lack of
a better term we will refer to this Monte Carlo technique as smearing. We will
then substitute this PDF representing B for the likelihood, £(V), in Equation 9.1
to obtain our 90% C.L. upper limit on the branching fractions, B(B* — D{"*¢).

The dotted lines in Figures 9.1-9.4 are the PDF representing B%. The PDF for

3Note that the abscissa for the dotted line is no longer N and the PDF is normalized to the
likelihood PDF but the point here is simply to show the shape that resulted in this smearing
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Figure 9.1: B*¥ — DF¢. The likelihood curve for the number of signal events
(black solid) and smeared likelihood (red dashed), in arbitrary units as a function
of the number of signal events (Ny;,). Top: log-scale ordinate. Bottom: linear-
scale ordinate.

the denominator in Equation 9.2 is taken to be a Gaussian of mean p = 1.33 x 10°

and o = 0.20 x p * The result is

B(B* — D¥¢) < 1.8 x107% at 90% C.L. (9.3)

4The value for p and o are value of N BB 2 € - B; and its uncertainty.
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Smeared Likelihood After Baysean Prior | noSmearAfterPrior
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Figure 9.2: B* — DF¢. Here we show the likelihood of Figure 9.1 after we
apply the Bayesian prior. The top plot is the likelihood (black solid) and smeared
likelihood (red dashed), as a function of N, after applying the flat Bayesian prior.
The bottom plot shows the integration (Equation 9.1) of the binned likelihood
function.

The measurement of B(D; — ¢n~) will certainly improve in the coming years,

thus we also calculate the limit on B(B* — D%¢) x B(D¥ — ¢n*). The result is

B(B* — D¥¢) x B(D; — ¢77) < 8.6 x10™% at 90% C.L. (9.4)
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Figure 9.3: B* — D:*¢. The likelihood curve for the number of signal events
(black solid) and smeared likelihood (red dashed), in arbitrary units as a function
of the number of signal events (Ny;,). Top: log-scale ordinate. Bottom: linear-
scale ordinate.

9.3 Upper limit on B(B* — D*¢)

The likelihood curve for the B — D**¢ mode is shown in Figure 9.3. As for
the B* — DF¢ mode, we multiply by our Bayesian prior which yields Figure 9.4.
Using Equation 9.1, we obtain Ny, =7.8. As in the previous section, if we assume

no experimental uncertainties, we can calculate B(B* — D!*¢) < 1.1 x 1075 at

90% C.L.
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Figure 9.4: B* — D!*¢. Here we show the likelihood of Figure 9.3 after we
apply the Bayesian prior. The top plot is the likelihood (black solid) and smeared
likelihood (red dashed), as a function of N, after applying the flat Bayesian prior.
The bottom plot shows the integration (Equation 9.1) of the binned likelihood
function.

We account for experimental uncertainties as we did for the B* — DZ ¢ modes.
The Gaussian PDF for the denominator in Equation 9.2 has p = 7.15 x 10® and

0 = 0.20 X . The result is
B(B* — D*¢) <1.1 x107° at 90% C.L. (9.5)

And,

B(B* — D*¢) x B(DF — ¢7F) <53 x 1077 at 90% C.L. (9.6)
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Chapter 10

Conclusions

The search for B*¥ — Dg*)i¢ found no evidence for these decays. Our limits are
about two orders of magnitude lower than the previous results, but are still one
order of magnitude higher than the Standard Model expectation. However, the
limits obtained in Chapter 9 can be used to examine the validity of the theories
detailed in Chapter 2.

Using the calculation in [4], and conservatively assuming fully destructive in-
terference between the SM and RPV-SUSY amplitudes, we find that our limit on

B* — D{* ¢ implies (recall Equation 2.1)

22 4x10°*

A 2D 10.1
! < To0Gen® (10-1)

where M is the slepton mass and A is quark-quark-slepton coupling constant.
Note that this limit does not include any of the hadronic uncertainties associated

with the factorization hypothesis.
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Chapter 10. Conclusions

Using the calculation in [4] and our limit on B(B* — D{"*¢) we can extract
a limit tan /My < 0.37/ GeV. Just as in the RPV-SUSY model, the limit does
not include any hadronic uncertainties. Recall, the Belle preliminary result on
B(Bt — ttu,) gives tan 8/My+ < 0.31/ GeV while information on B — D7v
yields tan 8/Mpy+ < 0.46/ GeV [12]. So we have produced a competitive result.

The CDF collaboration has recently published new limits in the tan 8 — Mg+
plane from a study of the consistency of their ¢£ sample in the various decay modes
with the SM hypothesis [21]. Their results, which are shown in Figure 10.1, are
obtained in the contexts of the MSSM and include higher order corrections for a
given choice of MSSM parameters.

We have also obtained from CDF their exclusion regions in the tan 8 — Mp=+
at tree level [22]. This is shown in Figure 10.2, including the tree-level limits from
B decays. It seems that at high tan 3, the indirect limits from B decays are more

powerful than those from the TeVatron
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Figure 10.1: Excluded regions (95% CL) in the tan § — Mg+ plane from an
analysis of CDF’s tt events. These are in the context of the MSSM for a certain
choice of parameters including radiative corrections. Note that the regions of very
high and very low tan § are not probed, since the tbH couplings become very

large. See Reference [21] for details.
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Figure 10.2: Excluded regions (95% CL) in the tan 8 — My=+ plane from CDF’s
tt events. Shaded region: CDF’s t¢ events, tree-level only. The solid (dashed, dot-
dashed) lines delimit the 90% CL limits from B — rv (B* — D{"*¢, B — Drv)
described in the text. The area to the right of the curves is excluded by B decays.
Note that the regions of very high and very low tan 8 correspond to very large
tbH couplings.
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Appendix A

Function Definitions

Here we define the functions used in this analysis..

(GAUSSIAN:

G(z;p,0) = Ojﬁexp(% @ ;QM)Q) (A1)

DOUBLE GAUSSIAN (SUM OF TWO GAUSSIANS):

2
DGz s ,0) = — = (Pespl 1)
1 L(— o)
+ 02\/%(1 Flexp(3 -2 ) (A.2)

BIFURCATED (GAUSSIAN:

—exp(3EAL), @<

BG(z; p, 01,09) = (A.3)

%(33—51)2), T2

b

1
p mexp(
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Appendix A. Function Definitions

BREIT-WIGNER:

IS
TN wP (0727

BW(xaNaanF)

VOIGTIAN: A Voigtian is a convolution between a Gaussian (centered at zero
with unit normalization) and a Breit-Wigner,

+o0o
V(z;N,0,x0,T") = / BW(y)-G(y — z;0,0)dy. (A.5)

—0o0
To understand the what a convolution is doing let the integral be represented by
a sum, then we have,

V(z;N,0,20,T') = Y BW(z + Az) - G(Az;0,0). (A.6)
Az

The effect of convolving the Breit-Wigner with a Gaussian is to smear out the
Breit-Wigner distribution. E.g. let us measure something that has a perfectly
precise value, x, with an experimental setup with imperfect resolution. Because
our resolution is not perfect, we may actually measure ' = x & Az. If we make
this measurement an infinite number of times we will get a distribution for the
measurement which is centered at x but with some finite width.

If we represent BW by

1, z=-1
BW(z)=4 4, z =
1, z=+1
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and a Gaussian by

2, r=-1
Gx)=4 3, =0
2, r=+1

then by A.6 (note the Gaussian should be normalized to unity, hence the factor

of 1/7 in front),

V(=2) = (1/7) [BW (=2 = )G(=1) + BW (=2 4 0)G(0) + BW (-2 + 1)G(1)]
= (1/7)[0%2+0%3+1%2]=2/7

V(-1) = (1/7) [BW(~1 - 1)G(~1) + BW (=1 + 0)G(0) + BW(—1 + 1)G(1)]
— (1/T)[0%2+1%3+4%2] =11/7

V(0) = (1/7) [BW(0 — 1)G(=1) + BW (0 + 0)G(0) + BW (0 + 1)G(1)]

= (1/7)[1%2+4%3+1%2]=16/7

V(+1) = (1/7) [BW(1 = 1)G(=1) + BW (1 + 0)G(0) + BW (1 + 1)G(1)]
= (1/7)[4*2+1%3+0%2] =11/7

V(+2) = (1/7) [BW(2 — 1)G(~1) + BW (2 + 0)G(0) + BW (2 + 1)G(1)]

=(1/7)1*2+0%3+0x2]=2/7

Thus we have the new function, V(x)

2/7, x=-—
11/7, z=-—
V(z) =< 16/7, ©=0
11/7, z=+1
2/7, x=+42
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which has the same normalization as the original BW, but with a wider spread.

LEGENDRE FISHER: The Legendre Fisher is a commonly used tool at BABAR.
A Fisher Discriminant is used maximize the discrimination power between two or
more variables that are correlated to any degree. The two variables we are trying
to distinguish are the momentum-weighted Legendre moments, Ly and L,. Hence

the name the Legendre Fisher. It is given by,
F = CoLg + Cy Ly, (A.7)

where
r.o.e.
Lo = > . pi (A.8)
i
r.o.e.
L2 = Z Di COS2 0Tz'- (Ag)
i
The term “r.o.e.” stands for the rest of the event. The sum is over all the tracks
and neutral clusters in each event that are not associated with the B that we are
reconstructing. fr; is the angle that the track or neutral cluster, ¢, makes with
the thrust vector.
The thrust vector is defined as the vector that satisfies maz (|3, T- ;])/(Z;| B;|)

for any group of tracks and clusters, j. The thrust vector is defined over all the

tracks and clusters in the event. See Appendix B for a diagram.
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The constants Cjy and C5 are determined by the following:

S220% + S90Cy = Dy (A.10)
52002 + S00Co = Dy, (A.11)
where
Dy, = <Ly'>—-<Ly> (A.12)
Dy = <Li>-<Ly> (A.13)

for two different sets of data, m and n. In our case m and n are the c¢¢ and signal
MC and the L are determined from the MC distributions. Finally, Equations A.10
and A.11 can we solved for Dy and Dy:

S92 Do — S22 Do
S50 — So0Sa2
S20Do — Soo D2
S50 — SooS22

Dy

(A.14)

D,

(A.15)

ARGUS runcTION: The Argus function was developed by the ARGUS col-
laboration [19]. It is threshold function with two parameters: the endpoint, mo,
and the slope, (. For our use, ( is the fit parameter and my is fixed at one-half

the average CM energy.

f(mgs) o« mesV1— 22exp[—((1 — z?)] (A.16)

xr = mgs/my. (A.17)
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Decay Angles Definitions

In this appendix we summarize the various angles used in this analysis.
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Figure B.1: Decay (helicity) angle for the B* — D**¢ decays. This figure shows
the decay angle for the bachelor ¢ however, the decay angle for the K** from the
DZ decay is obtained by replacing the B with the DE, the ¢ with a K*° and the
K~ with a 7.

Figure B.2: The production angle of the B meson in the efe™ — 7 (45) —
BB process. Since the B meson is a scalar particle, we expect a 1 — cos?(fp)
distribution.
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Figure B.3: Decay (helicity) angle for the BX* — D?*¢ decays. This figure shows
the decay angle for the bachelor ¢ however, the decay angle for the K** from the
D# decay is obtained by replacing the B with the DE, the ¢ with a K*° and the
K~ with a7 .

Figure B.4: The thrust angle, 1 is represented by the thick solid arrow. The
dotted arrows represent the tracks and neutral EMC clusters in the center of mass
frame that are used to make up the B we reconstruct as B* — Dg*)iqﬁ, the solid
arrows are the other tracks and clusters in the event. The left figure is an example
of a BB event. Notice that the event has an overall circular shape. The figure
on the right is an example of a efe™ — ¢g, continuum, event. Notice that the

continuum event has much less circular shape.
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Particle Identification Categories

The kaon selection at BABAR is based on the information from the silicon
vertex tracker, the drift chamber and the Cherenkov radiation detector. From
measurements of a particle’s energy loss per unit length dE/dx in the SVT and
the DCH we can reliably distinguish between pions and kaons. From Cherenkov
angle we can distinguish kaons from pions up to a momentum of ~ 4 GeV/c. When
determining the particle type we start with the assumption that we have a pion
and ask the question, “Could this particle be a kaon?”

Each particle is placed in a category depending on our level of confidence as
to its species. The categories are defined by how well they discern between koans
and other particles in our detector, mainly pions and protons. The categories are,
NotPion, Loose, Tight, and VeryTight. The VeryTight list is optimized for

the cleanest sample of kaons, with the rate of mis-identifying a pion as a kaon kept
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Figure C.1: The kaon identification efficiency for the NotPion particle identifi-
cation category.

below 2%, while the NotPion list is optimized to have the highest kaon efficiency
possible while still rejecting most pions.
Figures C.1-C.4 show the kaon identification efficiency and the rate for mis-

identifying a pion as a koan for the NotPion and Loose categories.
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Figure C.2: The rate for mis-identifying a pion as a kaon for the NotPion particle
identification category.
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Figure C.3: The kaon identification efficiency for the Loose particle identification
category.
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Figure C.4: The rate for mis-identifying a pion as a kaon for the Loose particle
identification category.
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Appendix D

Track Quality Classifications

Here we would like to discuss the concept of tracking and how it is used in

BABAR and this analysis. The following will be covered:
e Definition of tracking,
e Track-finding theory and its use at BABAR, and
e Definition of BABAR track-quality categories.

DEFINITION OF TRACKING

Tracking at BABAR has two components, track finding and track fitting. A track
is defined as any collection of detector hits which can be connected to form a
valid trajectory through the detector. Track finding is the process by which we
use pattern recognition to collect the many hits in the various sub-detectors of
BABAR into groups such that it represents a particle’s possible path. What is

a valid trajectory is determined by track fitting algorithms. These algorithms

178



Appendix D. Track Quality Classifications

involve a series of least-squares fits, called a Kalman fit. In a Kalman fit one starts
with a track seed (a set of n detector measurements of the passage of a charged
particle) and fits a track to these n measurements. Then all other measurements of
a charged particle’s position is sequentially added with the fit being re-calculated
for n' = n 4+ 1 measurements after each addition. Track fitting would be trivial
if we didn’t have to account for experimental effects like, for example, multiple

scattering, energy loss, and a non-uniform magnetic field in our detector.

TRACK-FINDING THEORY AND ITS USE AT BABAR

In the ideal scenario in which the experimental effects like those listed above do not
occur, the only force on a charged particle would come from its passage through
a magnetic field. As a rough rule of thumb, the following holds true in a uniform
magnetic field:

Dr = 0.3Br .

where pr is the magnitude of the momentum transverse to the z-axis in GeV/e,
B is the magnetic field strength in Tesla, and r is the radius the particle’s curved
tack in meters. If the particle has a non-zero component of its momentum along
the z-axis, the particle’s trajectory is stretched out into a helix, but, of course,

the above equation still holds for the projection of the track onto the x-y plane.
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Figure D.1: Track helix parameters.

A helix is defined by five parameters (three parameters describing a circle plus
two parameters defining a line). The definitions of the z offset (2y), the radius
(do), the azimuthal angle of the POCA (¢y), and the dip angle (\) are depicted in
Figure D.1. The fifth parameter, the geometrical curvature (w) is related to the

radius of curvature and is defined from the transverse momentum,

= l i —1013pT . _333.6pT
w  ¢B,e  ¢B,

DEFINITION OF BABAR TRACK-QUALITY CATEGORIES
The BABAR collaboration has defined track-quality categories. The categories

relevant for this analysis are:
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e ChargedTracks. All the tracks in the detector that correspond to charged

particles.

e GoodTracksVeryLoose. Take the tracks in the ChargedTracks category and
impose the following:
— pr >0 GeV/e,
— p < 10GeV/e,
— The x? from the track-fitting algorithm must have a probability > 0,

— The distance of closest approach in the x-y plane (DOCA XY) must

be < 1.5cm.!
— The z position of the point of closest approach (POCA) must be < 10 cm

from the beam spot z position.?

e GoodTracksLoose. Take the tracks in the GoodTracksVeryLoose category

and impose the following:

— pr >0.1 GeV/e

— Number of hits in the drift chamber > 12

'To calculate DOCA XY, project the particle track and the location of the intersection of
the two beams (the beam spot) onto the x-y plane. The DOCA XY is the minimum distance
in the x-y plane between the projected track projected beam spot.

2The point of closest approach is the (x,y,z) position along the track where the (x,y) coordi-
nate is that which satisfies the conditions of the DOCA XY; ibid. footnote 1.
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Justification: Incorporating
Systematic Uncertainties

In this appendix we describe the method used in Chapter 9 to incorporate the
systematic uncertainties into the the upper limit calculation. Recall the branching

fraction upper limit is obtained using Equation 9.2,

Nur,
Nggd i€ Bi

In our approach we interpret the likelihood as a PDF for the true number of events

B <

(i.e. the number of events one would observe if this experiment was performed
many times). The numerator is a PDF. The denominator, which we will call the
“B yield,” is a number with an uncertainty. To perform this division, we represent
the denominator by a unit-normalized Gaussian distribution with mean=1 and
width equal to the value and uncertainty of Ngyz . € - B;, respectively.

We saw no excess of signal events in the signal box. Now, if the B yield had

no uncertainty, we could simply divide the value of Ny, obtained by integrating
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the likelihood function by the B yield to obtain our upper limit. On the other
hand, if we had seen a signal, irregardless of whether there is an uncertainty on
the B yield, the numerator and the denominator would each be a number with
an uncertainty; from this we could use the normal propagation-of-errors rules for
quotients to obtain a number with an uncertainty for 3. However, the B yield has
an uncertainty and we observed no signal; thus, the numerator is not a number
with an uncertainty but rather it is a PDF. This PDF is a function of the number
of events expected, N, and represents the likelihood of observing zero events if in
the limit of infinite statistics we would have measured N. Since the numerator is
a PDF, and the denominator is a number with an uncertainty it does not make
sense to divide the former by the latter. To progress, we will perform the division
using a numerical method in which we represent the denominator by a PDF.
The denominator is a number with an uncertainty that represents our best
estimate of the value of Nyz > . € - B; and its uncertainty. We extract the central
value of this quantity and then, since the uncertainty is symmetric around the
central value, we assume the uncertainty can be represented by a unit-normalized
Gaussian distribution with mean and width equal to the value and uncertainty
of Npg> ;€ - Bi, respectively. Thus the B yield is represented by a number

multiplied by a Gaussian distribution.

183



Appendix E. Justification: Incorporating Systematic Uncertainties

Now that both the numerator and denominator of 9.2 are represented by PDF's

the division can be meaningful. For each point along the curve of L(NV):

e Draw a random number from the Gaussian distribution that represents the

B yield,

e Divide the value of £L(N) by this random number,

e Plot this new value.

The result is a new curve, call it B'. When L(N) is replaced by B' in Equa-
tion 9.2 and the integration is performed we get the 90% C.L. upper limit on the

branching fraction, B.
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Repeat of Section 9.1, using
B(D; — ¢7~)=(3.6 = 0.9)%

In this appendix we tabulate as we did in Section 9.1 the values of and uncer-
tainties for ). ¢; - B;. This time we use the world average from the 2004 Review
of Particle Physics published by the Particle Data Group at Berkeley [16]. Again,
these are intended to allow the reader to get a feel for the level of uncertainty
involved in this analysis and make a rough calculation of B.

All the branching fractions of all D* decay modes are normalized to B(D; —
¢7), thus B(D; — K*K~) and B(D; — K K?) need to be recalculated.
Table F.1 shows the total branching fractions of the three DF decay modes, given
that B(D; — ¢7~)= (3.6+£0.9)%. Then in Table F.2 we summarize our knowledge
of ¢; - B;. The branching fractions, B, include the branching fractions for all the

daughter meson decays, D, DE ¢, K° and K*O.
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Table F.1: The total branching fractions for the secondary and tertiary decays in
the modes considered in this analysis. The uncertainties listed are the correlated
and uncorrelated, respectively.

B decay mode D:* mode DZF mode DZ/D:* branching fraction

D¢ - o (0.87 £ 0.22 £ 0.02)%
D*¢ - K*K? (0.62 £ 0.15 4 0.10)%
D%¢ - KK+ (1.08 £0.27 £ 0.11)%
D*¢ DEy ¢~ (0.82 & 0.20 £ 0.03)%
D*¢ Dty K*K? (0.58 & 0.15 4 0.09)%
D¢ D%y KK+ (1.02 £0.26 £ 0.10)%

According to the 2004 PDG, the uncertainties are 25%, 30%, and 27% for the
D; — ¢n, D; - K K2, and D; — K**K~ branching ratios respectively. (See
Table F.1 for a breakdown.) Accounting for correlations the total uncertainty is
on B is 26%.

Table F.3 is similar to table two, except we average over the Di* decay
modes and not over the Runs. The values for Runs 1-3 and Run 4 are shown
separately for the B* — D*¢, the B* — D!*¢ longitudinal polarization, and
the B — D**¢ transverse polarization modes.

In Table F.4 we list the values of the ), ¢;- B; for B* — D¢ and B* — D*¢
averaged by luminosity over all runs. Here we include all systematic uncertain-
ties on ¢; and B; (recall Table 8.5). Note, the ). ¢ - B; and its uncertainty are

independent of D}* polarization.
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Table F.2: Signal MC efficiency (¢;), averaged between Runs 1-3 and Run 4
according to luminosity (see Table 9.1), total branching fractions (B;) of the re-
constructed daughter decay modes, and product of acceptance and branching
fraction for each of the three modes used in the B — D:*¢ search. When two
uncertainties are listed, the first is the uncertainty associated with the ¢; (only the
uncertainties due to MC statistics and tracking efficiency corrections, i.e. those
in Table 9.1, are included) and the second is that associated with B;.

D{Y* Decay Mode Polarization e (%) B; (1073) € - B; (1073)

Dy — ¢ — 19.2+0.6 8.68+2.17 1.67+£0.05 +£0.42
Dy — K_Kg — 17704 6.15+1.82 1.09+0.03 £0.32
Dy — K*K~— — 14.0+£0.4 10.84+291 1.52+£0.04+0.41
D™ — (¢m7 )y Longitudinal 10.9+0.4 8.18+2.06 0.89 +0.03 £0.23
D~ - (K-KY%y Longitudinal 10.04+0.3 580+£1.72 0.58 4 0.02 & 0.18
Dy~ — (K*OK_)'}' Longitudinal 8.3 +0.3 10.21£2.76 0.84+£0.03 £0.24
D — (¢n7 )y Transverse 10.9+04 8.18+2.06 0.89+0.03+£0.23
Di~ — (K~ K?)y Transverse  10.0+0.3 5.80+1.72 0.58 +0.02 £+ 0.18
Df — (KK )y Transverse 8.3 +0.3 10.214+276 0.85+0.03 +0.24

Using all this but not including systematic uncertainties yet, we can calcu-
late, just as in Chapter 9, the upper limit on B(B* — DZ¢) using B(Df —
¢mt)=(3.6 £ 0.9)%, B(B* — DE¢) < 2.3 x 107 at the 90% confidence level.

Our systematic uncertainties are a bit higher when using B(D; — ¢7~)=(3.6+
0.9)%. The PDF for the acceptance is taken to be a Gaussian of mean y =

1.33 x 10% and of o = 0.28 x p. The result is
B(B* = Df¢) < 2.6 x 107% at 90% C.L.

For the B* — D!*¢ mode, if we first neglecting systematic uncertainties,

B(B* — D:*¢) < 1.4 x 107° at the 90% confidence level. And, if the Gaussian
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Table F.3: The sum over modes of the acceptance times branching fraction. The
index 4 runs over the DF decay modes. When two uncertainties are listed, the first
is that associated with ¢; (only the uncertainties due to MC statistics and tracking
efficiency corrections, i.e. those in Table 9.1, are included) and the second is that
associated with B;. The row marked “All” is the weighted-by-luminosity average
of the Runs 1-3 and Run 4 results. See Table 9.4 for the final result including all
systematic uncertainties. Note that these results are independent of D** helicity.

B* — D%¢ B* — D**¢ Long. B* — D!*¢ Trans.
Runs Zz € - B; (1073) ZZ € - B; (1073) ZZ € - B; (1073)

1-3 448£0.17+£1.14 242£0.09£0.62 2.48+£0.09+£0.63
4 4.05£0.15+1.04 219£0.09£0.71 2.16+£0.09+0.70

All 427+0.16 £1.09 231+£0.06£0.59 2.32+0.06 £ 0.60

Table F.4: The sum over modes of the acceptance times branching fraction with
all systematic uncertainties involving € and B; listed in Table 8.5 included except
that for the number of BB pairs. All care was taken to account for correlations
between systematic uncertainties. The first uncertainty is that related to ¢;. The
second uncertainty is from the uncertainty in B;.

B decay mode Y . ¢ - B; (1073)

B* - Df¢  5.70+0.57+£0.78
B* - D:*¢  3.09 £ 0.31 + 0.42

PDF for the denominator of Equation 5.1 is taken to have a mean of y = 7.15x 10°

and of 0 = 0.28 x p. The result is

B(B* — D*¢) <1.7x107° at 90% C.L.

188



Appendix F. Repeat of Section 9.1, using B(D; — ¢n~)=(3.6 £ 0.9)%
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Figure F.1: B* — D¢, B(Df — ¢n%)=(3.6 £ 0.9)%. The likelihood (black
solid) and “smeared” likelihood (red dashed), in arbitrary units as a function of
the number of signal events (/Ny;,). Top: log-scale ordinate. Bottom: linear-scale
ordinate.
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Figure F.2: B* — D¢, B(Df — ¢7*)=(3.6 + 0.9)%. Top: The likelihood
(black solid) and “smeared” likelihood (red dashed), as a function of Nj;, after
applying the flat Bayesian prior. Bottom: The integration of the top plot.
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Figure F.3: B* — D!*¢, B(D¥ — ¢n*)=(3.6 = 0.9)%. The likelihood (black
solid) and “smeared” likelihood (red dashed), in arbitrary units as a function of
the number of signal events (/Ny;,). Top: log-scale ordinate. Bottom: linear-scale
ordinate.
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Figure F.4: B* — D!*¢, B(Df — ¢n*)=(3.6 + 0.9)%. Top: The likelihood
(black solid) and “smeared” likelihood (red dashed), as a function of Nj;, after
applying the flat Bayesian prior. Bottom: The integration of the top plot.
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