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We explore the physics of the general CP-conserving MSSM with Minimal Flavor Vio-
lation, the pMSSM. The 19 soft SUSY breaking parameters are chosen so to satisfy all
existing experimental and theoretical constraints assuming that the WIMP is the light-
est neutralino. We scan this parameter space twice using both flat and log priors and
compare the results which yield similar conclusions. Constraints from both LEP and
the Tevatron play an important role in obtaining our final model samples. Implications
for future TeV-scale e+e− linear colliders(LC) are discussed.

The MSSM with R-parity conservation is the prototypical SUSY model. Although it
has many nice features it is difficult to study in detail as SUSY breaking leads to over
120 a priori unknown soft-breaking parameters. The usual approach to this problem in
phenomenological studies is to examine only one or a few of the usual SUSY breaking
mechanisms, e.g., mSUGRA, GMSB or AMSB which have only a few associated parameters.
One may ask whether a study of these models really tells us all we need to know about the
MSSM; is there nothing more? How much do we really know about the MSSM?

In recent work, we have attempted to go beyond these studies[1] by examining the
general CP-conserving MSSM with Minimal Flavor Violation assuming that (i) the first 2
generations of sfermions are degenerate with negligible Yukawa couplings, (ii) the neutralino
is the LSP with the WMAP dark matter constraint used only as an upper bound. This leaves
us with only 19 independent, real, SUSY/weak-scale Lagrangian parameters to consider.
These include the gaugino masses, M1,2,3, the Higgsino mixing parameter, μ, the ratio of the
Higgs vevs, tanβ, the mass of the pseudoscalar Higgs boson, mA, and the 10 squared masses
of the sfermions (5 for the assumed degenerate first two generations and a separate 5 for the
third generation). Finally, due to the small Yukawa couplings for the first two generations,
independent A-terms are only phenomenological relevant for the b, t and τ sectors. In the
analysis presented here we will make two independent parameter scans: for the first scan of
107 parameter points we assume that all of the sfermion mass parameters lie in the range
0.1-1 TeV, 1 ≤ tan β ≤ 50, |Ab,t,τ | ≤ 1 TeV, 43.5 ≤ mA ≤ 1000 GeV, 0.05 ≤ |M1,2, μ| ≤ 1
TeV and 0.1 ≤ M3 ≤ 1 TeV. Note the absolute value signs in these quoted ranges as we
will allow the soft-breaking parameters to have arbitrary sign. For this first scan, which
generates SUSY spartners with light to moderate masses, we will assume flat priors, i.e., we
assume that the parameters values are chosen uniformly throughout their allowed ranges.
For our second scan, for which will assume a set of log priors for the mass parameters, we
will modify the allowed soft parameter ranges as follows: all the sfermion mass parameters
will be assumed to lie in the range 0.1-3 TeV, 1 ≤ tan β ≤ 60, 0.01 ≤ |Ab,t,τ | ≤ 3 TeV,
43.5 ≤ mA ≤ 3000 GeV, 0.01 ≤ |M1,2, μ| ≤ 3 TeV, and 0.1 ≤ M3 ≤ 3 TeV. This expanded
range will allow us access to both very light as well as heavy sparticle states. Since the goal
of this second scan is to make contrasts and comparisons to the first, flat prior study, we
will only generate a set of 2 · 106 parameter points to examine in this case.
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Once the model points are generated we pass them carefully through an extensive list
of experimental constraints arising from precision measurements(i.e., Δρ and the invisi-
ble width of the Z), flavor physics(i.e., meson-antimeson mixing, b → sγ, B → τν and
Bs → μ+μ−), the muon g − 2, 5-year WMAP data, direct detection searches(from CDMS,
XENON10, DAMA and CREST), as well as Higgs boson and SUSY particle direct searches
at both LEP and the Tevatron[1]. Many of the caveats associated with these collider searches,
which are usually ignored, have been included in the present analysis. An example of this
is the search for right-handed sleptons at LEPII; usually, these limits are quoted as being
∼ 100 GeV. However, if the mass splitting of the slepton with the LSP, Δm, is sufficiently
small the resulting leptons would be too soft to be observable above SM backgrounds even
in an e+e− environment. Thus, lighter sleptons may actually exist with small values of
Δm that have escaped detection. This effect is indeed shown on the figures displaying the
combined LEPII limits. A similar effect can also occur for charginos, squarks and gluinos
and they, too, may be lighter than is commonly believed if their mass splitting with the LSP
is sufficiently small. Such states do occur in our final model samples.

It is important to note that the Tevatron plays a very important role at obtaining our
final model set, in particular searches for stable charged particles, multijets plus missing
energy and trilepton plus missing energy final states. These constraints, which we have
analyzed at the level of fast detector simulations, have not been employed in previous SUSY
analyses. We find that only ∼ 68.5(3.0)k models survive this procedure in the case of the
flat(log) priors.

For LC perhaps the most important result of this analysis is the sparticle spectra and
whether or not a given sparticle is kinematically accessible at LC energies. Figs. 1 and 2
show this accessibility at collision energies of either 500 GeV and 1 TeV for both sets of
priors for many possible final state spartner pairs. Here, e.g., ‘uLuR’ labels the production of
the ũLũ∗

R + h.c. associated production final state. Several things are to be noted from these
figures: (i) The LSP is generally quite light as is χ̃±

1 since wino-like and Higgsino-like LSP
spectra are the most common in both samples. (ii) The χ̃0

2 is also often very light as would
happen in Higgsino-like scenarios. Note that χ̃±

1 (and sometimes χ̃0
2 as well) is often nearly

degenerate with the LSP leading to long-lived charged particle collider signatures. (iii)
Charged sleptons may be accessible in some cases at 500 GeV with the lightest stau being
the most likely possibility. (iv) There is a reasonable probability that light squarks may
also be accessible at 500 GeV; this possibility has not been well-studied at LC since it has
generally been believed that this possibility is excluded by Tevatron searches. Such searches,
however, assume an mSUGRA-like mass spectra which produce large missing energy and
multi-jet final states. In the cases we find, light squark production fails to pass the required
Tevatron search cuts at significant rates to be detected, evading such searches. (v) There is
a reasonable probability that a light Higgs exists with a mass below the LEPII SM Higgs
bound of 114 GeV due to a reduced ZZh coupling and/or the possibility that h → 2χ̃0

1 is
allowed with a significant rate. The former generally occurs in the ‘non-decoupling’ region
when MA is relatively small. These possibilities has not been well explored within the pure
MSSM context.

The next most important result for LC is the nature of the nLSP. Fig. 3 shows that
while χ̃±

1 and χ̃0
2 are seen to be the most likely nLSP candidates we find that almost any

other sparticle can play this role with a probability on the order of a few percent for either
choice of prior. Note that light right-handed squarks may be the nLSP in some cases; if the
corresponding mass splitting with the LSP is small, e.g., less than a few GeV, these squarks
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Figure 1: Fraction of the full model sample with kinematically accessibility of SUSY partners
at a 500 GeV and a 1 TeV LC assuming flat priors.
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Figure 2: Same as the previous figure but now for log priors.
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Figure 3: Identity of the nLSP in the case of flat(top) and log(bottom) priors.
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will be very difficult to observe at the LHC and even at LC due to large γγ backgrounds. We
can see this explicitly in Fig. 4 which shows the nLSP-LSP mass splitting for the different
nLSP possibilities for the case of log priors. With charginos playing the nLSP role we see
the nLSP-LSP mass splitting can be particularly small and that most of the light chargino
models in this case are removed by the Tevatron stable particle search as can be seen in the
lower left-hand side of the figure.

Figure 4: LSP-nLSP mass splitting as a function of the LSP mass showing the nLSP identity
in the case of log priors.

From this study it is clear that the MSSM can be much more complex than one would
imagine by examining specific SUSY-breaking scenarios. If SUSY is discovered at the LHC
it is quite clear that a LC will be needed in order for us to get a true picture of the underlying
physics.
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