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1 Ripley’s Crab data analysis in five dimensions

We begin by presenting a discussion of the full five-dimensional Crab dataset
[2]. This is interesting because we see how varying the mass parameter, m,
allows us to explore some features of the topology of local minima of the
potential function in five dimensions. Figure 1 shows the before and after
plots of the data points for the five-dimensional case. Since each data point
is now a five-tuple, (x1, x2, x3, x4, x5), we display the data in two three-
dimensional plots. The points in the top left plot show the (x1, x2, x3)
coordinates of the original data, the points in the top right plot exhibit the
(x3, x4, x5) coordinates of the same data. The lower plots display the same
information for the DQC evolved data.

It is obvious from the first two plots that it is not as simple to separate
the clusters for the five-dimensional data projected onto the five dimensional
unit sphere. Although the separation between (red,blue) and (orange,green)
is still fairly clear, in dimensions four and five we see that the (red,blue) and
(orange,green) points are very intermingled. After DQC evolution we see
that the original clusters are separated in the first three principal compo-
nents, however things are still not as clean in dimensions four and five.
Here we see that while the blues separate from the reds to some degree, the
clusters are still intermingled. The same is true for the orange and green
points.

We can attempt to improve the clustering further by following our pre-
vious scheme and iterating the DQC evolution one more time, starting from
the enriched configuration. The results are shown in Figure 1.

Indeed, we see that the configurations have tightened up and clustering is
much more clear. However we see that the red and blue, as well as the orange
and green clusters seem to have developed smaller subclusters. If, as we
would expect, this subclustering is due to the fact that the five-dimensional
potential function has nearby local minima inside, then we would expect that
significantly lowering the mass, m, should reduce the subclustering. In fact,
this is exactly what happens. Figure 1 shows the five-dimensional data after
carrying out the DQC evolution with a smaller mass value, m = 0.00001.
In this case we see that the clustering in dimensions (x1, x2, x3) remains
unchanged, but now the subclustering seen in the fourth and fifth dimension
has disappeared. This change in the pattern from the larger mass case is
further enhanced in the second iteration of DQC evolution. Note, however,
the existence of a small number of outliers and change in the clustering of a
small number of points. Since we know the true classification of the data we
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Figure S1 Plots of the five-dimensional data before beginning the quantum
evolution and after completing the first step of the evolution. The upper two
plots show the distribution of points in dimensions 1,2 and 3 and dimensions
3, 4 and 5 respecively. The lower two plots show the same distributions after
the flow. The values of σ,m and ε used to construct the Hamiltonian and
evolution operator are: σ = 0.11, m = 0.1, and ε = 10−6.

see that the five-dimensional analysis did not improve the clustering based
on the first three principal components.

2 Virus Data

Another example worth discussing is the case of the viruses dataset of S. Fau-
quet, 1988, discussed in a paper by Varshavsky et. al.[3]. In what follows we
show the result of running DQC evolution of the same features selected for
analysis by these authors (i.e., those three features which made the largest
contribution to the SVD entropy). The dataset records 18 measurements
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Figure S2 Plots of the five-dimensional data after the second iteration of the
quantum evolution. The lefthand plot shows the distribution of points in
dimensions 1,2 and 3. The lower two plots show the same distributions after
the flow. The values of σ,m and ε used to construct the second Hamiltonian
and evolution operator are as in the first case: σ = 0.11, m = 0.1, and
ε = 10−6.

Figure S3 A plot of the five-dimensional data after flowing with a small mass,
m = 0.00001. Clearly the separation of the points in the fourth and fifth
dimensions, which is so apparent in the larger mass case, has disappeared.
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Figure S4 A plot of the second iteration of the DQC evolution of the five-
dimensional data with a small mass, m = 10−5.

of amino acid compositions for the coat proteins of 61 rod-shaped viruses
which affect various crops. These viruses are known to fall into four classes;
three Hordeviruses, six Tobraviruses, thirty-nine Tobamoviruses and thir-
teen Furoviruses.

Following the approach used in the feature selection based upon SVD
entropy[3], we begin with doing an SVD decomposition on the 61 × 3 di-
mensional matrix, M , constructed selecting the second, sixth and sixteenth
column from the original data. The data before DQC evolution is shown in
the left hand plot on the top row of Figure 2. The color coding is that the
Hordeviruses are shown in red, the Tobraviruses in blue, the Tobamoviruses
in orange and the Furoviruses in green. The result of the first stage of DQC
evolution is shown in the figure to the right. Once again, since the data
oscillates about the minima, we stop the first stage of evolution when the
clusters first come together. We then restart the flow from this configura-
tion. As is evident from the plots, initially subclusters come together, then
by the third iteration the data has organized itself into four well defined
clusters. The content of these clusters is given in Table 1. We should note
that the extraction of four tight clusters is a consequence of the feature ex-
traction. If we consider the intermediate states of the evolution shown in
Figure 2 we see that at intermediate stages the Tobamoviruses in orange
and the Furoviruses in green first form well defined sub-clusters, and then
these sub-clusters fuse to the final clusters. The question which should be
addressed at this point is if there is any significance to this subclustering.
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Figure S5 A plot of the feature selected virus data at the beginning, after
the first, second and third iteration of DQC evolution. The values used for
the evolution are σ = 0.15, m = 0.001 and ε = 10−5. The results are not
very sensitive to these choices.

To address this question we can simply do an SVD decomposition on
the full dataset and then restrict ourselves to the first three principal com-
ponents. In this case the initial data looks like the first plot in Figure 2.
Now, it is evident from DQC before evolution, that the Tobamoviruses in
orange and the Furoviruses in green are sub-clustered in much the same way
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Cluster Row Number Colors
1 4,5,8,9 4 Blue
2 10,11,12,13,14,15,16,17,18,19,20,

21,22,23,24,25,26,27,28,29,30,31,
32,33,34,35,36,37,38,39,40,41,42,
43,44,45,46,47,48 39 Orange

3 1,2,3,6,7,55,56 3 Red, 2 Blue, 2 Green
4 49,50,51,52,53,54,57,58,59,60,61 11 Green

Table S1 The content of the four final virus clusters

as in the feature selected data at intermediate stages. The difference is that
now these sub-clusters do not merge with further evolution. Table 2 gives
the members of the six final clusters obtained from the data without feature
selection. The important thing to note about these two cases is that DQC,
as we already noted, enhances the clustering already present in the selected
data. It does not seem to produce dramatic artifacts on its own.

Cluster Row Number Colors
1 4,5,6,7,8,9,55,56 6 Blue, 2 Green
2 20,21,35,36,37 5 Orange
3 17 1 Orange
4 10,11,12,13,14,15,16,18,19,22,23,

24,25,26,27,28,29,30,31,32,33,34,
38,39,40,41,42,43,44,45,46,47,48 33 Orange

5 1,2,3,57 3 Red, 1 Green
6 49,50,51,52,53,54 6 Green
7 58,59,60,61 4 Green

Table S2 The content of the six final virus clusters plus one singleton in the
analysis based on the first three principal components.

3 Iterations of the analysis of the Leukemia dataset
of Golub et al.

In the case of the leukemia data [1] it is a-priori expected that many of the
quantities measured by the Affymetrix GeneChip will have little or nothing
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Figure S6 A plot of the virus data for the first three principal components
at the beginning, after the first and second iteration of DQC evolution.

to do with the fact that the cell we are looking at is a cancer cell. Clearly
not every gene is significant in this classification. Moreover, the measure-
ments of gene expression have a statistical uncertainty which is not always
well understood. Hence, it is important to filter out particularly noisy infor-
mation, even though we don’t know its origin. This is where SVD-entropy
based filtering plays a role. Note, when asking these questions, the colors
assigned to points are no longer there for pedagogical purposes. Now they
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are a visual way of quickly checking whether feature selection and DQC
evolution are producing the desired result. In other words, this can serve as
a supervised feature selection method.

In Figure 4 of the article we see the result of applying this procedure
to the original data, doing an SVD decomposition of the resulting matrix,
then doing a DQC evolution of the three dimensional problem obtained
by restricting attention to principal coordinates 2, 3 and 4. It should be
readily apparent from the left hand plot that applying a single stage of SVD-
entropy based filtering has a dramatic effect upon the clustering, even before
DQC evolution. The right hand plot shows what happens after a single
stage of DQC evolution. This shows the general features which will persist
throughout the discussion. Now the fact that the blue points form a well
separated cluster is quite obvious. As is the fact that the red points really
want to divide into two subclusters. The green and orange clusters seem to
be somewhat intermingled, although two obvious subclusters have begun to
appear and there are a few outliers which don’t get well incorporated into
the main clusters. This last situation will resolve itself with further stages
of DQC clustering, even at this first stage of filtering. However rather than
pursue this further, we wish to demonstrate what happens if we iterate the
filtering process, since the effects are quite dramatic.

Figure S7 The left hand plot is the data after three stages of SVD-entropy
based filtering, but before DQC evolution. The right hand plot is the same
data after DQC evolution.
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Figure S8 The left hand plot is the data after five stages of SVD-entropy
based filtering, but before DQC evolution. The right hand plot is the same
data after DQC evolution. Note the extremely well separated blue cluster.

Figures 3 and 3 show the results of three and five iterations of SVD-
entropy, before and after DQC evolution. These plots, especially the after
DQC pictures, show dramatic clustering, especially for the blue points. With
each stage of filtering we see that the blue points cluster better and better,
in that the single red outlier separates from the cluster and the cluster
separates more and more from the other points. The blue points are what we
will refer to as an obviously robust cluster which has been identified in early
stages of filtering. If one continues iterating past the fifth stage, however,
the clear separation of the blue points from the others begins to diminish.
Thus we see that the SVD-entropy based filtering, in trying to enhance the
clumping of the red points, starts throwing away those features which make
the blue cluster distinct. Since this effect is quite pronounced we would say
that features that are important to distinguishing the blue cluster from the
others begin to be removed at the sixth and higher iterations of filtering.
This is, of course, just what we are looking for, a way of identifying those
features which are important to the existing biological clustering. Out of
the original 7129 features, we have reduced ourselves to 2766 features by the
fifth iteration. In going from step five to step six this gets further reduced to
2488 features, so we could begin searching among the 278 eliminated features
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to isolate those most responsible for the separation of the blue cluster from
the others. Instead, we will take another track and, since it is so robust and
easily identified, remove the blue cluster from the original data and repeat
the same process without this cluster. The idea here is that now the SVD-
entropy based filtering will not be pulled by the blue cluster and so it will
do a better job of sorting out the red, green and orange clusters. As we will
see, this is in fact the case.

Figure S9 The left hand plot is what the starting data looks like if one first
removes the blue points and does one stage of SVD-entropy based filtering.
The right hand plot is what the starting data looks like after three stages of
filtering.

In Figure 3 we see a plot of what the starting configurations look like if
one takes the original data, removes the identified blue cluster and re-sorts
the reduced data set according to the SVD-entropy based filtering rules. The
left hand plot is what happens if one filters a single time, removing those
features, i, whose one-left-out comparison, CEi, is less than or equal to zero.
The right hand plot shows what happens if one repeats this procedure two
more times, each time removing features for which CEi ≤ 0. There is no
problem seeing that each iteration of the SVD-entropy based filtering step
improves the separation of the starting clusters. By the time we have done
five SVD-entropy based filtering steps the red, green and orange clusters are
distinct, if not obviously separated.

Finally, to complete our discussion, we show Figure 3. This figure shows
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Figure S10 The left hand plot is what the starting data looks like if one first
removes the blue points and does five stages of SVD-entropy based filtering.
The right hand plot is what happens after one stage of DQC evolution. The
bottom plot is the final result after iterating the DQC evolution step two
more times. At this point the clusters are trivially extracted.

the results of doing five iterations of the SVD-entropy based filtering and
following that with three stages of DQC evolution. The dramatic clustering
accomplished by DQC evolution makes it easy to extract clusters. Note
however, that in the second plot we see what we have seen throughout, that
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the red points first form two distinct sub-clusters which only merge after
two more stages of DQC evolution. This constant repetition of the same
feature, which is only made more apparent by SVD-entropy based filtering,
is certainly a real feature of the data. It presumably says that what appears
to be a sample of a single type of cell at the biological level is in reality two
somewhat different types of cell when one looks at gene expression. Table 3
shows the content of the clusters as shown in the last picture in Figure 3
augmented by the previously removed pure cluster of nine blue points. The
Jaccard score 1 for this result is 0.762, higher than the value 0.707 obtained
by [3].

Cluster Colors
1 9 Blue
2 38 Red, 1 Green, 2 Orange
3 4 Green, 6 Orange
4 9 Green, 2 Orange
5 1 Green

Table S3 The content of the four final cancer cell clusters plus one singleton,
as extracted from the data after including the robust blue cluster and the
results of filtering the reduced dataset five times and running DQC three
times. The Jaccard score for this result is 0.762.
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