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Abstract

In this note, we study D-brane instantons which intersect N = 1 supersymmetric configurations
of space-filling D-branes in general Calabi-Yau compactifications of type IIB string theory. Our focus
is on rigid “stringy instantons” – those which cannot be interpreted as Yang-Mills instantons in a
non-Abelian gauge group on any stack of space-filling D-branes. We show that their contributions
to the space-time superpotential can be determined by a topological B-model computation of the
tree-level superpotential for a related auxiliary brane system. This computation is very tractable
as it is governed by an A∞ structure. We summarize the stringy instanton contribution to the
space-time superpotential in a simple formula.
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1 Introduction

D-branes in Calabi-Yau (orientifold) compactifications of type II string theory provide a natural
class of N = 1 supersymmetric quiver gauge theories. In finding the vacuum structure of these
theories (including the possibility of dynamical supersymmetry breaking), or determining the values
of various low-energy couplings of possible phenomenological relevance, it is important to have a
handle on non-perturbative contributions to the space-time superpotential.

In addition to conventional field theoretic corrections due to Yang-Mills instantons or strong
coupling dynamics, another class of corrections is known to occur in these string models. Euclidean
D-branes which wrap cycles in the Calabi-Yau space that intersect the space-filling D-branes can
contribute corrections to the superpotential which depend on the charged low-energy fields in an
interesting way. These corrections have been a focus of recent research, starting with the papers
[1, 2, 3, 4, 5].

If the Euclidean branes lie entirely within stacks of multiple space-filling branes, these are just
conventional corrections due to Yang-Mills instantons. Of more interest are “stringy instantons”
which wrap distinct cycles in the Calabi-Yau that however intersect the space-filling branes, or
which wrap the same cycle as a single space-filling brane (since these look like U(1) instantons in
4d and are not conventional low-energy field theory effects).

So far, the precise rules for computing the spectra and interactions of the open strings connecting
the instantons to the space-filling branes (which are crucial for determining the superpotential
correction) have only been enunciated for toroidal models, orbifolds of tori [6], and exactly soluble
Gepner points in Calabi-Yau moduli space [7].

For certain slightly more complicated geometries, the contributions have been conjectured on
the basis of symmetries and zero mode counting [4, 8, 9, 10, 11]. However, a more general treatment
is still lacking. In this note we aim to fill this gap by developing the technology for computing the
single stringy instanton corrections (up to non-vanishing O(1) coefficients) to superpotentials of
N = 1 SUSY Type IIB brane configurations on general Calabi-Yau three-folds.

For rigid instantons1 we succeed in reducing the problem to a computation of the tree-level
superpotential of a closely related D-brane system, whose 3+1 dimensional gauge theory we refer to
as the ‘auxiliary gauge theory’. We reserve the symbol W for its superpotential. Such computations
lie in the realm of the topological string, and there are powerful methods which make the compu-
tation practical for a large class of configurations (which includes all toric and certain non-toric
geometries), and possible in principle for any Calabi-Yau three-fold using for example the methods
of Aspinwall and Katz [12] (concretely applied in [13] and extended to orientifolds in [14]). The
superpotential W is highly computable due to the A∞ structure which governs the open topological
B-model, as described in those papers. More concretely, W is explicitly known for wide classes of
brane configurations at toric singularities where gauge dynamics on space-filling D-branes has been
studied. In any of these cases, it follows directly from our results that one can use the known form
of W to compute stringy instanton corrections to superpotentials for (slightly different) D-brane
theories at the same singularities. We also provide a conjecture for the contribution of non-rigid
stringy instantons.

Our approach is based on exploiting consequences of the N = 2 super-conformal algebra of the

1We define ‘rigid’ stringy instantons to be stringy instantons which have no adjoint moduli other than the four
bosonic and two fermionic super-translational modes.
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underlying world-sheet description, as well as basic facts about non-perturbative string phenomena
at weak coupling. Therefore, our arguments should hold whenever there is an N = 2 SCFT
description of the D-brane configuration under consideration.

The organization of this note is as follows. In §2 we describe the general framework and give a
very simple example of our framework in action, while in §3 we describe our results for rigid stringy
instantons. We turn to non-rigid instantons in §4, and conclude in §5. For the reader’s convenience
we present a short appendix summarizing various facts about the 2dN = 2 super-conformal algebra.

While this work was in progress, we became aware of the related but complementary work
appearing in [15].

2 General Framework

Our space-time is M4×X with X a Calabi-Yau three-fold. We consider N = 1 supersymmetric
collections of space-filling D-branes wrapping even dimensional sub-manifolds of X in type IIB string
theory. There is a 3+1 dimensional field theory living on the world-volume of the D-brane system
and we are interested in computing the corrections to its superpotential due to stringy instantons.

Imagine organizing the D-brane configuration in terms of a quiver. The world-volume gauge
theory will in general receive contributions from Euclidean branes wrapping each of the quiver’s
different nodes. Throughout this paper we focus on instantons wrapping unoccupied nodes (more
correctly, nodes with trivial gauge dynamics – we treat the case of an instanton in a U(1) gauge
group with only massive matter as well). We refer to these instantons as ‘stringy’ to distinguish
them from those wrapping occupied nodes which in general have gauge theory counterparts.2

Let Seff be the effective action of the instanton; it encodes the interactions of the instanton mod-
uli with themselves and the world-volume fields of the quiver gauge theory. Then the contribution
to the gauge theory action from a single instanton is

∆S =

∫
dµie

−S[µi,Φi,Φ̄i]eff + c.c, (1)

where the c.c. arises from the anti-instanton, µi collectively denotes all of the instanton moduli,
and Φi and Φ̄i collectively denote the gauge theory superfields which couple non-trivially to the µi.
This prescription, in addition to being consistent with semi-classical reasoning, coincides with the
correct prescription for gauge theory instantons (see for example [16, 6]). From the stringy point
of view, gauge theory instantons and stringy instantons are on equal footing, and so we assert that
(1) is the correct prescription even for the stringy case.

We are interested in corrections to the superpotential so we restrict to the case where the
instanton has only two super-translational fermi modes. This condition can be easily met for
instantons which either intersect O-planes [17, 7, 6, 9], or instantons which lie in U(1) gauge factors
of the space-time theory (for a general reference on O-planes, see [18]). Then (1) reduces to

∆S =

∫
d4xd2θ

(∫
dµ′ie

−S[µ′
i,Φi,Φ̄i]eff

)
+ c.c., (2)

2In some brane systems which admit multiple UV completions, e.g. by both a renormalization group cascade and
a direct coupling to 10d string theory, the same effects may be derivable in two different ways as gauge theory effects
and stringy effects respectively [10].
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Figure 1: A typical extended quiver. The Euclidean brane wraps the square node.

where we’ve explicitly separated the super-translational modes from the other moduli, denoted by
µ′i. The correction to the space-time superpotential, is obtained by taking the holomorphic part of
(2),

∆W =

(∫
dµ′ie

−S[µ′
i,Φi,Φ̄i]eff

)
holomorphic

. (3)

One might expect (2) to automatically pull out only the conventional superpotential; we have
made the specification (3) only to distinguish between regular superpotential terms and multi-
fermion F-terms [19], which can be computed in the same formalism [20, 21] and are not manifestly
holomorphic.

As an illustration, consider the orientifolded-orbifolded-conifold model of [8, 10]. The quiver is
depicted in Fig. 1. Those authors conjectured that the instanton couples to the world-volume theory
through a pair of fermions, α and β (referred to as ‘Ganor’ strings [22]), and that the instanton
effective action takes the form

Seff = t+ c αΦ32Φ23β + . . . , (4)

where c is some constant and t is the (complexified) volume of the cycle wrapped by the D-instanton.
This leads to a correction to the space-time superpotential:

∆W ∼ e−t (Φ32Φ23 + · · · ) . (5)

The derivation of this expression in our framework is simple and would proceed as follows. Re-
place the instanton with a single space-filling D-brane; the 3+1 dimensional gauge theory we obtain
in this way is referred to as the ‘auxiliary gauge theory’. Compute W, the tree-level superpotential
for this gauge theory. The answer is [10]

W = TrAΦ32Φ23B + f(Φij) , (6)

where A,B are chiral multiplets stretching between nodes 1 and 2 (replacing α and β in the extended
quiver above), and f(Φij) is independent of A and B. Using W, extract the coefficients Cijl1···ln

Cijl1···ln = d(l)
∂n+2W

∂ Ai ∂ Bj ∂Φl1 · · · ∂Φln

∣∣∣
A,B,Φ=0

(7)
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where d(l) is a combinatorics factor; for example d(l) = 1
n!

when l1 = · · · = ln. The correction to
the 4d superpotential is then given by

∆W ∝ e−t detM(Φ)

(8)

M(Φ)ij ≡

(
∞∑
n=1

Cijl1···lnΦl1 · · ·Φln

)

⇒ ∆W ∝ e−tΦ32Φ23 . (9)

We note here that implicit in W is an overall prefactor which is an unknown, but constrained
function of the Kähler moduli (whose leading term is just a non-vanishing constant), as discussed
in [23]. This prefactor of course carries over into the computation of ∆W , but will remain implicit
in the rest of our discussion.

3 The Rigid Case

In this section we discuss the case of rigid instantons. In §3.1 we analyze the instanton’s moduli
and prove that the charged moduli consist entirely of Ramond ground-states of the world-sheet
N = 2 SCFT; consequently there are no charged bosonic zero modes. In §3.2, we describe the GSO
projection. In §3.3, we compute the instanton’s effective action, and we derive a formula for the
instanton’s contribution to the 4d superpotential in §3.4. Finally, in §3.5, we extend the results
to instantons which lie in massive U(1) factors (i.e. single space-filling D-branes with no massless
adjoint matter).

3.1 Moduli Spectrum

The rigidity means that the adjoint moduli consist exclusively of the four bosonic and two
fermionic super-translational modes, and so here we focus on the sector of strings (called the
‘charged’ sector) stretching between the instanton and a space-filling brane. The mass of a particular
state in the Ramond sector is

m2
i = −5

8
+ 4× 1

16
+ ∆i, (10)

where the first contribution comes from the ghosts, the second from the 3+1 “space-time” directions,
and the third represents the weight of the corresponding state in the internal N = 2 SCFT.

Setting m2
i = 0 implies ∆i = 3

8
. Ramond states of this weight are special in the underlyingN = 2

SCFT. They correspond to ground-states of the Ramond sector, and are related to chiral/anti-
chiral primaries in a one-to-one manner via spectral flow. These are the ‘Ganor strings’ assumed by
previous authors. Ganor strings are topological and their spectrum is computable in a wide variety
of cases [12, 14, 25, 26].
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Figure 2: A discontinuity in the boundary conditions corresponds to the insertion of a local operator.

In the NS sector, we have

m2
i = −1

2
+ 4× 1

8
+ ∆i, (11)

and so charged bosonic moduli must arise from states with ∆i = 0. However, such a state would
contradict the unitarity of the underlying CFT (under the assumption that the stringy instanton is
wrapping a node of the quiver which isn’t wrapped by any space-filling D-brane; we postpone the
discussion of nodes occupied by ‘massive’ U(1) gauge factors until §3.5).

To see this, consider the internal CFT on the upper-half plane. The negative real axis has
boundary conditions A (corresponding to the end of the Ganor string on the instanton), whereas
the positive real axis has boundary conditions B (the end of the string on the space-filling brane).
Since the change in boundary conditions occurs at a point (the origin) it can be represented by a
local operator, φAB, as in Fig. 2 [24]. The NS ground-state energy of the CFT is thus given by
the weight of the operator which creates the boundary conditions AB from the “true” vacuum (ie:
the groundstate of the CFT with just AA or BB boundary conditions). In a unitary CFT, states
which are not the identity operator necessarily have positive-definite weight. Since we assume
the instanton and D-brane are wrapping different cycles, it must be that φAB is not the identity
operator. Hence ∆i > 0 for all states in the NS sector and we see that there are no charged bosonic
moduli.

3.2 GSO Projection

The Ganor strings can be divided evenly into two groups; those related to chiral primaries and
those related to anti-chiral primaries (under spectral flow). It turns out that the GSO projection
will preserve one group while annihilating the other. The two possibilities correspond to instanton
versus anti-instanton. To see that this is the correct GSO projection, consider the theory in which
the instanton is replaced by a space-filling brane of the same type. The vertex operators for the
(analogues of the) Ganor strings then have the form

VαI(z) = SαΣI(z)eik·X(z)e−
φ(z)

2 , V̄ α̇
I (z) = Sα̇Σ̄I(z)eik·X(z)e−

φ(z)
2 (12)

where Sα̇ and Sα are the usual spin fields creating Weyl spinors of opposite chirality in the 3+1
Minkowski dimensions, while ΣI and Σ̄I are the spin fields associated to the chiral and anti-chiral
Ganor strings, respectively. In string theory, Sα̇ and Sα have opposite charge under the GSO pro-
jection, from which it follows that the ΣI and Σ̄I are oppositely charged under the GSO projection
as well. Thus, for the instanton we keep the Ganor strings, while projecting out the anti-Ganor
strings, and vice-versa for the anti-instanton.
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3.3 Instanton Effective Action

To compute the effective action we take all the massless modes present in the system and
compute all the possible tree-level scattering amplitudes between them. Let αi and βi denote the
Ganor strings (of opposite orientations, as in Fig. 1), and let Φi denote the chiral superfields of
the world-volume theory. As we discussed earlier, for an instanton the GSO projection picks out
the Ganor strings related via positive spectral flow to chiral primaries. It follows that the Ganor
strings will carry R-charge −1

2
under the U(1) associated with the N = 2 super-conformal algebra.

The (vertex operators for the) Φi, on the other hand, carry R-charge +1. A sketch of the R-charge
counting can be found in appendix A.

Only amplitudes with a net R-charge of zero can yield a non-zero contribution. On the disk,
the only amplitudes that respect this condition and are holomorphic in the Φi are of the form

A(z)〈αi(zi)βj(zj)Φl1(zl1)

∫
∂D

G− 1
2
· Φl2 · · ·

∫
∂D

G− 1
2
· Φln〉 (13)

A(z) = 〈∆(zi)∆̄(zj)c(zi)e
−φ

2
(zi)c(zj)e

−φ
2

(zj)c(zl1)e
−φ(zl1 )〉, (14)

where αi and βi are the spin-fields representing the Ganor strings in the internal CFT, ∆ and ∆̄
are the twist fields which create the mixed Neumann-Dirichlet boundary conditions in the 3+1
Minkowski directions, and e−lφ and c are the usual ghost vertex operators and ghost insertions,
respectively. Here we are working at fixed values of the closed string moduli; more generally, the
B-model could also in principle determine the complex-structure dependence of the open string
amplitudes.

The amplitudes in (13) can be extracted from the superpotential of a closely related system.
Consider the D-brane system in which the instanton is replaced by a space-filling brane. We refer
to this system as the ‘auxiliary system’ and denote the superpotential of the 4d gauge theory that
it produces by W. The quantity analogous to (13) is a fermion bilinear scattering amplitude:

B(z)〈αi(zi)βj(zj)Φl1(zl1)
∫
∂D
G− 1

2
· Φl2 · · ·

∫
∂D
G− 1

2
· Φln〉 = d(l) ∂n+2W

∂Ai ∂ Bj ∂Φl1 ···∂Φln

∣∣∣
A,B,Φ=0

(15)

B(z) ∝ εα̇β̇〈Sα̇(zi)S
β̇(zj)c(zi)e

−φ
2

(zi)c(zj)e
−φ

2
(zj)c(zl1)e

−φ(zl1 )〉. (16)

where d(l) is a combinatorics factor. For example d(l) = 1
n!

when l1 = · · · = ln. The relation
A(z) ∝ B(z) is easily seen [16] and the constant of proportionality is the same for all possible
choices of α’s, β’s and Φ’s in (14) and (15), so we may ignore it. Hence, the effective action is

Seff = t+

(
∞∑
n=1

Cijl1···lnαiΦl1 · · ·Φlnβj

)
+ . . . (17)

Cijl1···ln = d(l)
∂n+2W

∂ Ai ∂ Bj ∂Φl1 · · · ∂Φln

∣∣∣
A,B,Φ=0

. (18)
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The ellipses denote terms non-holomorphic in Φi which are irrelevant for determining superpotential
corrections (but may be relevant for computing, e.g., multi-fermion F-terms [19]). It would be
interesting to explore these further.

3.4 The Superpotential Correction

Computing the correction to the 4d superpotential is now the work of a moment. Plugging (17)
into (3) we arrive at:

∆W ∝ e−t detM(Φ) (19)

M(Φ)ij ≡

(
∞∑
n=1

Cijl1···lnΦl1 · · ·Φln

)
(20)

where the Cijl1···ln were given in (18) and the constant of proportionality in (19) is a determinant
of massive modes which arises from expanding the DBI action around the instanton background.
Being a determinant of massive modes (which follows from the rigidity of the instanton), it is non-
vanishing. There is also a factor of the string scale to some appropriate power, determined by
dimensional analysis.

3.5 Wrapping a Massive U(1) Node

Thus far we have we have left unspecified the mechanism which removes the θ̄’s. The typical
procedure is to introduce an orientifold plane cutting through the instanton in such a way that it
does not introduce adjoint matter (this latter requirement is obviously removed if one is willing to
consider non-rigid D-instantons). This may not always be possible, or phenomenologically viable, so
it is nice to have an alternative. In [27] it was shown that for the case of orbifolds one could lift the
θ̄’s by having the instanton wrap a node occupied by a massive U(1).3 In [28], geometric transitions
on such massive U(1) nodes were also used to compute stringy instanton effects (and sum infinite
series of instantons), in slightly more elaborate geometries. We now show that the direct instanton
analysis of [27] for massive U(1) nodes extends to the more general D-brane configurations studied
in this paper.

Let us reconsider the spectrum of instanton moduli discussed in §3.1. There is now a new sector
of strings, those stretching between the stringy instanton and the massive U(1). In the NS sector,
we see that the unitarity argument no longer forbids the existence of massless bosonic states. This
is because the U(1) and the instanton wrap the same node and so φAB ∝ 1AB. By unitarity of the
internal CFT, a state with ∆i = 0 is necessarily the NS sector ground-state. There are two such
states, one for each orientation of a string stretching between the U(1) and the stringy instanton.
Because of the fact that the 3+1 space-time directions have mixed (Neumann-Dirichlet) boundary
conditions, the space-filling fermionic oscillators have integral mode expansions in the NS sector.

3‘Massive’ refers to the fact that the cycle is rigid. Since U(1) factors do not give rise to gauge theory instantons
these instantons still fall into the ‘stringy’ category.
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Hence, these charged bosonic moduli carry spinor indices. We denote the charged bosons surviving
the GSO projection by ωα̇ and ω̃α̇ (tilde denotes a reversal of orientation).

In the Ramond sector the only ground-states are those related by spectral flow to the Neveu-
Schwarz ground-state (since we are assuming the node is rigid). For each orientation of strings
there are two of these, one arising from positive spectral flow the other via negative spectral flow.
However, the GSO projection eliminates one such state for each orientation. We call the resulting
states µ and µ̃. Since the vertex operators for the ω’s and µ’s don’t depend on the details of the
internal CFT, the instanton’s action has the following universal structure:

S = i (µ̃ωα̇ + ω̃α̇µ) θ̄α̇ − iDc
(
ω̃α̇(τ c)β̇α̇ωβ̇

)
+ 1

2
ω̃α̇f(Φ, Φ̄)ωα̇ +

(21)

t+ (
∑∞

n=1 Cijl1···lnαiΦl1 · · ·Φlnβj) + . . .

where the τ c are Pauli matrices and Dc is a Lagrange multiplier field whose purpose is to implement

the ADHM type constraint ω̃α̇(τ c)β̇α̇ωβ̇ = 0 [16]. Integrating over the ω, ω̃, µ, µ̃, D, and θ̄’s

contributes an O(1) constant (it is independent of the Φ̄’s):

∆S =
∫
d4xd{θ, θ̄, µ, µ̄, ω, ω̄,Dc, αi, βi}e−S1−S2 + c.c.

(22)

∝
∫
d4xd2θ

(∫
d{αi, βi}e−Seff [αi,βi,Φi,Φ̄i]

)
+ c.c.

with Seff as in (17). Hence, the sole effect of the massive U(1) is to lift the extra θ̄α̇ zero modes,
and the resulting contribution to the spacetime superpotential is given again by (19).

4 The Non-Rigid Case

We now turn to the case where the stringy instanton has additional light adjoint matter on its
world-volume. We call these adjoint matter fields Xa and their Grassmann superpartners χα̇a (as
distinct from the Ganor strings α, β). There is a natural conjecture generalizing our result for rigid
instantons, which however involves a non-trivial correlation function in the instanton world-volume
theory.

4.1 Instanton Effective Action

For computing the superpotential correction, there are two relevant types of amplitudes that
could be non-vanishing, consistent with the worldsheet R-charge constraints:

〈αi(zi)βj(zj)Φl1(zl1)
∫
∂D
G− 1

2
· Φl2 · · ·

∫
∂D
G− 1

2
· Φln

∫
∂D
G− 1

2
·Xr1 · · ·

∫
∂D
G− 1

2
·Xrm〉 (23)

〈αi(zi)βj(zj)χ̄α̇a (za)
∫
∂D
χ̄β̇b
∫
∂D
O(X, X̄)

∫
∂D
G− 1

2
· Φr1 · · ·

∫
∂D
G− 1

2
Φrn〉 (24)
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where the
∫
∂D
O(X, X̄) denote schematically some string of integrated vertex operators composed

purely of the Xa and X̄a’s.
Both classes of correlators can be connected with related computations in the auxiliary gauge

theory. The only terms which are expected to be holomorphic in all space-time chiral superfields
(including the closed string moduli) are those of the first type, which are also computable in the
topological B-model (for the auxiliary brane configuration). Then the natural conjecture is that
the superpotential correction is still computable in terms of W, as follows:

∆W ∝ e−t detM(Φ) (25)

Mij =
∑

n+m≥1

Cijk1···knl1···lmΦk1 · · ·Φkn〈Xl1 · · ·Xlm〉 (26)

Cijl1···ln = d(k, l)
∂n+m+2W

∂ Ai ∂ Bj ∂Φk1 · · · ∂Φkn∂Xl1 · · · ∂Xlm

∣∣∣
A,B,Φ,X=0

(27)

where d(k, l) is the usual combinatorics factor as in (18) and 〈Xl1 · · ·Xlm〉 is a correlation function
in the world-volume theory on the instanton. For e.g. D1-instantons, the world-volume theory is
in general (assuming the adjoint deformations are obstructed) some Landau-Ginzburg theory; for
unobstructed D1-branes it is instead a non-linear sigma model on the moduli space of the relevant
curve. Note that the path integral evaluating 〈Xl1 · · ·Xlm〉 includes integrals over the modulini χαa ;
if they cannot be absorbed by pulling down factors from the action, it will vanish.

5 Discussion

In this note, we have shown using elementary world-sheet CFT techniques that the superpoten-
tial corrections induced by rigid stringy instantons to quiver gauge theories on space-filling D-branes
can be related simply to the superpotential of an auxiliary gauge theory arising on a slightly dif-
ferent brane system. The superpotential of the auxiliary theory is highly computable using the
A∞ structure of the topological B-model as in [12]. This provides a very effective technique for
computing stringy instanton corrections.

In particular, for any D-brane system which arises at e.g. a toric Calabi-Yau singularity with a
known quiver and interactions, one can immediately use our results to read off the effects induced
by rigid stringy instantons. Our result confirms the analyses of [8, 9, 10, 11] in special cases, but
applies much more generally. Since general Calabi-Yau manifolds provide a much richer territory
for model building than simple toroidal orientifolds, one can hope that these results will be of use
in concrete applications.
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A Facts about N = 2 SCFT

Here we summarize some useful facts about operators in 2d N = 2 SCFT; useful references for
this material are [25, 26]. Consider a state Ψh,q, where h and q denote it’s weight and R-charge
respectively. Let us act on this state with η units of the spectral flow operator. Then the resulting
state is some Ψ̃hη ,qη with

hη = h− ηq +
c

6
η2, qη = q − c

3
η , (28)

where c is the central charge of the conformal field theory. The case with η = ±1
2

corresponds
to spectral flow which maps the Neveu-Schwarz sector into the Ramond sector, and is the only
one of interest here. For c = 9 (which is the case for a sigma-model whose target is a Calabi-Yau
three-fold) we have

h±1/2 = h∓ q

2
+

3

8
, q±1/2 = q ∓ 3

2
. (29)

Thus if Ψh,q is a chiral (anti-chiral) primary then under spectral flow with η = +1
2

(η = −1
2
) it

gets mapped to a Ramond ground-state with weight +3
8

and R-charge q− 3
2

(q+ 3
2
). In our case, the

relevant chiral primaries all have h = +1
2
, as these are the ones that correspond to massless states

in the auxiliary gauge theory. Thus, their R-charge is +1 and the R-charges of the corresponding
Ramond ground-states are −1

2
. This explains some of the R-charge counting of §3. In addition the

R-charge of the integrated vertex operators G− 1
2
· Φ is zero, since

G− 1
2
· Φ = (G+

− 1
2

+G−− 1
2

) · Φ = G−− 1
2

· Φ . (30)

Here we’ve used the fact that G+
− 1

2

·Φ = 0 (since Φ is a chiral primary). Using the fact that G− has

R-charge −1 we see that G− 1
2
· Φ has R-charge zero.
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