SLUDGE BATCH 5 SIMULANT FLOWSHEET STUDIES

D. P. Lambert M. E. Stone B. R. Pickenheim D. R. Best D. C. Koopman

October 2008

Environmental & Chemical Process Technology Savannah River National Laboratory Aiken, SC 29808

Prepared for the U.S. Department of Energy Under Contract Number DE-AC-09-08SR22470

DISCLAIMER

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U.S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied:

1. warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or

2. representation that such use or results of such use would not infringe privately owned rights; or

3. endorsement or recommendation of any specifically identified commercial product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.

Printed in the United States of America

Prepared For U.S. Department of Energy

SRNS-STI-2008-00024 Revision 0

Key Words: DWPF, Sludge, SB5

Retention: Permanent

SLUDGE BATCH 5 SIMULANT FLOWSHEET STUDIES

D. P. Lambert M. E. Stone B. R. Pickenheim D. R. Best D. C. Koopman

October 2008

Environmental & Chemical Process Technology Savannah River National Laboratory Aiken, SC 29808

Prepared for the U.S. Department of Energy Under Contract Number DE-AC-09-08SR22470

REVIEWS AND APPROVALS

AUTHORS:

D. P. Lambert, Process Technology Programs	Date
M. E. Stone, Process Technology Programs	Date
B. R. Pickenheim, Process Technology Programs	Date
D. C. Koopman, Process Technology Programs	Date
D. R. Best, Process Technology Programs	Date
TECHNICAL REVIEWER:	
J. M. Pareizs, Process Technology Programs	Date

APPROVERS:

C. C. Herman, Manager, Process Technology Programs	Date
J. C. Griffin, Manager, E&CPT Research Programs	Date
J. E. Occhipinti, Manager, Waste Solidification Engineering	Date

EXECUTIVE SUMMARY

The Defense Waste Processing Facility (DWPF) will transition from Sludge Batch 4 (SB4) processing to Sludge Batch 5 (SB5) processing in early fiscal year 2009. Tests were conducted using non-radioactive simulants of the expected SB5 composition to determine the impact of varying the acid stoichiometry during the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) processes. The work was conducted to meet the Technical Task Request (TTR) HLW/DWPF/TTR-2007-0007, Rev. 1¹ and followed the guidelines of a Task Technical and Quality Assurance Plan (TT&QAP)².

The flowsheet studies are performed to evaluate the potential chemical processing issues, hydrogen generation rates, and process slurry rheological properties as a function of acid stoichiometry. Initial SB5 flowsheet studies were conducted to guide decisions during the sludge batch preparation process. These studies were conducted with the estimated SB5 composition at the time of the study. The composition has changed slightly since these studies were completed due to changes in the washing plan to prepare SB5 and the estimated SB4 heel mass.

Nine DWPF process simulations were completed in 4-L laboratory-scale equipment using both a batch simulant (Tank 51 simulant after washing is complete) and a blend simulant (Tank 40 simulant after Tank 51 transfer is complete). Each simulant had a set of four SRAT and SME simulations at varying acid stoichiometry levels (115%, 130%, 145% and 160%). One additional run was made using blend simulant at 130% acid that included additions of the Actinide Removal Process (ARP) waste prior to acid addition and the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) waste following SRAT dewatering.

There are several parameters that are noteworthy concerning SB5 sludge:

- This is the first batch DWPF will be processing that contains sludge that has had a significant fraction of aluminum removed through aluminum dissolution.
- ➤ The sludge is high in mercury.
- > The sludge is high in noble metals
- The sludge is high in U and Pu components that are not added in sludge simulants.

Two SB5 processing issues were noted during testing. First, high hydrogen generation rates were measured during experiments with both the blend and batch simulant at high acid stoichiometry. Also, the reflux time was extended due to the high mercury concentration in both the batch and blend simulant.

Adding ARP will extend processing times in DWPF. The ARP caustic boil took approximately six hours. The boiling time during the experiment with added MCU was 14 hours at the maximum DWPF steam flux rate. This is comparable to the DWPF processing time for dewatering plus reflux without MCU at a 5000 lbs/hr boil-up rate, but would require significantly more time at boiling at 2000-2500 lbs/hr boil-up rate. The addition of ARP and MCU did not cause any other processing issues, since foaming, rheology and hydrogen generation were less of an issue while processing with ARP/MCU.

> Hydrogen and nitrous oxide generation rates as a function of acid stoichiometry

Hydrogen generation was significantly impacted by the changes in acid stoichiometry from 115% to 160% (1.96 to 2.73 moles acid per liter of batch sludge or 1.28 to 1.79 moles acid per liter of blend sludge). For the batch sludge, the hydrogen generation rate was within DWPF limits in the

SRAT cycle, but exceeded the process limit during the SME cycle at the highest acid stoichiometry (160%). All of the blend experiments were within the process limits throughout the SRAT and SME cycles. As DWPF will be processing blend sludge, hydrogen likely won't be an issue in DWPF processing but lower acid stoichiometries will minimize hydrogen generation. The nitrous oxide generation peak was relatively insensitive to acid stoichiometry and was relatively low due to the low starting nitrite concentration.

> Acid quantities and processing times required for mercury removal

Mercury was added to the sludge simulant at the start of the SRAT cycle as mercuric oxide at approximately 2.5 wt% (solids basis) based on the expected composition of the SB5 batch and blend. Mercury was not added to the ARP simulant. Because of the high mercury concentration, the time at boiling was increased from 12 hours to 18 hours to allow sufficient time to strip mercury from the SRAT. Boiling flux was maintained at a scaled rate of 5,000 lb/hr so a total of 90,000 lb of steam flow in DWPF will be needed to remove 120 lb of mercury. Acid quantities from 115% to 160% resulted in satisfactory mercury removal with 18 hours of boiling time (including dewater and reflux time), with the exception of the two lowest acid stoichiometry runs with the blend simulant. ARP/MCU processing did not impact mercury reduction and removal. If DWPF experiences problems stripping mercury, increasing the acid stoichiometry is likely to improve mercury removal. Simulant testing does not simulate the DWPF heel so starting mercury concentrations will be lower in DWPF and shorter steam stripping times should be achievable.

> Acid quantities and processing times required for nitrite destruction

Acid quantities from 115% to 160% resulted in satisfactory nitrite destruction with 18 hours of boiling. In all runs, the amount of nitrite present in the SRAT product was less than 100 mg/kg, well below the 1,000 mg/kg target. The longer boiling time and low starting nitrite concentration both helped to reduce the nitrite by the end of the SRAT cycle.

Impact of SB5 composition (in particular, manganese, nickel, mercury, and aluminum) on DWPF processing (i.e. acid addition strategy, foaming, hydrogen generation, REDOX control, rheology, etc.)

Acid quantities from 130% to 160% resulted in satisfactory process performance with no significant issues noted. Foaming was noted during formic acid addition, but the addition of antifoam equal to the amount added at DWPF was sufficient to control foaming.

Except for the 115% run, all SRAT products were outside the design bases for yield stress and consistency with the 130%, 145% and 160% runs being below the process limit. The process limits for SME product yield stress were met for the 130% acid run at 45% solids, but the 115% acid run was above process limits and the 145% and 160% runs were slightly below process limits. It should be noted that the yield stress and consistency trends seen in rheological properties of the simulants are expected to be similar for the DWPF process slurries, but the absolute values for the simulants are not expected to be prototypical in yield stress or consistency. Adjustment in the solids concentration targets and/or acid stoichiometry should be made if processing problems due to viscous process slurries are noted in DWPF.

The pH of the condensate generated for all nine SRAT cycles was acidic, but the 115% acid runs resulted in condensate that was basic by the end of the SRAT cycle and throughout the SME cycle with a pH of approximately 9. All condensates from all other runs had a pH of less than 5.

The following preliminary recommendations apply for DWPF SB5 processing:

- An acid stoichiometry of 130% is recommended for initial SB5 processing with a corresponding acid window of 115% to 160%. The SB5 blend simulant used during the testing had a stoichiometric acid requirement of 1.12 mol/L, giving an acid addition of 1.45 mol/L at 130% acid.
- No changes to the antifoam addition strategy, acid addition rate, or SME solids targets are recommended based on simulant testing.
- The SRAT time at boiling (dewater plus reflux) of 18 hours is recommended based on simulant testing

The recommendation for acid addition during the Shielded Cells processing studies was documented in an internal memorandum. Final recommendations to DWPF on SB5 processing will be made after the SC-7 Shielded Cells testing and will be based on the results of this study and the Shielded Cells tests.

TABLE OF CONTENTS

EXECUTIVE SUMMARYv
LIST OF FIGURESix
LIST OF TABLESx
LIST OF ACRONYMSxi
1.0 Introduction and Background1
2.0 Approach
2.1 Simulant Preparation
2.2 Experimental Apparatus
2.3 Analytical Methods
3.0 Results
3.1 SRAT Cycle Results
3.1.1 Acid Addition Calculation
3.1.2 Processing Observations
3.1.3 SRAT Cycle Sample Results
3.1.4 SRAT Cycle Offgas Composition Results
3.1.5 SRAT Product Rheological Properties
3.2 SME Cycle Results
3.2.1 Processing Observations
3.2.2 SME Cycle Sample Results
3.2.3 SME Cycle Offgas Composition Results
3.2.4 SME Product Rheological Properties
3.2.5 REDOX Results
4.0 Conclusions
5.0 Recommendations
6.0 References
7.0 Acknowledgements
Appendix A. Sample and Run Results: Tabulated Presentations
Appendix B. Sample/Run Results: Graphical Presentations
Appendix C. Offgas Composition Data
Appendix D. Rheological Results Charts and Flow Curves72

LIST OF FIGURES

Figure 1. Schematic of SRAT Equipment Set-Up	6
Figure 2. SB5 Flowsheet Testing pH Profiles	13
Figure 3. SRAT Dewater pH 1	16
Figure 4. SRAT Cycle Hydrogen Peaks 1	17
Figure 5c. SRAT Cycle Hydrogen Evolution from Tests with Blend Sludge SB5-C 1	18
Figure 5d. SRAT Cycle Hydrogen Evolution from Tests with Batch Sludge SB5-D 1	19
Figure 6c. SME pH Profile from Tests with Blend Sludge SB5-C 2	21
Figure 6d. SME pH Profile from Tests with Batch Sludge SB5-D	22
Figure 7. SME Dewater pH	24
Figure 8. Typical Offgas Profile 130% Acid Stoichiometry, Blend Simulant 2	25
Figure 9. Peak Hydrogen Generation during SME Cycle	26
Figure 10. SB5 Flowsheet Testing REDOX Results	28
Figure C-1. SB5-7 (115% Acid) Offgas Data	54
Figure C- 2. SB5-8 (130% Acid) Offgas Data	54
Figure C- 3. SB5-9 (145% Acid) Offgas Data	55
Figure C- 4. SB5-10 (160% Acid) Offgas Data	55
Figure C- 5. SB5-11 (115% Acid) Offgas Data	56
Figure C- 6. SB5-12 (130% Acid) Offgas Data	56
Figure C- 7. SB5-13 (145% Acid) Offgas Data	57
Figure C- 8. SB5-14 (160% Acid) Offgas Data	57
Figure C- 9. SB5-15 (130% Acid) Offgas Data	58
Figure C- 10. Helium Profiles	58
Figure C- 11. Oxygen Profiles	59
Figure C- 12. Oxygen Profiles	59
Figure C- 13. Nitrogen Profiles	70
Figure C- 14. Carbon Dioxide Profiles	70
Figure C- 15. Nitrous Oxide Profiles	71
Figure D-1. SB5-7 (1150% Acid) SRAT Product Flow Curves	12
Figure D- 2. SB5-8 (130% Acid) SRAT Product Flow Curves	72
Figure D- 3. SB5-9 (145% Acid) SRAT Product Flow Curves	73
Figure D- 4. SB5-10 (160% Acid) SRAT Product Flow Curves	73
Figure D- 5. SB5-7 (115% Acid) SME Product Flow Curves	74
Figure D- 6. SB5-8 (130% Acid) SME Product Flow Curves	74
Figure D- 7. SB5-9 (145% Acid) SME Product Flow Curves	75
Figure D- 8. SB5-10 (160% Acid) SME Product Flow Curves	75

LIST OF TABLES

Table 1. SB5-C and SB5-D Final Slurry Analyses	2
Table 2. Simulant Composition for SB5 Flowsheet Testing	4
Table 3. Trim Chemical Additions, wt % on Total Solids Basis	5
Table 4c. SB5 Blend (SB5-C) SRAT/SME Tests	9
Table 4d. SB5 Batch (SB5-D) SRAT/SME Tests	9
Table 5. Acid Calculation Inputs	. 10
Table 6. SRAT Cycle Processing Parameters and Assumptions	. 11
Table 7. SME Processing Parameters and Assumptions	. 11
Table 8c. Selected Process Values for Testing with Blend Sludge SB5-C	. 12
Table 8d. Selected Process Values for Testing with Batch Sludge SB5-D	. 12
Table 9c. SRAT Product Anion Concentration from Tests with Blend Sludge SB5-C, mg/kg	. 14
Table 9d. SRAT Product Anion Concentration from Tests with Batch Sludge SB5-D, mg/kg	. 14
Table 10c. SRAT Anion Conversions from Tests with Blend Sludge SB5-C, mg/kg	. 14
Table 10d. SRAT Product Anion Conversions from Tests with Batch Sludge SB5-D, mg/kg	. 15
Table 11c. SRAT Product Mercury Results from Tests with Blend Sludge SB5-C	. 15
Table 11d. SRAT Product Mercury Results from Tests with Batch Sludge SB5-D	. 15
Table 12. SRAT Cycle Hydrogen Peak Generation Rate	. 18
Table 13c. SRAT Cycle Nitrous Oxide and Carbon Dioxide Peak Generation Rates from Tests with Blen	nd
Sludge SB5-C	. 19
Table 13d. SRAT Cycle Nitrous Oxide and Carbon Dioxide Peak Generation Rates from Tests with Bat	ch
Sludge SB5-D	. 20
Table 14. SRAT Product Rheological Properties	. 20
Table 15c. SME Product Results from Tests with Blend Sludge SB5-C	. 22
Table 15d. SME Product Results from Tests with Batch Sludge SB5-D	. 23
Table 16c. SME Product Anion Conversions from Tests with Blend Sludge SB5-C	. 23
Table 16d. SME Product Anion Conversions from Tests with Batch Sludge SB5-D	. 23
Table 17. SME Cycle Hydrogen Peak Generation Rate	. 26
Table 18c. SME Cycle Nitrous Oxide and Carbon Dioxide Peak Generation Rates from Tests with Blend	d
Sludge SB5-C	. 26
Table 18d. SME Cycle Nitrous Oxide and Carbon Dioxide Peak Generation Rates from Tests with Batch	h
Sludge SBS-D	. 27
Table 19. SME Product Rheological Properties from Tests with Batch Sludge SB5-D	. 27
Table 20. SME Product REDUX from Blend Runs (SB5-11 to SB5-14)	. 27
Table 21c. Offgas Peak Summary Biend	. 29
Table 210. Oligas Peak Summary Batch	. 29
Table A- 1. SRAT Process Sample Results	. 34
Table A- 2. SRAT Product Results	. 36
Table A- 3. SME Product Results	. 40
Table A- 4. Condensate Sample Results	. 44
Table A- 5. Formate and Nitrate Balance	. 46
Table A- 6. SME Cycle Run Data	. 48
Table A- 7. Mercury Results: SRAT and SME Products	. 58

LIST OF ACRONYMS

ACIL	Alkeli County Teenhologies Laboratory
AD	Analytical Development
ARP	Actinide Removal Process
ASP	Analytical Study Plan
CPC	Chemical Process Cell
CS	Calcine Solids
CSSX	Caustic Side Solvent Extraction
DWPF	Defense Waste Processing Facility
FAVC	Formic Acid Vent Condenser
GC	Gas Chromatograph
HLW	High Level Waste
IC	Ion Chromatography
ICP-AES	Inductively Coupled Plasma – Atomic Emission Spectroscopy
IS	Insoluble Solids
MCU	Modular CSSX Unit
MST	Mono Sodium Titanate
MWWT	Mercury Water Wash Tank
PSAL	Process Science Analytical Laboratory
QA	Quality Assurance
REDOX	REDuction / OXidation potential
SB3	Sludge Batch 3
SB4	Sludge Batch 4
SB5	Sludge Batch 5
SME	Slurry Mix Evaporator
SMECT	Slurry Mix Evaporator Condensate Tank
SRAT	Sludge Receipt and Adjustment Tank
SS	Soluble Solids
SVOA	Semi Volatile Organic Analysis
TIC	Total Inorganic Carbon
TS	Total Solids
TT&QAP	Task Technical and Quality Assurance Plan
TTR	Technical Task Request

1.0 Introduction and Background

The Defense Waste Processing Facility (DWPF) will transition from Sludge Batch 4 (SB4) processing to Sludge Batch 5 (SB5) processing in early fiscal year 2009. Tests were conducted using non-radioactive simulants of the expected SB5 composition to determine the impact of varying the acid stoichiometry during the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) processes. The work was conducted to meet the Technical Task Request (TTR) HLW/DWPF/TTR-2007-0008¹ and followed the guidelines of a Task Technical and Quality Assurance Plan (TT&QAP)².

The flowsheet studies are performed to evaluate the potential chemical processing issues, hydrogen generation rates, and process slurry rheological properties as a function of acid stoichiometry. Initial SB5 flowsheet studies were conducted to guide decisions during the sludge batch preparation process^{3,4}. These studies were conducted with the estimated SB5 composition at the time of the study. The composition has changed slightly since these studies were completed due to changes in the washing strategy to prepare SB5 and the estimated SB4 heel mass.

The following TTR requirements were addressed in this testing to validate the existing sludgeonly flowsheet and establish a coupled operations (sludge, Actinide Removal Process (ARP) sludge/Monosodium Titanate and/or Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) strip effluent) flowsheet for use with SB5. Simulated sludge, ARP sludge/MST, and/or MCU strip effluent will be used to conduct these studies. The TTR requested that the evaluation include calculations, paper studies and/or scoping tests in order to determine the following:

- 1. "The Hydrogen (H₂) and Nitrous Oxide (N₂O) generation rates for SB5 simulant with varying quantities of acid and noble metals."
- 3. "The acid quantities and processing times required for mercury removal, nitrite destruction, REDOX control and possible rheology adjustments in the Sludge Receipt and Adjustment Tank (SRAT) for sludge only and coupled operations processing."
- 5. "The impact of SB5 levels of constituents such as oxalate, titanium, manganese, nickel, mercury, aluminum, cerium and uranium on DWPF processing (i.e. sampling, acid addition strategy, hydrogen generation, REDOX, rheology, etc.)."
- 6. "High and nominal acid level and bounding noble metal concentration SRAT/SME cycles will be required to complete a parametric study of this flowsheet. The flowsheet will be validated by the completion of a nominal SRAT/SME cycle in SRNL's Shielded Cells (separate TTR) with radioactive sludge slurry samples to be obtained from H- and F- Tank Farms." "In the simulant flowsheet runs, any observations of foaming, air entrainment, and/or loss of heat transfer capabilities in the SRAT/SME or any indication of excessive offgas deposits leading to pluggage will be noted and evaluated as appropriate. Flow curves (shear stress vs. shear rate) and Bingham plastic rheology data (yield stress and plastic viscosity) for the SRAT and SME material will also be provided. If warranted, the effects of temperature and weight percent solids on rheological properties of process slurries will also be determined."

2.0 Approach

Nine SRAT/SME runs were completed during this study using acid stoichiometries of 115%, 130%, 145%, and 160% with both the Tank 51 batch simulant (SB5-7,8,9 and 10) and the Tank 40 blend simulant (SB5-11,12, 13, and 14). A ninth run was made at 130% acid stoichiometry with blend simulant that included ARP and MCU additions (SB5-15). These runs were completed and samples analyzed using the practices and procedures typical for Chemical Process Cell (CPC) simulations at the Aiken County Technology Laboratory (ACTL), as described below.

2.1 Simulant Preparation

Two simulant batches were prepared, one simulating the Tank 51 composition of batch simulant (SB5-D) and the other simulating Tank 40 or blend simulant (SB5-C). The SB5 batch simulant used targets specified by David Larsen's e-mail⁵. Since the cations in both the batch and blend simulants were very similar, the same cation basis was used to prepare both simulants. The blend simulant target anion composition was specified by Alex Choi⁶. Compositions of the simulants are shown in Table 1.

Analysis	SB5-C Target	SB5-C Actual	SB5-D Target	SB5-D Actual
Total Solids, wt %	12.47	12.5	14.03	14.58
Insoluble Solids, wt %	8.79	7.85	8.09	8.04
Nitrate, mg/kg	4,533	3,940	6,881	7,114
Nitrite, mg/kg	7,189	6,175	9,961	10,450
TIC, mg/kg	1,633	1,338	2,000	2,485
Fe, wt % of total dried solids	21.09	21.45	20.92	20.90
Al, wt % of total dried solids	11.76	12.55	10.98	11.90
Mn, wt % of total dried solids	4.88	5.05	4.90	4.73
Na, wt % of total dried solids	16.58	17.45	18.21	22.5

Table 1. SB5-C and SB5-D Final Slurry Analyses

The preparation of a simulant for Sludge Batch 5 involved six steps: precipitation of manganese (IV) oxide, caustic precipitation of a metal nitrate solution, addition of sodium carbonate, washing of the precipitated solids, addition of minor insoluble species, and addition of soluble species. The precipitation of metal nitrates to form insoluble oxides and hydroxides was conducted in a Continuous Stirred Tank Reactor (CSTR) and involved generation of a metal nitrate solution followed by precipitation of the metal through the addition of sodium hydroxide. Following the addition of sodium carbonate, the material was washed then soluble/insoluble species were added. Procedure L29 ITS-00124, "SRS HLW Sludge Simulant Preparation (U)" was utilized to perform the tests.

Simulant Preparation

The simulants were prepared intermittently over a two month-long period using facilities at both ACTL and in 735-11A. The MnO_2 precipitation, the precipitation in the CSTR and the precipitation of the insoluble carbonate species were each completed in one day. The washing

and concentration of the precipitate took approximately three weeks, while the final insoluble and soluble species were added in one day.

The simulant preparation was completed in six steps as described below.

- Phase I: Manganese Dioxide (MnO₂) Preparation: Six batches of manganese dioxide were prepared at ACTL by feeding potassium permanganate at 35 °C at 17.5 mL/min to a Manganese nitrate solution at 35 °C.
- Phase II: Metal Nitrate Solution Precipitation in CSTR: The metal oxides were coprecipitated in the CSTR setup in 735-11A Lab 123. The 50 wt % NaOH solution was fed at 11.5 mL/min and the combined MnO₂ and Metal Nitrate Solutions were fed to the CSTR at 89.0 mL/min to produce a precipitate at a pH of ~9.5.
- Phase III: **Precipitation of Insoluble Carbonate Species:** Sodium Carbonate was added to precipitate insoluble carbonate species.
- Phase IV: **Washing and Concentration of Slurry:** The slurry was batch washed in drums. After washing was completed, the slurry was concentrated to the final insoluble solids target in ACTL using paddle filters.
- Phase V: Add the final insoluble compounds to the concentrated washed slurry: The remaining insoluble species that might have been removed during washing were added to the washed and concentrated slurry.
- Phase VI: Add the final soluble compounds to the concentrated washed slurry: The remaining soluble species that would have been removed during washing were added to the washed and concentrated slurry.

The final slurry was sampled and analyzed at ACTL, the Process Science Analytical Laboratory (PSAL), and by Analytical Development (AD). The results of these analyses are summarized in Table 2. As can be seen, the results agreed well with the planned targets.

The SB5 simulants were very thin rheologically, especially because of the low insoluble solids targets. No measurement of the slurry rheology was completed.

SRNS-STI-2008-00024 Revision 0

Analyses	SB5-C Blend	SB5-D Batch	Analyses	SB5-C Blend	SB5-D Batch
Elemental	Wt% calc	ined solids	Solids Data	Wt	%
Al	12.5	11.9	Total	12.47	14.58
Ba	0.013	0.011	Insoluble	7.85	8.04
Ca	2.11	2.31	Soluble	4.62	6.54
Cr	.017	0.026	Calcined	9.51	11.09
Cu	0.020	0.013	Anions	mg/	kg
Fe	21.5	20.9	Chloride	<100	<100
K	0.157	0.074	Nitrite	6,175	10,450
Mg	0.890	0.841	Nitrate	3,940	7,114
Mn	5.05	4.73	Formate	<100	<100
Na	17.5	22.5	Sulfate	405	526
Ni	2.63	2.44	Oxalate	NM	NM
Р	0.111	<0.01	Phosphate	<100	<100
Pb	<0.01	<0.01	Carbonate	1,338	2,485
S	0.158	0.138	Other Results		
Si	<0.10	0.022	Base Equivalents (molar)	0.632	0.909
Ti	<0.01	<0.01	Slurry Density (g/ml)	1.09	1.11
Zn	<0.01	< 0.01	рН	13.4	13.5
Zr	<0.01	< 0.01			

Table 2. Simulant Composition for SB5 Flowsheet Testing

Noble metals, mercury, and rinse water were added to the sludge simulant prior to performing the SRAT cycle; however mercury was not added to SB5-15 until after the ARP addition and concentration were completed to avoid potential issues with dimethyl mercury formation.

Samples were not taken after the additions as the amount of these additions is small compared to the sludge, except in the case of the ARP addition. The noble metal concentrations were based on 110% of the estimated amount in the sludge batch⁷. The concentrations of each trim chemical added are shown in Table 3.

	SB5-C	SB5-C*	
	Without	With	
Trim Chemical	ARP/MCU	ARP/MCU	SB5-D
Trimmed Sludge Target Ag metal content	0.01375	0.01375	0.01328
Trimmed Sludge Target Hg metal content	2.3752	1.6880	2.7149
Trimmed Sludge Target Pd metal content	0.00362	0.00362	0.00448
Trimmed Sludge Target Rh metal content	0.02266	0.02266	0.02325
Trimmed Sludge Target Ru metal content	0.09801	0.09801	0.10800

Table 3. Trim Chemical Additions, wt % on Total Solids Basis

* The sludge was added at the same concentration of noble metals for runs with and without ARP. However, no mercury was added with the ARP waste, which effectively decreased the mercury concentration in the SRAT receipt sample by 29%.

2.2 Experimental Apparatus

The testing was performed at the ACTL using the four-liter kettle setup. The SRAT rigs were assembled following the guidelines of SRNL-PSE-2006-00074⁸. The intent of the equipment is to functionally replicate the DWPF processing vessels. The 4-liter glass kettle is used to replicate both the SRAT and the SME, and it is connected to the SRAT Condenser, the Mercury Water Wash Tank (MWWT), and the Formic Acid Vent Condenser (FAVC). The Slurry Mix Evaporator Condensate Tank (SMECT) is represented by a sampling bottle that is used to remove condensate through the MWWT. For the purposes of this paper, the condensers and wash tank are referred to as the offgas components. A sketch of the experimental setup is given as Figure 1.

Figure 1. Schematic of SRAT Equipment Set-Up

SRAT and SME processing parameters are summarized in Appendix A. The flowsheet runs were performed using the guidance of Procedure ITS-0094 ("Laboratory Scale Chemical Process Cell Simulations") of Manual L29⁹. Offgas hydrogen, oxygen, nitrogen, nitrous oxide, and carbon dioxide concentrations were measured during the experiments using in-line instrumentation. Helium was introduced at a concentration of 0.5% of the total air purge as an inert tracer gas so that total amounts of generated gas and peak generation rates could be calculated. During the runs, the kettle was monitored to observe reactions that were occurring to include foaming, air entrainment, rheology changes, loss of heat transfer capabilities, and offgas carryover.

Observations were recorded in laboratory notebook WSRC-NB-2008-00015¹⁰ and are discussed in Section 3.0.

An ARP and MCU simulant were added to the SB5-15 run. The ARP simulant was added to the sludge before the ARP simulant is concentrated so the SRAT receipt sample is approximately the same total solids content as the sludge. ARP was added to the SB5-C sludge at boiling. The MCU simulant was added during the boiling phase of the SRAT cycle at a scaled rate approximately equal to the maximum steam flow of 5000 lb/hr.

Concentrated nitric acid (50-wt%) and formic acid (90-wt%) were used to acidify the sludge and perform neutralization and reduction reactions during processing. The amounts of acid to add for each run were determined using the existing DWPF acid addition equation¹¹. The split of the acid was determined using the redox equation currently being used in DWPF processing¹². The redox target (Fe²⁺/ Σ Fe) was 0.2. To account for the reactions and anion destructions that occur during processing, assumptions about nitrite destruction, nitrite to nitrate conversion, and formate destruction were made for each run. The values used for each run are provided in Section 3.0.

To prevent foaming during the ARP concentration (caustic boiling phase), 200 ppm of IIT antifoam was added before processing. To prevent foaming during SRAT processing, 200 ppm IIT 747 antifoam was added before acid addition, 100 ppm was added after nitric acid addition was complete and 500 ppm was added at the completion of formic acid addition. SRAT processing included 18-hours at boiling (dewater time plus reflux time). In SB5-15, SRAT processing included dewatering time plus MCU addition/dewatering time (about 14 hours). In five of the runs, SME processing did not include the addition of canister dewaters. In the other four, SME processing included the addition of five canister dewaters. The frit addition was split into two equal portions. The frit was added with water and formic acid at DWPF prototypical conditions. Concentration was performed after each frit addition and then heat was removed to allow for the next frit addition. A final concentration was performed at the end of the run to meet the target total solids. The SRAT condenser was maintained at 25° C during the run while the vent condenser was maintained at 4° C.

2.3 Analytical Methods

Sample request forms were used for samples to be analyzed, and analyses followed the guidelines for the task. A unique lab identification number was assigned to each sample for tracking purposes. Analyses were performed using approved analytical and Quality Assurance (QA) procedures.

The sludge simulant was analyzed as part of the sludge fabrication process; therefore, those results were used to support this testing and no discussion of the methods will be presented here. The ARP simulant analysis paralleled that of the two sludge simulants. The samples were analyzed at the PSAL and AD. The PSAL performed analyses on the in-process and product samples to determine the chemical composition, total and dissolved solids, density, and pH. The chemical composition was determined in duplicate by calcining the samples at 1100° C and then digesting the product using Na₂O₂/NaOH fusion, a lithium metaborate fusion, and mixed acid method. The preparations were then analyzed using Inductively Coupled Plasma – Atomic Emission Spectroscopy (ICP-AES) to measure the cations present.

Sludge samples for anion analyses were prepped using weighted dilutions (diluting the slurry with water) and were analyzed using Ion Chromatography (IC). The in-process supernates were also analyzed on the IC to determine the soluble anions. The total and dissolved solids were

measured on two aliquots and the insoluble and soluble solids fractions were calculated from the results. Density and pH measurements of the samples were also performed on the in-process samples. Rheological properties of the SRAT and SME products (yield stress and plastic viscosity) were measured and evaluated as a function of the test conditions.

The Total Inorganic Carbon (TIC) and mercury analysis were performed by Analytical Development. TIC was analyzed with an OI 1010 High Temperature Total Carbon Analyzer. Mercury was analyzed using Atomic Adsorption Spectroscopy following an aqua regia preparation. The mercury slurry samples were pulled directly into the digestion bottle to minimize the risk of sampling issues effecting results.

Gases were monitored during the runs using high-speed Agilent model 3000 micro Gas Chromatographs (GC) to provide insight into the reactions occurring during processing and to determine whether a flammable mixture was formed. As mentioned above, helium was used as a purge gas tracer. One calibration standard was used to calibrate the GCs before each run to attempt to bound the quantities of the expected gases. The concentration of this calibration standard was 0.5 mol% helium, 1 mol% hydrogen, 20% oxygen, 2.5 mol% nitrous oxide, 0.5 mol% carbon monoxide, and 20 mol% carbon dioxide with the balance nitrogen. A second calibration point for nitrogen used room air. Calibration checks were performed before and after each run.

The GC is self-contained and is designed specifically for fast and accurate analysis. The GCs have five main components. The first is the carrier gas (argon for this testing) to transport the sample through the MolSieve 5A PLOT (Channel A) and PLOT O (Channel B) columns. The second is the injector, which introduces a measured amount of sample into the inlet of the analytical columns where it is separated. The third component is the column, which is the capillary tubing coated or packed with a chemical substance known as the stationary phase that preferentially attracts the sample components. As a result, components separate as they pass through the column based on their solubility. Since solubility is affected by temperature, column temperature is controlled during the run. Channel A separates helium, hydrogen, nitrogen, oxygen, nitric oxide and carbon monoxide and Channel B separates carbon dioxide and nitrous oxide. The fourth component is a micro-machine thermo conductivity detector. The solid state detector monitors the carrier and senses a change in its composition when a component in the sample elutes from the column. The fifth component is the computer data acquisition system, Cerity software. Its main purpose is to generate both qualitative and quantitative data. It provides a visual recording of the detector output and an area count of the detector response. The detector response is used to identify the sample composition and measure the amount of each component by comparing the area counts of the sample to the analysis of known calibration standards. A sample was taken approximately once every 4.5 minutes.

3.0 Results

Four SRAT/SME cycles with SB-5 batch simulant and five SRAT/SME cycles with SB-5 blend simulant were conducted during this study, as shown in Table 4c and Table 4d. Table numbering started at 4c to correspond to runs using the SB5-C blend simulant and 4d to refer to runs with the SB5-D batch simulant. Numbering of tables throughout this report is consistent with this methodology. A unique run number was assigned to each run^{13,14}. All runs targeted a predicted glass REDOX (Fe²⁺/ Σ Fe) of 0.2 by adjusting the ratio of formic to nitric acid during the SRAT cycle and assumed the current REDOX equation. Frit 418 was utilized during the SME cycle and a waste loading of 35% was targeted.

RUN NUMBER	ACID STOICHIOMETRY	REDOX TARGET	PROCESS FRIT	WASTE LOADING
SB5-11	115%	0.2	418	35
SB5-12	130%	0.2	418	35
SB5-13	145%	0.2	418	35
SB5-14	160%	0.2	418	35
SB5-15	130%	0.2	418	35

 Table 4c.
 SB5 Blend (SB5-C) SRAT/SME Tests

Table 40. SDS Datch (SDS-D) SKAT/SWIE Tests					
RUN	ACID	REDOX	PROCESS	WASTE	
NUMBER	STOICHIOMETRY	TARGET	FRIT	LOADING	
SB5-7	115%	0.2	418	35	
SB5-8	130%	0.2	418	35	
SB5-9	145%	0.2	418	35	
SB5-10	160%	0.2	418	35	

Table 4d SR5 Batch (SR5-D) SRAT/SMF Tests

3.1 SRAT Cycle Results

3.1.1 Acid Addition Calculation

3.1.1.1 Calculation Inputs

The SRAT cycle acid calculation utilizes the amount of nitrite, mercury, manganese, carbonate, and base equivalents to calculate the stoichiometric amount of acid to be added. Nitric acid and formic acid amounts are calculated based on the applied stoichiometric factor and the ratio needed to achieve the predicted glass redox target of $0.2 \text{ Fe}^{+2}/\Sigma\text{Fe}$. The equation for prediction of glass redox utilizes estimates of the amount of formate, oxalate, nitrate, nitrite, manganese, and total solids in the SME product. The estimation of the final concentration for the anions requires assumptions to be made concerning how these species will react during the SRAT and SME cycles. Formate and oxalate are destroyed by reactions with oxidizing species and by catalytic reactions with noble metals. Nitrite is typically consumed during acid additions, but can react to form different species including nitrate. The acid calculation inputs and assumptions are shown in Table 5, Table 6, and Table 7 for SB5-7 and SB5-11. The same assumptions and inputs were used for all four runs, with the exception of the acid stoichiometry.

Description	Units	SB5- 11 ^a	SB5-7 ^b
Sludge		SB5-C	SB5-D
Sludge		Blend	Batch
Fresh Sludge Mass without trim chemicals	g slurry	3,500.0	3,017.9
Fresh Sludge Weight % Total Solids	wt%	12.47	15.09
Fresh Sludge Weight % Calcined Solids	wt%	9.51	11.25
Fresh Sludge Weight % Insoluble Solids	wt%	7.85	7.95
Fresh Sludge Density	kg / L slurry	1.090	1.117
Fresh Sludge Nitrite	mg/kg slurry	6,175	10,388
Fresh Sludge Nitrate	mg/kg slurry	3,940	7,114
Fresh Sludge Oxalate	mg/kg slurry	287.5	0
Fresh Sludge Formate	mg/kg slurry	0	0
Fresh Sludge Manganese (% of Calcined Solids)	wt % calcined basis	5.050	4.639
Fresh Sludge Slurry TIC (treated as Carbonate)	mg/kg slurry	1,338	2,470
Fresh Sludge Hydroxide (Base Equivalents) pH = 7	Equiv Moles Base/L slurry	0.632	0.909
Fresh Sludge Mercury (% of Total Solids in untrimmed sludge)	wt% dry basis	0.0000	0.0000
Fresh Sludge Supernate manganese	mg/L supernate	0	0
Fresh Sludge Supernate density	kg / L supernate	1.024	1.06

Table 5. Acid Calculation Inputs

SB5-15 was similar to SB5-11, 3499.6 g slurry, after the ARP addition and boil-down were completed. It had similar wt% total solids, but different concentrations of base, TIC, nitrite, and Mn. The non-aqueous fraction of SB5-15 was about 72% SB5-C Blend simulant solids and 28% ARP simulant solids.

^a The same parameters were used for runs SB5-11, SB5-12, SB5-13, and SB-14, with the exception of acid stoichiometry. ^b The same parameters were used for runs SB5-7, SB5-8, SB5-9, and SB-10, with the exception of acid

stoichiometry.

SRNS-STI-2008-00024 Revision 0

Description	Units	SB5-11	SB5-7
Sludge		SB5-C	SB5-D
Sludge		Blend	Batch
Conversion of Nitrite to Nitrate in SRAT Cycle	gmol NO ₃ ⁻ /100 gmol NO ₂ ⁻	15.00	25.00
Destruction of Nitrite in SRAT and SME cycle	% of starting nitrite	100.00	100.00
Destruction of Formic acid charged in SRAT	%	30.00	15.00
Destruction of oxalate charged	%	50.00	50.00
Percent Acid in Excess Stoichiometric Ratio	%	115.00	115.00
SRAT Product Target Solids	%	25.00	25.00
Nitric Acid Molarity	Molar	10.534	10.534
Formic Acid Molarity	Molar	23.600	23.600
Scaled Nitric Acid addition Rate	gallons per minute	2.0	2.0
Scaled Formic Acid addition Rate	gallons per minute	2.0	2.0
REDOX Target	Fe^{+2} / $\mathrm{\Sigma}\mathrm{Fe}$	0.200	0.200
Trimmed Sludge Target Ag metal content	total wt% dry basis	0.01375	0.01328
Trimmed Sludge Target wt% Hg dry basis	total wt% dry basis	2.37520	2.71490
Trimmed Sludge Target Pd metal content	total wt% dry basis	0.00362	0.00448
Trimmed Sludge Target Rh metal content	total wt% dry basis	0.02266	0.02325
Trimmed Sludge Target Ru metal content	total wt% dry basis	0.09801	0.10800
Water to dilute fresh sludge and/or rinse trim chemicals	đ	50.000	50.000
Mass of SRAT cycle samples	g	200.000	200.000
Wt% Active Agent In Antifoam Solution	%	10	10
Basis Antifoam Addition for SRAT (generally 100 mg	mg/kg slurry		
antifoam/kg slurry)		100.00	100.00
Number of basis antifoam additions added during SRAT cycle			8

Table 6. SRAT Cycle Processing Parameters and Assumptions

Table 7. SME Processing Parameters and Assumptions

Description	Units	SB5-11	SB5-7
Cludge		SB5-C	SB5-D
Sludge		Blend	Batch
Frit type		418.00	418.00
Destruction of Formic acid in SME	%	7.00	7.00
Destruction of Nitrate in SME	%	0.00	0.00
Assumed SME density	kg / L	1.45	1.45
Basis Antifoam Addition for SME cycle	mg/kg slurry	100.00	100.00
Number of basis antifoam additions added during SME cycle		4	4
Sludge Oxide Contribution in SME (Waste Loading)	%	35.000	35.000
Frit Slurry Formic Acid Ratio	g 90 wt% FA/100 g Frit	1.5	1.5
Target SME Solids total Wt%	wt%	45.0	45.0
Number of frit additions in SME Cycle		2.000	2.000

3.1.1.2 Acid Calculation Results

The acid calculation determines the values for a large number of processing parameters as well as the amount of formic and nitric acid to be used. Selected values are shown in Table 8c and Table 8d. The stoichiometric acid addition for the sludge simulant was calculated to be 1.12 moles per liter for SB5-C and 1.71 moles per liter for SB5-D. As acid stoichiometry increased, the ratio of formic acid to the total amount of acid decreased. This decrease is due to the presence of nitrate and nitrite in the initial sludge simulant lowering the amount of nitrate or oxidizers needed to balance the formic acid at lower acid stoichiometries. The frit addition increased slightly due to the process samples being more dilute in terms of the original feed as acid stoichiometry increased.

ACID STOICHIOMETRY	TOTAL ACID REQUIRED (MOL/L)	FORMIC ACID RATIO (% OF TOTAL ACID)	FRIT ADDITION AMOUNT (GRAMS)
115%	1.28	88%	560.59
130%	1.45	84%	563.11
130% with	1.22	86%	531.25
ARP/MCU			
145%	1.62	84%	566.41
160%	1.79	83%	568.41

Table 8c. Selected Process Values for Testing with Blend Sludge SB5-C

Less acid and frit were required in the test with ARP/MCU than in the 130% test without ARP/MCU because the concentrated ARP slurry had a lower acid demand per unit volume than an equivalent mass of SB5 simulant, and because the calcined solids fraction of the ARP total solids was lower than that of the SB5 simulant solids.

ACID STOICHIOMETRY	TOTAL ACID REQUIRED (MOL/L)	FORMIC ACID RATIO (% OF TOTAL ACID)	FRIT ADDITION AMOUNT (GRAMS)
115%	1.96	85%	579.14
130%	2.22	84%	581.87
145%	2.48	83%	584.33
160%	2.73	82%	586.58

Table 8d. Selected Process Values for Testing with Batch Sludge SB5-D

3.1.2 Processing Observations

Overall processing during the testing went smoothly with no interruptions or upsets occurring during process runs. The sludge became less viscous during acid additions and no problems were noted with mixing during the runs. Agitator speeds of 250 RPM^c were needed to mix the sludge simulants.

^c The mixing geometry of the lab-scale apparatus is not prototypic and mixing was adjusted as required during testing to ensure that the process chemistry is captured. Agitator speed is reported only to give an indication of changes in rheological properties during the testing.

3.1.2.1 Foaming

No additional antifoam was required during any of the nine experiments. No foaming problems were noted during SRAT or SME processing.

3.1.2.2 pH Profiles

The pH profiles of six of the eight runs in general matched profiles noted during previous CPC simulations. As shown in Figure 2, the pH of the runs was lower for runs with higher acid additions. Also, acid addition took longer for the runs with the batch simulant (SB5-7 to 10) due to the higher acid demand. The blend simulant had significantly lower acid demand due to the dilution by pump leakage in Tank 40. Formic acid decomposition during high acid runs can result in lower pH at higher acid stoichiometries, but the decomposition noted during the flowsheet testing was not high enough to raise the pH of the higher acid runs above the lower acid runs in the SRAT cycle. All three runs with acid stoichiometries above 115% had a minimum pH near 4.0 at the end of acid addition. No data is included for runs SB5-11 and SB5-14 because pH probe breakage occurred very early in the runs and the recorded data was not meaningful.

Time from End of Acid Addition (hr)

Figure 2. SB5 Flowsheet Testing pH Profiles

3.1.3 SRAT Cycle Sample Results

Samples were pulled at the conclusion of the SRAT cycle. The total solids, mercury, anions, and soluble elemental species were analyzed for all samples. Samples were taken of the SRAT dewater and the MWWT contents at the completion of the SRAT cycle. All sample results are tabulated in Appendix A-2.

3.1.3.1 Nitrite, Nitrate, Formate

Nitrite destruction met the process requirement of <1000 mg/kg at the end of the SRAT cycle for all runs and was 100% complete for all runs. Note that the total time at boiling was 18 hours for each of these experiments due to the high mercury concentration. The longer boiling time may have led to the complete nitrite destruction, even for the lowest acid stoichiometry runs. Anion results are summarized in Table 9c and d.

Acid Stoichiometry	Sample #08-	F	CL	NO ₂	NO ₃	SO ₄	PO ₄	HCO ₂
115%	SB5-11-2534	<100	356	<100	20,600	<100	<100	62,250
130%	SB5-12-2545	<100	329	<100	23,600	<100	<100	58,200
145%	SB5-13-2557	<100	332	<100	26,150	108	<100	61,700
160%	SB5-14-2568	<100	342	<100	28,600	185	<100	74,400
130% ARP/MCU	SB5-15-2584	<100	350	<100	27,950	2100	<100	57,200

Table 9c. SRAT Product Anion Concentration from Tests with Blend Sludge SB5-C, mg/kg

Table 9d. SRAT Product Anion Concentration from Tests with Bat	h Sludge SB5-D	, mg/kg
--	----------------	---------

Acid Stoichiometry	Sample #08-	F	CI	NO ₂	NO ₃	SO ₄	PO ₄	HCO ₂
115%	SB5-7-2505	<100	316	<100	29,550	<100	<100	62,200
130%	SB5-8-2487	<100	338	<100	31,250	153	<100	67,400
145%	SB5-9-2516	<100	325	<100	34,850	194	<100	71,700
160%	SB5-10-2496	<100	312	<100	38,100	282	<100	77,700

In a typical run, approximately one-third of the nitrite is converted to nitrate and the other twothirds are converted to NO_x and N_2O . In the majority of these runs (Table 10), no additional nitrate was present in the SRAT product due to the destruction of nitrate. A negative nitrite to nitrate conversion number is the result of not only complete nitrite destruction but also nitrate destruction. Numbers between -10% and +10% may be due to analytical error but larger numbers are due to significant nitrate destruction. The presence of sulfate from the concentrated ARP stream was clearly evident in the anion data.

Formate is destroyed by reduction of Mn, Hg and catalytic destruction of formic acid to produce NO, N_2O , and hydrogen. An overall trend of higher formate loss with higher acid stoichiometry is indicated which matches previous results and the amount of formate loss is consistent with previous testing^{4,15}.

		SRAT Cycle	
Acid Stoichiometry	Formate Destruction	Nitrite Destruction	Nitrite to Nitrate Conversion
115%	24%	>99.5%	-16%
130%	29%	>99.5%	-27%
145%	30%	>99.5%	-31%
160%	16%	>99.5%	-14%
130% ARP/MCU	15%	>99.5%	15%

Table 10c. SRAT Anion Conversions from Tests with Blend Sludge SB5-C, mg/kg

		SRAT Cycle	
Acid Stoichiometry	Formate Destruction	Nitrite Destruction	Nitrite to Nitrate Conversion
115%	134	>99.5	30
130%	29	>99.5	-17
145%	24	>99.5	2
160%	26	>99.5	-4

Table 10d. SRAT Product Anion Conversions from Tests with Batch Sludge SB5-D, mg/kg

3.1.3.2 Mercury

The SRAT product samples were analyzed for mercury content to evaluate the stripping of mercury during the SRAT cycle. The SRAT product must be below 0.45 wt% (solids basis) mercury to meet process specifications. Previous sludge batches except SB1B and SB4 met this requirement without mercury removal, but SB5 is estimated to contain approximately 2.5 wt% mercury in the incoming blended feed. As shown in Table 11c and d, the mercury was reduced to acceptable levels by the end of the SRAT cycle for all but two runs.

Table 11c. SRAT Product Mercury Results from Tests with Blend Sludge SB5-C

Acid Stoichiometry	SRAT Product Mercury,
	wt % total solids basis
115%	0.984
130%	0.927
145%	0.146
160%	0.052
130% ARP/MCU	0.042

Table 11d.	SRAT Product Mercury	v Results from T	Sests with	Batch Sludge	SB5-D
I GOIC IIG	Sidii i i oudee mereda.			Daven Staage	

Acid Stoichiometry	SRAT Product Mercury, wt % total solids basis
115%	0.213
130%	0.163
145%	0.041
160%	0.063

The mercury stripping is controlled by the boilup rate and the time at boiling. The simulant testing was completed at a scaled-down maximum boilup rate equivalent to 5000 lb/hr steam. Time at boiling was calculated assuming it takes 750 lb of steam to strip each lb of mercury to reduce the SRAT product to 0.45 wt % Hg. As a result, all eight non-ARP/MCU runs had 18 hours at boiling during the SRAT cycle. The total boilup was 13,500 lb of steam. If DWPF uses a lower boilup rate, they may need to extend the boiling time to meet the mercury limit. SB5-15 with ARP/MCU had 28% less initial mercury than the other four runs with SB5-C simulant, since only the SB5-C simulant portion was trimmed to 2.2375 wt% Hg. The ARP was assumed to be free of Hg in order to better test the hydrogen limit with SB5-15. Only 13 hours of boiling at the

maximum boil-up rate were predicted to successfully strip Hg in SB5-15, but 14 hours were required for dewatering and MCU addition. Therefore, dewatering and MCU addition controlled the duration of SB5-15 rather than mercury removal.

The two runs that exceeded the DWPF mercury limit were both low acid runs with the blend simulant. The blend simulant is low in anions due to dilution in Tank 40, which contributed to a low acid demand. If DWPF has problems achieving the mercury limit, a higher acid stoichiometry may improve mercury removal. However, it may also lead to higher hydrogen generation. Note also that the simulant testing was completed without a heel so the starting mercury concentration will be lower in DWPF as the heel will dilute the raw sludge.

3.1.3.3 Condensates

The sample results for all condensate samples are tabulated in Appendix A. Higher acid stoichiometry lowers the pH of the SRAT slurry.

Condensate pH was higher as acid stoichiometry was increased, as shown in Figure 3. The condensate pH of the 130% run was basic at the end of the SRAT cycle as indicated by the pH of the MWWT results. The MWWT was drained at the end of the SRAT cycle and (generally) represents the last condensate generated during that cycle.

Figure 3. SRAT Dewater pH

3.1.4 SRAT Cycle Offgas Composition Results

A typical offgas concentration profile is shown in Figure 4 while charts from all runs are shown in Appendix C. Helium and nitrogen show reduced concentrations during periods with large quantities of offgas generation due to dilution, while oxygen showed reduced concentrations during these periods due to dilution and from consumption. In general, hydrogen generation began after nitrous oxide emissions had ceased and carbon dioxide emission was noted in conjunction with the hydrogen. The patterns of offgas emissions noted during the runs were typical of offgas generation during the SRAT cycle.

3.1.4.1 Hydrogen Evolution

The peak hydrogen generation for each run is shown in Figure 5, along with the peak carbon dioxide and nitrous oxide rates. In general, the peak hydrogen generation rate increased with increased acid addition. None of the rates exceeded the SRAT processing limits of 0.65 lb/hr, as shown in Table 12 which shows the peak hydrogen generation after scaling to the DWPF process.

Figure 4. SRAT Cycle Hydrogen Peaks

SRAT Hydrogen Peak		Acid Stoichiometry				
		115%	130%	130%	145%	160%
				ARP/MCU		
SB5-C Simulant	lb/hr	0.0476	0.126	-	0.140	0.170
SB5-D Simulant	lb/hr	0.301	0.261	0.0655	0.366	0.569

Table 12. SRAT Cycle Hydrogen Peak Generation Rate

The hydrogen evolution as a function of time is shown in Figure 5.

Figure 5c. SRAT Cycle Hydrogen Evolution from Tests with Blend Sludge SB5-C

3.1.4.2 Other Species

The nitrous oxide peak concentrations may have slightly increased as acid addition was increased. The carbon dioxide peak was very similar for all runs. The peak generation of these species is less dependent on acid concentration than hydrogen since more acid is added than needed to destroy carbonate and nitrite, the compounds that are responsible for the highest emissions. The peak generation rates are shown in Table 13c and d after scaling to the DWPF process scale.

Table 13c.	SRAT Cycle Nitrous Oxide and Carbon Dioxide Peak Generation Rates from
	Tests with Blend Sludge SB5-C

		Acid	l Stoichiom	etry		
		115%	130%	130%	145%	160%
				ARP		
SRAT Nitrous Oxide Peak	lb/hr	21.3	42.1	42.1	43.0	45.0
SRAT Carbon Dioxide Peak	lb/hr	486	489	508	483	471

SB5-15 contained more TIC (from the ARP component). TIC destruction was the source of the maximum SRAT carbon dioxide peak in these runs.

			Acid Stoi	chiometry	
		115%	130%	145%	160%
SRAT Nitrous Oxide Peak	lb/hr	45.7	45.2	54.9	51.6
SRAT Carbon Dioxide Peak	lb/hr	560	605	604	578

Table 13d. SRAT Cycle Nitrous Oxide and Carbon Dioxide Peak Generation Rates fromTests with Batch Sludge SB5-D

3.1.5 SRAT Product Rheological Properties

The rheological properties of SRAT products were measured for the four runs produced with the batch simulant (SB5-D) along with the product from SB5-15 (blend simulant plus ARP/MCU). The rheological properties were outside the processing limits for yield stress and consistency for SRAT products (yield stress 1.5 to 5 Pa and Consistency 5 to 12 cP)^d except for the 115% acid run. The yield stress and consistency of the SRAT products are shown in Table 14. The flow curves generated during the testing are shown in Appendix D.

Run	Acid %	Yield Stress, Pa	Consistency, cP	Insoluble Solids, wt %	Total Solids, wt %
SB5-7	115	3.6	8.3	13.84	25.64
SB5-8	130	0.5	4.2	12.28	24.01
SB5-9	145	0.3	3.6	13.47	23.96
SB5-10	160	0.1	2.2	14.84	24.17
SB5-15	130	1.1	8.2	11.53	24.46

 Table 14. SRAT Product Rheological Properties

3.1.6 Impact of ARP/MCU on SRAT Processing

The addition of ARP and MCU did not cause any other processing issues, since foaming, rheology and hydrogen generation were less of an issue while processing ARP/MCU. Hydrogen was significantly lower in Run SB5-15 (with added ARP/MCU) compared to Run SB5-12 (no added ARP/MCU), a similar run with the same 130% acid stoichiometry.

Adding ARP or MCU will extend processing times in DWPF. The ARP caustic boil took approximately six hours. The boiling time during the experiment with added MCU was 14 hours at the maximum DWPF steam flux rate. This is slightly longer than typical DWPF processing and will take even longer if boilup rates are lower than the maximum steam flux.

^d "Technical Data Summary for the Defense Waste Processing Facility: Sludge Plant", DPSTD-80-38-2

3.2 SME Cycle Results

The SME cycle was performed immediately following the SRAT cycle and utilized the estimated amount of frit based on the initial sludge additions and the expected amount of SRAT samples. The SME cycles for Runs SB5-7, 8,9 and 10 included the addition of water simulating five decon water additions along with two frit slurry additions, whereas the SME cycles for Runs SB5-11, 12, 13 and 14 included only the two frit water slurry additions. These latter runs were approximately 12 hours shorter. This decision was conservative from hydrogen generation but also shortens the time for the SME cycles. As stated earlier, the SME cycle targeted a final solids concentration of 45 wt % total solids based on earlier testing with SB4 that resulted in extremely viscous slurries at the end of the SME cycle¹⁶.

3.2.1 Processing Observations

Only hydrogen generation was noted as a potential processing issue during the SME cycle. The hydrogen for the batch simulant was significantly higher than for the blend simulant. Mixing was not an issue during processing. Mixer speed was maintained at 250 RPM throughout each run.

As shown in Figure 6c and d, the pH profile of each SME cycle followed a similar profile with a dip in pH as the frit is added due to the formic acid content of the frit slurry followed by a gradual rise in pH as the slurry mix is evaporated.

Figure 6c. SME pH Profile from Tests with Blend Sludge SB5-C

Figure 6d. SME pH Profile from Tests with Batch Sludge SB5-D

3.2.2 SME Cycle Sample Results

Samples were pulled at the conclusion of the SME cycle and analyzed for total solids, anions, soluble elemental species, mercury, and REDOX. Samples were taken of the SME dewater and the FAVC contents at the completion of the SME cycle.

3.2.2.1 SME Product Results

The solids content of the SME products are shown in Table 15c and Table 15d along with the calculated waste loading and pH. The solids content generally were higher than targeted, but the waste loading targets were all >40%, significantly higher than the 35% target. Waste loadings were calculated from the lithium content of the SME product (the frit 418 was 7.42% Li).

Table 15c. SME Product Results from Tests with Blend Sludge SB5-C

Acid %	рН	TOTAL	LITHIUM OXIDE	WASTE
		SOLIDS	CONTENT	
		wt%	wt % Calcined solids	Wt %
115%	6.80	47.7	4.64	37.4
130%	6.33	45.7	4.80	35.2
130% ARP/MCU	4.82	46.2	4.52	39.1
145%	4.71	43.7	4.67	37.1
160%	4.41	47.2	4.72	36.3

^e % Waste Loading = (1-Lithium in SME product/8)*100%

Acid %	рН	TOTAL SOLIDS Wt%	LITHIUM OXIDE CONTENT, Wt % Calcined Solids	WASTE LOADING, Wt %
115%	8.26	46.6	4.77	35.7
130%	7.22	45.0	4.80	35.3
145%	5.71	44.5	4.80	35.3
160%	5.46	44.6	4.68	36.9

Table 15d.	SME Product	Results from	Tests with	Batch	Shudge	SB5-D
Table 15u.	Different founder	itesuites if offi	I COLO WITH	Datth	Diuuge	DDJ-D

Loss of formate varied considerably during the SME cycles, as shown in Table 16c and Table 16d. The range of values noted during the testing are similar to results from previous runs4. The amount of nitrate loss was high for most runs, with the lowest acid stoichiometry indicating a loss of 27%. The high losses at 115% acid and the negative value for the 130% acid likely resulted from the expected analytical error and cumulative errors in the mass balance as various samples are pulled.

 Table 16c.
 SME Product Anion Conversions from Tests with Blend Sludge SB5-C

Acid	SME CYCLE			
Stoichiometry	Formate	Nitrate		
, ,	Destruction	Destruction		
115%	5%	4%		
130%	6%	-3%		
130-ARP/MCU	11%	11%		
160%	3%	4%		
160%	28%	21%		

Table 100. SME Product Anion Conversions from Tests with Batch Sludge 5B5	Table 16d.
---	------------

Acid	SME CYCLE			
Stoichiometry	Formate	Nitrate		
Stotemonieury	Destruction	Destruction		
115%	27%	27%		
130%	7%	6%		
145%	11%	13%		
160%	15%	11%		

3.2.2.2 Condensates

The condensate pH from SME dewater decreased as acid stoichiometry increased. pH was generally higher than the SRAT dewater and the SRAT MWWT. The pH was higher during runs with the lowest acid addition, as shown in Figure 7.

Figure 7. SME Dewater pH

3.2.3 SME Cycle Offgas Composition Results

The amount of offgas generated during the runs generally increased as acid stoichiometry increased, as indicated by the helium concentration in the offgas since helium is added at a constant 0.5 wt% of the incoming air purge. A typical offgas concentration profile is shown in Figure 8 while charts from all runs are shown in Appendix C. The patterns of offgas emissions noted during the runs were typical of offgas generation during the SME cycle with hydrogen and carbon dioxide emissions occurring during dewatering after each frit addition.

Figure 8. Typical Offgas Profile 130% Acid Stoichiometry, Blend Simulant

3.2.3.1 Hydrogen Evolution

The peak hydrogen generation rates were generally noted as sharp spikes in the data immediately following the start of dewater, as shown in Figure 8 above. Hydrogen reached concentrations higher than noted in the SRAT cycle due to the decreased purge during the SME cycle. Peak hydrogen concentrations reached close to 0.5 volume %, as shown in Figure 9 and were a function of acid stoichiometry. Peak generation rates scaled to the DWPF process are shown in Table 17 and were all below the SME process limit of 0.223 lb/hr, except for the 160% stoichiometry.

Figure 9. Peak Hydrogen Generation during SME Cycle

Fable 17.	SME Cycle	Hvdrogen	Peak	Generation	Rate
		ii yui ogen	I cuis	o cher autom	muuu

SME Hydrogen Peak	Acid Stoichiometry						
		115%	130%	130%	145%	160%	
				ARP/MCU			
SB5-C Simulant	lb/hr	0.0517	0.0987	0.116	0.0826	0.100	
SB5-D Simulant	lb/hr	0.197	0.220	-	0.173	0.246	

3.2.3.2 Other Species

Carbon dioxide was generally the only other gas of any significance emitted during the SME cycle (the higher acid runs contained a small amount of nitrous oxide emissions).

Table 18c.	SME Cycle Nitrous Oxide and Carbon Dioxide Peak Generation Rates from						
Tests with Blend Sludge SB5-C							

	Acid Stoichiometry					
	115%	130%	130%	145%	160%	
				ARP		
SRAT Nitrous Oxide Peak	lb/hr	0.00	0.00	0.00	0.000	0.00
SRAT Carbon Dioxide Peak	lb/hr	23.5	28.8	30.8	20.6	15.7

		Acid Stoichiometry					
		115%	130%	145%	160%		
SME Nitrous Oxide Peak	lb/hr	0.00	1.70	1.59	1.35		
SME Carbon Dioxide Peak	lb/hr	38.9	47.8	29.8	31.0		

Table 18d. SME Cycle Nitrous Oxide and Carbon Dioxide Peak Generation Rates fromTests with Batch Sludge SB5-D

3.2.4 SME Product Rheological Properties

The rheological properties of each SME product with batch simulant were measured along with those of the blend simulant run with ARP/MCU. Higher acid stoichiometry lowered the yield stress and consistency of the SME products. The 115% acid run exceeded the upper process limit for yield stress (15 Pa)^f and consistency (10 to 40 cP). The two highest acid runs exceeded the process limits for yield stress (2.5 Pa), as shown in Table 19.

 Table 19. SME Product Rheological Properties from Tests with Batch Sludge SB5-D

Run	Acid %	Yield Stress, Pa	Consistency, cP	Total Solids, wt %
SB5-7	115	23.8	49.8	46.6
SB5-8	130	3.1	16.0	44.95
SB5-15	130	2.1	24.8	46.2
SB5-9	145	1.8	11.5	44.5
SB5-10	160	1.6	10.9	44.6

3.2.5 REDOX Results

The predicted REDOX values shown in Table 20 are based on the sample results of the SME product. Measured values are the average of duplicate samples generated by the guidelines of L29 ITS-0052 "Vitrification of Melter Slurries for Glass Redox ($Fe^{2+}/\Sigma Fe$) & Chemical Composition Measurement"¹⁷.

Table 20. SME Product REDOX from Blend Runs (SB5-11 to SB5-14)

<u>Run</u>	<u>REDOX</u> <u>Result,</u> <u>Fe⁺²/ΣFe</u>	<u>REDOX</u> <u>Prediction,</u> <u>Fe^{±2}/ΣFe</u>	Acid Stoichiometry <u>%</u>
SB5-11	0.23	0.244	115
SB5-12	0.25	0.21	130
SB5-13	0.22	0.22	145
SB5-14	0.26	0.229	160

f "Technical Data Summary for the Defense Waste Processing Facility: Sludge Plant", DPSTD-80-38-2

As shown in Figure 10, the measured REDOX increased with increased acid stoichiometry. Although most of the REDOX measurements were greater than predicted, there was a fairly close correlation between the prediction and result. More information on the SB5 REDOX results is summarized in a separate SRNL memo¹⁸.

Figure 10. SB5 Flowsheet Testing REDOX Results

4.0 Conclusions

Two SB5 processing issues were noted during testing. First, high hydrogen generation rates were measured during experiments with both the blend and batch simulant at high acid stoichiometry. Also, the reflux time was extended due to the high mercury concentration in both the batch and blend simulant.

Adding ARP will extend processing times in DWPF. The ARP caustic boil took approximately six hours. The boiling time during the experiment with added MCU was 14 hours at the maximum DWPF steam flux rate. This is comparable to the combined dewatering and reflux time for a nominal SRAT batch using 5000 lbs/hr boil-up rates during boiling, but would require considerably more time at 2000-2500 lbs/hr boil-up rates. The addition of ARP and MCU did not cause any other processing issues, as foaming, rheology and hydrogen generation were less of an issue while processing ARP/MCU.

> Hydrogen and nitrous oxide generation rates as a function of acid stoichiometry

Hydrogen generation was significantly impacted by the changes in acid stoichiometry from 115% to 160% (1.96 to 2.73 moles acid per liter of batch sludge or 1.28 to 1.79 moles acid per liter of blend sludge). For the batch sludge, the hydrogen generation rate exceeded the process limit during the SME cycle at the highest acid stoichiometry (160%). All of the blend experiments were within the process limits throughout the SRAT and SME cycles. As DWPF will be processing blend sludge, hydrogen likely won't be an issue in DWPF processing but lower acid stoichiometries will minimize hydrogen generation. The reduction in Hg concentration of the SRAT receipt slurry after combining ARP with sludge and concentrating it to the same wt% total solids led to increased hydrogen generation peak was relatively insensitive to acid stoichiometry and was relatively low due to the low starting nitrite concentration. Hydrogen generation and nitrous oxide generation scaled to DWPF are shown in Table 21c and Table 21d.

		Acid Stoichiometry					
		115%	130%	145%	160%		
SRAT Hydrogen Peak	lb/hr	0.0476	0.126	0.140	0.170		
SME Hydrogen Peak	lb/hr	0.0517	0.0987	0.0826	0.100		
SRAT Nitrous Oxide Peak	lb/hr	21.3	42.1	43.0	45.0		
SME Nitrous Oxide Peak	lb/hr	0.0000	0.0000	0.173	0.0000		
SRAT Carbon Dioxide Peak	lb/hr	486	489	483	471		
SME Carbon Dioxide Peak	lb/hr	23.5	28.8	20.6	15.7		

Table 21C, Oneas I can building Dienu	Table 21c.	Offgas	Peak	Summary	Blend
---------------------------------------	------------	--------	------	----------------	-------

Table 21d.	Offgas	Peak Summary	Batch
------------	--------	---------------------	-------

		Acid Stoichiometry					
		115%	130%	145%	160%		
SRAT Hydrogen Peak	lb/hr	0.301	0.261	0.366	0.569		
SME Hydrogen Peak	lb/hr	0.197	0.220	0.173	0.246		
SRAT Nitrous Oxide Peak	lb/hr	45.7	45.2	54.9	51.6		
SME Nitrous Oxide Peak	lb/hr	0.00	1.70	1.59	1.35		
SRAT Carbon Dioxide Peak	lb/hr	560	605	604	578		
SME Carbon Dioxide Peak	lb/hr	38.9	47.8	29.8	31.0		

> Acid quantities and processing times required for mercury removal

Mercury was added to the sludge simulant at the start of the SRAT cycle as mercuric oxide at approximately 2.5 wt% (solids basis) based on the expected composition of the SB5 batch and blend. Because of the high mercury concentration, the time at boiling was increased from 12 hours to 18 hours to allow sufficient time to strip mercury from the SRAT. Boiling flux was maintained at a scaled rate of 5,000 lb/hr so a total of 90,000 lb of steam flow in DWPF will be needed to remove 120 lb of mercury. Acid quantities from 115% to 160% resulted in satisfactory mercury removal with 18 hours of boiling time, with the exception of the two lowest acid stoichiometry runs with the blend simulant. If DWPF experiences problems stripping mercury, increasing the acid stoichiometry is likely to improve mercury removal but also will increase hydrogen generation. Simulant testing does not simulate the DWPF heel so starting mercury concentrations will be lower in DWPF and shorter steam stripping times should be achievable.

> Acid quantities and processing times required for nitrite destruction

Acid quantities from 115% to 160% resulted in satisfactory nitrite destruction with 18 hours of boiling. In all runs, the amount of nitrite present in the SRAT product was less than 100 mg/kg, well below the 1,000 mg/kg target. The longer boiling time and low starting nitrite concentration both helped to reduce the nitrite by the end of the SRAT cycle.

Impact of SB5 composition (in particular, manganese, nickel, mercury, and aluminum) on DWPF processing (i.e. acid addition strategy, foaming, hydrogen generation, REDOX control, rheology, etc.)

Acid quantities from 130% to 160% resulted in satisfactory process performance with no significant issues noted. Foaming was noted during formic acid addition, but the addition of antifoam equal to the amount added at DWPF was sufficient to control foaming.

Except for the 115% run, all SRAT products were outside the process limits for yield stress and consistency with the 130%, 145% and 160% runs being below the process limit. The process limits for SME product yield stress were met for the 130% acid run at 45% solids, but the 115% acid run was above process limits and the 145% and 160% runs were slightly below process limits. It should be noted that the trend seen in rheological properties of the simulants are expected to be similar for the DWPF process slurries, but the absolute values for the simulants are not expected to be prototypical in yield stress or consistency. Adjustment in the solids concentration targets and/or acid stoichiometry should be made if processing problems due to viscous process slurries are noted in DWPF.

The pH of the condensate generated for all eight SRAT cycles was acidic, but the 115% acid runs resulted in condensate that was basic by the end of the SRAT cycle and throughout the SME cycle with a pH of approximately 9. All condensates from all other runs had a pH of less than 5.

Measured REDOX values for most runs were slightly higher than the predicted values for the batch simulant. REDOX values increased slightly as acid stoichiometry was increased.

5.0 Recommendations

Based on these two sets of runs, an acid stoichiometry of 130% is recommended for initial SB5 processing with an acid window of 115% to 160%. The SB5 batch simulant used during the testing had a stoichiometric acid requirement of 2.22 mol/L at 130% acid, and the SB5 blend simulant had a stoichiometric acid requirement of 1.45 mol/L at 130% acid. The actual DWPF recommendation will be finalized once SB5 shielded cells processing studies are completed.

Due to an expected high mercury concentration in the SB5 sludge (approximately 2.5 wt %), the total mass of steam required for effective steam stripping should be set at 90,000 lb (18 hours times 5,000 lb/hr). The boiling time can be shortened if better mercury stripping efficiency is experienced in DWPF. Increasing acid stoichiometry may lead to better mercury stripping based on simulant testing.

6.0 References

- ¹ Culbertson, B. H., *Sludge Batch 5 Flowsheet Studies*. HLW/DWPF/TTR-2007-0008 Revision 1, Savannah River Site, Aiken, SC 29808 (2006).
- ² Lambert, D. P., *Task Technical & QA Plan: Sludge Batch 5 Simulant Flowsheet Studies, WSRC-RP-2006-01208 Revision 0*, Savannah River Site, Aiken, SC 29808 (2007).
- ³ Baich, M.A., C.C. Herman, D.R. Best, M.F. Williams, and E.K. Hansen, *Sludge Batch 4 Initial Simulant Flowsheet Studies: Phase I SRAT Results*, WSRC-TR-2005-00194, Savannah River Site, Aiken, SC 29808 (2005).
- ⁴ Herman, C. C, D. R. Best, D. P. Lambert, M. E. Stone, and M. F. Williams, *Sludge Batch 4 without Tank 4 Simulant Flowsheet Studies: Phase I SRAT Results*, WSRC-TR-2005-00493, Savannah River Site, Aiken, SC 29808 (2005).
- ⁵ Larsen, D. D. SB-5 Projected Compositions, e-mail dated 5/5/2008 4:38 pm.
- ⁶ Choi, A. S. SB5 Projections 2, e-mail dated 6/12/2008 10:15 am.
- ⁷ Reboul, S. H., *Noble Metals in As-Received Tank 51 SB5 Qualification Sample*, SRNL-PSE--001222008-00115, Revision 0, Savannah River Site, Aiken, SC 29808 (2006).
- ⁸ Stone, M. E., *Lab-Scale CPC Equipment Set-up*, SRNL-ITS-2006-00074, Savannah River Site, Aiken, SC 29808 (2008).
- ⁹ Manual L29, Procedure ITS-0094, Rev. 1, Laboratory Scale Chemical Process Cell Simulations, Savannah River Site, Aiken, SC 29808 (2005).
- ¹⁰ SB5 Flowsheet CPC Experiments, WSRC-NB-2008-00015.
- ¹¹ Lambert, D. P., *Acid Calculation Spreadsheet for DWPF Simulations, Revision 1 (Dated* 8/14/06), SRNL-PSE-2006-00173, Savannah River Site, Aiken, SC 29808 (2006).
- ¹² Jantzen, C.M., J.R. Zamecnik, D.C. Koopman, C.C. Herman, and J.B. Pickett, *Electron Equivalents Model for Controlling Reduction-Oxidation (Redox) Equilibrium during High Level Waste (HLW) Vitrification*, WSRC-TR-2003-00126, Savannah River Site, Aiken, SC 29808 (2003).
- ¹³ Lambert, D. P., *4L SRAT R&D Directions for SB5 Qualification Flowsheet Development*, SRNL-PSE-2008-00118, Rev. 1, Savannah River Site, Aiken, SC 29808 (2008).
- ¹⁴ Lambert, D. P., 4L SRAT R&D Directions for SB5 Blend Flowsheet Development, SRNL-PSE-2008-00145, Savannah River Site, Aiken, SC 29808 (2008).
- ¹⁵ Stone, M. E., *Sludge Batch 4 Simulant Flowsheet Studies: Phase II Results*, WSRC-STI-2006-00109, Savannah River Site, Aiken, SC 29808 (2006).
- ¹⁶ Stone, M. E., *FY06 Feed Preparation for Melt Rate Testing*, WSRC-STI-2006-0007, Savannah River Site, Aiken, SC 29808 (2006).
- ¹⁷ Manual L29, Procedure ITS-0052, Rev. 1, "Vitrification of Melter Slurries for Glass Redox (Fe²⁺/ Σ Fe) & Chemical Composition Measurement", (2003).
- ¹⁸ Jantzen, C. M. and J. D. Newell, Defense Waste Processing Facility (DWPF) Sludge Batch 5 (SB5) REDOX Validation, SRNL-PSE-2008-00184, Savannah River Site, Aiken, SC 29808 (2008).

7.0 Acknowledgements

The authors would like to acknowledge the following personnel and groups for their assistance in performing the studies and analyzing the required samples:

- D. P. Healy, M. F. Williams, V. J. Williams, J. W. Duvall, D. M. Marsh, and M. A. Pettis for preparing the sludge and ARP/MCU simulants.
- T. O. Burckhalter, J. W. Duvall, D. M. Marsh, I. A. Reamer, V. J. Williams, and R. J. Workman for performing the SRAT/SME runs and assisting with sample analysis.
- P. A. Simmons, W. T. Riley, S. L. Crump, and L. C. Johnson for providing sample analyses.
- M. F. Williams and J. M. Pareizs for assistance with calibration and running the gas chromatographs during the runs.

Appendix A-1: SRAT Receipt Sample Results

Process Science Analytical Laboratory Customer: Dan Lambert Date: 5/23/08 Sample ID: 08-SB5D-2480 Lab ID: 08-1250

Sample ID <u>elemental wt%-calcined 1100C</u> 08-SB5D-2480 (A) 08-SB5D-2480 (B)	Lab ID 08-1250 08-1250	<u>Al</u> 11.9 11.9	<u>B</u> <0.100 <0.100	<u>Ba</u> 0.011 0.011	<u>Ca</u> 2.16 2.45	<u>Cd</u> <0.010 <0.010	<u>Ce</u> 0.013 0.014	<u>Cr</u> 0.026 0.025	<u>Cu</u> 0.011 0.015	<u>Fe</u> 20.6 21.2
oxide wt% - calcined 1100C		<u>AI2O3</u>	<u>B2O3</u>	<u>BaO</u>	<u>CaO</u>	CdO	CeO2	Cr2O3	CuO	Fe2O3
08-SB5D-2480 (A) 08-SB5D-2480 (B)	08-1250 08-1250	22.5 22.5	0.00	0.012 0.012	3.02 3.43	0.00	0.016 0.017	0.038	0.014 0.019	29.5 30.3
elemental wt%-calcined 1100C										
08-SB5D-2480 (A) 08-SB5D-2480 (B)	08-1250 08-1250	<u>K</u> 0.074 0.074	<u>Li</u> <0.100 <0.100	<u>Mg</u> 0.841 0.840	<u>Mn</u> 4.73 4.73	<u>Mo</u> <0.010 <0.010	<u>Na</u> 22.8 22.2	<u>Ni</u> 2.44 2.44	<u>P</u> <0.010 <0.010	<u>Pb</u> <0.010 <0.010
oxide wt% - calcined 1100C	00 4050	1/00	1:00	14.0	14.00	14.00	NI-00	NIC	Door	
08-SB5D-2480 (A) 08-SB5D-2480 (B)	08-1250 08-1250	0.089 0.089	0.000 0.000	<u>мqО</u> 1.40 1.39	7.47 7.47 7.47	0.00 0.00	30.8 30.0	3.10 3.10	0.000 0.000	0.000 0.000
elemental wt%-calcined 1100C 08-SB5D-2480 (A)	08-1250	<u>S</u> 0.140	<u>Si</u> 0.026	<u>Sn</u> <0.100	<u>Sr</u> <0.010	<u>Ti</u> <0.010	<u>Zn</u> <0.010	<u>Zr</u> <0.010		
08-SB5D-2480 (B)	08-1250	0.136	0.018	<0.100	<0.010	<0.010	<0.010	<0.010		
<u>oxide wt% - calcined 1100C</u> 08-SB5D-2480 (A)	08-1250	<u>SO4</u> 0.420	<u>SiO2</u> 0.056	<u>SnO2</u> 0.000	<u>SrO</u> 0.00	<u>TiO2</u> 0.00	<u>ZnO</u> 0.00	<u>ZrO2</u> 0.00	Totals 98.4	
08-SB5D-2480 (B)	08-1250	0.408	0.039	0.000	0.00	0.00	0.00	0.00	98.8	
Units: mg/Kg <u>Sample ID</u> 08-SB5D-2480 (A)	Lab ID 08-1250	<u>F</u> <100	<u>CI</u> <100	<u>NO2</u> 10400	<u>NO3</u> 2820	<u>PO4</u> <100	<u>HCO2</u> <100	<u>SO4</u> 526		
08-SB5D-2480 (B)	08-1250	<100	<100	10500	2790	<100	<100	526		

Weight % Solids Calculations

		Empty	Crucible Wt +	Crucible Wt +				Insoluble	Cruc Wt+	Wt %
Sample	Lab ID	Crucible wt	Wet Sample	Dry wt	Total Solids	Wet Wt	Dry Wt	Solids	Calcined	Calcined
08-SB5D-2480 (A)	08-1250	44.0110	49.3832	44.7924	14.55%	5.3722	0.781	8.12%	44.6081	11.11%
08-SB5D-2480 (B)	08-1250	43.8754	49.3121	44.6686	14.59%	5.4367	0.793	7.94%	44.4773	11.07%
08-SB5D-2480 (C)	08-1250	42.9247	48.3642	43.7192	14.61%	5.4395	0.794	8.07%	43.5279	11.09%
					14.58%			8.0%		11.09%
		Empty	Crucible Wt +	Crucible Wt +		Soluble		Slurry		
Sample	Lab ID	Crucible wt	Wet Sample	Dry wt	Uncorr	Solids		<u>pH</u>	Density	
08-SB5D-2480 (A)	08-1250	42.9303	46.5676	43.1845	6.99%	6.42%		13.5	1.11	
08-SB5D-2480 (B)	08-1250	43.0181	46.2042	43.2484	7.23%	6.65%				
08-SB5D-2480 (C)	08-1250	44.3207	48.0284	44.5842	7.11%	6.53%				
						6.54%				
supernate (mg/L)		AI	<u>B</u>	Ba	Ca	Cd	Ce	<u>Cr</u>	Cu	Fe
08-SB5D-2480 (A)	08-1250	4200	<0.100	<0.100	6.10	<0.100	<0.100	1.29	<1.00	<0.100
08-SB5D-2480 (B)	08-1250	4100	<0.100	<0.100	7.40	<0.100	<0.100	1.29	<1.00	<0.100
supernate (mg/L)		<u>K</u>	<u>Li</u>	Mg	<u>Mn</u>	Mo	Na	Ni	<u>P</u>	Pb
08-SB5D-2480 (A)	08-1250	264	<10.0	<0.100	<0.100	<1.00	30300	<0.100	<10.0	<0.100
08-SB5D-2480 (B)	08-1250	251	<10.0	<0.100	<0.100	<1.00	30200	<0.100	<10.0	<0.100
supernate (mg/L)		<u>s</u>	<u>Si</u>	<u>Sn</u>	<u>Sr</u>	<u>Ti</u>	Zn	<u>Zr</u>		
08-SB5D-2480 (A)	08-1250	102	1.1	<10.0	<10.0	<0.100	<0.100	<0.100		
08-SB5D-2480 (B)	08-1250	106	0.96	<10.0	<10.0	<0.100	<0.100	<0.100		

ACTL Results

Titration, Total Base		pH 7	pH 5.5
		Result, m-	Result, m-
	Sample ID	mole/g	mole/g
	SB5Da	0.8203	0.9371
	SB5Db	0.8192	0.9363
	SB5Dc	0.8170	0.9353
	Average	0.8188	0.9362

AD Results

				Mass				
	Mass Empty	Mass		sample				
	60 mL	sample		bottle with	Total Mass,	Total		
	sample	bottle with	Sample	sludge and	sample +	Volume,		Corrected
Sample ID	bottle, g	sludge, g	Mass, g	water, g	water, g	mL	TIC, mg/L	TIC, mg/kg
08_SB5D_2481A	12.687	14.711	2.024	52.78	40.093	39.82	112	2,446
08_SB5D_2481A	12.756	14.77	2.014	52.899	40.143	39.87	115	2,527
08_SB5D_2481A	12.649	14.678	2.029	52.726	40.077	39.81	114	2,483
Average								2,485

Sludge Density

1.10995

Appendix A-1: SRAT Receipt Sample Results

Process Science Analytical Laboratory Customer: Dan Lambert Date: 7/02/08 Sample ID: 08-SB5C-2477 (SB5-C6-12-2008)

Lab ID: 08-1514

Sample ID <u>elemental wt%-calcined 1100C</u> 08-SB5C-2477 (A) 08-SB5C-2477 (B)	Lab ID 08-1514 08-1514	<u>AI</u> 12.7 12.4	<u>B</u> <0.100 <0.100	<u>Ba</u> 0.013 0.013	<u>Ca</u> 2.09 2.13	<u>Cd</u> <0.010 <0.010	<u>Ce</u> 0.023 0.023	<u>Cr</u> 0.017 0.016	<u>Cu</u> 0.021 0.019	<u>Fe</u> 21.2 21.7
<u>oxide wt% - calcined 1100C</u> 08-SB5C-2477 (A) 08-SB5C-2477 (B)	08-1514 08-1514	<u>Al2O3</u> 24.0 23.4	<u>B2O3</u> 0.00 0.00	<u>BaO</u> 0.015 0.015	<u>CaO</u> 2.93 2.98	<u>CdO</u> 0.00 0.00	<u>CeO2</u> 0.028 0.028	<u>Cr2O3</u> 0.025 0.023	<u>CuO</u> 0.026 0.024	<u>Fe2O3</u> 30.3 31.0
<u>elemental wt%-calcined 1100C</u> 08-SB5C-2477 (A) 08-SB5C-2477 (B)	08-1514 08-1514	<u>K</u> 0.158 0.156	<u>Li</u> <0.100 <0.100	<u>Mg</u> 0.890 0.890	<u>Mn</u> 5.05 5.05	<u>Mo</u> <0.010 <0.010	<u>Na</u> 17.3 17.6	<u>Ni</u> 2.63 2.62	<u>P</u> 0.111 0.111	<u>Pb</u> <0.010 <0.010
<u>oxide wt% - calcined 1100C</u> 08-SB5C-2477 (A) 08-SB5C-2477 (B)	08-1514 08-1514	<u>K2O</u> 0.190 0.187	<u>Li2O</u> 0.000 0.000	<u>MgO</u> 1.48 1.48	<u>MnO2</u> 7.98 7.98	<u>MoO3</u> 0.00 0.00	<u>Na2O</u> 23.4 23.8	<u>NiO</u> 3.34 3.33	<u>P2O5</u> 0.254 0.254	<u>PbO</u> 0.000 0.000
<u>elemental wt%-calcined 1100C</u> 08-SB5C-2477 (A) 08-SB5C-2477 (B)	08-1514 08-1514	<u>S</u> 0.159 0.157	<u>Si</u> 1.26 1.27	<u>Sn</u> <0.100 <0.100	<u>Sr</u> <0.010 <0.010	<u>Ti</u> <0.010 <0.010	<u>Zn</u> <0.010 <0.010	<u>Zr</u> <0.010 <0.010		
<u>oxide wt% - calcined 1100C</u> 08-SB5C-2477 (A) 08-SB5C-2477 (B)	08-1514 08-1514	<u>SO4</u> 0.477 0.471	<u>SiO2</u> 2.70 2.72	<u>SnO2</u> 0.000 0.000	<u>SrO</u> 0.00 0.00	<u>TiO2</u> 0.00 0.00	<u>ZnO</u> 0.00 0.00	<u>ZrO2</u> 0.00 0.00	<u>Totals</u> 97.1 97.7	
Units: mg/Kg <u>Sample ID</u> 08-SB5C-2477 (A) 08-SB5C-2477 (B)	<u>Lab ID</u> 08-1514 08-1514	<u>F</u> <100 <100	<u>CI</u> <100 <100	<u>NO2</u> 6210 6140	<u>NO3</u> 3940 3940	<u>PO4</u> <100 <100	<u>HCO2</u> <100 <100	<u>SO4</u> 405 405	<u>C2O4</u> 288 287	

Weight % Solids Calculations

		Empty	Crucible Wt +	Crucible Wt +				Insoluble	Cruc Wt+	Wt %
Sample	Lab ID	Crucible wt	Wet Sample	Dry wt	Total Solids	Wet Wt	Dry Wt	Solids	Calcined	Calcined
08-SB5C-2477 (A)	08-1514	44.6504	49.9708	45.3133	12.5%	5.3204	0.663	7.82%	45.1558	9.50%
08-SB5C-2477 (B)	08-1514	45.3284	50.7093	45.9999	12.5%	5.3809	0.671	7.88%	45.8411	9.53%
					12.47			7.85		9.51
		Empty	Crucible Wt +	Crucible Wt +		Soluble		Slurry		
Sample	Lab ID	Crucible wt	Wet Sample	Dry wt	Uncorr	Solids		<u>pH</u>	Density	
08-SB5C-2477 (A)	08-1514	45.4630	47.5642	45.5688	5.04%	4.64%		13.4	1.09	
08-SB5C-2477 (B)	08-1514	44.7255	46.8160	44.8298	4.99%	4.60%				
						4.62	-			

ACTL Results

Titration, Total Base pH 7 pH 5.5 Result, m-Result, m-Sample ID mole/g mole/g 2.1731 0.5822 0.6662 2.1956 0.579 0.6648 2.169 0.5774 0.663 Average 0.5795 0.6647

AD Results

				Mass				
	Mass Empty	Mass		sample				
	60 mL	sample		bottle with	Total Mass,	Total		
	sample	bottle with	Sample	sludge and	sample +	Volume,		Corrected
Sample ID	bottle, g	sludge, g	Mass, g	water, g	water, g	mL	TIC, mg/L	TIC, mg/kg
08_SB5C_2478A	12.556	14.57	2.014	52.576	40.02	39.79	72.6	1,434
08_SB5C_2478B	12.587	14.627	2.04	52.659	40.072	39.84	66.5	1,299
08_SB5C_2478C	12.574	14.614	2.04	52.906	40.332	40.09	65.2	1,281
Average								1,338
Slurry Density, g/mL	1.09							

Slurry Density, g/mL

		Append	lix A-2: 5	SRAT Pro	duct Sam	ple Results				
SRNI Process Science Analytica	llaboratory									
Customer: Dan Lambert	Laboratory									
Date: 8/1/08										
Sample ID: SRAT Prod - 08-SB5-7	7-2505, 9-2516,	8-2487, 10	-2496							
Lab ID: 08-13/2-13/9										
Sample ID	Lab ID									
elemental wt%-calcined 1100C		<u>AI</u>	<u>B</u>	<u>Ba</u>	<u>Ca</u>	<u>Cr</u>	<u>Cu</u>	Fe	<u>K</u>	<u>Li</u>
08-SB5-7-2505 (A)	08-1372	11.4	<0.100	0.013	2.04	0.027	0.012	18.8	0.084	<0.100
08-SB5-9-2516 (A)	08-1372	11.4	<0.100	0.013	2.17	0.027	0.024	18.4	0.065	<0.100
08-SB5-9-2516 (B)	08-1373	11.4	<0.100	0.013	2.28	0.028	0.009	18.4	0.111	<0.100
08-SB5-8-2487 (A)	08-1374	11.4	<0.100	0.013	2.11	0.028	0.013	18.3	0.100	<0.100
08-SB5-8-2487 (B)	08-1374	11.3	<0.100	0.013	2.05	0.028	0.015	18.5	0.099	<0.100
08-SB5-10-2496 (A)	08-1375	11.8	<0.100	0.014	2.00	0.029	0.016	18.6	0.088	<0.100
00-003-10-2430 (D)	00-1373	11.7	NO.100	0.015	1.52	0.020	0.014	10.0	0.003	<0.100
oxide wt% - calcined 1100C		<u>Al2O3</u>	<u>B2O3</u>	<u>BaO</u>	<u>CaO</u>	<u>Cr2O3</u>	CuO	Fe2O3	<u>K2O</u>	<u>Li20</u>
08-SB5-7-2505 (A)	08-1372	21.6	0.0	0.015	2.86	0.040	0.015	26.9	0.101	0.000
08-SB5-7-2505 (B)	08-1372	21.5	0.0	0.015	3.04	0.040	0.030	26.3	0.102	0.000
08-SB5-9-2516 (B)	08-1373	≥1.0 21.5	0.0	0.015	3.00	0.042	0.014	20.3 26.3	0.141	0.000
08-SB5-8-2487 (A)	08-1374	21.6	0.0	0.015	2.96	0.041	0.016	26.1	0.119	0.000
08-SB5-8-2487 (B)	08-1374	21.4	0.0	0.015	2.86	0.041	0.018	26.4	0.119	0.000
08-SB5-10-2496 (A)	08-1375	22.3	0.0	0.015	2.79	0.042	0.020	26.6	0.106	0.000
08-SB5-10-2496 (B)	08-1375	22.2	0.0	0.015	2.69	0.042	0.018	26.8	0.106	0.000
elemental wt%-calcined 1100C		Ma	Mn	Na	Ni	Р	Pb	Pd	Rh	Ru
08-SB5-7-2505 (A)	08-1372	0.845	4.51	22.4	2.33	<0.100	<0.010	<0.100	<0.100	0.014
08-SB5-7-2505 (B)	08-1372	0.841	4.44	22.4	2.28	<0.100	<0.010	<0.100	<0.100	0.023
08-SB5-9-2516 (A)	08-1373	0.852	4.31	22.5	2.27	<0.100	<0.010	<0.100	<0.100	0.014
08-SB5-8-2487 (A)	08-1373	0.847	4.33	22.4	2.20	<0.100	<0.010	<0.100	<0.100	0.014
08-SB5-8-2487 (B)	08-1374	0.853	4.53	22.1	2.31	<0.100	<0.010	<0.100	<0.100	0.016
08-SB5-10-2496 (Å)	08-1375	0.857	4.27	21.9	2.24	<0.100	<0.010	<0.100	<0.100	0.014
08-SB5-10-2496 (B)	08-1375	0.863	4.35	21.8	2.27	<0.100	<0.010	<0.100	<0.100	0.013
oxide wt% - calcined 1100C		MaQ	MnO2	Na2O	NiO	P205	PhO	PdO	RhO2	RuO2
08-SB5-7-2505 (A)	08-1372	1.40	7.13	30.2	2.96	0.000	0.000	0.000	0.000	0.018
08-SB5-7-2505 (B)	08-1372	1.40	7.01	30.3	2.89	0.000	0.000	0.000	0.000	0.030
08-SB5-9-2516 (A)	08-1373	1.41	6.81	30.4	2.88	0.000	0.000	0.000	0.000	0.019
08-SB5-9-2516 (B)	08-1373	1.41	6.85 7.10	30.2	2.90	0.000	0.000	0.000	0.000	0.018
08-SB5-8-2487 (B)	08-1374	1.41	7.16	29.8	2.94	0.000	0.000	0.000	0.000	0.013
08-SB5-10-2496 (Á)	08-1375	1.42	6.74	29.6	2.84	0.000	0.000	0.000	0.000	0.018
08-SB5-10-2496 (B)	08-1375	1.43	6.87	29.5	2.88	0.000	0.000	0.000	0.000	0.017
alamantal wt% calcined 1100C		6	61	Sn	6 7	т	Zn	7r		
08-SB5-7-2505 (A)	08-1372	<u> </u>	0.051	0.020	<0.010	<0.010	<0.010	<0.010		
08-SB5-7-2505 (B)	08-1372	0.165	0.045	0.023	<0.010	<0.010	<0.010	<0.010		
08-SB5-9-2516 (A)	08-1373	0.168	0.051	0.023	<0.010	<0.010	<0.010	<0.010		
08-SB5-9-2516 (B)	08-1373	0.168	0.048	0.022	<0.010	<0.010	<0.010	<0.010		
08-SB5-8-2487 (A)	08-1374	0.168	0.048	0.022	<0.010	<0.010	<0.010	<0.010		
08-SB5-10-2496 (A)	08-1375	0.167	0.039	0.023	<0.010	<0.010	<0.010	<0.010		
08-SB5-10-2496 (B)	08-1375	0.164	0.040	0.021	<0.010	<0.010	<0.010	<0.010		
ovido utili 1 11000		SO 1	8:00	8-00	0-0	TIOO	7-0	7-00	Tata'-	
<u>οχίαε wt% - calcined 1100C</u> 08-SB5-7-2505 (Δ)	08-1372	0.483	0.102	0.026	<u>5rU</u>	0.00	<u>2nU</u>	<u>2rO2</u> 0.00	<u>I OTAIS</u> 93 8	
08-SB5-7-2505 (B)	08-1372	0.494	0.097	0.030	0.00	0.00	0.00	0.00	93.3	
08-SB5-9-2516 (A)	08-1373	0.505	0.108	0.029	0.00	0.00	0.00	0.00	93.3	
08-SB5-9-2516 (B)	08-1373	0.503	0.102	0.028	0.00	0.00	0.00	0.00	93.2	
08-SB5-8-2487 (A)	08-1374	0.505	0.102	0.028	0.00	0.00	0.00	0.00	93.1	
08-SB5-10-2496 (A)	08-1375	0.501	0.090	0.029	0.00	0.00	0.00	0.00	93.1	
08-SB5-10-2496 (B)	08-1375	0.492	0.085	0.027	0.00	0.00	0.00	0.00	93.2	
							-			

<u>anions (mg/Kg)</u>		<u>F</u>	CI	<u>NO2</u>	NO3	<u>SO4</u>	PO4	HCO2		
08-SB5-7-2505 (A)	08-1372	<100	314	<100	29300	<100	<100	62000		
08-SB5-7-2505 (B)	08-1372	<100	318	<100	29800	<100	<100	62400		
08-SB5-9-2516 (A)	08-1373	<100	323	<100	34400	235	<100	70900		
08-SB5-9-2516 (B)	08-1373	<100	327	<100	35300	237	<100	72500		
08-SB5-8-2487 (A)	08-1374	<100	337	<100	31200	150	<100	67500		
08-SB5-8-2487 (B)	08-1374	<100	339	<100	31300	155	<100	67300		
08-SB5-10-2496 (A)	08-1375	<100	311	<100	38200	283	<100	77600		
08-SB5-10-2496 (B)	08-1375	<100	313	<100	38000	281	<100	77800		
08-SB5-7-2505	08-1372	<100	316	<100	29,550	<100	<100	62,200		
08-SB5-9-2516	08-1373	<100	325	<100	34,850	194	<100	71,700		
08-SB5-8-2487	08-1374	<100	338	<100	31,250	153	<100	67,400		
08-SB5-10-2496	08-1375	<100	312	<100	38,100	282	<100	77,700		
		1	Neight %	Solids Ca	lculations					
		Empty	Crucible Wt +	Crucible Wt +				Insoluble	Cruc Wt+	Wt %
Sample		Crucible wt	Wet Sample	Dry wt	Total Solids	Wet Wt	Dry Wt	Solids	Calcined	Calcined
08-SB5-7-2505 (A)	08-1372	43.7363	49.5856	45.2355	25.6%	5.8493	1.499	10.8%	44.6329	15.3%
08-SB5-7-2505 (B)	08-1372	43.0288	48.9617	44.5508	25.7%	5.9329	1.522	11.1%	43.9384	15.3%
					25.642%			10.922%		15.330%
08-SB5-9-2516 (A)	08-1373	42.3517	48.2841	43.7763	24.0%	5.9324	1.425	10.9%	43.1637	13.7%
08-SB5-9-2516 (B)	08-1373	43.8465	49.7728	45.2689	24.0%	5.9263	1.422	10.2%	44.6554	13.6%
					24.008%			10.579%		13.668%
08-SB5-8-2487 (A)	08-1374	43.9078	49.6660	45.2862	23.9%	5.7582	1.378	10.0%	44.7059	13.9%
08-SB5-8-2487 (B)	08-1374	43.9281	49.8130	45.3393	24.0%	5.8849	1.411	9.68%	44.7433	13.9%
					23.959%			9.865%		13.856%
08-SB5-10-2496 (A)	08-1375	43.2751	49.2118	44.7019	24.0%	5.9367	1.427	10.8%	44.0550	13.1%
08-SB5-10-2496 (B)	08-1375	42.1893	48.1201	43.6308	24.3%	5.9308	1.442	11.1%	42.9754	13.3%
					24.169%			10.912%		13.196%
		Empty	Crucible Wt +	Crucible Wt +		Soluble				
Sample		Crucible wt	Wet Sample	Dry wt	Uncorr	Solids		<u>pH</u>	Density	
08-SB5-7-2505 (A)	08-1372	42.3872	43.4910	42.5712	16.67%	14.9%		8.12	1.181	
08-SB5-7-2505 (B)	08-1372	44.1676	45.2861	44.3508	16.38%	14.6%				
08-SB5-9-2516 (A)	08-1373	42.0052	43.1176	42.1686	14.69%	13.1%		5.06	1.179	
08-SB5-9-2516 (B)	08-1373	44.0245	45.1468	44.1967	15.34%	13.8%				
08-SB5-8-2487 (A)	08-1374	43.6629	44.7864	43.8364	15.44%	13.9%		5.57	1.176	
08-SB5-8-2487 (B)	08-1374	43.2445	44.3747	43.4234	15.83%	14.3%				
08-SB5-10-2496 (A)	08-1375	44.9318	46.0514	45.0984	14.88%	13.3%		4.87	1.181	
08-SB5-10-2496 (B)	08-1375	45.1006	46.2214	45.2674	14.88%	13.2%				

		Append	lix A-2:	SRAT Pro	duct Sam	ple Results	1		1	
SRNL Process Science Analytica	I Laboratory									
Customer: Dan Lambert										
Date: 8/1/08	14 0504 40 054	E 40 0557	44.0500							
Sample ID: SKAT Prod - 08-585-	11-2534, 12-254	13-2007,	14-2008							
Lab ID: 08-1526-1529										
Units: wt%, mg/kg, mg/L										
Sample ID	l ah ID									
elemental wt%-calcined 1100C	Labib	Δ1	в	Ba	Ca	Cr	Cu	Fe	ĸ	Li
08-SB5-11-2534 (A)	08-1526	12.2	<0.100	0.016	2.28	0.019	0.011	20.4	0.180	<0.100
08-SB5-11-2534 (B)	08-1526	12.2	<0.100	0.015	2.09	0.019	0.010	20.9	0.182	<0.100
08-SB5-12-2545 (A)	08-1527	12.4	<0.100	0.016	2.05	0.020	0.012	21.1	0.159	<0.100
08-SB5-12-2545 (B)	08-1527	12.3	<0.100	0.015	2.07	0.020	0.012	21.1	0.163	<0.100
08-SB5-13-2557 (A)	08-1528	12.2	<0.100	0.016	2.14	0.020	0.007	20.0	0.151	<0.100
08-SB5-13-2557 (B)	08-1528	12.4	<0.100	0.015	2.12	0.019	0.008	20.3	0.162	<0.100
08-SB5-14-2568 (A)	08-1529	12.1	<0.100	0.016	2.02	0.019	0.010	20.1	0.239	<0.100
08-SB5-14-2568 (B)	08-1529	12.0	<0.100	0.015	2.00	0.018	0.014	20.4	0.242	<0.100
08-SB5-15-2584 (A)	08-1671	10.9	<0.100	0.037	2.14	0.032	0.013	17.5	0.154	<0.100
08-SB5-15-2584 (B)	08-1671	11.0	<0.100	0.037	2.21	0.032	0.013	17.5	0.159	<0.100
oxide wt% - calcined 1100C		<u>Al2O3</u>	<u>B2O3</u>	BaO	CaO	<u>Cr2O3</u>	<u>CuO</u>	Fe2O3	<u>K2O</u>	<u>Li20</u>
08-SB5-11-2534 (A)	08-1526	23.0	0.0	0.017	3.19	0.028	0.014	29.2	0.216	0.000
08-SB5-11-2534 (B)	08-1526	23.0	0.0	0.017	2.93	0.027	0.013	29.8	0.219	0.000
08-SB5-12-2545 (A)	08-1527	23.5	0.0	0.018	2.87	0.029	0.015	30.1	0.191	0.000
08-SB5-12-2545 (B)	08-1527	23.3	0.0	0.017	2.89	0.029	0.014	30.2	0.195	0.000
08-SB5-13-2557 (A)	08-1528	23.1	0.0	0.018	3.00	0.029	0.009	28.6	0.182	0.000
08-585-13-2557 (B)	08-1528	23.4	0.0	0.017	2.97	0.028	0.010	29.0	0.194	0.000
08-SB5-14-2569 (B)	09-1529	22.9	0.0	0.017	2.02	0.028	0.012	20.0	0.207	0.000
08-SB5-15-2584 (A)	08-1671	22.7	0.0	0.010	2.00	0.027	0.017	29.2	0.290	0.000
08-SB5-15-2584 (B)	08-1671	20.0	0.00	0.041	3.00	0.047	0.016	25.0	0.103	0.000
	00 1011	20.0	0.00	0.011	0.10	0.017	0.010	20.0	0.101	0.000
elemental wt%-calcined 1100C		Mg	Mn	Na	Ni	Р				
08-SB5-11-2534 (A)	08-1526	0.948	4.80	18.2	2.24	0.111				
08-SB5-11-2534 (B)	08-1526	0.936	4.87	18.2	2.49	0.118				
08-SB5-12-2545 (A)	08-1527	0.978	4.87	18.4	2.52	0.121				
08-SB5-12-2545 (B)	08-1527	0.950	4.92	18.1	2.29	0.119				
08-SB5-13-2557 (A)	08-1528	0.973	4.82	17.7	2.45	0.118				
08-SB5-13-2557 (B)	08-1528	0.949	4.92	18.0	2.55	0.116				
08-SB5-14-2568 (A)	08-1529	0.941	5.37	17.2	2.65	0.114				
08-SB5-14-2568 (B)	08-1529	0.922	5.56	17.2	2.65	0.115				
08-SB5-15-2584 (A)	08-1671	0.833	3.95	20.5	1.97	<0.010				
08-SB5-15-2584 (B)	08-1671	0.817	3.99	20.4	1.97	<0.010				
				NL 00	NEO	5005				
Oxide wt% - calcined 1100C	00 4500	MgO	<u>MnO2</u>	<u>Na2O</u>	NIO	P205				
08-5B5-11-2534 (A)	08-1526	1.57	7.59	24.5	2.84	0.255				
08-SB5-12-2545 (A)	09-1520	1.00	7.09	24.0 24.9	3.10	0.209				
00-303-12-2343 (A)	08-1527	1.02	7.09	24.0	3.20	0.270				
08-SB5-13-2557 (Δ)	08-1527	1.00	7.62	23.0	3.11	0.273				
08-SB5-13-2557 (R)	08-1528	1.52	7.02	23.3	3.24	0.270				
08-SB5-14-2568 (A)	08-1529	1.56	8 4 8	23.3	3.37	0.260				
08-SB5-14-2568 (B)	08-1529	1.53	8,79	23.2	3.37	0.263				
08-SB5-15-2584 (A)	08-1671	1.39	6.24	27.7	2.51	0.000				
08-SB5-15-2584 (B)	08-1671	1.41	6.30	27.5	2.50	0.000				
			2.00							

alamantal wtl/ calainad 11000		e	6:	C n	6.	т:	7n	7.		
elemental wt%-calcined 1100C		0	31	<u>ən</u>	<u>ər</u>	<u> </u>	<u>20</u>	<u>ZI</u>		
08-SB5-11-2534 (A)	08-1526	0.176	1.33	0.017	<0.010	<0.010	<0.010	<0.010		
08-SB5-11-2534 (B)	08-1526	0.180	1.24	0.015	<0.010	<0.010	<0.010	<0.010		
08-SB5-12-2545 (A)	08-1527	0.178	1.25	0.016	<0.010	<0.010	<0.010	<0.010		
08-SB5-12-2545 (B)	08-1527	0 179	1 25	0.017	<0.010	<0.010	<0.010	<0.010		
00 CD5 12 2545 (D)	00 1527	0.175	1.20	0.017	-0.010	-0.010	0.010	-0.010		
08-5B5-13-2557 (A)	08-1528	0.178	1.24	0.018	<0.010	<0.010	<0.010	<0.010		
08-SB5-13-2557 (B)	08-1528	0.177	1.23	0.016	<0.010	<0.010	<0.010	<0.010		
08-SB5-14-2568 (A)	08-1529	0.179	1.35	0.023	<0.010	<0.010	<0.010	<0.010		
08-SB5-14-2568 (B)	08-1529	0.178	1.30	0.020	<0.010	<0.010	<0.010	<0.010		
08-SB5-15-2584 (A)	08-1671	0 337	1 16			3 64	0.043	0.062		
00 CD5 15 2504 (A)	00 1671	0.337	1.10			3.04	0.040	0.062		
00-365-15-2504 (B)	00-1071	0.342	1.15			3.73	0.035	0.000		
oxide wt% - calcined 1100C		<u>SO4</u>	<u>SiO2</u>	<u>SnO2</u>	<u>SrO</u>	<u>TiO2</u>	<u>ZnO</u>	<u>ZrO2</u>	um of Oxide	<u>s</u>
08-SB5-11-2534 (A)	08-1526	0.528	2.84	0.021	0.00	0.00	0.00	0.00	95.9	
08-SB5-11-2534 (B)	08-1526	0.539	2.66	0.019	0.00	0.00	0.00	0.00	96.5	
08-SB5-12-2545 (A)	08-1527	0.533	2.68	0.020	0.00	0.00	0.00	0.00	97.6	
00 CD5 12 2045 (A)	00 1527	0.555	2.00	0.020	0.00	0.00	0.00	0.00	00.0	
00-3B3-12-2343 (B)	00-1527	0.556	2.07	0.021	0.00	0.00	0.00	0.00	96.9	
08-SB5-13-2557 (A)	08-1528	0.535	2.66	0.022	0.00	0.00	0.00	0.00	94.7	
08-SB5-13-2557 (B)	08-1528	0.530	2.64	0.020	0.00	0.00	0.00	0.00	96.0	
08-SB5-14-2568 (A)	08-1529	0.537	2.89	0.029	0.00	0.00	0.00	0.00	95.2	
08-SB5-14-2568 (B)	08-1529	0.535	2.78	0.026	0.00	0.00	0.00	0.00	95.6	
08-SB5-15-2584 (A)	08-1671	1 01	2 47			6.09	0.053	0.084	96.4	
00 CD5 15 2504 (A)	00 1671	1.01	2.46			6.00	0.000	0.004	06.7	
00-3D3-13-2304 (B)	00-10/1	1.02	2.40			0.23	0.041	0.009	90.7	
<u>anions (mg/Kg)</u>		<u>F</u>	<u>CI</u>	<u>NO2</u>	<u>NO3</u>	<u>SO4</u>	<u>P04</u>	<u>HCO2</u>	C2O4	
08-SB5-11-2534 (A)	08-1526	<100	357	<100	20900	<100	<100	62900		
08-SB5-11-2534 (B)	08-1526	<100	355	<100	20300	<100	<100	61600		
08-SB5-12-2545 (A)	08-1527	<100	327	<100	23600	<100	<100	58400		
08-SB5-12-2545 (B)	08-1527	<100	330	<100	23600	<100	<100	58000		
00-5B5-12-2545 (B)	00-1527	100	330	-100	23000	100	100	50000		
08-5B5-13-2557 (A)	08-1528	<100	331	<100	26/00	<100	<100	62800		
08-SB5-13-2557 (B)	08-1528	<100	333	<100	25600	108	<100	60600		
08-SB5-14-2568 (A)	08-1529	<100	342	<100	28400	186	<100	73900		
08-SB5-14-2568 (B)	08-1529	<100	341	<100	28800	184	<100	74900		
08-SB5-15-2584 (A)	08-1671		352	<100	27900	2040		57200	1930	
08-SB5-15-2584 (B)	08-1671		348	<100	28000	2150		57200	1850	
00-0B5-15-2504 (B)	00-10/1		340	100	20000	2150		57200	1000	
			Weight %	Solids Ca	lculations					
		Empty	Crucible Wt +	Crucible Wt +				Insoluble	Cruc Wt+	Wt %
Sample		Crucible wt	Wet Sample	Dry wt	Total Solids	Wet Wt	Drv Wt	Solids	Calcined	Calcined
08-SB5-11-2534 (A)	08-1526	43 6795	10 2605	45 1832	26 90%	5 5900	1 504	13.6%	44 6003	16.6%
00-005-11-2054 (A)	00 1520	40.07.00	40.0074	45.0050	20.00%	5.0000	1.004	10.070	44.0005	10.070
00-3D3-11-2334 (B)	00-1520	43.7421	49.23/1	40.2200	21.00%	5.4950	1.484	14.1%	44.0005	10.7%
08-SB5-12-2545 (A)	08-1527	44.8901	50.497	46.3169	25.45%	5.6069	1.427	12.2%	45.7587	15.5%
08-SB5-12-2545 (B)	08-1527	43.0164	48.6843	44.4676	25.60%	5.6679	1.451	12.4%	43.902	15.6%
08-SB5-13-2557 (A)	08-1528	42.3529	48.1796	43.8481	25.66%	5.8267	1.495	13.4%	43.2379	15.2%
08-SB5-13-2557 (B)	08-1528	43.2346	48.9672	44,7072	25.69%	5.7326	1.473	13.5%	44.1066	15.2%
08-SB5-14-2568 (A)	08-1529	42 1907	48 0666	43 7541	26.61%	5 8759	1 563	14.6%	43 0870	15.3%
08-SB5-14-2568 (B)	08-1520	43.0300	18 005	44 6408	27.00%	5 9650	1 611	15 1%	13 9514	15.4%
00 CD5 14 2500 (D)	00 1671	43.0000	40.000	44 6760	24.549/	5.5050	1.011	14 40/	44.0500	15.4%
06-3B5-15-2564 (A)	00-1071	43.2270	40.7300	44.5756	24.31%	5.5036	1.349	11.4%	44.0509	13.0%
08-SB5-15-2584 (B)	08-16/1	44.0044	49.3758	45.3148	24.40%	5.3714	1.310	11.7%	44.8008	14.8%
		Empty	Crucible Wt +	Crucible Wt +		Soluble				
Sample		Crucible wt	Wet Sample	Dry wt	Uncorr	Solids		<u>pH</u>	Density	
08-SB5-11-2534 (A)	08-1526	42.5148	44.7414	42.8579	15.41%	13.3%		4.22	1.204	-
08-SB5-11-2534 (B)	08-1526	44,0144	46,2463	44,3494	15.01%	12.9%				
08-SB5-12-2545 (A)	08-1527	42 5167	44 7437	42 8536	15 12%	13 3%		4 1 2	1 105	
00-000-12-2040 (A)	00 1527	46 4075	47 2040	45 4004	15.13/0	10.0 /0		7.12	1.195	
U0-3B3-12-2343 (B)	08-152/	45.1075	47.3019	45.4381	15.07%	13.2%				
08-SB5-13-2557 (A)	08-1528	44.5483	46.7650	44.8615	14.13%	12.2%		4.04	1.193	
08-SB5-13-2557 (B)	08-1528	43.2708	45.5011	43.5849	14.08%	12.2%				
08-SB5-14-2568 (A)	08-1529	42.3673	44.5880	42.6804	14.10%	12.0%		4.11	1.192	
08-SB5-14-2568 (B)	08-1529	40.4674	42.6912	40.7788	14.00%	11.9%				
08-SB5-15-2584 (A)	08-1671	42 5073	43 6253	42 6729	14 81%	13.13%		5.38	1,173	
08-SB5-15-2594 (P)	08-1671	10 4260	11 55 10	40 5090	1/ /10/	12 720/		0.00		
U0-303-13-2304 (D)	10/1	40.4309	41.0040	40.0900	14.4170	14.1370			1	

		Appen	dix A-3:	SME Pro	duct Samp	le Results				
SRNL Process Science Analytica	l Laboratory									
Customer: Dan Lambert										
Date: 8/1/08										
Sample ID: SME Prod - 08-SB5-7-	-2514, 9-2525, 8	3-2529, 10-2	2530							
Lab ID: 08-1376-1379										
onits: wt%, ing/Kg, ing/L										
Sample ID	Lab ID									
elemental wt%-calcined 1100C		AI	<u>B</u>	Ba	<u>Ca</u>	Cr	<u>Cu</u>	Fe	<u>K</u>	<u>Li</u>
08-SB5-7-2514 (A)	08-1376	4.39	1.25	0.011	0.580	0.020	0.025	6.94	0.077	2.20
08-SB5-7-2514 (B)	08-1376	4.33	1.27	0.011	0.592	0.020	0.025	6.77	0.078	2.24
08-585-9-2525 (A)	08-1377	4.29	1.42	0.011	0.556	0.020	<0.010	6.78	0.098	2.23
08-SB5-8-2529 (A)	08-1378	4.20	1.40	0.011	0.592	0.020	0.017	6.96	0.090	2.24
08-SB5-8-2529 (B)	08-1378	4.23	1.33	0.011	0.586	0.019	0.017	6.89	0.099	2.25
08-SB5-10-2530 (A)	08-1379	4.22	1.30	0.011	0.605	0.020	0.020	6.67	0.098	2.16
08-SB5-10-2530 (B)	08-1379	4.31	1.29	0.011	0.609	0.020	0.022	6.69	0.094	2.20
		41000	Dece	D 0	0.0	0-000	0.0	F-000	1/00	1:00
<u>oxide wt% - calcined 1100C</u>	09-1376	<u>AI2O3</u>	<u>B2O3</u>	<u>BaO</u>	<u>CaO</u>	<u>Cr2O3</u>	<u>CuO</u>	<u>Fe2O3</u>	<u>K20</u>	<u>LI20</u>
08-SB5-7-2514 (A)	08-1376	0.3U 8 18	4.03	0.012	0.829	0.029	0.032	9.93	0.093	4.73
08-SB5-9-2525 (A)	08-1377	8.10	4.57	0.012	0.778	0.029	0.000	9.70	0.117	4.79
08-SB5-9-2525 (B)	08-1377	8.05	4.52	0.012	0.785	0.028	0.000	9.79	0.115	4.81
08-SB5-8-2529 (A)	08-1378	8.12	4.28	0.012	0.829	0.029	0.021	9.96	0.120	4.75
08-SB5-8-2529 (B)	08-1378	8.00	4.29	0.012	0.820	0.028	0.021	9.86	0.119	4.84
08-SB5-10-2530 (A)	08-1379	7.98	4.18	0.013	0.847	0.029	0.025	9.54	0.117	4.65
08-SB5-10-2530 (B)	08-1379	8.14	4.16	0.012	0.853	0.029	0.027	9.57	0.113	4.72
elemental wt%-calcined 1100C		Ma	Mn	Na	Ni	Р	Pb	Pd	Rh	Ru
08-SB5-7-2514 (A)	08-1376	0.350	1.63	12.1	0.801	<0.100	<0.010	<0.100	<0.100	0.010
08-SB5-7-2514 (B)	08-1376	0.346	1.60	12.0	0.794	<0.100	<0.010	<0.100	<0.100	0.013
08-SB5-9-2525 (A)	08-1377	0.334	1.60	11.8	0.775	<0.100	<0.010	<0.100	<0.100	<0.010
08-SB5-9-2525 (B)	08-1377	0.335	1.62	11.8	0.772	<0.100	<0.010	<0.100	<0.100	<0.010
08-SB5-8-2529 (A)	08-1378	0.350	1.62	11.8	0.792	<0.100	0.015	<0.100	<0.100	<0.010
08-SB5-10-2530 (A)	08-1379	0.340	1.55	11.8	0.784	<0.100	<0.014	<0.100	<0.100	0.013
08-SB5-10-2530 (B)	08-1379	0.337	1.55	12.0	0.773	<0.100	<0.010	<0.100	<0.100	0.015
oxide wt% - calcined 1100C		MgO	MnO2	<u>Na2O</u>	NiO	<u>P2O5</u>	PbO	<u>PdO</u>	RhO2	RuO2
08-SB5-7-2514 (A)	08-1376	0.581	2.57	16.4	1.02	0.000	0.000	0.000	0.000	0.014
08-SB5-7-2514 (B) 08-SB5-9-2525 (A)	08-1376	0.574	2.52	16.3	0.984	0.000	0.000	0.000	0.000	0.017
08-SB5-9-2525 (B)	08-1377	0.555	2.55	15.9	0.980	0.000	0.000	0.000	0.000	0.000
08-SB5-8-2529 (A)	08-1378	0.581	2.57	15.9	1.01	0.000	0.016	0.000	0.000	0.000
08-SB5-8-2529 (B)	08-1378	0.574	2.53	15.7	1.00	0.000	0.016	0.000	0.000	0.000
08-SB5-10-2530 (A)	08-1379	0.568	2.45	16.0	1.00	0.000	0.000	0.000	0.000	0.017
08-SB5-10-2530 (B)	08-1379	0.560	2.45	16.2	0.982	0.000	0.000	0.000	0.000	0.020
elemental wt%-calcined 1100C		S	Si	Sn	Sr	Ti	Zn	Zr		
08-SB5-7-2514 (A)	08-1376	0.063	24.1	<0.010	<0.010	0.039	0.010	0.091		
08-SB5-7-2514 (B)	08-1376	0.063	24.2	<0.010	<0.010	0.039	0.010	0.091		
08-SB5-9-2525 (A)	08-1377	0.053	24.7	<0.010	<0.010	0.041	0.020	0.093		
08-SB5-9-2525 (B)	08-1377	0.055	25.0	<0.010	<0.010	0.041	0.026	0.095		
08-SB5-8-2529 (A)	08-1378	0.056	24.4	<0.010	<0.010	0.039	0.009	0.093		
08-SB5-10-2530 (A)	08-1379	0.059	24.0	<0.010	<0.010	0.041	0.012	0.111		
08-SB5-10-2530 (B)	08-1379	0.059	24.1	<0.010	<0.010	0.040	0.015	0.117		
avida wt% antained 1100C			6:02	SnO2	SrO	TiO2	ZnO	ZrO2	Totals	
Oxide wt% - calcined Trooc		<u>SO4</u>	3102	0					4 5 5	
08-SB5-7-2514 (A)	08-1376	<u>SO4</u> 0.190	51.5	0.00	0.00	0.066	0.013	0.123	100	
08-SB5-7-2514 (A) 08-SB5-7-2514 (B) 08-SB5-9-2525 (A)	08-1376 08-1376 08-1377	<u>SO4</u> 0.190 0.188 0.158	51.5 51.7 52.9	0.00	0.00	0.066	0.013	0.123 0.123	100 100	
08-SB5-7-2514 (A) 08-SB5-7-2514 (B) 08-SB5-9-2525 (A) 08-SB5-9-2525 (B)	08-1376 08-1376 08-1377 08-1377	<u>SO4</u> 0.190 0.188 0.158 0.165	51.5 51.7 52.9 53.4	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.066 0.066 0.068 0.068	0.013 0.012 0.025 0.032	0.123 0.123 0.125 0.128	100 100 101 102	
08-SB5-7-2514 (A) 08-SB5-7-2514 (B) 08-SB5-9-2525 (A) 08-SB5-9-2525 (B) 08-SB5-8-2529 (A)	08-1376 08-1376 08-1377 08-1377 08-1378	<u>SO4</u> 0.190 0.188 0.158 0.165 0.167	51.5 51.7 52.9 53.4 52.1	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.066 0.066 0.068 0.068 0.068	0.013 0.012 0.025 0.032 0.011	0.123 0.123 0.125 0.128 0.126	100 100 101 102 101	
08-SB5-7-2514 (A) 08-SB5-7-2514 (B) 08-SB5-9-2525 (A) 08-SB5-9-2525 (B) 08-SB5-8-2529 (A) 08-SB5-8-2529 (B)	08-1376 08-1376 08-1377 08-1377 08-1378 08-1378	SO4 0.190 0.188 0.158 0.165 0.167 0.176	51.5 51.7 52.9 53.4 52.1 53.2	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.066 0.066 0.068 0.068 0.068 0.064 0.064	0.013 0.012 0.025 0.032 0.011 0.015	0.123 0.123 0.125 0.128 0.126 0.123	100 100 101 102 101 101	
08-SB5-7-2514 (A) 08-SB5-7-2514 (A) 08-SB5-9-2525 (A) 08-SB5-9-2525 (B) 08-SB5-8-2529 (A) 08-SB5-8-2529 (B) 08-SB5-10-2530 (A)	08-1376 08-1376 08-1377 08-1377 08-1378 08-1378 08-1379	<u>SO4</u> 0.190 0.188 0.158 0.165 0.165 0.167 0.176	51.5 51.7 52.9 53.4 52.1 53.2 51.2	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.066 0.068 0.068 0.068 0.064 0.064 0.064	0.013 0.012 0.025 0.032 0.011 0.015 0.015	0.123 0.123 0.125 0.128 0.126 0.123 0.123	100 100 101 102 101 101 99	
08-SB5-7-2514 (A) 08-SB5-7-2514 (A) 08-SB5-9-2525 (A) 08-SB5-9-2525 (B) 08-SB5-8-2529 (A) 08-SB5-8-2529 (B) 08-SB5-10-2530 (A) 08-SB5-10-2530 (B)	08-1376 08-1376 08-1377 08-1377 08-1378 08-1378 08-1379 08-1379	<u>SO4</u> 0.190 0.188 0.158 0.165 0.167 0.176 0.184 0.177	51.5 51.7 52.9 53.4 52.1 53.2 51.2 51.5	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.066 0.066 0.068 0.068 0.064 0.064 0.064 0.068 0.067	0.013 0.012 0.025 0.032 0.011 0.015 0.015 0.019	0.123 0.123 0.125 0.128 0.126 0.123 0.123 0.150 0.157	100 100 101 102 101 101 99 100	

<u>anions (mg/Kg)</u>		E	<u>CI</u>	<u>NO2</u>	<u>NO3</u>	<u>SO4</u>	<u>PO4</u>	HCO2		
08-SB5-7-2514 (A)	08-1376	<100	297	<100	17100	<100	<100	51100		
08-SB5-7-2514 (B)	08-1376	<100	296	<100	17800	<100	<100	51500		
08-SB5-9-2525 (A)	08-1377	<100	279	<100	18900	<100	<100	49300		
08-SB5-9-2525 (B)	08-1377	<100	283	<100	19300	<100	<100	50300		
08-SB5-8-2529 (A)	08-1378	<100	280	<100	21700	150	<100	54600		
08-SB5-8-2529 (B)	08-1378	<100	279	<100	21800	143	<100	55100		
08-SB5-10-2530 (A)	08-1379	<100	310	<100	25400	214	<100	62900		
08-SB5-10-2530 (B)	08-1379	<100	308	<100	24600	213	<100	62000		
		1	Weight %	Solids Ca	lculations					
		Empty	Crucible Wt +	Crucible Wt +				Insoluble	Cruc Wt+	Wt %
Sample		Crucible wt	Wet Sample	Dry wt	Total Solids	Wet Wt	Dry Wt	Solids	Calcined	Calcined
08-SB5-7-2514 (A)	08-1376	44.6011	49.9916	47.1140	46.6%	5.3905	2.513	33.2%	46.6451	37.9%
08-SB5-7-2514 (B)	08-1376	43.6724	47.979	45.6808	46.6%	4.3066	2.008	32.6%	45.3038	37.9%
08-SB5-9-2525 (A)	08-1377	43.8488	50.4433	46.8182	45.0%	6.5945	2.969	32.5%	46.1950	35.6%
08-SB5-9-2525 (B)	08-1377	43.3192	50.0942	46.3600	44.9%	6.7750	3.041	32.7%	45.7197	35.4%
08-SB5-8-2529 (A)	08-1378	44.4342	50.7762	47.2625	44.6%	6.3420	2.828	32.0%	46.6985	35.7%
08-SB5-8-2529 (B)	08-1378	42.9239	49.2524	45.7335	44.4%	6.3285	2.810	32.4%	45.1674	35.5%
08-SB5-10-2530 (A)	08-1379	42.8934	49.4247	45.8113	44.7%	6.5313	2.918	31.9%	45.1812	35.0%
08-SB5-10-2530 (B)	08-1379	42.2957	48.9031	45.2367	44.5%	6.6074	2.941	32.4%	44.5975	34.8%
		Empty	Crucible Wt +	Crucible Wt +		Soluble				
Sample		Crucible wt	Wet Sample	Dry wt	Uncorr	Solids		pH	Density	Waste Loadi
08-SB5-7-2514 (A)	08-1376	43.2649	44.4064	43.4945	20.11%	13.4%		8.26	1.344	35.7%
08-SB5-7-2514 (B)	08-1376	44.0107	45.1540	44.2488	20.83%	14.0%				
08-SB5-9-2525 (A)	08-1377	44.5394	45.6843	44.7524	18.60%	12.6%		5.71	1.341	35.3%
08-SB5-9-2525 (B)	08-1377	44.5039	45.6820	44.7175	18.13%	12.2%				
08-SB5-8-2529 (A)	08-1378	44.3061	45.4411	44.5165	18.54%	12.6%		7.22	1.340	35.3%
08-SB5-8-2529 (B)	08-1378	42.9303	44.0851	43.1358	17.80%	12.0%				
08-SB5-10-2530 (A)	08-1379	40.4607	41.5974	40.6740	18.76%	12.8%		5.46	1.351	36.9%
08-SB5-10-2530 (B)	08-1379	42.9057	44.0469	43.1106	17.95%	12.1%				

Appendix A-3: SME Product Sample Results										
SRNL Process Science Analytica	al Laboratory									
Customer: Dan Lambert										
Date: 8/1/08		40.0505	44.0570							
Sample ID: SME Prod - 08-SB5-1	1-2542, 12-255	3, 13-2565,	14-2576							
Lab ID: 08-1530-1533										
Units: wt%, ing/kg, ing/L										
Sample ID	Lah ID									
olomontal wt%-calcinod 1100C	Lab ID	A1	B	Ba	C2	Cr	Cu	Eo	ĸ	11
08-SB5-11-2542 (A)	08-1530	<u>AI</u> 4 50	1 22	0.011	0.626	0.016	<0.010	7.24	0.122	2 13
08-SB5-11-2542 (R)	08-1530	4.59	1.23	0.011	0.656	0.010	<0.010	7 32	0.122	2.13
08-SB5-12-2553 (A)	08-1530	4.61	1.20	0.011	0.624	0.016	<0.010	7.35	0.106	2.15
08-SB5-12-2553 (B)	08-1531	4.57	1.32	0.010	0.621	0.015	<0.010	7.32	0.105	2.22
08-SB5-13-2565 (A)	08-1532	4.70	1.28	0.011	0.614	0.017	<0.010	7.52	0.116	2.21
08-SB5-13-2565 (B)	08-1532	4.66	1.25	0.011	0.621	0.017	<0.010	7.49	0.118	2.13
08-SB5-14-2576 (A)	08-1533	4.48	1.28	0.011	0.637	0.016	<0.010	7.23	0.144	2.22
08-SB5-14-2576 (B)	08-1533	4.53	1.28	0.010	0.630	0.016	<0.010	7.17	0.155	2.18
08-SB5-15-2590 (A)	08-1672	3.82	1.39	0.012	0.560	0.019	0.017	5.64	0.088	2.10
08-SB5-15-2590 (B)	08-1672	3.87	1.40	0.013	0.587	0.020	0.020	5.96	0.092	2.10
oxide wt% - calcined 1100C		Al2O3	B2O3	BaO	CaO	Cr2O3	CuO	Fe2O3	<u>K2O</u>	Li2O
08-SB5-11-2542 (A)	08-1530	8.67	3.95	0.012	0.877	0.023	0.00	10.4	0.146	4.58
08-SB5-11-2542 (B)	08-1530	8.68	4.11	0.013	0.918	0.024	0.00	10.5	0.140	4.71
08-SB5-12-2553 (A)	08-1531	8.71	4.16	0.012	0.874	0.024	0.00	10.5	0.127	4.83
08-SB5-12-2553 (B)	08-1531	8.64	4.26	0.012	0.870	0.023	0.00	10.5	0.126	4.77
08-SB5-13-2565 (A)	08-1532	8.89	4.14	0.013	0.859	0.025	0.00	10.8	0.139	4.76
08-SB5-13-2565 (B)	08-1532	8.81	4.02	0.012	0.869	0.025	0.00	10.7	0.141	4.57
08-SB5-14-2576 (A)	08-1533	8.47	4.11	0.012	0.891	0.024	0.00	10.3	0.172	4.76
08-SB5-14-2576 (B)	08-1533	8.57	4.12	0.012	0.882	0.023	0.00	10.2	0.186	4.69
08-SB5-15-2590 (A)	08-1672	7.21	4.47	0.014	0.785	0.027	0.021	8.07	0.106	4.51
08-SB5-15-2590 (B)	08-1672	7.32	4.50	0.015	0.821	0.029	0.025	8.52	0.111	4.52
elemental wt%-calcined 1100C		Mg	<u>Mn</u>	Na	<u>Ni</u>	P	Pb	Pd	<u>Rh</u>	
08-SB5-11-2542 (A)	08-1530	0.359	1.68	10.2	0.821	<0.100	0.013	<0.100	<0.100	
08-SB5-11-2542 (B)	08-1530	0.377	1.70	10.1	0.878	<0.100	0.013	<0.100	<0.100	
08-5B5-12-2553 (A)	08-1531	0.371	1.00	10.2	0.885	<0.100	<0.010	<0.100	<0.100	
08-5B5-12-2553 (B)	08-1531	0.365	1.00	10.1	0.868	<0.100	<0.010	<0.100	<0.100	
08 SPE 12 2565 (R)	00-1532	0.370	1.77	10.3	0.892	<0.100	<0.010	<0.100	<0.100	
08-SB5-14-2576 (A)	08-1532	0.309	1.75	10.0	0.846	<0.100	<0.010	<0.100	<0.100	
08-SB5-14-2576 (R)	08-1533	0.304	1.05	10.0	0.808	<0.100	0.054	<0.100	<0.100	
08-SB5-15-2590 (A)	08-1672	0.330	1.04	9.84	0.557	<0.100	<0.030	<0.100	<0.100	
08-SB5-15-2590 (B)	08-1672	1 02	1.10	9.85	0.594	<0.010	<0.010	<0.100	<0.100	
00 0B0 10 2000 (B)	00 1012	1.02	1.20	0.00	0.004	30.010	20.010	40.100		
oxide wt% - calcined 1100C		MqO	MnO2	Na2O	NiO	P2O5	PbO	PdO	RhO2	
08-SB5-11-2542 (A)	08-1530	0.596	2.65	13.7	1.04	0.000	0.014	0.000	0.000	
08-SB5-11-2542 (B)	08-1530	0.626	2.68	13.6	1.11	0.000	0.014	0.000	0.000	
08-SB5-12-2553 (A)	08-1531	0.616	2.62	13.7	1.12	0.000	0.000	0.000	0.000	
08-SB5-12-2553 (B)	08-1531	0.606	2.62	13.6	1.10	0.000	0.000	0.000	0.000	
08-SB5-13-2565 (A)	08-1532	0.614	2.79	13.9	1.13	0.000	0.000	0.000	0.000	
08-SB5-13-2565 (B)	08-1532	0.613	2.76	13.5	1.13	0.000	0.000	0.000	0.000	
08-SB5-14-2576 (A)	08-1533	0.604	2.61	13.4	1.07	0.000	0.059	0.000	0.000	
08-SB5-14-2576 (B)	08-1533	0.581	2.59	13.6	1.03	0.000	0.055	0.000	0.000	
08-SB5-15-2590 (A)	08-1672	1.60	1.86	13.3	0.708	0.000	0.000	0.000	0.000	
08-SB5-15-2590 (B)	08-1672	1.69	1.98	13.3	0.754	0.000	0.000	0.000	0.000	
	1		1	1		1	1		1	

		Ru	S	Si	Sn	Sr	Ti	Zn	Zr	
08-SB5-11-2542 (A)	08-1530	< 0.010	0.073	23.6	<0.010	<0.010	0.017	<0.010	0.012	
08-SB5-11-2542 (B)	08-1530	<0.010	0.070	24.1	<0.010	<0.010	0.018	<0.010	0.013	
08-SB5-12-2553 (A)	08-1531	<0.010	0.070	24.6	<0.010	<0.010	0.018	<0.010	0.015	
08-SB5-12-2553 (B)	08-1531	<0.010	0.065	24.5	<0.010	<0.010	0.018	<0.010	0.014	
08-SB5-13-2565 (A)	08-1532	<0.010	0.062	24.2	<0.010	<0.010	0.018	<0.010	0.018	
08-SB5-13-2565 (B)	08-1532	<0.010	0.061	23.1	<0.010	<0.010	0.023	<0.010	0.019	
08-SB5-14-2576 (A)	08-1533	<0.010	0.066	24.1	<0.010	<0.010	0.018	<0.010	0.016	
08-SB5-14-2576 (B)	08-1533	<0.010	0.065	23.9	<0.010	<0.010	0.018	<0.010	0.017	
08-SB5-15-2590 (A)	08-1672	0.011	0.000	24.8	10.010	<0.010	1 11	0.013	0.032	
08-SB5-15-2500 (R)	08-1672	0.011	0.002	25.1			1.11	0.013	0.031	
00-3B3-13-2330 (B)	00-1072	0.011	0.003	23.1			1.12	0.010	0.031	
oxido wt% coloipod 1100C		PuO2	SO4	SiO2	SnO2	SrO	TiO2	ZnO	ZrO2	Sum of Ovidor
09 SP5 11 2542 (A)	09 1520	0.000	0.210	50.6	0.000	0.00	0.029	0.000	0.016	
00-565-11-2542 (A)	09 1520	0.000	0.219	50.0	0.000	0.00	0.020	0.000	0.010	92.9
08-SB5-11-2542 (B)	08 1530	0.000	0.209	51.0	0.000	0.00	0.029	0.000	0.017	94.Z
00-3B3-12-2553 (A)	00-1531	0.000	0.209	52.7	0.000	0.00	0.030	0.000	0.021	95.5
08-3B3-12-2353 (B)	00-1531	0.000	0.195	52.3	0.000	0.00	0.029	0.000	0.016	94.9
08-SB5-13-2565 (A)	08-1532	0.000	0.185	51.9	0.000	0.00	0.029	0.000	0.024	95.3
08-SB5-13-2565 (B)	08-1532	0.000	0.184	49.5	0.000	0.00	0.038	0.000	0.025	92.4
U8-585-14-2576 (A)	08-1533	0.000	0.197	51.6	0.000	0.00	0.030	0.000	0.022	93.6
08-585-14-2576 (B)	08-1533	0.000	0.194	51.1	0.000	0.00	0.030	0.000	0.023	93.3
08-SB5-15-2590 (A)	08-1672	0.014	0.246	53.2			1.86	0.016	0.044	98.0
08-SB5-15-2590 (B)	08-1672	0.014	0.267	53.7			1.87	0.022	0.041	99.5
anions (mg/Kg)		F	CI	<u>NO2</u>	<u>NO3</u>	<u>S04</u>	<u>P04</u>	HCO2	<u>C2O4</u>	
08-SB5-11-2542 (A)	08-1530	<100	297	<100	17100	<100	<100	51100		
08-SB5-11-2542 (B)	08-1530	<100	296	<100	17800	<100	<100	51500		
08-SB5-12-2553 (A)	08-1531	<100	279	<100	18900	<100	<100	49300		
08-SB5-12-2553 (B)	08-1531	<100	283	<100	19300	<100	<100	50300		
08-SB5-13-2565 (A)	08-1532	<100	280	<100	21700	150	<100	54600		
08-SB5-13-2565 (B)	08-1532	<100	279	<100	21800	143	<100	55100		
08-SB5-14-2576 (A)	08-1533	<100	310	<100	25400	214	<100	62900		
08-SB5-14-2576 (B)	08-1533	<100	308	<100	24600	213	<100	62000		
08-SB5-15-2590 (A)	08-1672		293	<100	23200	2600		50300	3610	
08-SB5-15-2590 (B)	08-1672		290	<100	23100	2830		50200	3340	
	Weight % Solids Calculations									
			Weight %	Solids Ca	lculations					
		Empty	Weight % Crucible Wt +	Solids Ca Crucible Wt +	lculations			Insoluble	Cruc Wt+	Wt %
Sample		Empty Crucible wt	Veight % Crucible Wt + Wet Sample	Solids Ca Crucible Wt + Dry wt	Iculations Total Solids	Wet Wt	Dry Wt	Insoluble Solids	Cruc Wt+ Calcined	Wt % Calcined
Sample 08-SB5-11-2542 (A)	08-1530	Empty Crucible wt 43.9275	Veight % Crucible Wt + Wet Sample 49.5838	Solids Ca Crucible Wt + Dry wt 46.6204	Iculations Total Solids 47.6%	Wet Wt 5.6563	Dry Wt 2.693	Insoluble Solids 36.9%	Cruc Wt+ Calcined 46.1519	Wt % Calcined 39.3%
Sample 08-SB5-11-2542 (A) 08-SB5-11-2542 (B)	08-1530 08-1530	Empty Crucible wt 43.9275 43.9071	Veight % Crucible Wt + Wet Sample 49.5838 49.5504	Solids Cal Crucible Wt + Dry wt 46.6204 46.5987	Iculations Total Solids 47.6% 47.7%	Wet Wt 5.6563 5.6433	Dry Wt 2.693 2.692	Insoluble Solids 36.9% 37.1%	Cruc Wt+ Calcined 46.1519 46.1337	Wt % Calcined 39.3% 39.5%
Sample 08-SB5-11-2542 (A) 08-SB5-11-2542 (B) 08-SB5-12-2553 (A)	08-1530 08-1530 08-1531	Empty Crucible wt 43.9275 43.9071 44.0028	Veight % Crucible Wt + Wet Sample 49.5838 49.5504 50.0713	Solids Cal Crucible Wt + Dry wt 46.6204 46.5987 46.7724	Total Solids 47.6% 47.7% 45.6%	Wet Wt 5.6563 5.6433 6.0685	Dry Wt 2.693 2.692 2.770	Insoluble Solids 36.9% 37.1% 34.8%	Cruc Wt+ Calcined 46.1519 46.1337 46.2697	Wt % Calcined 39.3% 39.5% 37.4%
Sample 08-SB5-11-2542 (A) 08-SB5-11-2542 (B) 08-SB5-12-2553 (A) 08-SB5-12-2553 (B)	08-1530 08-1530 08-1531 08-1531	Empty Crucible wt 43.9275 43.9071 44.0028 43.1834	Veight % Crucible Wt + Wet Sample 49.5838 49.5504 50.0713 49.368	Solids Cal Crucible Wt + Dry wt 46.6204 46.5987 46.7724 46.0175	Total Solids 47.6% 47.7% 45.6% 45.8%	Wet Wt 5.6563 5.6433 6.0685 6.1846	Dry Wt 2.693 2.692 2.770 2.834	Insoluble Solids 36.9% 37.1% 34.8% 35.3%	Cruc Wt+ Calcined 46.1519 46.1337 46.2697 45.4995	Wt % Calcined 39.3% 39.5% 37.4% 37.4%
Sample 08-SB5-11-2542 (A) 08-SB5-11-2542 (B) 08-SB5-12-2553 (A) 08-SB5-12-2553 (B) 08-SB5-13-2565 (A)	08-1530 08-1530 08-1531 08-1531 08-1532	Empty Crucible wt 43.9275 43.9071 44.0028 43.1834 43.4687	Veight % Crucible Wt + Wet Sample 49.5838 49.5504 50.0713 49.368 49.9884	Solids Cal Crucible Wt + Dry wt 46.6204 46.5987 46.7724 46.0175 46.3119	Iculations Total Solids 47.6% 47.7% 45.6% 45.8% 43.6%	Wet Wt 5.6563 5.6433 6.0685 6.1846 6.5197	Dry Wt 2.693 2.692 2.770 2.834 2.843	Insoluble Solids 36.9% 37.1% 34.8% 35.3% 33.6%	Cruc Wt+ Calcined 46.1519 46.1337 46.2697 45.4995 45.7496	Wt % Calcined 39.3% 39.5% 37.4% 37.4% 35.0%
Sample 08-SB5-11-2542 (A) 08-SB5-11-2542 (B) 08-SB5-12-2553 (A) 08-SB5-12-2553 (B) 08-SB5-13-2565 (A) 08-SB5-13-2565 (B)	08-1530 08-1530 08-1531 08-1531 08-1532 08-1532	Empty Crucible wt 43.9275 43.9071 44.0028 43.1834 43.4687 43.7324	Veight % Crucible Wt + Wet Sample 49.5838 49.5504 50.0713 49.368 49.9884 50.2239	Solids Cal Crucible Wt + Dry wt 46.6204 46.5987 46.7724 46.0175 46.3119 46.576	Total Solids 47.6% 47.7% 45.6% 43.6% 43.8%	Wet Wt 5.6563 5.6433 6.0685 6.1846 6.5197 6.4915	Dry Wt 2.693 2.692 2.770 2.834 2.843 2.844	Insoluble Solids 36.9% 37.1% 34.8% 35.3% 33.6% 33.8%	Cruc Wt+ Calcined 46.1519 46.1337 46.2697 45.4995 45.7496 46.0146	Wt % Calcined 39.3% 39.5% 37.4% 35.0% 35.0%
Sample 08-SB5-11-2542 (A) 08-SB5-11-2542 (B) 08-SB5-12-2553 (A) 08-SB5-13-2565 (A) 08-SB5-13-2565 (B) 08-SB5-13-2565 (B) 08-SB5-14-2576 (A)	08-1530 08-1530 08-1531 08-1531 08-1532 08-1532 08-1533	Empty Crucible wt 43.9275 43.9071 44.0028 43.1834 43.4687 43.7324 43.9942	Weight % Crucible Wt + Wet Sample 49.5838 49.5504 50.0713 49.368 49.9884 50.2239 50.7963	Solids Cal Crucible Wt + Dry wt 46.6204 46.5987 46.7724 46.0175 46.3119 46.576 47.2027	Total Solids 47.6% 47.7% 45.6% 43.6% 43.8% 47.2%	Wet Wt 5.6563 5.6433 6.0685 6.1846 6.5197 6.4915 6.8021	Dry Wt 2.693 2.692 2.770 2.834 2.843 2.844 3.209	Insoluble Solids 36.9% 37.1% 34.8% 35.3% 33.6% 33.8% 37.0%	Cruc Wt+ Calcined 46.1519 46.1337 46.2697 45.4995 45.7496 46.0146 46.5792	Wt % Calcined 39.3% 39.5% 37.4% 35.0% 35.0% 35.2% 38.0%
Sample 08-SB5-11-2542 (A) 08-SB5-11-2542 (B) 08-SB5-12-2553 (A) 08-SB5-12-2553 (B) 08-SB5-13-2565 (A) 08-SB5-13-2565 (B) 08-SB5-14-2576 (A) 08-SB5-14-2576 (B)	08-1530 08-1530 08-1531 08-1531 08-1532 08-1532 08-1533 08-1533	Empty Crucible wt 43.9275 43.9071 44.0028 43.1834 43.4687 43.7324 43.7324 43.9942 44.5008	Weight % Crucible Wt + Wet Sample 49.5838 49.5504 50.0713 49.368 49.9884 50.2239 50.7963 51.2906	Solids Cal Crucible Wt+ 46.6204 46.5987 46.7724 46.0175 46.3119 46.576 47.2027 47.7125	Culations Total Solids 47.6% 45.6% 45.8% 43.6% 43.8% 47.2% 47.3%	Wet Wt 5.6563 5.6433 6.0685 6.1846 6.5197 6.4915 6.8021 6.7898	Dry Wt 2.693 2.692 2.770 2.834 2.843 2.844 3.209 3.212	Insoluble Solids 36.9% 37.1% 34.8% 35.3% 33.6% 33.6% 33.8% 37.0% 37.1%	Cruc Wt+ Calcined 46.1519 46.1337 46.2697 45.4995 45.7496 46.0146 46.5792 47.0916	Wt % Calcined 39.3% 33.5% 37.4% 35.0% 35.2% 38.0% 38.2%
Sample 08-SB5-11-2542 (A) 08-SB5-11-2542 (B) 08-SB5-12-2553 (A) 08-SB5-12-2553 (B) 08-SB5-13-2565 (A) 08-SB5-13-2565 (B) 08-SB5-14-2576 (B) 08-SB5-14-2576 (B) 08-SB5-15-2590 (A)	08-1530 08-1530 08-1531 08-1531 08-1532 08-1532 08-1533 08-1533 08-1672	Empty Crucible wt 43.9275 43.9071 44.0028 43.1834 43.4687 43.7324 43.942 44.5008 43.9943	Weight % Crucible Wt + Wet Sample 49.5838 49.5504 50.0713 49.368 49.9884 50.2239 50.7963 51.2906 50.5615	Solids Cal Crucible Wt + Dry wt 46.6204 46.5987 46.7724 46.0175 46.3119 46.576 47.2027 47.7125 47.0377	Culations Total Solids 47.6% 47.7% 45.6% 43.8% 43.8% 47.2% 47.3% 46.34%	Wet Wt 5.6563 5.6433 6.0685 6.1846 6.5197 6.4915 6.8021 6.7898 6.5672	Dry Wt 2.693 2.692 2.770 2.834 2.843 2.844 3.209 3.212 3.043	Insoluble Solids 36.9% 37.1% 34.8% 35.3% 33.6% 33.8% 37.0% 37.1% 35.47%	Cruc Wt+ Calcined 46.1519 46.1337 46.2697 45.4995 45.7496 46.0146 46.5792 47.0916 46.4940	Wt % Calcined 39.3% 39.5% 37.4% 35.0% 35.2% 38.0% 38.2% 38.06%
Sample 08-SB5-11-2542 (A) 08-SB5-11-2542 (B) 08-SB5-12-2553 (A) 08-SB5-12-2553 (B) 08-SB5-13-2565 (A) 08-SB5-13-2565 (B) 08-SB5-14-2576 (A) 08-SB5-14-2576 (B) 08-SB5-15-2590 (A) 08-SB5-15-2590 (B)	08-1530 08-1530 08-1531 08-1531 08-1532 08-1532 08-1533 08-1533 08-1533 08-1672	Empty Crucible wt 43.9275 43.9071 44.0028 43.1834 43.4687 43.7324 43.9942 44.5008 43.9943 43.4679	Weight % Crucible Wt + Wet Sample 49.5504 50.0713 49.368 49.9884 50.2239 50.7963 51.2906 50.5615 50.1523	Solids Cal Crucible Wt + Dry wt 46.6204 46.5987 46.7724 46.0175 46.3119 46.576 47.2027 47.7125 47.0377 46.5500	Iculations Total Solids 47.6% 47.7% 45.6% 43.6% 43.8% 47.2% 47.3% 46.11%	Wet Wt 5.6563 5.6433 6.0685 6.1846 6.5197 6.4915 6.8021 6.7898 6.5672 6.6672 6.6844	Dry Wt 2.693 2.692 2.770 2.834 2.843 2.844 3.209 3.212 3.043 3.082	Insoluble Solids 36.9% 37.1% 34.8% 35.3% 33.6% 33.8% 37.0% 37.1% 35.47% 35.28%	Cruc Wt+ Calcined 46.1519 46.2697 45.4995 45.7496 46.0146 46.5792 47.0916 46.4940 45.9944	Wt % Calcined 39.3% 39.5% 37.4% 37.4% 35.0% 35.2% 38.0% 38.2% 38.06% 37.80%
Sample 08-SB5-11-2542 (A) 08-SB5-11-2542 (B) 08-SB5-12-2553 (A) 08-SB5-13-2565 (A) 08-SB5-13-2565 (B) 08-SB5-13-2565 (B) 08-SB5-14-2576 (A) 08-SB5-14-2576 (B) 08-SB5-15-2590 (A) 08-SB5-15-2590 (B)	08-1530 08-1530 08-1531 08-1531 08-1532 08-1532 08-1533 08-1533 08-1572 08-1672	Empty Crucible wt 43.9275 43.9071 44.0028 43.1834 43.4687 43.7324 43.9942 44.5008 43.9943 43.4679	Weight % Crucible Wt + Wet Sample 49.5504 50.0713 49.368 49.9884 50.2239 50.7963 51.2906 50.5615 50.1523	Solids Cal Crucible Wt + Dry wt 46.6204 46.5987 46.7724 46.0175 46.0175 46.3119 46.576 47.2027 47.7125 47.0377 46.5500	Interpretation Total Solids 47.6% 47.7% 45.6% 43.8% 47.2% 47.3% 46.34% 46.11%	Wet Wt 5.6563 5.6433 6.0685 6.1846 6.5197 6.4915 6.8021 6.7898 6.5672 6.6844	Dry Wt 2.693 2.692 2.770 2.834 2.843 2.844 3.209 3.212 3.043 3.082	Insoluble Solids 36.9% 37.1% 34.8% 35.3% 33.6% 33.8% 37.0% 37.1% 35.47% 35.28%	Cruc Wt+ Calcined 46.1519 46.1337 46.2697 45.4995 45.7496 46.0146 46.5792 47.0916 46.4940 45.9944	Wt % Calcined 39.3% 39.5% 37.4% 37.4% 35.0% 35.2% 38.0% 38.2% 38.06% 37.80%
Sample 08-SB5-11-2542 (A) 08-SB5-11-2542 (B) 08-SB5-12-2553 (A) 08-SB5-13-2565 (A) 08-SB5-13-2565 (B) 08-SB5-14-2576 (A) 08-SB5-14-2576 (B) 08-SB5-15-2590 (A) 08-SB5-15-2590 (B)	08-1530 08-1530 08-1531 08-1531 08-1532 08-1532 08-1533 08-1533 08-1533 08-1672	Empty Crucible wt 43.9275 43.9071 44.0028 43.1834 43.4687 43.7324 43.3942 44.5008 43.9943 43.4679 Empty	Weight % Crucible Wt + Wet Sample 49.5838 49.5504 50.0713 49.368 49.9884 50.2239 50.7963 51.2906 50.5615 50.1523 Crucible Wt +	Solids Cal Crucible Wt + Dry wt 46.6204 46.5987 46.7724 46.0175 46.3119 46.576 47.2027 47.7125 47.0377 46.5500 Crucible Wt +	Culations Total Solids 47.6% 47.7% 45.6% 43.8% 47.2% 47.3% 46.34% 46.11%	Wet Wt 5.6563 5.6433 6.0685 6.1846 6.5197 6.4915 6.8021 6.7898 6.5672 6.6844 Soluble	Dry Wt 2.693 2.692 2.770 2.834 2.843 2.844 3.209 3.212 3.043 3.082	Insoluble Solids 36.9% 37.1% 34.8% 35.3% 33.6% 33.6% 37.0% 37.1% 35.47% 35.28%	Cruc Wt+ Calcined 46.1519 46.1337 46.2697 45.4995 45.7496 46.0146 46.5792 47.0916 46.4940 45.9944	Wt % Calcined 39.3% 39.5% 37.4% 37.4% 35.0% 35.2% 38.0% 38.2% 38.06% 37.80%
Sample 08-SB5-11-2542 (A) 08-SB5-11-2542 (B) 08-SB5-12-2553 (A) 08-SB5-12-2553 (B) 08-SB5-13-2565 (A) 08-SB5-13-2565 (B) 08-SB5-14-2576 (A) 08-SB5-14-2576 (B) 08-SB5-15-2590 (A) 08-SB5-15-2590 (B) Sample	08-1530 08-1530 08-1531 08-1531 08-1532 08-1532 08-1533 08-1533 08-1672 08-1672	Empty Crucible wt 43.9275 43.9071 44.0028 43.1834 43.4687 43.7324 43.3942 44.5008 43.9943 43.4679 Empty Crucible wt	Weight % Crucible Wt + Wet Sample 49.5504 50.0713 49.368 49.9884 50.2239 50.7963 51.2906 50.5615 50.1523 Crucible Wt + Wet Sample	Solids Cal Crucible Wt + Dry wt 46.6204 46.5987 46.7724 46.0175 46.3119 46.576 47.2027 47.7125 47.0377 46.5500 Crucible Wt + Dry wt	Culations Total Solids 47.6% 45.6% 45.6% 43.8% 43.8% 43.8% 47.2% 47.3% 46.34% 46.11% Uncorr	Wet Wt 5.6563 5.6433 6.0685 6.1846 6.5197 6.4915 6.8021 6.7898 6.5672 6.6844 Soluble Soluble	Dry Wt 2.693 2.692 2.770 2.834 2.843 2.844 3.209 3.212 3.043 3.082	Insoluble Solids 36.9% 37.1% 34.8% 35.3% 33.6% 37.0% 37.1% 35.47% 35.28%	Cruc Wt+ Calcined 46.1519 46.1337 46.2697 45.4995 45.7496 46.0146 46.5792 47.0916 46.4940 45.9944 Density	Wt % Calcined 39.3% 39.5% 37.4% 37.4% 35.0% 35.2% 38.0% 38.0% 38.0% 37.80%
Sample 08-SB5-11-2542 (A) 08-SB5-11-2542 (B) 08-SB5-12-2553 (A) 08-SB5-12-2553 (B) 08-SB5-13-2565 (A) 08-SB5-13-2565 (B) 08-SB5-14-2576 (B) 08-SB5-14-2576 (B) 08-SB5-15-2590 (A) 08-SB5-15-2590 (B) Sample 08-SB5-11-2542 (A)	08-1530 08-1530 08-1531 08-1531 08-1532 08-1532 08-1533 08-1533 08-1672 08-1672 08-1530	Empty Crucible wt 43.9275 43.9071 44.0028 43.1834 43.4687 43.4687 43.7324 43.9942 44.5008 43.9943 43.9943 43.4679 Empty Crucible wt 42.9349	Weight % Crucible Wt + Wet Sample 49.5838 49.5504 50.0713 49.368 49.9884 50.2239 50.7963 51.2906 50.5615 50.1523 Crucible Wt + Wet Sample 45.1831	Solids Cal Crucible Wt + Dry wt 46.6204 46.5987 46.7724 46.0175 46.3119 46.576 47.2027 47.7125 47.0377 46.5500 Crucible Wt + Dry wt 43.3155	Culations Total Solids 47.6% 47.7% 45.6% 43.6% 43.8% 47.2% 47.3% 46.34% 46.11% Uncorr 16.93%	Wet Wt 5.6563 5.6433 6.0685 6.1846 6.5197 6.4915 6.8021 6.7838 6.5672 6.6644 Soluble Solids 10.7%	Dry Wt 2.693 2.692 2.770 2.834 2.843 2.844 3.209 3.212 3.043 3.082	Insoluble Solids 36.9% 37.1% 34.8% 35.3% 33.6% 33.8% 37.0% 37.1% 35.47% 35.47% 35.28% PH 6.80	Cruc Wt+ Calcined 46.1519 46.1337 46.2697 45.4995 45.7496 46.0146 46.5792 47.0916 46.4940 45.9944 Density 1.391	Wt % Calcined 39.3% 39.5% 37.4% 35.0% 35.2% 38.0% 38.2% 38.06% 38.2% 38.06% 37.80%
Sample 08-SB5-11-2542 (A) 08-SB5-11-2542 (B) 08-SB5-12-2553 (A) 08-SB5-12-2553 (B) 08-SB5-13-2565 (A) 08-SB5-13-2565 (B) 08-SB5-14-2576 (B) 08-SB5-14-2576 (B) 08-SB5-15-2590 (A) 08-SB5-15-2590 (A) 08-SB5-11-2542 (A) 08-SB5-11-2542 (A) 08-SB5-11-2542 (B)	08-1530 08-1530 08-1531 08-1531 08-1532 08-1532 08-1533 08-1533 08-1672 08-1672 08-1530 08-1530	Empty Crucible wt 43.9275 43.9071 44.0028 43.1834 43.4687 43.7324 43.9942 44.5008 43.9943 43.4679 Empty Crucible wt 42.9349 44.5089	Weight % Crucible Wt + Wet Sample 49.5838 49.5504 50.0713 49.9884 50.2239 50.7963 51.2906 50.5615 50.1523 Crucible Wt + Wet Sample 45.1831 46.7703	Solids Cal Crucible Wt + Dry wt 46.6204 46.6204 46.5987 46.7724 46.0175 46.0175 46.3119 46.576 47.2027 47.7125 47.0277 47.7125 47.0377 46.5500 Crucible Wt + Dry wt 43.3155 44.8899	Culations Total Solids 47.6% 47.7% 45.6% 43.6% 43.8% 47.2% 47.3% 46.34% Uncorr 16.85%	Wet Wt 5.6563 5.6433 6.0685 6.1846 6.5197 6.4915 6.8021 6.7898 6.5672 6.6844 Solids Solids 10.7% 10.6%	Dry Wt 2.693 2.692 2.770 2.834 2.843 2.844 3.209 3.212 3.043 3.082	Insoluble Solids 36.9% 37.1% 34.8% 35.3% 33.6% 33.8% 37.0% 37.1% 35.47% 35.28% <u>pH</u> 6.80	Cruc Wt+ Calcined 46.1519 46.1337 46.2697 45.4995 45.7496 46.0146 46.5792 47.0916 46.4940 45.9944 Density 1.391	Wt % Calcined 39.3% 39.5% 37.4% 37.4% 35.0% 35.2% 38.0% 38.2% 38.06% 37.80% Waste Loading 37.4%
Sample 08-SB5-11-2542 (A) 08-SB5-11-2542 (B) 08-SB5-12-2553 (A) 08-SB5-13-2565 (A) 08-SB5-13-2565 (B) 08-SB5-14-2576 (A) 08-SB5-14-2576 (B) 08-SB5-14-2576 (B) 08-SB5-15-2590 (A) 08-SB5-11-2542 (A) 08-SB5-11-2542 (A) 08-SB5-11-2542 (B) 08-SB5-12-2553 (A)	08-1530 08-1530 08-1531 08-1531 08-1532 08-1532 08-1533 08-1533 08-1672 08-1672 08-1672 08-1530 08-1530 08-1531	Empty Crucible wt 43.9275 43.9071 44.0028 43.1834 43.4687 43.7324 43.7324 43.9942 44.5008 43.9943 43.4679 Empty Crucible wt 42.9349 44.5089	Weight % Crucible Wt + Wet Sample 49.5838 49.5504 50.0713 49.368 49.9884 50.2239 50.7963 51.2906 50.5615 50.1523 Crucible Wt + Wet Sample 45.1831 46.7703	Solids Cal Crucible Wt + Dry wt 46.6204 46.5987 46.7724 46.0175 46.3119 46.576 47.2027 47.7125 47.0377 46.5500 Crucible Wt + Dry wt 43.3155 44.8899 40.8218	Culations Total Solids 47.6% 45.6% 45.6% 45.8% 43.6% 43.8% 47.2% 47.3% 46.34% 46.34% 46.11% Uncorr 16.93% 16.85% 16.66%	Wet Wt 5.6563 5.6433 6.0685 6.1846 6.5197 6.4915 6.8021 6.7898 6.5672 6.6844 Soluble Solids 10.7% 10.6%	Dry Wt 2.693 2.692 2.770 2.834 2.844 3.209 3.212 3.043 3.082	Insoluble Solids 36.9% 37.1% 34.8% 35.3% 33.6% 33.8% 37.0% 37.1% 35.47% 35.28% <u>pH</u> 6.80 6.33	Cruc Wt+ Calcined 46.1519 46.1337 45.4995 45.7496 46.0146 46.0146 46.5792 47.0916 46.4940 45.9944 Density 1.391 1.332	Wt % Calcined 39.3% 39.5% 37.4% 37.4% 35.0% 35.2% 38.0% 38.2% 38.06% 37.80% 37.80% 37.80% 37.4% 35.2%
Sample 08-SB5-11-2542 (A) 08-SB5-11-2542 (B) 08-SB5-12-2553 (A) 08-SB5-12-2553 (B) 08-SB5-13-2565 (A) 08-SB5-13-2565 (B) 08-SB5-14-2576 (B) 08-SB5-14-2576 (B) 08-SB5-14-2576 (B) 08-SB5-14-2570 (A) 08-SB5-15-2590 (A) 08-SB5-15-2590 (B) Sample 08-SB5-11-2542 (A) 08-SB5-11-2542 (A) 08-SB5-12-2553 (A) 08-SB5-12-2553 (A)	08-1530 08-1530 08-1531 08-1531 08-1532 08-1533 08-1533 08-1672 08-1672 08-1672 08-1672 08-1530 08-1530 08-1531	Empty Crucible wt 43.9275 43.9071 44.0028 43.1834 43.4687 43.7324 43.3942 44.5008 43.9943 43.4679 Empty Crucible wt 42.9349 44.5089 40.4459 43.1671	Weight % Crucible Wt + Wet Sample 49.5838 49.5504 50.0713 49.368 49.9884 50.2239 50.7963 51.2906 50.5615 50.1523 Crucible Wt + Wet Sample 45.1831 46.7703 42.7024	Solids Cal Crucible Wt + Dry wt 46.6204 46.5987 46.7724 46.0175 46.3119 46.576 47.2027 47.7125 47.0377 46.5500 Crucible Wt + Dry wt 43.3155 44.8899 40.8218 43.5369	Culations Total Solids 47.6% 47.6% 45.6% 43.8% 43.8% 43.8% 47.3% 46.34% 46.34% 46.34% 16.85% 16.85% 16.86% 16.31%	Wet Wt 5.6563 5.6433 6.0685 6.1846 6.5197 6.4915 6.8021 6.7898 6.5672 6.6844 Soluble Solids 10.7% 10.6%	Dry Wt 2.693 2.692 2.770 2.834 2.843 2.844 3.209 3.212 3.043 3.082	Insoluble Solids 36.9% 37.1% 34.8% 35.3% 33.6% 33.6% 37.0% 37.1% 35.47% 35.28% <u>PH</u> 6.80 6.33	Cruc Wt+ Calcined 46.1519 46.1337 46.2697 45.4995 45.7496 46.0146 46.5792 47.0916 46.4940 45.9944 Density 1.391 1.332	Wt % Calcined 39.3% 39.5% 37.4% 37.4% 35.0% 35.2% 38.0% 38.2% 38.06% 37.80% Waste Loading 37.4%
Sample 08-SB5-11-2542 (A) 08-SB5-11-2542 (B) 08-SB5-11-2553 (A) 08-SB5-12-2553 (B) 08-SB5-13-2565 (A) 08-SB5-13-2565 (B) 08-SB5-13-2565 (B) 08-SB5-14-2576 (A) 08-SB5-14-2576 (B) 08-SB5-14-2576 (B) 08-SB5-15-2590 (A) 08-SB5-15-2590 (B) Sample 08-SB5-11-2542 (A) 08-SB5-11-2542 (B) 08-SB5-12-2553 (A) 08-SB5-12-2553 (B) 08-SB5-12-2553 (B) 08-SB5-12-2553 (B)	08-1530 08-1531 08-1531 08-1532 08-1532 08-1533 08-1533 08-1672 08-1672 08-1672 08-1530 08-1530 08-1531 08-1531	Empty Crucible wt 43.9275 43.9071 44.0028 43.1834 43.4687 43.7324 43.39942 44.5008 43.9943 43.4679 Empty Crucible wt 42.9349 44.5089 40.4459 43.1671 42.9079	Weight % Crucible Wt + Wet Sample 49.5838 49.5504 50.0713 49.368 49.9884 50.2239 50.7963 51.2906 50.5615 50.1523 Crucible Wt + Wet Sample 45.1831 46.7703 42.7024 45.1610	Solids Cal Crucible Wt + Dry wt 46.6204 46.5987 46.7724 46.0175 46.3119 46.576 47.2027 47.7125 47.0377 46.5500 Crucible Wt + Dry wt 43.3155 44.8899 40.8218 43.2369	Culations Total Solids 47.6% 47.7% 45.6% 43.6% 43.8% 47.2% 47.3% 46.34% 46.11% Uncorr 16.93% 16.85% 16.66% 15.12%	Wet Wt 5.6563 5.6433 6.0685 6.1846 6.5197 6.4915 6.8021 6.7838 6.5672 6.6644 Soluble Solids 10.7% 10.6% 10.9%	Dry Wt 2.693 2.692 2.770 2.834 2.843 2.844 3.209 3.212 3.043 3.082	Insoluble Solids 36.9% 37.1% 34.8% 33.8% 33.8% 37.0% 35.47% 35.47% 35.47% 35.28% <u>PH</u> 6.80 6.33 4.71	Cruc Wt+ Calcined 46.1519 46.2697 45.4995 45.7496 46.0146 46.5792 47.0916 46.4940 45.9944 Density 1.391 1.332 1.328	Wt % Calcined 39.3% 39.5% 37.4% 37.4% 35.2% 38.0% 38.2% 38.06% 37.80% Waste Loading 37.4% 35.2% 37.1%
Sample 08-SB5-11-2542 (A) 08-SB5-11-2542 (B) 08-SB5-11-2542 (B) 08-SB5-12-2553 (A) 08-SB5-13-2565 (A) 08-SB5-13-2565 (B) 08-SB5-14-2576 (B) 08-SB5-14-2576 (B) 08-SB5-15-2590 (A) 08-SB5-15-2590 (B) Sample 08-SB5-11-2542 (A) 08-SB5-11-2542 (B) 08-SB5-11-2542 (B) 08-SB5-11-2543 (A) 08-SB5-12-2553 (A) 08-SB5-12-2553 (A) 08-SB5-13-2565 (A) 08-SB5-13-2565 (A) 08-SB5-13-2565 (A)	08-1530 08-1531 08-1531 08-1532 08-1532 08-1532 08-1533 08-1672 08-1672 08-1672 08-1530 08-1530 08-1531 08-1531 08-1532	Empty Crucible wt 43.9275 43.9071 44.0028 43.1834 43.4687 43.7324 43.9942 44.5008 43.9943 43.4679 Empty Crucible wt 42.9349 44.5089 40.4459 43.1671 42.9079 44.1714	Weight % Crucible Wt + Wet Sample 49.5838 49.5504 50.0713 49.9884 50.2239 50.7963 51.2906 50.5615 50.1523 Crucible Wt + Wet Sample 45.1831 46.7703 42.7024 45.4340 45.4340	Solids Cal Crucible Wt + Dry wt 46.6204 46.5987 46.7724 46.0175 46.3119 46.576 47.2027 47.7125 47.027 47.7125 47.0377 46.5500 Crucible Wt + Dry wt 43.3155 44.8899 40.8218 43.5369 43.2486 44.5115	Ulations Total Solids 47.6% 47.7% 45.6% 43.6% 43.8% 47.2% 47.3% 46.34% 46.11% Uncorr 16.93% 16.66% 16.31% 15.05%	Wet Wt 5.6563 5.6433 6.0685 6.1846 6.5197 6.4915 6.8021 6.7898 6.5672 6.6844 Soluble Solids 10.7% 10.6% 10.9% 10.6%	Dry Wt 2.693 2.692 2.770 2.834 2.843 2.844 3.209 3.212 3.043 3.082	Insoluble Solids 36.9% 37.1% 34.8% 35.3% 33.6% 33.8% 37.0% 37.1% 35.47% 35.28% <u>PH</u> 6.80 6.33 4.71	Cruc Wt+ Calcined 46.1519 46.1337 46.2697 45.4995 45.7496 46.0146 46.5792 47.0916 46.4940 45.9944 Density 1.391 1.332	Wt % Calcined 39.3% 39.5% 37.4% 37.4% 35.2% 38.0% 38.2% 38.06% 38.2% 38.06% 37.80% 7.80% 37.4% 35.2% 37.1%
Sample 08-SB5-11-2542 (A) 08-SB5-11-2542 (B) 08-SB5-12-2553 (A) 08-SB5-13-2565 (A) 08-SB5-13-2565 (B) 08-SB5-14-2576 (B) 08-SB5-14-2576 (B) 08-SB5-14-2576 (B) 08-SB5-15-2590 (A) 08-SB5-11-2542 (B) Sample 08-SB5-11-2542 (B) 08-SB5-11-2542 (B) 08-SB5-11-2542 (B) 08-SB5-11-2542 (B) 08-SB5-11-2542 (B) 08-SB5-11-2553 (A) 08-SB5-13-2565 (A) 08-SB5-13-2565 (B)	08-1530 08-1531 08-1531 08-1532 08-1532 08-1533 08-1533 08-1672 08-1672 08-1672 08-1530 08-1530 08-1531 08-1531 08-1532 08-1533	Empty Crucible wt 43.9275 43.9071 44.0028 43.1834 43.4687 43.7324 43.9942 44.5008 43.9943 43.4679 Empty Crucible wt 42.9349 44.5089 40.4459 43.1671 42.9079 44.1714	Weight % Crucible Wt + Wet Sample 49.5838 49.5504 50.0713 49.9884 50.2239 50.7963 51.2906 50.5615 50.1523 Crucible Wt + Wet Sample 45.1831 46.7703 42.7024 45.4340 45.1610 46.4307	Solids Cal Crucible Wt + Dry wt 46.6204 46.5987 46.7724 46.0175 46.3119 46.576 47.2027 47.7125 47.0277 47.7125 47.0377 46.5500 Crucible Wt + Dry wt 43.3155 44.8899 40.8218 43.5369 43.2486 44.5115 42.3669	Leulations Total Solids 47.6% 45.6% 45.8% 43.6% 43.8% 47.2% 47.3% 46.34% 46.11% Uncorr 16.93% 16.85% 16.66% 16.31% 15.12% 15.12%	Wet Wt 5.6563 5.6433 6.0685 6.1846 6.5197 6.4915 6.8021 6.7898 6.5672 6.6844 Soluble Solids 10.7% 10.6% 10.9% 10.6% 10.0%	Dry Wt 2.693 2.692 2.770 2.834 2.844 3.209 3.212 3.043 3.082	Insoluble Solids 36.9% 37.1% 34.8% 35.3% 33.6% 33.8% 37.0% 37.1% 35.47% 35.28% <u>PH</u> 6.80 6.33 4.71 4.41	Cruc Wt+ Calcined 46.1519 46.1337 45.4995 45.7496 46.0146 46.0146 46.5792 47.0916 46.4940 45.9944 Density 1.391 1.332 1.328 1.328	Wt % Calcined 39.3% 39.5% 37.4% 37.4% 35.0% 35.2% 38.0% 38.2% 38.06% 37.80% 37.80% 37.4% 35.2% 37.1% 36.3%
Sample 08-SB5-11-2542 (A) 08-SB5-11-2542 (B) 08-SB5-12-2553 (A) 08-SB5-13-2565 (A) 08-SB5-13-2565 (B) 08-SB5-13-2565 (B) 08-SB5-14-2576 (A) 08-SB5-14-2576 (B) 08-SB5-14-2576 (B) 08-SB5-15-2590 (A) 08-SB5-15-2590 (B) 08-SB5-11-2542 (A) 08-SB5-11-2542 (B) 08-SB5-11-2542 (B) 08-SB5-12-2553 (A) 08-SB5-12-2553 (B) 08-SB5-13-2565 (A) 08-SB5-13-2565 (A) 08-SB5-14-2576 (B) 08-SB5-14-2576 (A) 08-SB5-14-2576 (A) 08-SB5-14-2576 (B) 08-SB5-14-2576 (B) 08-SB5-14-2576 (B)	08-1530 08-1530 08-1531 08-1532 08-1532 08-1533 08-1533 08-1533 08-1672 08-1672 08-1672 08-1530 08-1530 08-1531 08-1531 08-1532 08-1533 08-1533	Empty Crucible wt 43.9275 43.9071 44.0028 43.1834 43.4687 43.7324 43.39942 44.5008 43.9943 43.4679 Empty Crucible wt 42.9349 44.5089 40.4459 43.1671 42.9079 44.1714 42.0030	Weight % Crucible Wt + Wet Sample 49.5838 49.5504 50.0713 49.368 49.9884 50.2239 50.7963 51.2906 50.5615 50.1523 Crucible Wt + Wet Sample 45.1831 46.7703 42.7024 45.4340 45.1610 46.4307 44.22573	Solids Cal Crucible Wt + Dry wt 46.6204 46.5987 46.7724 46.0175 46.3119 46.576 47.2027 47.7125 47.0377 46.5500 Crucible Wt + Dry wt 43.3155 44.8899 40.8218 43.5369 43.2486 44.5115 42.3669	Culations Total Solids 47.6% 45.6% 45.8% 43.6% 43.8% 43.8% 47.2% 47.3% 46.34% 46.34% 46.11% Uncorr 16.93% 16.85% 16.66% 15.12% 15.05% 16.14% 16.25%	Wet Wt 5.6563 5.6433 6.0685 6.1846 6.5197 6.4915 6.8021 6.7898 6.5672 6.6844 Soluble Solids 10.7% 10.6% 10.6% 10.6% 10.0% 10.0%	Dry Wt 2.693 2.692 2.770 2.834 2.844 3.209 3.212 3.043 3.082	Insoluble Solids 36.9% 37.1% 34.8% 35.3% 33.6% 33.6% 33.8% 37.0% 37.1% 35.47% 35.28% <u>PH</u> 6.80 6.33 4.71 4.41	Cruc Wt+ Calcined 46.1519 46.1337 45.4995 45.7496 46.0146 46.0146 46.5792 47.0916 46.4940 45.9944 Density 1.391 1.332 1.328 1.369	Wt % Calcined 39.3% 39.5% 37.4% 37.4% 35.0% 38.0% 38.2% 38.06% 37.80% 37.80% 37.80% 37.80% 37.4% 35.2% 37.1%
Sample 08-SB5-11-2542 (A) 08-SB5-11-2542 (B) 08-SB5-11-2553 (A) 08-SB5-12-2553 (B) 08-SB5-13-2565 (A) 08-SB5-13-2565 (B) 08-SB5-14-2576 (A) 08-SB5-14-2576 (B) 08-SB5-14-2576 (B) 08-SB5-14-2576 (B) 08-SB5-14-2576 (B) 08-SB5-15-2590 (A) 08-SB5-15-2590 (B) Sample 08-SB5-11-2542 (A) 08-SB5-11-2542 (B) 08-SB5-12-2553 (A) 08-SB5-12-2553 (B) 08-SB5-13-2565 (B) 08-SB5-13-2565 (B) 08-SB5-13-2565 (B) 08-SB5-14-2576 (A) 08-SB5-14-2576 (B) 08-SB5-14-2576 (B)	08-1530 08-1531 08-1531 08-1532 08-1532 08-1533 08-1533 08-1672 08-1672 08-1530 08-1530 08-1531 08-1531 08-1532 08-1532 08-1533 08-1533 08-1533 08-1572	Empty Crucible wt 43.9275 43.9071 44.0028 43.1834 43.4687 43.7324 43.39942 44.5008 43.9943 43.4679 Empty Crucible wt 42.9349 44.5089 40.4459 43.1671 42.9079 44.1714 42.0030	Weight % Crucible Wt + Wet Sample 49.5838 49.5504 50.0713 49.368 49.9884 50.2239 50.7963 51.2906 50.5615 50.5615 50.1523 Crucible Wt + Wet Sample 45.1831 46.7703 42.7024 45.4340 45.1610 46.4307 44.2573 47.1949	Solids Cal Crucible Wt + Dry wt 46.6204 46.6987 46.7724 46.0175 46.3119 46.576 47.2027 47.7125 47.2027 47.7125 47.377 46.5500 Crucible Wt + Dry wt 43.3155 44.8899 40.8218 43.23569 43.2486 44.5115 42.3669 42.7015	Culations Total Solids 47.6% 47.7% 45.6% 43.8% 43.8% 47.2% 47.3% 46.34% 46.11% 0 0 0 16.85% 16.66% 15.12% 15.2% 16.85% 16.25% 16.85%	Wet Wt 5.6563 5.6433 6.0685 6.1846 6.5197 6.4915 6.8021 6.7838 6.5672 6.66844 Soluble Solids 10.7% 10.6% 10.9% 10.6% 10.0% 10.0% 10.2%	Dry Wt 2.693 2.692 2.770 2.834 2.843 2.844 3.209 3.212 3.043 3.082	Insoluble Solids 36.9% 37.1% 34.8% 35.3% 33.6% 33.8% 37.0% 35.47% 35.47% 35.47% 35.47% 6.80 <u>PH</u> 6.80 6.33 4.71 4.41 4.82	Cruc Wt+ Calcined 46.1519 46.1337 46.2697 45.4995 45.7496 46.0146 46.5792 47.0916 46.4940 45.9944 Density 1.391 1.332 1.328 1.369 1.347	Wt % Calcined 39.3% 37.4% 37.4% 35.0% 35.2% 38.0% 38.0% 38.0% 37.80% 37.80% 37.4% 37.4% 37.4% 37.1% 36.3% 39.1%
Sample 08-SB5-11-2542 (A) 08-SB5-11-2542 (B) 08-SB5-11-2553 (A) 08-SB5-12-2553 (A) 08-SB5-13-2565 (A) 08-SB5-13-2565 (A) 08-SB5-13-2565 (B) 08-SB5-14-2576 (B) 08-SB5-14-2576 (B) 08-SB5-14-2576 (B) 08-SB5-15-2590 (A) 08-SB5-15-2590 (B) Sample 08-SB5-11-2542 (A) 08-SB5-11-2542 (B) 08-SB5-11-2542 (B) 08-SB5-11-2542 (B) 08-SB5-11-2542 (B) 08-SB5-12-2553 (B) 08-SB5-12-2553 (B) 08-SB5-13-2565 (A) 08-SB5-13-2565 (A) 08-SB5-13-2565 (B) 08-SB5-14-2576 (B) 08-SB5-14-2576 (B) 08-SB5-15-2590 (A) 08-SB5-15-2590 (A) 08-SB5-15-2590 (B)	08-1530 08-1531 08-1531 08-1532 08-1532 08-1532 08-1533 08-1672 08-1672 08-1672 08-1530 08-1530 08-1531 08-1531 08-1532 08-1533 08-1533 08-1533 08-1672 08-1672	Empty Crucible wt 43.9275 43.9071 44.0028 43.1834 43.4687 43.7324 43.9942 44.5008 43.9943 43.4679 Empty Crucible wt 42.9349 44.5089 40.4459 43.1671 42.9079 44.1714 42.0030 44.9357 42.5096	Weight % Crucible Wt + Wet Sample 49.5838 49.5504 50.0713 49.9884 50.2239 50.7963 51.2906 50.5615 50.1523 Crucible Wt + Wet Sample 45.1831 46.7703 42.7024 45.1831 46.7703 42.7024 45.1610 46.4307 44.2573 47.1949 43.66486	Solids Cal Crucible Wt + Dry wt 46.6204 46.5987 46.7724 46.0175 46.3119 46.576 47.2027 47.7125 47.027 47.7125 47.0377 47.0377 47.5500 43.3155 43.3155 43.3155 44.8899 40.8218 43.5369 43.5369 43.5369 43.5369 43.5369 43.5369 43.5328 44.5115 42.3669 45.3029 42.7015 42.5669 42.566	Ulations Total Solids 47.6% 47.7% 45.6% 43.8% 47.2% 47.3% 46.34% 46.11% Uncorr 16.93% 16.85% 16.66% 16.31% 15.05% 16.14% 16.25% 16.85% 16.85% 16.25% 16.73%	Wet Wt 5.6563 5.6433 6.0685 6.1846 6.5197 6.4915 6.8021 6.7898 6.5672 6.6844 Soluble Solids 10.7% 10.6% 10.9% 10.6% 10.9% 10.2% 10.2% 10.2%	Dry Wt 2.693 2.692 2.770 2.834 2.843 2.844 3.209 3.212 3.043 3.082	Insoluble Solids 36.9% 37.1% 34.8% 35.3% 33.6% 33.8% 37.0% 37.1% 35.47% 35.28% <u>PH</u> 6.80 6.33 6.33 4.71 4.41	Cruc Wt+ Calcined 46.1519 46.1337 45.4995 45.7496 46.0146 46.5792 47.0916 46.4940 45.9944 Density 1.391 1.332 1.328 1.328	Wt % Calcined 39.3% 39.5% 37.4% 37.4% 35.2% 38.0% 38.2% 38.06% 38.2% 38.06% 37.4% 37.4% 37.4% 35.2% 37.1% 36.3%

Appendix A-4: Condensate Sample Results										
Process Science Analy	tical Labo	ratory								
Customer: Dan Lamber	t									
Date: 7/22/08										
Sample ID: MWWT 08-9	SB5-7-250	8, 9-2519, 8	3-2490, 10-2	2499						
Sample ID: FAVC 08-SI	B5-7-2509	, 9-2520, 8-	2491, 10-25	00						
Lab ID: 08-1364-1371										
MWWT anions (mg/L)										
Sample Number	PSAL#	<u>F</u>	NO2	NO3	HCO2	<u>SO4</u>	PO4	CI	pН	Density
08-SB5-7-2508 (A)	08-1364	<100	<100	181	<100	<100	<100	<100	10.1	1.02
08-SB5-7-2508 (B)	08-1364	<100	<100	183	<100	<100	<100	<100		
08-SB5-8-2490 (A)	08-1366	<100	<100	<100	440	<100	<100	<100	3.07	1.02
08-SB5-8-2490 (B)	08-1366	<100	<100	<100	445	<100	<100	<100		
08-SB5-9-2519 (A)	08-1365	<100	<100	<100	1120	<100	<100	<100	2.80	1.01
08-SB5-9-2519 (B)	08-1365	<100	<100	<100	1170	<100	<100	<100		
08-SB5-10-2499 (A)	08-1367	<100	<100	114	15900	<100	<100	<100	2.68	1.02
08-SB5-10-2499 (B)	08-1367	<100	<100	116	16200	<100	<100	<100		
FAVC anions (mg/L)										
Sample Number	PSAL#	F	NO2	NO3	HCO2	SO4	PO4	CI	рН	Density
08-SB5-7-2509 (A)	08-1368	<100	<100	152000	527	<100	<100	<100	<1.00	1.09
08-SB5-7-2509 (B)	08-1368	<100	<100	153000	518	<100	<100	<100	1100	
08-SB5-8-2491 (A)	08-1370	<100	<100	284000	844	<100	<100	<100	2.37	1.12
08-SB5-8-2491 (B)	08-1370	<100	<100	277000	841	<100	<100	<100	2.01	
08-SB5-9-2520 (A)	08-1369	<100	<100	227000	1210	<100	<100	<100	2 41	1 1 1
08-SB5-9-2520 (R)	08-1369	<100	<100	231000	1210	<100	<100	<100	2.71	
08-SB5-10-2500 (A)	08-1371	<100	200	223000	1010	<100	<100	<100	2.62	1 1 3
08-SB5-10-2500 (A)	08-1371	<100	203	220000	1010	<100	<100	<100	2.02	1.15
08-3B3-10-2300 (B)	00-13/1	<100	200	220000	1020	<100	<100	<100		
Process Science Analy	tical Labo	ratory								
Customer: Den Lember		ratory								
Dete: 7/22/09										
Sample ID: Dowator 09	SB5 7 25	10 0 2521	8-2404 10	2502						
Sample ID. Dewaler 00	-363-7-23	10, 9-2521,	0-2494, 10	-2505						
Lab ID: 08-1360-1363										
Downtor opiono (mg/l)										
Dewater amons (mg/L)	DCAL#	E	NO2	NO2		804	PO4	CI	54	Density
Sample Number	PSAL#	<u> </u>	<u>102</u>	<u>NU3</u>	<u>ncoz</u>	<u>504</u>	<u>P04</u>	<u>-100</u>	<u>pn</u>	Density
00-303-7-2310 (A)	00-1300	<100	<100	1000	900	<100	<100	<100	1.94	1.01
00-5B5-7-2510 (B)	08-1360	<100	<100	1620	1040	<100	<100	<100	4 00	4.00
U8-585-8-2494 (A)	08-1362	<100	<100	1290	3520	<100	<100	<100	1.98	1.02
U8-SB5-8-2494 (B)	08-1362	<100	<100	1310	3440	<100	<100	<100	0.00	4.04
08-SB5-9-2521 (A)	08-1361	<100	<100	485	7020	<100	<100	<100	2.23	1.01
08-SB5-9-2521 (B)	08-1361	<100	<100	491	7090	<100	<100	<100		
08-SB5-10-2503 (A)	08-1363	<100	<100	330	9780	<100	<100	<100	2.23	1.02
08-SB5-10-2503 (B)	08-1363	<100	<100	330	9900	<100	<100	<100		

Appendix A-4: Condensate Sample Results										
Process Science Analy	tical Laboi	ambort								
Date: 7/30/08	nan, Dan i	Lampent								
Sample ID: 08-SB5-15-2	2587, 2588	, 2589								
Lab ID: 08-1668-1670										
<u>MWWI anions (mg/L)</u> Sample Number	DSAL#	F	NO2	NO2	4002	504	PO4	CI	nЦ	Doncity
08-SB5-11-2537	08-2040	<u>-</u> <100	<100	9160	<100	<100	<100	<100	9.38	1.02
08-SB5-11-2537	08-2040	<100	<100	9250	<100	<100	<100	<100	0.00	
08-SB5-12-2548	08-2041	<100	<100	<100	<100	<100	<100	<100	9.16	1.02
08-SB5-12-2548	08-2041	<100	<100	<100	<100	<100	<100	<100		
08-SB5-13-2560	08-2042	<100	<100	<100	948	<100	<100	<100	2.42	1.02
08-SB5-13-2560	08-2042	<100	<100	<100	1020	<100	<100	<100		4.00
08-SB5-14-2571	08-2043	<100	<100	<100	1450	<100	<100	<100	2.30	1.02
08-SB5-15-2588 (A)	08-2043	<100	<100	<100	1520	<100	<100	<100	1 25	
08-SB5-15-2588 (B)	08-1669	<100	<100	<100	1660	<100	766	<100	1.25	
	00.000	100	4100	4100		4100	100	4100		
FAVC anions (mg/L)										
Sample Number	PSAL#	F	NO2	NO3	HCO2	<u>SO4</u>	PO4	CI	pН	Density
08-SB5-11-2544	08-2044	<100	119	209000	<100	<100	<100	<100	<1.00	1.10
08-SB5-11-2544	08-2044	<100	117	210000	<100	<100	<100	<100	1.00	
08-SB5-12-2555	08-2045	<100	<100	169000	1100	<100	<100	<100	<1.00	1.09
08-503-12-2333	08-2045	<100	<100	175000	1000	<100	<100	<100	~1.00	1 10
08-SB5-13-2567	08-2046	<100	<100	176000	1610	<100	<100	<100	<1.00	1.10
08-SB5-14-2578	08-2047	<100	175	150000	179	<100	<100	<100	<1.00	1.07
08-SB5-14-2578	08-2047	<100	166	154000	176	<100	<100	<100		
08-SB5-15-2589 (A)	08-1670	<100	<100	<100	163000	<100	677	<100	2.46	
08-SB5-15-2589 (B)	08-1670	<100	<100	<100	165000	<100	636	<100		
Dreeses Science Analy	laal Laha	et en l								
Customer: Dan Lamber	tical Labor	atory								
Date: 7/23/08	L									
Sample ID: SRAT Dewa	ter 08-SB5	-11-2538, [•]	12-2549, 13	-2561, 14-25	572					
Sample ID: SME Dewate	er 08-SB5-	11-2540, 12	2-2551, 13-2	2563, 14-257	74					
Lab ID: 08-1555-1562										
SRAT Dewater anions (<u>mg/L)</u>									
Sample Number	PSAL#	<u> </u>	<u>NO2</u>	NO3	HCO2	<u>SO4</u>	<u>P04</u>		<u>pH</u>	Density
08-SB5-11-2538 (A)	08-1555	<100	<100	1640	170	<100	<100	<100	1.83	1.02
08-SB5-11-2538 (B)	08-1555	<100	<100	1/20	171	<100	<100	<100	1 02	1.02
08-SB5-12-2549 (A)	08-1556	<100	<100	1400	1740	<100	<100	<100	1.92	1.03
08-SB5-13-2561(A)	08-1557	<100	<100	626	4510	<100	<100	<100	2.17	1.02
08-SB5-13-2561 (B)	08-1557	<100	<100	626	4600	<100	<100	<100		
08-SB5-13-2561	08-2070	<100	<100	604	3460	<100	<100	<100	1.87	1.02
08-SB5-13-2561	08-2070	<100	<100	603	3560	<100	<100	<100		
08-SB5-14-2572 (A)	08-1558	<100	<100	491	7490	<100	<100	<100	2.19	1.02
08-SB5-14-2572 (B)	08-1558	<100	<100	495	7440	<100	<100	<100		0.00
08-SB5-15-2587 (A)	00-1008	<100	<100	<100	100	<100	103	<100		2.30
SME Dewater anions (n	10/L)	100	100	100	101	100	0.04	100		
08-SB5-11-2540 (A)	08-1559	<100	<100	<100	<100	<100	<100	<100	9.26	1.01
08-SB5-11-2540 (B)	08-1559	<100	<100	<100	<100	<100	<100	<100		
08-SB5-12-2551 (A)	08-1560	<100	<100	<100	108	<100	<100	<100	4.39	1.01
08-SB5-12-2551(B)	08-1560	<100	<100	<100	102	<100	<100	<100		
08-SB5-13-2563 (A)	08-1561	<100	<100	<100	2090	<100	<100	<100	2.62	1.01
08 SB5 14 2574 (A)	08-1561	<100	<100	<100	2130	<100	<100	<100	2 40	1.04
08-SB5-14-2574 (A)	08-1562	<100	<100	<100	3330	<100	<100	<100	2.49	1.01
00 000 i 1 -2017 (D)	30 1002	2100	2100	2100	0000	100	100	2100		1

Appendix A-5: Formate and Nitrate Balance								
Run Number	SB5-7	SB5-8	SB5-9	SB5-10				
Sludge Simulant	SB5-D	SB5-D	SB5-D	SB5-D				
Acid Stoichiometry	115	130	145	160				
Fresh Sludge Mass, g	3,017.89	3,017.89	3,017.89	3,017.89				
ARP Slurry Added, g	0.00	0.00	0.00	0.00				
Fresh Sludge Nitrite, mg/kg	10388	10388	10388	10388				
Fresh Sludge Nitrate, mg/kg	7114	7114	7114	7114				
Nitric Added, mL	33.08	36.78	32.26	37.37				
Nitric Acid Molarity	10.53	10.53	10.53	10.53				
Formic Added, mL	32.87	41.51	39.76	43.14				
Formic Acid Molarity	23.60	23.60	23.60	23.60				
SRAT Product, g	2,377.52	2,688.70	2,645.42	2,771.29				
SRAT Product Nitrite, mg/kg	62,200	64,750	71,700	72,450				
SRAT Product Nitrate, mg/kg	0	0	0	0				
SRAT Product Formate, mg/kg	29,550	29,750	34,850	36,200				
Calculations								
SRAT Data								
Formate Added, g	197.61	226.37	249.21	272.50				
Nitrate Added, g	48.55	59.29	69.44	80.08				
Nitrite in Feed, g	31.35	31.35	31.35	31.35				
Nitrate in Feed, g	21.73	21.73	21.73	21.73				
Nitrite in SRAT product (grams)	0.00	0.00	0.00	0.00				
Nitrate in SRAT product (grams)	70.26	73.99	92.19	100.32				
Formate in SRAT product (grams)	147.88	161.04	189.68	200.78				
SRAT Formate Destruction, g	49.73	65.32	59.54	71.72				
SRAT Nitrite Destruction (grams)	31.35	31.35	31.35	31.35				
Nitrite to Nitrate Conversion, g	-0.02	-7.03	1.03	-1.49				
Nitrate from nitrite in SRAT product, mol	0.00	-0.11	0.02	-0.02				
Moles of nitrite reacted	0.68	0.68	0.68	0.68				
% nitrite conversion to nitrate	-0.05	-16.63	2.43	-3.53				
SRAT Nitrite Destruction (%)	100.00	100.00	100.00	100.00				
SRAT Formate Destruction (%)	25.16	28.86	23.89	26.32				
SME Data								
Total SME Product, g	2,313.94	2,540.80	2,533.12	2,543.20				
SME Feed formate (grams)	135.44	147.99	175.34	186.29				
SME Feed nitrate (grams)	64.35	68.00	85.22	93.08				
SME Formate Added, g	7.64	7.68	7.71	7.75				
Nitrate in SME product (grams)	55.53	64.28	74.60	82.65				
Formate in SME product (grams)	119.28	145.08	162.50	165.05				
SME Formate Destruction (grams)	23.80	10.59	20.55	28.99				
SME Nitrate Destruction (grams)	8.81	3.71	10.62	10.43				
SME Nitrate Destruction (%)	13.69	5.46	12.46	11.20				
SME Formate Destruction (%)	16.63	6.80	11.23	14.94				

Appendix A-5: Formate and Nite	rate Balance	<u>)</u>			
Run Number	SB5-11	SB5-12	SB5-13	SB5-14	SB5-15
Sludge Simulant	SB5-C	SB5-C	SB5-C	SB5-C	SB5-C
Acid Stoichiometry	115	130	145	160	130
Fresh Sludge Mass, g	3,500.00	3,500.00	3,500.00	3,500.00	2,450.00
ARP Slurry Added, g	0.00	0.00	0.00	0.00	971.00
Fresh Sludge Nitrite, mg/kg	6,175	6,175	6,175	6,175	6,175
Fresh Sludge Nitrate, mg/kg	3,940	3,940	3,940	3,940	3,940
Nitric Added, mL	31.02	38.84	30.49	37.70	0.00
Nitric Acid Molarity	10.53	10.53	10.53	10.53	10.53
Formic Added, mL	34.73	45.08	35.05	40.93	0.00
Formic Acid Molarity	23.60	23.60	23.60	23.60	23.60
SRAT Product, g	1,960.00	2,150.00	2,180.00	2,424.90	2,200.00
SRAT Product Nitrite, mg/kg	62,250	58,200	61,700	74,400	57,200
SRAT Product Nitrate, mg/kg	0	0	0	0	0
SRAT Product Formate, mg/kg	20,600	23,600	26,150	28,600	27,950
Calculations					
SRAT Data					
Formate Added, g	161.26	176.44	193.28	213.49	148.82
Nitrate Added, g	31.09	44.67	52.13	59.34	31.38
Nitrite in Feed, g	21.62	21.62	21.62	21.62	16.71
Nitrate in Feed, g	14.03	14.03	14.03	14.03	26.80
Nitrite in SRAT product (grams)	0.00	0.00	0.00	0.00	0.00
Nitrate in SRAT product (grams)	40.38	50.74	57.01	69.35	61.49
Formate in SRAT product (grams)	122.01	125.13	134.51	180.41	125.84
SRAT Formate Destruction, g	39.25	51.31	58.78	33.07	22.98
SRAT Nitrite Destruction (grams)	21.62	21.62	21.62	21.62	16.71
Nitrite to Nitrate Conversion, g	-4.74	-7.96	-9.16	-4.03	3.31
Nitrate from nitrite in SRAT product, mol	-0.08	-0.13	-0.15	-0.06	0.05
Moles of nitrite reacted	0.47	0.47	0.47	0.47	0.36
% nitrite conversion to nitrate	-16.28	-27.32	-31.42	-13.81	14.69
SRAT Nitrite Destruction (%)	100.00	100.00	100.00	100.00	100.00
SRAT Formate Destruction (%)	24.34	29.08	30.41	15.49	15.44
SME Data					
Total SME Product, g	2,146.70	2,303.80	2,319.00	2,001.00	2,088.00
SME Feed formate (grams)	109.48	113.47	123.33	165.47	111.01
SME Feed nitrate (grams)	36.23	46.01	52.27	63.61	54.25
SME Formate Added, g	7.40	7.45	7.48	7.50	7.01
Nitrate in SME product (grams)	37.46	44.00	50.44	50.03	48.34
Formate in SME product (grams)	110.13	114.73	127.20	124.96	104.92
SME Formate Destruction (grams)	6.75	6.19	3.62	48.01	13.10
SME Nitrate Destruction (grams)	-1.23	2.01	1.83	13.58	5.91
SME Nitrate Destruction (%)	-3.40	4.37	3.51	21.36	10.89
SME Formate Destruction (%)	5.78	5.12	2.77	27.76	11.10

Run Number	SB5-7	SB5-8	SB5-9	SB5-10
Sludge Simulant	SB5-D	SB5-D	SB5-D	SB5-D
Acid Stoichiometry	115	130	145	160
GC Calibration Gas	K027610H	0	KP02454H	0
Pre-Run Leak Check In	90	90	90	90
Pre-Run Leak Check Out	90.8	89.6	89.7	90
Post-Run Leak Check In	90	90	0	90
Post-Run Leak Check Out	90.2	0	0	90.8
pH Pre-Run Cal: Buffer 4	4.01	4.01	4.01	4
pH Pre-Run Cal: Buffer 10	10.02	10	10	10
pH Pre-Run Cal: Buffer 7	7.04	7.1	7.06	6.97
pH Post-Run Cal: Buffer 4	6.11	NA	0	0
pH Post-Run Cal: Buffer 10				
	10.23	NA	0	7.2
pH Post-Run Cal: Buffer 7	8.52	NA	0	0
Air Purge, sccm	787.5	787.5	787.5	787.5
He Purge, sccm	3.939	3.939	3.939	3.939
MWWT Water Added, g	41.7	43.433	48.3	42.364
MWWT Final Mass, g	50.01	39.6	50.01	47.9
FAVC Final Mass, g	33.83	33.64	33.83	29.82
Additions, g				
Sludge Added	3017.90	3018.00	3017.90	3017.89
ARP Added				
NaNO3	17.89	17.8906	17.89	17.8908
AgNO3	0.0987	0.0984	0.0983	0.0988
Pd(NO3)2*H2O	0.1389	0.1384	0.1381	0.1393
Rh(NO3)3*2H2O	2.2213	2.2218	2.2211	2.2208
RuCl3	1.2188	1.2190	1.2184	1.2184
Flush Water	50.0000	50.0400	50.0000	50.0500
HgO	13.8032	13.8038	13.8033	13.8037
Antifoam prior to acid	6.17	6.17	6.17	6.17
Water with 1st antifoam				
addition	6.17	6.17	6.17	6.17
Additional Antifoam	3.09	0	3.09	3.09
Water with addition antifoam				
	3.09	0	3.09	3.09
Antifoam prior to boiling	15.43	0	15.43	15.43
Water with 2nd antifoam				
addition	15.43	0	15.43	15.43
Total Antifoam	24.69	6.17	24.69	24.69

Run Number	SB5-7	SB5-8	SB5-9	SB5-10
Sludge Simulant	SB5-D	SB5-D	SB5-D	SB5-D
Acid Stoichiometry	115	130	145	160
Ratio: Formic to Total Acid	0.85	0.84	0.83	0.82
Run #	SB5-7	SB5-8	SB5-9	SB5-10
Sludge Feed Batch #	SB5-D	SB5-D	SB5-D	SB5-D
SRAT Vessel Volume, L	4.00	4.00	4.00	4.00
Fresh Sludge Weight % Total	15.09	15.09	15.09	15.09
Fresh Sludge Weight % Calci	11.25	11.25	11.25	11.25
Fresh Sludge Weight % Insolu	7.95	7.95	7.95	7.95
Fresh Sludge Density	1.12	1.12	1.12	1.12
Fresh Sludge Manganese (% o	4.64	4.64	4.64	4.64
Fresh Sludge Slurry TIC (trea	2470.34	2470.34	2470.34	2470.34
Fresh Sludge Hydroxide (Bas	0.91	0.91	0.91	0.91
Fresh Sludge Mercury (% of 7	0.00	0.00	0.00	0.00
Fresh Sludge Supernate mang	0.00	0.00	0.00	0.00
Fresh Sludge Supernate densit	1.06	1.06	1.06	1.06
Conversion of Nitrite to Nitra	25.00	25.00	25.00	25.00
Destruction of Nitrite in SRA	100.00	100.00	100.00	100.00
Destruction of Formic acid ch	15.00	15.00	15.00	15.00
Destruction of oxalate charged	50.00	50.00	50.00	50.00
Percent Acid in Excess Stoich	115.00	130.00	145.00	160.00
SRAT Product Target Solids	25.00	25.00	25.00	25.00

Run Number	SB5-7	SB5-8	SB5-9	SB5-10
Sludge Simulant	SB5-D	SB5-D	SB5-D	SB5-D
Acid Stoichiometry	115	130	145	160
DWPF Nitric Acid addition R	2.00	2.00	2.00	2.00
DWPF Formic Acid addition	2.00	2.00	2.00	2.00
Mass of pure formic acid (H	208.06	232.19	256.39	280.45
Mass of pure nitric acid (HN	49.71	60.31	70.81	81.51
REDOX Target	0.20	0.20	0.20	0.20
REDOX Equation (7 for Mn+	7.00	7.00	7.00	7.00
Nitric acid density, 20 °C	1.31	1.31	1.31	1.31
Formic acid density, 20 °C	1.20	1.20	1.20	1.20
Nitric acid, wt %	50.55	50.55	50.55	50.55
Formic acid, wt %	90.16	90.16	90.16	90.16
Formic acid amount	4.52	5.04	5.57	6.09
Nitric acid amount	0.79	0.96	1.12	1.29
Total Stoichiometric Acid req	4.62	4.62	4.62	4.62
Percent Acid in Excess Stoich	115.00	130.00	145.00	160.00
Actual acid to add to SRAT	5.31	6.00	6.69	7.39
Acid required in moles per lite	1.96	2.22	2.48	2.73
Final sludge mass in SRAT af	2342.46	2466.91	2591.21	2715.81
Mass of SRAT cycle samples	200.00	200.00	200.00	200.00
wass of SKAT cycle samples	200.00	200.00	200.00	200.00
Mass of treated sludge going i	2142.46	2266.91	2391.21	2515.81
SME sample ratio	0.91	0.92	0.92	0.93
Calcined Solids going to SME	311.85	313.31	314.64	315.85

Appendix A-6:	SRAT & S	SME Cycle	Run Data
----------------------	----------	-----------	-----------------

Run Number	SB5-7	SB5-8	SB5-9	SB5-10
Sludge Simulant	SB5-D	SB5-D	SB5-D	SB5-D
Acid Stoichiometry	115	130	145	160
99.5% of scaled air purge	787.46	787.46	787.46	787.46
Helium purge rate at 0.5 vol%	3.94	3.94	3.94	3.94
Scaled boil-up rate	4.59	4.59	4.59	4.59
Required dewatering time at a	225.67	208.18	190.70	173.20
SME Cycle				
Frit type	418.00	418.00	418.00	418.00
Destruction of Formic acid in	7.00	7.00	7.00	7.00
Destruction of Nitrate in SME	0.00	0.00	0.00	0.00
Assumed SME density	1.45	1.45	1.45	1.45
Basis Antifoam Addition for S	100.00	100.00	100.00	100.00
	100.00	100.00	100.00	100.00
Number of basis antifoam add	4.00	4.00	4.00	4.00
Sludge Oxide Contribution in	35.00	35.00	35.00	35.00
Frit Slurry Formic Acid Ratio	1.50	1.50	1.50	1.50
Target SME Solids total Wt%	45.00	45.00	45.00	45.00
Turget Sivil Sonds totul (17)	10100	10100	10100	10100
Number of frit additions in SM	2.00	2.00	2.00	2.00
# DWPF Canister decons sim	5.00	5.00	5.00	5.00
Volume of water per deconed	1000.00	1000.00	1000.00	1000.00
SME scale factor (ADJUSTE	8997.65	8955.48	8917.74	8883.65
99 5% scaled SMF air purge	231 72	232.81	233.80	234 70
solo lo source sivils un purge	231.72	252.01	233.00	231.70
Helium purge rate at 0.5 vol%	1.16	1.16	1.17	1.17
Frit solids (total)	579.14	581.87	584.33	586.58

Run Number	SB5-7	SB5-8	SB5-9	SB5-10
Sludge Simulant	SB5-D	SB5-D	SB5-D	SB5-D
Acid Stoichiometry	115	130	145	160
90 wt% formic acid (correctio	8.69	8.73	8.76	8.80
Water in frit slurry	570.46	573.14	575.57	577.78
Number of equal SME frit slu	2.00	2.00	2.00	2.00
Scaled SME boil-up rate	4.20	4.22	4.24	4.25
Approximate time to remove	68.93	68.93	68.93	68.93
Final solids content in SME	1122.79	1156.68	1190.26	1223.70
Target SME solids total wt%	45.00	45.00	45.00	45.00
Mass of water to boil off for f	230.80	282.91	335.30	388.09
Approximate time to reach sol	54.94	67.03	79.10	91.21
Predicted Fe+2/Fe total in gla	0.20	0.22	0.20	0.19
Start Heatup	6/10/08 6:10	6/3/08 7:33	6/11/08 8:05	6/3/08 6:50
Start Nitric Acid Addition	6/10/08 8:49	6/3/08 8:38	6/11/08 9:06	6/3/08 7:40
Stop Nitric Acid Addition	6/10/08 10:13	6/3/08 10:23	6/11/08 11:05	6/3/08 10:15
Nitric Acid Feed Time, min	84.00	105.00	119.00	155.00
Start Formic Acid Addition	6/10/08 10:30	6/3/08 10:43	6/11/08 11:35	6/3/08 10:43
Stop Formic Acid Addition	6/10/08 14:01	6/3/08 14:35	6/11/08 15:55	6/3/08 15:16
Formic Acid Feed Time, min	211.00	232.00	260.00	273.00
Boiling Begins	6/10/08 6:10	1/0/00 0:00	6/11/08 16:30	6/3/08 15:40
Dewater Complete	6/10/08 18:32	6/3/08 19:26	6/11/08 15:55	6/3/08 18:53
Dewater Time, min	742.00	57028046.00	1405.00	193.00
Boiling Complete	6/11/08 8:40	6/4/08 9:00	6/12/08 10:30	6/4/08 9:42
Total Boiling Time, min	1590.00	57028860.00	1080.00	1082.00
	0.00	0.57	0.00	0.50
Nitric Acid Feed Rate, mL/mi	0.89	0.87	0.90	0.79
Formic Acid Feed Rate, mL/n	0.91	0.92	0.91	0.95

l

Run Number	SB5-11	SB5-12	SB5-13	SB5-14	SB5-15	
Sludge Simulant	SB5-C	SB5-C	SB5-C	SB5-C	SB5-C	
Acid Stoichiometry	115	130	145	160	130	
GC Calibration Gas	0	0	0	0	K027610H	
Pre-Run Leak Check In	90	90	90	90	90	
Pre-Run Leak Check Out	92.2	91	98.1	88	83.5	
Post-Run Leak Check In	90	90	90	90	90	
Post-Run Leak Check Out	92	88.1	94.2	86.2	92.2	
pH Pre-Run Cal: Buffer 4	4	4	4	4	4	
pH Pre-Run Cal: Buffer 10	10	10	10	10	10	
pH Pre-Run Cal: Buffer 7	7.07	7.02	7.02	7.02	6.99	
pH Post-Run Cal: Buffer 4	7.12	4.49	4.47	4.79	4.49	
pH Post-Run Cal: Buffer 10						
	7.46	10.31	9.94	3.83	10.32	
pH Post-Run Cal: Buffer 7	7.14	7.31	7.38	0	7.77	
Air Purge, sccm	932.3	932.3	932.3	932.3	922.5	
He Purge, sccm	4.66	4.66	4.66	4.66	4.61	
MWWT Water Added, g	49.07	40.73	51	40.04	49.5	
MWWT Final Mass, g	51.97	41.84	54.31	42.23	49.31	
FAVC Final Mass, g	29.49	34.12	34.69	34.9	30.5	
Additions, g						
Sludge Added	3500.50	3501.20	3501.20	3501.60	2,450.00	
ARP Added					971.00	
NaNO3						
AgNO3	0.0973	0.0973	0.0973	0.0973	0.0960	
Pd(NO3)2*H2O	0.1066	0.1065	0.1065	0.1064	0.1045	
Rh(NO3)3*2H2O	2.0661	2.0661	2.0662	2.0660	2.0264	
RuCl3	1.0555	1.0555	1.0556	1.0554	1.0354	
Flush Water	50.0200	50.0100	50.0000	50.0000	50.0100	
HgO	11.5276	11.5276	11.5276	11.5275	8.1167	
Antifoam prior to acid	7.1300	7.1300	7.1300	7.1330	7.0500	
Water with 1st antifoam						
addition	7.1300	7.1300	7.1300	7.1300	7.0500	
Additional Antifoam	0.0000	3.5600	0.0000	3.5600	21.1600	
Water with addition antifoam						
	0.0000	3.5600	0.0000	3.5700	21.1400	
Antifoam prior to boiling	17.8200	17.8200	17.8200	17.8200	17.6200	
Water with 2nd antifoam						
addition	17.8200	17.8200	17.8200	17.8200	17.6200	
Total Antifoam	24.95	28.51	24.95	28.513	45.83	

А

l

Run Number	SB5-11	SB5-12	SB5-13	SB5-14	SB5-15	
Sludge Simulant	SB5-C	SB5-C	SB5-C	SB5-C	SB5-C	
Acid Stoichiometry	115	130	145	160	130	
Ratio: Formic to Total Acid	0.88	0.84	0.84	0.83	0.87	
Run #	SB5-11	SB5-12	SB5-13	SB5-14	SB5-15	
Sludge Feed Batch #	SB5-C	SB5-C	SB5-C	SB5-C	SB5-C	
SRAT Vessel Volume, L	4.00	4.00	4.00	4.00	4.00	
Fresh Sludge Weight % Total						
Solids	12.47	12.47	12.47	12.47	12.47	
Fresh Sludge Weight %						
Calcined Solids	9.51	9.51	9.51	9.51	9.51	
Fresh Sludge Weight %						
Insoluble Solids	7.85	7.85	7.85	7.85	7.85	
Fresh Sludge Density	1.09	1.09	1.09	1.09	1.09	
Fresh Sludge Manganese (%						
of Calcined Solids)	5.05	5.05	5.05	5.05	5.05	
Fresh Sludge Slurry TIC						
(treated as Carbonate)	1338.06	1338.06	1338.06	1338.06	1338.06	
Fresh Sludge Hydroxide						
(Base Equivalents) $pH = 7$	0.63	0.63	0.63	0.63	0.63	
Fresh Sludge Mercury (% of						
Total Solids in untrimmed						
sludge)	0.00	0.00	0.00	0.00	0.00	
Fresh Sludge Supernate						
manganese	0.00	0.00	0.00	0.00	0.00	
Fresh Sludge Supernate						
density	1.02	1.02	1.02	1.02	1.02	
Conversion of Nitrite to						
Nitrate in SRAT Cycle	-16.30	-27.30	-31.40	0.00	14.70	
Destruction of Nitrite in						
SRAT and SME cycle	100.00	100.00	100.00	100.00	100.00	
Destruction of Formic acid						
charged in SRAT	24.30	29.10	30.40	25.00	15.40	
Destruction of oxalate						
charged	50.00	50.00	50.00	50.00	20.00	
Percent Acid in Excess						
Stoichiometric Ratio	115.00	130.00	145.00	160.00	130.00	
SKAT Product Target Solids	26.09	25.15	25.06	25.00	25.11	

L

Run Number	SB5-11	SB5-12	SB5-13	SB5-14	SB5-15
Sludge Simulant	SB5-C	SB5-C	SB5-C	SB5-C	SB5-C
Acid Stoichiometry	115	130	145	160	130
DWPF Nitric Acid addition					
Rate	2.00	2.00	2.00	2.00	2.00
DWPF Formic Acid addition					
Rate	2.00	2.00	2.00	2.00	2.00
Mass of pure formic acid					
(HCOOH) added	166.42	180.82	199.97	219.33	152.46
Mass of pure nitric acid					
(HNO3) added	31.66	45.79	53.42	60.76	32.18
REDOX Target	0.20	0.20	0.20	0.20	0.20
REDOX Equation (7 for					
Mn+7, otherwise assumes					
Mn+4)	7.00	7.00	7.00	7.00	7.00
Nitric acid density, 20 °C	1.31	1.31	1.31	1.31	1.31
Formic acid density, 20 °C	1.20	1.20	1.20	1.20	1.20
Nitric acid, wt %	50.55	50.55	50.55	50.55	50.55
Formic acid, wt %	90.16	90.16	90.16	90.16	90.16
Formic acid amount	3.62	3.93	4.34	4.77	3.31
Nitric acid amount	0.50	0.73	0.85	0.96	0.51
Total Stoichiometric Acid					
required	3.58	3.58	3.58	3.58	2.94
Percent Acid in Excess					
Stoichiometric Ratio	115.00	130.00	145.00	160.00	130.00
Actual acid to add to SRAT					
	4.12	4.66	5.19	5.73	3.82
Acid required in moles per					
liter of starting sludge (less					
receipt samples)	1.28	1.45	1.62	1.78	1.75
Final sludge mass in SRAT					
after acid addition and					
dewater (neglecting samples)					
	2013.96	2154.25	2236.05	2372.28	2159.80
Mass of SRAT cycle samples					
(excluding SRAT Receipt)					
	201.27	200.00	181.10	200.00	259.21
Mass of treated sludge going					
into SME cycle	1812.69	1954.25	2054.95	2172.28	1900.59
SME sample ratio	0.90	0.91	0.92	0.92	0.88
Calcined Solids going to					
SME	300.84	303.21	307.18	306.07	277.35

l

Run Number	SB5-11	SB5-12	SB5-13	SB5-14	SB5-15	
Sludge Simulant	SB5-C	SB5-C	SB5-C	SB5-C	SB5-C	
Acid Stoichiometry	115	130	145	160	130	
99.5% of scaled air purge	932.29	932.29	932.29	932.29	922.48	
Helium purge rate at 0.5						
vol%	4.66	4.66	4.66	4.66	4.61	
Scaled boil-up rate	5.44	5.44	5.44	5.44	5.38	
Required dewatering time at						
above rate	326.88	306.92	297.06	279.72	582.84	
SME Cycle						
Frit type	418.00	418.00	418.00	418.00	418.00	
Destruction of Formic acid						
in SME	5.80	5.10	2.80	7.00	11.10	
Destruction of Nitrate in						
SME	-3.40	4.40	3.50	0.00	10.90	
Assumed SME density	1.45	1.45	1.45	1.45	1.45	
Basis Antifoam Addition for						
SME cycle	100.00	100.00	100.00	100.00	100.00	
Number of basis antifoam						
additions added during SME						
cycle	4.00	4.00	4.00	4.00	4.00	
Sludge Oxide Contribution in						
SME (Waste Loading)	35.00	35.00	35.00	35.00	35.00	
Frit Slurry Formic Acid						
Ratio	1.50	1.50	1.50	1.50	1.50	
Target SME Solids total						
Wt%	45.00	45.00	45.00	45.00	45.00	
Number of frit additions in						
SME Cycle	2.00	2.00	2.00	2.00	2.00	
# DWPF Canister decons						
simulated	0.00	0.00	0.00	0.00	0.00	
Volume of water per deconed						
can	1000.00	1000.00	1000.00	1000.00	1000.00	
SME scale factor						
(ADJUSTED FOR SRAT						
SAMPLES)	7722.76	7662.34	7563.55	7590.94	7982.94	
99.5% scaled SME air purge						
	269.98	272.11	275.66	274.67	261.18	
Helium purge rate at 0.5						
vol%	1.35	1.36	1.38	1.37	1.31	
Frit solids (total)	558.71	563.11	570.47	568.41	531.25	

l

Run Number	SB5-11	SB5-12	SB5-13	SB5-14	SB5-15	
Sludge Simulant	SB5-C	SB5-C	SB5-C	SB5-C	SB5-C	
Acid Stoichiometry	115	130	145	160	130	
90 wt% formic acid						
(corrections necessary for						
other concentrations)	8.38	8.45	8.56	8.53	7.97	
Water in frit slurry	550.33	554.67	561.91	559.88	523.28	
Number of equal SME frit						
slurry additions	2.00	2.00	2.00	2.00	2.00	
Scaled SME boil-up rate	4.89	4.93	5.00	4.98	4.73	
Approximate time to remove						
water:	57.07	57.07	57.07	57.07	56.10	
Final solids content in SME	1039.37	1062.41	1093.40	1119.37	1015.86	
Target SME solids total wt%						
	45.00	45.00	45.00	45.00	45.00	
Mass of water to boil off for						
final SME concentration						
	65.32	160.35	199.75	257.55	256.10	
Approximate time to reach						
solids target concentration.	13.35	32.51	32.51 39.97 51.72		52.30	
0						
Predicted Fe+2/Fe total in						
glass (no SME cycle)	0.29	0.23	0.23	0.28	0.18	
Start Heatup	7/10/08 18:15	7/9/08 6:24	7/9/08 18:10	7/8/08 6:37	7/23/08 6:40	
Start Nitric Acid Addition	7/10/08 20:03	7/9/08 7:44	7/9/08 19:10	7/8/08 8:00	7/23/08 7:36	
Stop Nitric Acid Addition	7/10/08 20:49	7/9/08 8:50	7/9/08 20:27	7/8/08 9:25	7/23/08 8:14	
Nitric Acid Feed Time, min	46.00	66.00	77.00	85.00	38.00	
Start Formic Acid Addition	7/10/08 21:16	7/9/08 8:57	7/9/08 20:42	7/8/08 9:44	7/23/08 8:25	
Stop Formic Acid Addition	7/10/08 23:40	7/9/08 12:20	7/9/08 23:35	7/8/08 12:54	7/23/08 10:38	
Formic Acid Feed Time, min						
	144.00	203.00	173.00	190.00	133.00	
Boiling Begins	7/11/08 0:05	7/9/08 12:20	7/9/08 23:57	7/8/08 13:30	7/23/08 11:03	
Dewater Complete	7/11/08 5:23	7/9/08 17:11	7/10/08 4:44	7/8/08 18:05	7/23/08 15:32	
Dewater Time, min	318.00	291.00	287.00	275.00	269.00	
Boiling Complete	7/11/08 18:05	7/10/08 6:23	7/10/08 17:52	7/9/08 9:01	7/24/08 0:57	
Total Boiling Time, min	1080.00	1083.00	1075.00	1171.00	834.00	
Nitric Acid Feed Rate,						
mL/min	1.04	1.05	1.05	1.08	1.06	
Formic Acid Feed Rate,						
mL/min	1.06	0.82	1.06	1.06	1.08	

							Sample	Digested	Slurry Total	
Sample Id	User SampleID	LIMS Method	Element	Result	Units	Rv	Mass, g	Volume, mL	Solids, wt %	Hg, wt %
300250088	08_SB5_7_2506	CV Hg Digested	Hg	8.1238	mg/L	1	1.49	100	25.642	0.213
300250089	08_SB5_8_2492	CV Hg Digested	Hg	9.6036	mg/L	1	2.46	100	24.008	0.163
300250090	08_SB5_9_2517	CV Hg Digested	Hg	1.2495	mg/L	1	1.26	100	23.959	0.041
300250091	08_SB5_10_2501	CV Hg Digested	Hg	2.9766	mg/L	1	1.958	100	24.169	0.0629
300250861	08_SB5_11_2535	CV Hg Digested	Hg	34.675	mg/L	1	1.31	100	26.8998	0.984
300250862	08_SB5_12_2546	CV Hg Digested	Hg	46.414	mg/L	1	1.961	100	25.5255	0.927
300250863	08_SB5_13_2558	CV Hg Digested	Hg	3.7471	mg/L	1	1	100	25.6747	0.146
300250864	08_SB5_14_2569	CV Hg Digested	Hg	2.1279	mg/L	1	1.5369	100	26.8056	0.0517
300251641	08_SB5_15_2586	CV Hg Digested	Hg	101.52	mg/L	1	47.2146	250	24.451	0.0415

Appendix A- 7. Mercury Results: SRAT Products

Appendix B. Sample/Run Results: Graphical Presentations

Figure B- 1c. Blend SRAT Product Nitrate and Formate versus Acid Stoichiometry

Figure B- 1d. Batch SRAT Product Nitrate and Formate versus Acid Stoichiometry

SRNS-STI-2008-00024 Revision 0

Figure B- 2c. Blend SME Product Nitrate and Formate versus Acid Stoichiometry

Figure B- 2d. Batch SME Product Nitrate and Formate versus Acid Stoichiometry

SRNS-STI-2008-00024 Revision 0

Figure B- 3d. Batch SRAT Dewater Anion Concentrations
SRNS-STI-2008-00024 Revision 0

Figure B- 5d. Batch FAVC Nitrate & Formate Concentration

Figure C- 2. SB5-8 (130% Acid) Offgas Data

Figure C- 4. SB5-10 (160% Acid) Offgas Data

Figure C- 6. SB5-12 (130% Acid) Offgas Data

Figure C- 8. SB5-14 (160% Acid) Offgas Data

Figure C- 10. Helium Profiles

Figure C-11. Oxygen Profiles

Figure C-12. Oxygen Profiles

Figure C-13. Nitrogen Profiles

Figure C-14. Carbon Dioxide Profiles

Figure C-15. Nitrous Oxide Profiles

Appendix D. Rheological Results Charts and Flow Curves

	Run 1		Run 1	
Curve	Yield Stress, Pa	Consistency, cP	Yield Stress, Pa	Consistency, CP
up	3.32	8.17	3.85	8.36
down	2.99	8.35	3.36	8.73

Figure D- 2. SB5-8 (130% Acid) SRAT Product Flow Curves

		Run 1		Run 1	
С	urve	Yield Stress, Pa	Consistency, cP	Yield Stress, Pa	Consistency, CP
	up	0.35	3.77	0.64	4.63
d	own	0.29	3.81	0.52	4.74

	Run 1		Run 1	
Curve	Yield Stress, Pa	Consistency, cP	Yield Stress, Pa	Consistency, CP
up	0.25	3.58	0.25	3.54
down	0.19	3.61	0.17	3.58

Figure D- 4. SB5-10 (160% Acid) SRAT Product Flow Curves

	Run 1		Run 1	
Curve	Yield Stress, Pa	Consistency, cP	Yield Stress, Pa	Consistency, CP
up	0.04	2.21	0.06	2.26
down	0.03	2.22	0.04	2.28

	Run 1		Run 1	
Curve	Yield Stress, Pa	Consistency, cP	Yield Stress, Pa	Consistency, CP
up	24.19	48.02	23.35	51.56
down	35.00	17.95	37.10	17.69

Figure D- 6. SB5-8 (130% Acid) SME Product Flow Curves

	Run 1		Run 1	
Curv	e Yield Stress, Pa	Consistency, cP	Yield Stress, Pa	Consistency, CP
u	o 3.12	16.26	3.15	15.83
dow	n 4.78	15.45	4.98	12.72

	Run 1		Run 1	
Curve	Yield Stress, Pa	Consistency, cP	Yield Stress, Pa	Consistency, CP
up	1.74	11.26	1.86	11.78
down	1.99	14.38	2.18	16.14

Figure D-8. SB5-10 (160% Acid) SME Product Flow Curves

	Run 1		Run 1	
Curve	Yield Stress, Pa	Consistency, cP	Yield Stress, Pa	Consistency, CP
up	1.64	10.84	1.63	10.91
down	1.84	12.95	1.84	13.12

Distribution:

J.E. Marra, 773-A J.C. Griffin, 773-A C.C. Herman, 999-W A.B. Barnes. 999-W B. J. Giddings, 786-5A S.D. Fink, 773-A C. W. Gardner, 773-A D. J. McCabe, 773-42A D.A. Crowley, 773-43A N.E. Bibler, 773-A C.M. Jantzen, 773-A M.E. Stone, 999-W S.H. Reboul, 773-42A J.D. Newell, 999-W C.J. Bannochie, 773-42A D.C. Koopman, 999-W D.P Lambert, 999-W J.M. Pareizs, 773-A B.R. Pickenheim, 999-W D.K. Peeler, 999-W J.E. Occhipinti, 704-S D.C. Sherburne, 704-S R.T. McNew, 704-27S T.L. Fellinger, 704-27S J.M. Bricker, 704-27S M.T. Keefer, 766-H J.F. Iaukea, 704-30S J.W. Ray, 704-S B.A. Davis, 704-27S H.B. Shah, 766-H J.M. Gillam, 766-H E.W. Holtzscheiter, 704-15S