WSRC-STI-2008-00315 Revision 0

VARIABILITY STUDY WITH FRIT 510 TO SUPPORT A SECOND TANK 40 DECANT

F.C. Raszewski T.B. Edwards D.K. Peeler D.R. Best I.A. Reamer R.J. Workman

July 2008

Environmental & Chemical Process Technology Savannah River National Laboratory Aiken, SC 29808

Prepared for the U.S. Department of Energy Under Contract Number DEAC09-96SR18500

DISCLAIMER

This report was prepared by Washington Savannah River Company (WSRC) for the United States Department of Energy under Contract No. DE-AC09-96SR18500 and is an account of work performed under that contract. Neither the United States Department of Energy, nor WSRC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, or product or process disclosed herein or represents that its use will not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trademark, name, manufacturer or otherwise does not necessarily constitute or imply endorsement, recommendation, or favoring of same by WSRC or by the United States Government or any agency thereof. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Printed in the United States of America

Prepared For U.S. Department of Energy

The Savannah River National Laboratory is operated for the U.S. Department of Energy by Washington Savannah River Company.

WSRC-STI-2008-00315 Revision 0

Keywords: *SB4*, *Frit 510*, *decant*, *variability*, *durability*

Retention: permanent

VARIABILITY STUDY WITH FRIT 510 TO SUPPORT A SECOND TANK 40 DECANT

F.C. Raszewski T.B. Edwards D.K. Peeler D.R. Best I.A. Reamer R.J. Workman

July 2008

Environmental & Chemical Process Technology Savannah River National Laboratory Aiken, SC 29808

Prepared for the U.S. Department of Energy Under Contract Number DEAC09-96SR18500

iii

REVIEWS AND APPROVALS

AUTHORS:

F.C. Raszewski, Process Engineering Technology	Date
T.B. Edwards, Statistical Consulting Section	Date
D.K. Peeler, Process Engineering Technology	Date
D.R. Best, Process Engineering Technology	Date
I.A. Reamer, Engineering Process Development	Date
R.J. Workman, Engineering Process Development	Date
TECHNICAL REVIEWER:	
K. M. Fox, Process Engineering Technology	Date
APPROVERS:	
J.C. Griffin, Manager, E&CPT Research Programs	Date
C.C. Herman, Manager, Process Engineering Technology	Date
J.E. Occhipinti, Manager, Waste Solidification Engineering	Date

EXECUTIVE SUMMARY

Sludge Batch 4 (SB4) is currently being processed in the Defense Waste Processing Facility (DWPF) using Frit 510. The slurry pumps in Tank 40 are experiencing in-leakage of bearing water, which is causing the sludge slurry in Tank 40 to become dilute at a rapid rate. Currently, the DWPF is removing this dilution water by performing caustic boiling during the Sludge Receipt and Adjustment Tank (SRAT) cycle. In order to alleviate prolonged SRAT cycle times, which may eventually impact canister production rates, the Liquid Waste Organization (LWO) performed a 100K gallon supernate decant of Tank 40 in April 2008. SRNL performed a supplemental glass variability study to support the April 2008 100K gallon decant incorporating the impact of coupled operations (addition of the Actinide Removal Process (ARP) stream).

Recently LWO requested that SRNL assess the impact of a second decant (up to 100K gallon) to the Frit 510-SB4 system. This second decant occurred in June 2008. LWO provided nominal compositions on May 6, 2008 representing Tank 40 prior to the second decant, following the second decant, and the SB4 Heel prior to blending with Tank 51 to constitute SB5. Paper study assessments were performed for these options based on sludge-only and coupled operations processing (ARP addition), as well as possible Na₂O additions (via NaOH additions) to both flowsheets. A review of the ComProTM database relative to the compositional region defined by the projections after the second decant coupled with Frit 510 identified only a few glasses with similar glass compositions. These glasses were acceptable from a durability perspective, but did not sufficiently cover the new glass compositional region. Therefore, SRNL recommended that a supplemental variability study be performed to support the June 2008 Tank 40 decant.

Glasses were selected for the variability study based on three sludge compositional projections (sludge-only, coupled and coupled + 2 wt% Na₂O) at waste loadings (WLs) of interest to DWPF (32%, 35% and 38%). These nine glasses were fabricated and characterized using chemical composition analysis, X-ray Diffraction (XRD) and the Product Consistency Test (PCT).

All of the glasses that were selected for this study satisfy the Product Composition Control System (PCCS) criteria and are deemed processable and acceptable for the DWPF, except for the SB4VS2-03 (sludge-only at 38% WL) target composition. This glass fails the T_L criterion and would not be considered processable based on Slurry Mix Evaporator (SME) acceptability decisions.

The durabilities of all of the study glasses (both quenched and ccc) are well below that of the normalized leachate for boron (NL [B]) of the reference EA glass (16.695 g/L) and are predictable using the current PCCS models. Very little variation exists between the NL [B] of the quenched and ccc versions of the glasses. There is some evidence of a trend toward a less durable glass as WL increases for some of the sludge projections.

Frit 510 is a viable option for the processing of SB4 after a *second* Tank 40 decant with or without the addition of products from the ARP stream as well as the 2 wt% Na₂O addition. The addition of ARP had no negative impacts on the acceptability and predictability of the variability study glasses.

TABLE OF CONTENTS

LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	X
1.0 Introduction	1
1.1 Glass Selection Strategy for the Second Variability Study	1
2.0 Objectives	2
3.0 Experimental Procedure	2
3.1 Target Glass Compositions	2
3.2 Glass Fabrication	3
3.3 Property Measurements	3
3.3.1 Compositional Analysis	3
3.3.2 PCT	3
3.3.3 XRD	3
4.0 Results and Discussion	4
4.1 Statistical Review of the Chemical Composition Measurements	4
4.1.1 Measurements in Analytical Sequence	4
4.1.2 Composition Measurements by Glass Identifier	4
4.1.3 Batch 1 and Uranium Standard Results	5
4.1.4 Composition Measurements by Glass Identifier with Targeted Compositions	6
4.1.5 Measured versus Targeted Compositions	6
4.1.6 MAR Assessment	7
4.2 Crystallization	9
4.2.1 Visual Observations	9
4.2.2 XRD	9
4.3 Statistical Review of the PCT Results	12
4.3.1 Measurements in Analytical Sequence	12
4.3.2 Results for the Samples of the Multi-Element Solution Standard	12
4.3.3 Measurements by Glass Identifier	13
4.3.4 Normalized PCT Results	13
4.3.5 Acceptability of the Variability Study Glasses	14
4.3.6 Effects of Heat Treatment on PCTs	14
4.3.7 Predicted versus Measured PCTs	14

WSRC-STI-2008-00315 Revision 0

5.0 Conclusions	
6.0 References	

LIST OF TABLES

Table 1.	Target Compositions of the Second Variability Study Glasses	. 2
Table 2.	Questionable Measurements Eliminated From Further Analysis	.7
Table 3. Targ	Results of the MAR Assessment of SB4 VS Glasses for Measured, Bias Corrected and geted Compositional Views	. 8
Table 4.	Visual Observations of Quenched and CCC Glasses	10
Table 5.	Results from Samples of the Multi-Element Solution Standard	12
Table 6. Frit	Normalized PCTs by Glass ID/Compositional View for SB4/Second Decant Glasses with 510	15

LIST OF FIGURES

Figure 1. A representative XRD pattern of an amorphous sample.	Note:	"SB4VAR2"	on sample
label (upper left hand corner) should be "SB4VS2."			11

Figure 3. Log NL[B] versus B del Gp model with a 95% confidence interval for individual PCTs...18

LIST OF ABBREVIATIONS

AD	Analytical Development
ANOVA	Analysis of Variance
ARM	Approved Reference Material
ARP	Actinide Removal Process
B Del Gp	Δ Gp value for boron
bc	Bias-Corrected
ссс	Centerline Canister Cooling
CPC	Chemical Processing Cell
DWPF	Defense Waste Processing Facility
EA	Environmental Assessment
ICP-AES	Inductively Coupled Plasma-Atomic Emission Spectroscopy
ID	Identification
LM	Lithium Metaborate
LWO	Liquid Waste Organization
MAR	Measure Acceptability Region
NL[B]	Normalized Leachate for Boron
NL[Li]	Normalized Leachate for Lithium
NL[Na]	Normalized Leachate for Sodium
NL[Si]	Normalized Leachate for Silicon
PCCS	Product Composition Control System
РСТ	Product Consistency Test
PF	Sodium Peroxide Fusion
ppm	Parts per million
PSAL	Process Science Analytical Laboratory
SB4	Sludge Batch 4
SME	Slurry Mix Evaporator
SRAT	Sludge Receipt and Adjustment Tank
SRNL	Savannah River National Laboratory
T_L Pred	Liquidus Temperature Prediction
U _{std}	Uranium Standard
Visc Pred	Viscosity Prediction
WL	Waste Loading
XRD	X-ray Diffraction

1.0 Introduction

Sludge Batch 4 (SB4) is currently being processed in the Defense Waste Processing Facility (DWPF) using Frit 510. The slurry pumps in Tank 40 are experiencing in-leakage of bearing water, which is causing the sludge slurry in Tank 40 to become dilute at a rapid rate. Currently, the DWPF is removing this dilution water by performing caustic boiling during the Sludge Receipt and Adjustment Tank (SRAT) cycle. In order to alleviate prolonged SRAT cycle times, which may eventually impact canister production rates, the Liquid Waste Organization (LWO) performed a 100K gallon supernate decant of Tank 40 in April 2008. SRNL performed a supplemental glass variability study to support the April 2008 100K gallon decant incorporating the impact of coupled operations (addition of the Actinide Removal Process (ARP) stream).¹

Recently LWO requested that SRNL assess the impact of a second decant (up to 100K gallon) to the Frit 510-SB4 system. This second decant occurred in June 2008. LWO provided nominal compositions on May 6, 2008 representing Tank 40 prior to the second decant, following the second decant, and the SB4 Heel prior to blending with Tank 51 to constitute SB5. Paper study assessments were performed for these options based on sludge-only and coupled operations, as well as possible NaOH additions to both flowsheets.^{a,2} A review of the ComProTM database relative to the compositional region defined by the projections after the second decant coupled with Frit 510 identified only a few historical glasses with similar compositions. These glasses were acceptable from a durability perspective, but did not sufficiently cover the new glass compositional region. Therefore, SRNL recommended that a supplemental variability study be performed to support the June 2008 Tank 40 decant.² This work was carried out under the auspices of a Technical Task Request (TTR) issued by LWO and a Task Technical and Quality Assurance Plan (TT&QAP).^{3,4}

1.1 Glass Selection Strategy for the Second Variability Study

Three nominal sludge compositions were chosen to be combined with Frit 510 for the experimental variability study:

- 1. Sludge-only [*Tk 40 Post Late Decant*]^b
- 2. Coupled^c [*Tk* 40 Post Late Decant w ARP]
- 3. Coupled + 2 wt% Na₂O [*Tk 40 Post Late Decant w ARP* + 2% *Na2O*]

Both options 1 and 2 (sludge-only and coupled) were chosen as bounding conditions for the study. Option 3 (Coupled + 2 wt% Na₂O) was chosen based on the results of the Measurement Acceptability Region (MAR) paper study assessments.² LWO was considering the addition of NaOH to Tank 40 or in the Chemical Processing Cell (CPC) in order to increase the size of the projected operating window and/or improve melt rate (assuming that melt rate would be reduced by the decant and/or ARP addition). The MAR assessments indicated that the addition of 1 and 2 wt% Na₂O to a coupled operations flowsheet was feasible; however, the addition of 3 wt% Na₂O caused the system to become limited by nepheline at the upper waste loading. Thus, the 2 wt% addition was chosen for this study, as the upper waste loading was only limited by liquidus temperature (T_L).

^a The projected compositions were provided by LWO on May 6, 2008 (D. Larsen via email communication) and are documented in WSRC-STI-2008-00254. Supplemental washing information was provided by J. Gillam (via D. Larsen email and entitled SB4-5_042808_50% retention_40 Decant 2 for 51 Wash D_20cpm.xls).

^b The terminology in brackets refers to the nomenclature used by LWO.

^c Compositional information for ARP additions was obtained from X-CLC-S-00113, Rev. 0, Actinide Removal Process Material Balance Calculation with Low Curie Salt Feed, S.G. Subosits, 9/24/2004.

For each of the three sludge options, glasses were selected at waste loadings (WLs) of interest to DWPF (32%, 35% and 38%). These nine glasses were fabricated and characterized using chemical composition analysis, X-ray Diffraction (XRD) and the Product Consistency Test (PCT).^{3,4}

2.0 Objectives

The intent of the experimental portion of the variability study was to demonstrate that the glasses of the Frit 510-modified SB4 compositional region (Options 1-3) after a *second* Tank 40 decant were both acceptable relative to the Environmental Assessment (EA) reference glass and predictable by the current process control models for durability.

3.0 Experimental Procedure

3.1 Target Glass Compositions

Target glass compositions of the nine SB4 Tank 40 second decant variability study glasses are presented in Table 1. The nomenclature for the glass identification (ID) can be described as follows: "SB4VS2" refers to Sludge Batch 4 Variability Study 2.

	Sludge - Only			e - Only Coupled			Coupled + 2 wt% Na ₂ O		
Glass ID	SB4VS2-01	SB4VS2-02	SB4VS2-03	SB4VS2-04	SB4VS2-05	SB4VS2-06	SB4VS2-07	SB4VS2-08	SB4VS2-09
Frit	510	510	510	510	510	510	510	510	510
WL	32	35	38	32	35	38	32	35	38
Al_2O_3	8.63	9.44	10.25	8.31	9.08	9.86	8.11	8.87	9.63
B_2O_3	9.52	9.10	8.68	9.52	9.10	8.68	9.52	9.10	8.68
BaO	0.02	0.03	0.03	0.03	0.03	0.03	0.02	0.03	0.03
CaO	0.95	1.04	1.13	0.92	1.01	1.09	0.90	0.98	1.07
Ce_2O_3	0.02	0.02	0.03	0.02	0.03	0.03	0.02	0.03	0.03
Cr_2O_3	0.06	0.06	0.07	0.05	0.06	0.07	0.05	0.06	0.06
CuO	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Fe ₂ O ₃	9.87	10.79	11.72	9.57	10.47	11.37	9.35	10.22	11.10
K ₂ O	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
La_2O_3	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Li ₂ O	5.44	5.20	4.96	5.44	5.20	4.96	5.44	5.20	4.96
MgO	0.93	1.02	1.11	0.89	0.97	1.06	0.87	0.95	1.03
MnO	1.98	2.17	2.35	1.95	2.14	2.32	1.91	2.09	2.27
Na ₂ O	10.20	10.40	10.61	10.60	10.84	11.08	11.24	11.54	11.84
NiO	0.55	0.60	0.65	0.55	0.60	0.65	0.53	0.58	0.63
PbO	0.02	0.02	0.02	0.02	0.02	0.03	0.02	0.02	0.02
SO4	0.19	0.20	0.22	0.22	0.24	0.26	0.22	0.24	0.26
SiO ₂	48.53	46.51	44.50	48.49	46.47	44.46	48.47	46.45	44.43
TiO ₂	0.02	0.02	0.02	0.43	0.47	0.51	0.42	0.46	0.50
U ₃ O ₈	3.01	3.29	3.57	2.91	3.18	3.46	2.84	3.11	3.38
ZnO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ZrO ₂	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03

Table 1. Target Compositions of the Second Variability Study Glasses

3.2 Glass Fabrication

Each variability study glass was prepared from the proper proportions of reagent-grade metal oxides, carbonates, H_3BO_3 , and salts in 150 g batches.⁴ The raw materials were thoroughly mixed and placed into a 95% platinum / 5% gold, 250 ml crucible. Batched materials were placed into a high-temperature furnace at the target melt temperature of 1150°C. The crucible was removed from the furnace after an isothermal hold at 1150°C for 1 hour. The molten glass was quenched by pouring the liquid onto a clean, stainless steel plate. The glass pour patty was used as a sampling stock for the various property measurements (i.e., chemical composition, durability testing and XRD).

Approximately 25 g of each glass was heat-treated to simulate cooling along the centerline of a DWPF-type canister to gauge the effects of thermal history on the product performance.⁵ This cooling schedule is referred to as the centerline canister cooling (ccc) curve.

3.3 Property Measurements

3.3.1 Compositional Analysis

To confirm that the as-fabricated glasses met the target compositions, a representative sample from each glass was submitted to the Process Science Analytical Laboratory (PSAL) for chemical analysis under the auspices of an analytical plan.⁶ Two dissolution methods were utilized in measuring these chemical compositions: samples prepared by lithium metaborate (LM) dissolution were used to measure elemental concentrations of aluminum (Al), barium (Ba), calcium (Ca), cerium (Ce), chromium (Cr), copper (Cu), lanthanum (La), magnesium (Mg), manganese (Mn), sodium (Na), nickel (Ni), lead (Pb), sulfur (S), silicon (Si), titanium (Ti), uranium (U), and zirconium (Zr), while samples from glasses prepared by peroxide fusion (PF) dissolution were used to measure elemental concentrations of boron (B), iron (Fe), and lithium (Li). For each study glass, measurements were obtained from samples prepared in duplicate by each of these dissolution methods. All of the prepared samples were analyzed (twice for each element of interest) by Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) with the instrumentation being re-calibrated between the duplicate analyses. The analytical plan was developed in such a way as to provide the opportunity to evaluate potential sources of bias and error. Glass standards were also intermittently measured to assess the performance of the ICP-AES instrument over the course of these analyses.

3.3.2 PCT

A 7-day PCT was performed in triplicate on each quenched and ccc glass to assess chemical durability using Method A of the PCT procedure.⁷ Also included in the experimental test matrix was the EA glass, the Approved Reference Material (ARM) glass, and blanks from the sample cleaning batch. Samples were ground, washed, and prepared according to the standard procedure. The resulting solutions were sampled (filtered and acidified) and analyzed by PSAL under the auspices of an analytical plan.⁸ Samples of a multi-element, standard solution were also included in the analytical plan (as a check on the accuracy of the ICP-AES). Normalized release rates were calculated based on target, measured, and bias-corrected (bc) compositions using the average of the logs of the leachate concentrations.

3.3.3 XRD

Representative samples of quenched and ccc glasses were submitted to Analytical Development (AD) for XRD analysis. Samples were analyzed under conditions providing a detection limit of

approximately 0.5 vol%, i.e. no crystals can be detected if the amount in the sample is less than ~0.5 vol%.

4.0 Results and Discussion

4.1 Statistical Review of the Chemical Composition Measurements

Table A1 in Appendix A provides the elemental concentration measurements derived from the samples prepared using LM and Table A2 in Appendix A provides the measurements derived from the samples prepared using PF. Measured values of the standards (Batch 1 and a uranium standard, U_{std}) that were included in the PSAL analytical plan along with the study glasses are also provided in these two tables.

The elemental concentrations were converted to oxide concentrations by multiplying the values for each element by the gravimetric factor for the corresponding oxide. During this process, an elemental concentration that was determined to be below the detection limit of the analytical procedures used by the PSAL was reduced to half of that detection limit as the oxide concentration was determined.

4.1.1 Measurements in Analytical Sequence

Figure A1 in Appendix A provides plots of the measurements (in analytical sequence) generated by the PSAL for samples prepared using the LM method. Different symbols and colors are used to represent each of the study and standard glasses. Similar plots are provided in Figure A2 in Appendix A for the samples prepared using the PF method. These plots include all of the measurement data from Tables A1 and A2. While obvious patterns in these plots are difficult to find, a pair of CaO values for one of the study glasses (symbol "x") does stand out from the other pair of CaO values (see Figure A1). A similar trend is also observed for a pair of Li₂O values (see Figure A2). Other significant trends in the analytical process over the course of these measurements are difficult to discern from these plots; more detailed discussions are provided in the following sections.

4.1.2 Composition Measurements by Glass Identifier

Figures A3 and A4 in Appendix A provide plots of the oxide concentration measurements by Glass ID (including Batch 1 and U_{std}) by analytical solution ID for the LM and PF preparation methods, respectively. Different symbols and colors are used to represent the different glasses. These plots show the individual measurements across the duplicates of each preparation method and the two ICP-AES calibrations within each analytical set. A review of the plots presented in these figures reveals the repeatability of the four individual values for each oxide for each glass. The pair of CaO values discussed in the previous section (Section 4.1.1) is associated with glass ID SB4VS-02, which corresponds to Lab ID A09LM. There also appears to be a great deal of scatter in the Fe₂O₃ and Li₂O results for the PF preparations of this same glass. In addition, note that the reference value for the Fe₂O₃ concentration in the U_{std} glass is 13.196 wt%, while the measured values of this oxide are around 10 wt%, and the reference value for Li₂O for U_{std} is 3.057 wt%, while the measured values are around 5 wt% as shown in Figure A4. Due to these inconsistencies, it was requested that PSAL remeasure the solutions for SB4VS2-02 (Lab ID A09) for both prep methods as well as to re-prep and re-measure the standards (Batch 1 and U_{std}) by both prep methods.^{d,e}

^d Concerns about values measured for glass ID SB4VS-09 (Lab ID A08) were also expressed by D. Best from PSAL via email on 5/29/2008. Thus, this sample was also re-measured (in addition to SB4VS-02) and the newly measured values were also used in the determination of chemical compositions.

 $^{^{\}rm e}$ The $U_{\rm std}$ is used for bias-correcting only.

additional measurements are provided in Table A3 in Appendix A and are discussed in the following sections to guide the reader through the method in which these data were re-evaluated and used to support the objectives of this task.

4.1.3 Batch 1 and Uranium Standard Results

Figure A5 in Appendix A provides statistical analyses of the Batch 1 and U_{std} results generated by the LM prep method by calibration block for each oxide of interest (reference values for the oxide concentrations of the standard are given in the header for each set of measurements in the figure). The results include analysis of variance (ANOVA) investigations, which determine statistically significant differences between the means of these groups for each of the oxides for each of the standards. The measured values of Al_2O_3 , MnO, TiO₂, and ZrO₂ indicate that a significant ICP-AES calibration effect on the block averages at the 5% significance level for the Batch 1 standard. For the U_{std}, CaO, CuO, and Na₂O have values that indicate a significant ICP-AES calibration effect on the block averages at the 5% significance level.

Figure A6 in Appendix A provides a similar set of analyses for the measurements derived from samples prepared via the PF method (reference values for the oxide concentrations of the standard are given in the headers for each set of measurements in the figure). Li₂O has measurements that indicate significant ICP-AES calibration effects on the block averages at the 5% significance level for the Batch 1 standard. For the U_{std}, note that both the Fe₂O₃ and Li₂O measurements of the third block correspond more closely to the reference values than the first two blocks. It is probable the PF results of the U_{std} standard samples reported in Table A2 were mislabeled. These values are most likely from another glass sample other than the U_{std}. Therefore, the PF results from Table A2 for U_{std} will not be utilized in the remainder of the report.

In addition, some of the results from the statistical analyses provide incentive for adjusting the measurements by the effects of the ICP-AES calibration. Therefore, the oxide measurements of the study glasses were bias corrected for the effect of the ICP-AES calibration on each of the analytical blocks and sub-blocks. The average measurement of Batch 1 results for each ICP-AES block/sub-block were used to bias correct the Al_2O_3 , B_2O_3 , BaO, CaO, Cr_2O_3 , CuO, Fe_2O_3 , K_2O , Li_2O , MgO, MnO, Na₂O, NiO, SiO₂, and TiO₂ measurements, and the average measurement of the U_{std} values for each set/block were used to bias correct the U_3O_8 measurements. Note that this approach utilizes the LM results for the U_{std} and not the PF results. For oxides other than U_3O_8 , the Batch 1 results were used to conduct the bias correction as long as the reference value for the oxide concentration in the Batch 1 glass was greater than or equal to 0.1 wt%.

The bias correction was conducted as follows. For each oxide, let \bar{a}_{ij} be the average measurement

for the ith oxide at analytical block j for Batch 1 (or U_{std} for uranium), and let t_i be the reference value for the ith oxide for Batch 1 (or for U_{std} if uranium). (The averages and reference values are provided in Figures A3 and A4.) Let \overline{c}_{ijk} be the average measurement for the ith oxide at analytical block j for the kth glass. The bias adjustment was conducted as follows

$$\overline{c}_{ijk} \bullet \left(1 - \frac{\overline{a}_{ij} - t_i}{\overline{a}_{ij}} \right) = \overline{c}_{ijk} \bullet \frac{t_i}{\overline{a}_{ij}}$$

Bias-corrected measurements are indicated by a "bc" suffix, and such adjustments were performed for all of the oxides of this study, except for Ce₂O₃, La₂O₃, PbO, SO₄, and ZrO₂. Both measured and

measured "bc" values are included in the discussion that follows. In these discussions bias-corrected values, which are the same as the original values, for Ce₂O₃, La₂O₃, PbO, SO₄, and ZrO₂ are included for completeness (e.g., to allow a sum of oxides to be computed for the bias-corrected results).

4.1.4 Composition Measurements by Glass Identifier with Targeted Compositions

Figures A7 and A8 in Appendix A provide plots of the oxide concentration measurements by Glass ID (including Batch 1 and U_{std}) by Lab ID for the LM and PF preparation methods for each set of analyses. Targeted concentrations of each oxide for each of the study glasses and reference values for the standards are also provided as part of these figures. In addition, the auxiliary measurements of Table A4 are also included in these plots, which show the individual measurements across the duplicates of each preparation method and the replicate ICP-AES calibrations.

A review of the plots reveals the repeatability of the individual oxide values for each glass and serves as a basis for discerning questionable measurement values (and their possible causes). In the plots for CaO, there are obvious inconsistencies in one glass (SB4VS2-02). This is one of the glasses for which re-measurements by PSAL were requested. As seen in the CaO plots, the re-measured values of the solutions are quite similar to the original measurements suggesting that the sample preparation is likely the cause of the differences. The target concentration for CaO for this glass was 1.042 wt%; the second LM preparation yielded values near this target, while the first LM preparation yielded values near ~1.5 wt% were not representative of the compositions of the glass. Thus, these values were excluded from further consideration for this report. These questionable data from SB4VS2-02 are listed in Table 2 along with the U_{std} measurements from the original PF preparations that were highlighted in Section 4.1.3. The values in this table were excluded from further analysis and were not used in the determination of the chemical compositions of the study glasses or standards.

4.1.5 Measured versus Targeted Compositions

The remaining measurements for each oxide for each glass (i.e., all of the measurements in Tables A1 through A3 excluding the values appearing in Table 2) were averaged to determine a representative chemical composition for each glass. These determinations were conducted for both the measured and bias-corrected data. A sum of oxides was also computed for each glass based upon both the measured and bias-corrected values. Figure A9 in Appendix A provides plots showing results of each oxide for each glass in order to highlight the comparisons among the measured, bias-corrected, and targeted values. In general, after the elimination of the questionable values, the measured values do agree with the target compositions. The SiO₂ value for SB4VS2-02 is somewhat higher than the targeted concentration for this oxide for this glass.

Table A4 in Appendix A provides a summary of the average compositions as well as the targeted compositions. Also included in the table are relative differences between the measured or bias-corrected values and the targeted values, which are shaded when they are greater than or equal to 5%. Notice that the targeted sums of oxides for the standard glasses do not sum to 100% due to an incomplete coverage of the oxides in the Batch 1 and U_{std} glasses. All of the sums of oxides (both measured and bias-corrected) for the study glasses fall within the interval of 95 to 105 wt%. Overall, these comparisons between the measured and targeted compositions suggest only minor difficulties in hitting the targeted compositions for some of the oxides for some of the glasses, none of which should affect the outcome of the variability study.

Study Glass #	Glass ID	Lab ID	Oxide	Measured	Measured bc	Targeted
2	SB4VS2-02	A09 11	CaO (wt%)	1.50	1.61	1.04
2	SB4VS2-02	A09 12	CaO (wt%)	1.50	1.61	1.04
2	SB4VS2-02	A09LM11	CaO (wt%)	1.55	1.61	1.04
2	SB4VS2-02	A09LM12	CaO (wt%)	1.54	1.63	1.04
2	SB4VS2-02	A09PF11	B ₂ O ₃ (wt%)	9.02	9.21	9.10
2	SB4VS2-02	A09PF11	Fe_2O_3 (wt%)	12.57	12.52	10.79
2	SB4VS2-02	A09PF11	Li ₂ O (wt%)	3.08	3.16	5.20
2	SB4VS2-02	A09PF12	B_2O_3 (wt%)	8.76	8.99	9.10
2	SB4VS2-02	A09PF12	Fe_2O_3 (wt%)	11.87	11.99	10.79
2	SB4VS2-02	A09PF12	Li ₂ O (wt%)	3.01	3.14	5.20
200	U _{std}	UstdPF11	B ₂ O ₃ (wt%)	9.11	9.31	9.21
200	U _{std}	UstdPF11	Fe_2O_3 (wt%)	10.47	10.42	13.20
200	U _{std}	UstdPF11	Li ₂ O (wt%)	5.17	5.30	3.06
200	U _{std}	$U_{std}PF12$	B ₂ O ₃ (wt%)	8.66	8.85	9.21
200	U _{std}	$U_{std}PF12$	Fe_2O_3 (wt%)	10.11	10.07	13.20
200	U _{std}	$U_{std}PF12$	Li ₂ O (wt%)	5.12	5.25	3.06
200	U _{std}	UstdPF13	B ₂ O ₃ (wt%)	8.63	8.82	9.21
200	U _{std}	UstdPF13	Fe_2O_3 (wt%)	9.98	9.94	13.20
200	U _{std}	UstdPF13	Li ₂ O (wt%)	5.10	5.23	3.06
200	U _{std}	UstdPF21	B ₂ O ₃ (wt%)	9.02	9.25	9.21
200	U _{std}	UstdPF21	Fe_2O_3 (wt%)	10.27	10.37	13.20
200	U _{std}	UstdPF21	Li ₂ O (wt%)	5.15	5.36	3.06
200	U _{std}	$U_{std}PF22$	B ₂ O ₃ (wt%)	8.76	8.99	9.21
200	U _{std}	$U_{std}PF22$	Fe_2O_3 (wt%)	10.09	10.20	13.20
200	U _{std}	UstdPF22	Li ₂ O (wt%)	5.10	5.31	3.06
200	U _{std}	UstdPF23	B_2O_3 (wt%)	8.69	8.92	9.21
200	U _{std}	UstdPF23	Fe_2O_3 (wt%)	10.05	10.16	13.20
200	U _{std}	UstdPF23	Li ₂ O (wt%)	5.10	5.31	3.06

 Table 2. Questionable Measurements Eliminated From Further Analysis

4.1.6 MAR Assessment

Another assessment that can be made for the SB4 variability study (VS) glasses is how well they satisfy the MAR criteria of DWPF's Product Composition Control System (PCCS). The results of this assessment are shown in Table 3. The columns in the table give the percent waste loading (%WL), the frit, the glass identifier with compositional view, the B del Gp (Δ Gp value for boron), the predicted normalized leachate for boron in grams/Liter (NL[B (g/L)]), the liquidus temperature prediction in degrees Celsius (T_L Pred (°C)), the viscosity prediction at 1150°C in Poise (Visc Pred (P)), the sum of oxides (in wt%), the nepheline discriminator value, and the overall MAR assessment.

All of the glasses that were selected for this study satisfy these criteria and are deemed processable and acceptable for the DWPF, except for the SB4VS2-03 (sludge-only at 38% WL) target composition. This glass fails the T_L criterion and would not be considered processable based on SME acceptability decisions. The relatively high T_L prediction is due to the low Na₂O content of the sludge-only flowsheet and high WL target.

% WL	Sample ID/Frit	Sludge Type	B Del Gp Value	NL [B (g/L)]	TL Pred (°C)	Visc Pred (P)	Neph Value	MAR Status
32	SB4VS2-01/Frit 510	Tk 40 Post Late Decant (5-6-08)/targeted	-8.33	0.40	942.4	51.5	0.720	
35	SB4VS2-02/Frit 510	Tk 40 Post Late Decant (5-6-08)/targeted	-8.11	0.37	981.6	48.3	0.701	
38	SB4VS2-03/Frit 510	Tk 40 Post Late Decant (5-6-08)/targeted	-7.89	0.34	1018.0	45.1	0.681	TL
32	SB4VS2-04/Frit 510	Tk 40 Post Late Decant w ARP (5-6-08)/targeted	-8.71	0.47	925.5	47.7	0.720	
35	SB4VS2-05/Frit 510	Tk 40 Post Late Decant w ARP (5-6-08)/targeted	-8.52	0.44	963.5	44.2	0.700	
38	SB4VS2-06/Frit 510	Tk 40 Post Late Decant w ARP (5-6-08)/targeted	-8.34	0.41	998.6	40.7	0.680	
32	SB4VS2-07/Frit 510	Tk 40 Post Late Decant w ARP + 2% Na2O (5-6-08)/targeted	-9.33	0.61	903.6	42.9	0.715	
35	SB4VS2-08/Frit 510	Tk 40 Post Late Decant w ARP + 2% Na2O (5-6-08)/targeted	-9.20	0.58	940.5	39.1	0.695	
38	SB4VS2-09/Frit 510	Tk 40 Post Late Decant w ARP + 2% Na2O (5-6-08)/targeted	-9.07	0.55	974.5	35.5	0.674	
32	SB4VS2-01/Frit 510	Tk 40 Post Late Decant (5-6-08)/measured	-8.18	0.38	945.4	52.7	0.720	
35	SB4VS2-02/Frit 510	Tk 40 Post Late Decant (5-6-08)/measured	-8.17	0.38	964.6	54.1	0.697	
38	SB4VS2-03/Frit 510	B4VS2-03/Frit 510 Tk 40 Post Late Decant (5-6-08)/measured		0.33	1004.8	46.1	0.680	
32	SB4VS2-04/Frit 510	Tk 40 Post Late Decant w ARP (5-6-08)/measured	-8.63	0.46	920.3	49.4	0.717	
35	SB4VS2-05/Frit 510	Tk 40 Post Late Decant w ARP (5-6-08)/measured	-8.47	0.43	961.7	45.0	0.699	
38	SB4VS2-06/Frit 510 Tk 40 Post Late Decant w ARP (5-6-08)/measured		-8.14	0.38	987.0	46.7	0.680	
32	SB4VS2-07/Frit 510	SB4VS2-07/Frit 510 Tk 40 Post Late Decant w ARP + 2% Na2O (5-6-08)/measured		0.56	904.4	45.1	0.713	
35	SB4VS2-08/Frit 510	SB4VS2-08/Frit 510 Tk 40 Post Late Decant w ARP + 2% Na2O (5-6-08)/measured		0.56	928.8	43.5	0.693	
38	SB4VS2-09/Frit 510	Tk 40 Post Late Decant w ARP + 2% Na2O (5-6-08)/measured	-9.07	0.55	956.1	40.6	0.672	
32	SB4VS2-01/Frit 510	Tk 40 Post Late Decant (5-6-08)/measured bc	-8.11	0.37	951.6	53.8	0.722	
35	SB4VS2-02/Frit 510	Tk 40 Post Late Decant (5-6-08)/measured bc	-8.05	0.36	973.4	58.0	0.702	
38	SB4VS2-03/Frit 510	Tk 40 Post Late Decant (5-6-08)/measured bc	-7.70	0.31	1011.6	47.7	0.681	
32	SB4VS2-04/Frit 510	Tk 40 Post Late Decant w ARP (5-6-08)/measured bc	-8.54	0.44	927.0	50.5	0.719	
35	SB4VS2-05/Frit 510	Tk 40 Post Late Decant w ARP (5-6-08)/measured bc	-8.37	0.41	968.6	46.2	0.700	
38	SB4VS2-06/Frit 510	Tk 40 Post Late Decant w ARP (5-6-08)/measured bc	-8.02	0.36	994.3	48.4	0.682	
32	SB4VS2-07/Frit 510	Tk 40 Post Late Decant w ARP + 2% Na2O (5-6-08)/measured bc	-9.02	0.54	911.3	46.3	0.715	
35	SB4VS2-08/Frit 510	Tk 40 Post Late Decant w ARP + 2% Na2O (5-6-08)/measured bc	-8.98	0.53	936.5	44.9	0.695	
38	SB4VS2-09/Frit 510	Tk 40 Post Late Decant w ARP + 2% Na2O (5-6-08)/measured bc	-8.95	0.52	965.3	43.7	0.677	

Table 3. Results of the MAR Assessment of SB4 VS Glasses for Measured, Bias Corrected and Targeted Compositional Views

4.2 Crystallization

4.2.1 Visual Observations

Prior to discussing the visual observations, a brief explanation of the terms used to describe the asfabricated (quenched) and ccc glasses is necessary. "Surface" refers to the top of the sample that has not touched the steel plate during quenching or the walls of the crucible during the ccc treatment. The term "bulk" refers to the cross-section of the glass sample. "Homogeneous" indicates that there is no crystallization evident on the surface or in the bulk of the glass. Other terms such as "haze", "clusters", and/or "silver/metallic patches" imply that the surface or bulk of the glass contains crystals or some other characteristic feature. "Black and shiny" implies that crystallization is not apparent to the un-aided eye.

The surface and bulk of each as-fabricated (quenched) glass, except SB4VS2-03 (sludge-only at 38% WL), were "black and shiny," which indicates that the glasses are free of crystallization and homogeneous. As previously noted, SB4VS2-03 was predicted to have a higher T_L due to the lower Na₂O content of the glass. A summary of the visual observations is given in Table 4. The SB4VS2-03 sample did contain a slight amount of crystallization on the surface (i.e. silver swirls); however, the bulk was clean.

Crystallization was much more prevalent in the ccc glasses given that the kinetics for crystallization are more favorable during the slow cooling of the ccc treatment. None of the ccc glasses were determined to be homogeneous based on visual observations as shown in Table 4. The ccc glasses did contain some degree of crystallization on the surface, characterized by "haze" and "patches of silver crystals." Historically, metallic-like features on the surface of DWPF glasses are due to the precipitation of spinels during the slower cooling process. Crystallization was not present in the bulk of any glasses.

4.2.2 XRD

Each of the quenched glasses was amorphous (within the detection limit of the instrument), which, in general, corresponded to the visual observations (Section 4.2.1). Only one of the ccc samples contain crystalline material, while all others were amorphous (within the detection limit of the instrument). A cross between trevorite and magnetite was detected in sample SB4VS2-03ccc (sludge-only at 38% WL). These results were not surprising as crystals were already present on the surface of the quenched sample. A representative pattern^f of an amorphous sample is shown in Figure 1, while the XRD pattern of SB4VS2-03ccc is shown in Figure 2.

A majority of the samples did contain visual evidence of surface crystals, but crystallization was not observed in any of the XRD patterns (except SB4VS2-03ccc). Since the surface is only a small fraction of the sample and sampling for XRD is random, it is probable that the crystalline content was much below the detection limit of the instrument.

^f The remainder of the XRD patterns (quenched and ccc) can be viewed in the laboratory notebook for the SB4 variability study on pages 151-152 (WSRC-NB-2006-00168).

Glass ID Frit WL		XX / T	Visual Observations of Quenched G	VDD	
		WL	Surface	Bulk	ARD
SB4VS2-01		32	Black and shiny	Clean	Amorphous
SB4VS2-02		35	Black and shiny	Clean	Amorphous
SB4VS2-03		38	Small amount of silver swirls	Clean	Amorphous
SB4VS2-04		32	Black and shiny	Clean	Amorphous
SB4VS2-05	510	35	Black and shiny	Clean	Amorphous
SB4VS2-06		38	Black and shiny	Clean	Amorphous
SB4VS2-07		32	Black and shiny	Clean	Amorphous
SB4VS2-08		35	Black and shiny	Clean	Amorphous
SB4VS2-09		38	Black and shiny	Clean	Amorphous
Close ID	ss ID Frit WL Visual Observations of CCC Glasses Surface Bulk		VPD		
Glass ID			Surface	Bulk	AKD
SB4VS2-01		32	Light haze with some crystals	Clean	Amorphous
SB4VS2-02		35	Light haze with some patches of silver crystals	Clean	Amorphous
SB4VS2-03		38	Light haze with some patches of silver crystals	Clean	Magnetite/Trevorite

Table 4. Visual Observations of Quenched and CCC Glasses

Class ID Frit WI		W.T	Visual Observations of CCC	VPD	
Glass ID	FIIL	WL	Surface	Bulk	АКД
SB4VS2-01		32	Light haze with some crystals	Clean	Amorphous
SB4VS2-02		35	Light haze with some patches of silver crystals	Clean	Amorphous
SB4VS2-03		38	Light haze with some patches of silver crystals	Clean	Magnetite/Trevorite
SB4VS2-04		32	Light haze with a few scattered silver crystals	Clean	Amorphous
SB4VS2-05	510	35	Slight haze with a few patches of bright silver crystals	Clean	Amorphous
SB4VS2-06		38	Slight haze with a few patches of bright silver crystals	Clean	Amorphous
SB4VS2-07		32	Very light haze	Clean	Amorphous
SB4VS2-08		35	Light haze with a few patches of silver crystals	Clean	Amorphous
SB4VS2-09		38	Light haze with a few scattered patches of silver crystals	Clean	Amorphous

Figure 1. A representative XRD pattern of an amorphous sample. Note: "SB4VAR2" on sample label (upper left hand corner) should be "SB4VS2."

Figure 2. XRD pattern of the ccc version of the SB4VS2-03 glass (sludge-only at 38% WL). Note: "SB4VAR2" on sample label (upper left hand corner) should be "SB4VS2."

4.3 Statistical Review of the PCT Results

Table B1 in Appendix B provides the elemental leachate concentration measurements determined by the PSAL for the solution samples generated by the PCTs. Any measurement in Table B1 below the detection limit of the analytical procedure (indicated by a "<") was replaced by $\frac{1}{2}$ of the detection limit in subsequent analyses. The measured solution-weight loss over the course of the 7-day test does not indicate a solution-weight loss problem for any of the samples.

In addition to adjustments for detection limits, the values were adjusted for the dilution factors: the values for the study glasses, the blanks, and the ARM glass in Table B1 were multiplied by 1.6667 to determine the values in parts per million (ppm) and the values for EA were multiplied by 16.6667. Table B2 in Appendix B provides the resulting measurements.

4.3.1 Measurements in Analytical Sequence

Figure B1 in Appendix B provides plots of the leachate (ppm) concentrations in analytical sequence as generated by the PSAL for all of the data and for the data from only the study glasses, respectively. A different color and symbol are used for each study glass or standard. No issues are seen in these plots.

4.3.2 Results for the Samples of the Multi-Element Solution Standard

Figure B2 in Appendix B provides analyses of the PSAL measurements of the samples of the multielement solution standard by analytical set and ICP-AES calibration block. An ANOVA was used to determine any statistically significant differences among the block averages for these samples for each element of interest and is included in these figures. There was no indication of a statistically significant difference (at a 5% level) among the averages of these measurements for any of the elements of interest except for Li. However, averaging the ppm values for each set of triplicates helps to minimize the impact of any potential instrumentation effects.

Table 5 summarizes the average measurements and the reference values for the four primary elements of interest (B, Li, Na and Si). The results indicate consistent and accurate measurements from the PSAL processes used to conduct these analyses.

Analytical	Avg B	Avg Li	Avg Na	Avg Si
Block	(ppm)	(ppm)	(ppm)	(ppm)
1	20.1	9.8	81.4	49.8
2	19.4	9.5	77.8	49.3
3	19.0	9.5	80.9	48.1
Grand Average	19.5	9.6	80.1	49.1
Reference Value	20	10	81	50
% difference	-2.61%	-3.79%	-1.17%	-1.89%

Table 5. Results from Samples of the Multi-Element Solution Standard

4.3.3 Measurements by Glass Identifier

Figure B3 in Appendix B provide plots of the leachate concentrations for each type of submitted sample: the study glasses by heat treatment (quenched and ccc) and the standards (EA, ARM, the multi-element solution standard, and blanks). Figure B4 in Appendix B provide plots of the leachate concentrations for the PCT results of just the study glasses by heat treatment. These plots suggest some scatter in the triplicate values for some analytes for some of the glasses. Also, note the small differences between the quenched and ccc values for each of the study glasses.

4.3.4 Normalized PCT Results

PCT leachate concentrations are typically normalized using the cation composition (expressed as a weight percent) in the glass to obtain a grams-per-liter (g/L) leachate concentration. The normalization of the PCTs is usually conducted using the measured compositions of the glasses. This method is the preferred normalization process for the PCTs. For completeness, the targeted cation and the bias-corrected cation compositions were also used to conduct this normalization.

The common logarithm of the normalized PCT (normalized leachate, NL) for each element of interest was determined and used for comparison. To accomplish this computation, one must

- 1. Determine the common logarithm of the elemental ppm leachate concentration for each of the triplicates and each of the elements of interest (these values are provided in Table B2 of Appendix B),
- 2. Average the common logarithms over the triplicates for each element of interest, and then

Normalizing Using Measured Composition (preferred method)

3. Subtract a quantity equal to 1 plus the common logarithm of the average cation measured concentration (expressed as a weight percent of the glass) from the average computed in step 2.

Or Normalizing Using Target Composition

3. Subtract a quantity equal to 1 plus the common logarithm of the target cation concentration (expressed as a weight percent of the glass) from the average computed in step 2.

Or Normalizing Using Measured Bias-Corrected Composition

3. Subtract a quantity equal to 1 plus the common logarithm of the measured biascorrected cation concentration (expressed as a weight percent of the glass) from the average computed in step 2.

Figure B5 in Appendix B provides scatter plots for these results and offers an opportunity to investigate the consistency in the leaching across the elements for the glasses of this study. All combinations of the normalizations of the PCTs (i.e., those generated using the targeted, measured, and bias-corrected compositional views) and both heat treatments are represented in the series of scatter plots. Consistency in the leaching across the elements is typically demonstrated by a high degree of linear correlation among the values for pairs of these elements, which is true for this study as the smallest correlation in this plot is that for Na and Si, with a value of \sim 97%.

Table 6 summarizes the normalized PCTs for the glasses of this study, which are listed by glass ID.

4.3.5 Acceptability of the Variability Study Glasses

All of the variability study glasses are acceptable relative to the benchmark EA glass as shown in Table 6. The NL[B] values of the study glasses range from 0.636 g/L to 0.766 g/L regardless of thermal history, compositional view, sludge composition or WL. These NL [B] values are more than an order of magnitude less than the 16.695 g/L reported for EA.

4.3.6 Effects of Heat Treatment on PCTs

Figure B6 in Appendix B provides a series of plots and statistical comparisons that demonstrate the effects of heat treatment on the common logarithm ppm-responses of interest of the triplicate PCTs for each element for each study glass. The quenched version of a given glass yielded measurements indicating a significantly different mean log(ppm) response (at the 5% significance level) as compared to the ccc version of the glass for a given element if the **Prob**/tl value in the figure is 0.05 or smaller. Only Na value of one glass (SB4VS2-04) showed a statistically significant difference (at the 5% level) in the means of the two heat treatments. In addition, in this instance, the mean log [Na (ppm)] was larger for the quenched heat treatment than the mean log [Na (ppm)] for the ccc version of this glass. These results suggest that there are no indications of these glasses being sensitive to heat treatment.

Figure B7 in Appendix B provides a series of plots that demonstrate the effects of heat treatment on the normalized PCT response based on the three different compositional views: measured, measured bias-corrected, and targeted. The plots are grouped by the sludge type used to determine the target composition for the glass. Waste loadings are also shown as part of the information on these plots. These results indicate that there is very little statistical difference in PCT responses as a function of heat treatment. There is some evidence of a trend toward a less durable glass as WL increases for some of the sludge projections.

4.3.7 Predicted versus Measured PCTs

Figure B8 in Appendix B provides plots of the DWPF models that relate the logarithm of the normalized PCT (for each element of interest) to a linear function of a free energy of hydration term (ΔG_p , kcal/100g glass) derived from all of the glass compositional views and heat treatments.⁹ Prediction limits (at a 95% confidence) for an individual PCT result are also plotted along with the linear fit. The EA and ARM results are also indicated on these plots. Figure B9 in Appendix B provides a version of these plots for the quenched glasses only while Figure B10 in Appendix B provides a version for ccc glasses only. Not only are the study glasses acceptable relative to the EA glass, but the plots illustrate the predictability of the glasses by the current ΔG_p models. Figure 3 provides a close look at the PCT response for boron. All of the study glasses lie within the 95% confidence intervals of the model predictions.

WSRC-STI-2008-00315 Revision 0

Glass	WL %	Sludge Case	Heat Treatment	Compositional View	Nepheline Assessment	log NL[B (g/L)]	log NL[Li (g/L)]	log NL[Na (g/L)]	log NL [Si(g/L)]	NL[B (g/L)]	NL[Li (g/L)]	NL[Na (g/L)]	NL[Si (g/L)]
ARM			ref	reference	0.753	-0.3163	-0.2344	-0.2966	-0.5561	0.483	0.583	0.505	0.278
EA			ref	reference	0.704	1.2055	0.9439	1.1009	0.5705	16.052	8.788	12.614	3.719
SB4VS2-01	32	Tk 40 Post Late Decant (5-6-08)	ссс	targeted	0.720	-0.1859	-0.1487	-0.2454	-0.3453	0.652	0.710	0.568	0.452
SB4VS2-02	35	Tk 40 Post Late Decant (5-6-08)	ссс	targeted	0.701	-0.1577	-0.1264	-0.2072	-0.3397	0.696	0.747	0.621	0.457
SB4VS2-03	38	Tk 40 Post Late Decant (5-6-08)	ссс	targeted	0.681	-0.1386	-0.1088	-0.1841	-0.3322	0.727	0.778	0.655	0.465
SB4VS2-04	32	Tk 40 Post Late Decant w ARP (5-6-08)	ссс	targeted	0.720	-0.1921	-0.1637	-0.2565	-0.3419	0.642	0.686	0.554	0.455
SB4VS2-05	35	Tk 40 Post Late Decant w ARP (5-6-08)	ссс	targeted	0.700	-0.1845	-0.1534	-0.2249	-0.3431	0.654	0.702	0.596	0.454
SB4VS2-06	38	Tk 40 Post Late Decant w ARP (5-6-08)	ссс	targeted	0.680	-0.1559	-0.1278	-0.1813	-0.3380	0.698	0.745	0.659	0.459
SB4VS2-07	32	Tk 40 Post Late Decant w ARP + 2% Na2O (5-6-08)	ссс	targeted	0.715	-0.1775	-0.1409	-0.2017	-0.3333	0.665	0.723	0.628	0.464
SB4VS2-08	35	Tk 40 Post Late Decant w ARP + 2% Na2O (5-6-08)	ссс	targeted	0.695	-0.1777	-0.1442	-0.1796	-0.3373	0.664	0.717	0.661	0.460
SB4VS2-09	38	Tk 40 Post Late Decant w ARP + 2% Na2O (5-6-08)	ссс	targeted	0.674	-0.1535	-0.1321	-0.1593	-0.3330	0.702	0.738	0.693	0.465
SB4VS2-01	32	Tk 40 Post Late Decant (5-6-08)	quenched	targeted	0.720	-0.1748	-0.1330	-0.2524	-0.3406	0.669	0.736	0.559	0.456
SB4VS2-02	35	Tk 40 Post Late Decant (5-6-08)	quenched	targeted	0.701	-0.1640	-0.1199	-0.2209	-0.3382	0.685	0.759	0.601	0.459
SB4VS2-03	38	Tk 40 Post Late Decant (5-6-08)	quenched	targeted	0.681	-0.1239	-0.0889	-0.1636	-0.3217	0.752	0.815	0.686	0.477
SB4VS2-04	32	Tk 40 Post Late Decant w ARP (5-6-08)	quenched	targeted	0.720	-0.1963	-0.1447	-0.2260	-0.3416	0.636	0.717	0.594	0.455
SB4VS2-05	35	Tk 40 Post Late Decant w ARP (5-6-08)	quenched	targeted	0.700	-0.1898	-0.1471	-0.2179	-0.3573	0.646	0.713	0.606	0.439
SB4VS2-06	38	Tk 40 Post Late Decant w ARP (5-6-08)	quenched	targeted	0.680	-0.1373	-0.1127	-0.1728	-0.3255	0.729	0.771	0.672	0.473
SB4VS2-07	32	Tk 40 Post Late Decant w ARP + 2% Na2O (5-6-08)	quenched	targeted	0.715	-0.1616	-0.1265	-0.1998	-0.3214	0.689	0.747	0.631	0.477
SB4VS2-08	35	Tk 40 Post Late Decant w ARP + 2% Na2O (5-6-08)	quenched	targeted	0.695	-0.1650	-0.1332	-0.1780	-0.3380	0.684	0.736	0.664	0.459
SB4VS2-09	38	Tk 40 Post Late Decant w ARP + 2% Na2O (5-6-08)	quenched	targeted	0.674	-0.1394	-0.1195	-0.1439	-0.3270	0.725	0.759	0.718	0.471
SB4VS2-01	32	Tk 40 Post Late Decant (5-6-08)	ссс	measured	0.720	-0.1790	-0.1406	-0.2446	-0.3437	0.662	0.723	0.569	0.453

Table 6. Normalized PCTs by Glass ID/Compositional View for SB4/Second Decant Glasses with Frit 510

Glass	WL %	Sludge Case	Heat Treatment	Compositional View	Nepheline Assessment	log NL[B (g/L)]	log NL[Li (g/L)]	log NL[Na (g/L)]	log NL [Si(g/L)]	NL[B (g/L)]	NL[Li (g/L)]	NL[Na (g/L)]	NL[Si (g/L)]
SB4VS2-02	35	Tk 40 Post Late Decant (5-6-08)	ссс	measured	0.697	-0.1531	-0.1240	-0.2213	-0.3493	0.703	0.752	0.601	0.447
SB4VS2-03	38	Tk 40 Post Late Decant (5-6-08)	ссс	measured	0.680	-0.1304	-0.0966	-0.1838	-0.3269	0.741	0.801	0.655	0.471
SB4VS2-04	32	Tk 40 Post Late Decant w ARP (5-6-08)	ссс	measured	0.717	-0.1796	-0.1525	-0.2588	-0.3377	0.661	0.704	0.551	0.460
SB4VS2-05	35	Tk 40 Post Late Decant w ARP (5-6-08)	ccc	measured	0.699	-0.1809	-0.1484	-0.2282	-0.3436	0.659	0.711	0.591	0.453
SB4VS2-06	38	Tk 40 Post Late Decant w ARP (5-6-08)	ссс	measured	0.680	-0.1448	-0.1098	-0.1819	-0.3399	0.717	0.777	0.658	0.457
SB4VS2-07	32	Tk 40 Post Late Decant w ARP + 2% Na2O (5-6-08)	ссс	measured	0.713	-0.1676	-0.1275	-0.1994	-0.3294	0.680	0.746	0.632	0.468
SB4VS2-08	35	Tk 40 Post Late Decant w ARP + 2% Na2O (5-6-08)	ссс	measured	0.693	-0.1635	-0.1291	-0.1827	-0.3370	0.686	0.743	0.657	0.460
SB4VS2-09	38	Tk 40 Post Late Decant w ARP + 2% Na2O (5-6-08)	ссс	measured	0.672	-0.1462	-0.1283	-0.1658	-0.3396	0.714	0.744	0.683	0.458
SB4VS2-01	32	Tk 40 Post Late Decant (5-6-08)	quenched	measured	0.720	-0.1679	-0.1248	-0.2515	-0.3390	0.679	0.750	0.560	0.458
SB4VS2-02	35	Tk 40 Post Late Decant (5-6-08)	quenched	measured	0.697	-0.1594	-0.1174	-0.2350	-0.3477	0.693	0.763	0.582	0.449
SB4VS2-03	38	Tk 40 Post Late Decant (5-6-08)	quenched	measured	0.680	-0.1157	-0.0767	-0.1633	-0.3165	0.766	0.838	0.687	0.483
SB4VS2-04	32	Tk 40 Post Late Decant w ARP (5-6-08)	quenched	measured	0.717	-0.1838	-0.1335	-0.2283	-0.3375	0.655	0.735	0.591	0.460
SB4VS2-05	35	Tk 40 Post Late Decant w ARP (5-6-08)	quenched	measured	0.699	-0.1861	-0.1420	-0.2212	-0.3578	0.651	0.721	0.601	0.439
SB4VS2-06	38	Tk 40 Post Late Decant w ARP (5-6-08)	quenched	measured	0.680	-0.1262	-0.0946	-0.1734	-0.3275	0.748	0.804	0.671	0.470
SB4VS2-07	32	Tk 40 Post Late Decant w ARP + 2% Na2O (5-6-08)	quenched	measured	0.713	-0.1517	-0.1131	-0.1975	-0.3174	0.705	0.771	0.635	0.482
SB4VS2-08	35	Tk 40 Post Late Decant w ARP + 2% Na2O (5-6-08)	quenched	measured	0.693	-0.1508	-0.1180	-0.1812	-0.3378	0.707	0.762	0.659	0.459
SB4VS2-09	38	Tk 40 Post Late Decant w ARP + 2% Na2O (5-6-08)	quenched	measured	0.672	-0.1322	-0.1157	-0.1504	-0.3336	0.738	0.766	0.707	0.464
SB4VS2-01	32	Tk 40 Post Late Decant (5-6-08)	ссс	measured bc	0.722	-0.1894	-0.1546	-0.2358	-0.3482	0.647	0.700	0.581	0.449
SB4VS2-02	35	Tk 40 Post Late Decant (5-6-08)	ссс	measured bc	0.702	-0.1534	-0.1339	-0.2157	-0.3584	0.702	0.735	0.609	0.438

Table 6 cont. Normalized PCTs by Glass ID/Compositional View for SB4/Second Decant Glasses with Frit 510

Glass	WL %	Sludge Case	Heat Treatment	Compositional View	Nepheline Assessment	log NL[B (g/L)]	log NL[Li (g/L)]	log NL[Na (g/L)]	log NL [Si(g/L)]	NL[B (g/L)]	NL[Li (g/L)]	NL[Na (g/L)]	NL[Si (g/L)]
SB4VS2-03	38	Tk 40 Post Late Decant (5-6-08)	ссс	measured bc	0.681	-0.1407	-0.1107	-0.1749	-0.3314	0.723	0.775	0.668	0.466
SB4VS2-04	32	Tk 40 Post Late Decant w ARP (5-6-08)	ссс	measured bc	0.719	-0.1900	-0.1666	-0.2500	-0.3422	0.646	0.681	0.562	0.455
SB4VS2-05	35	Tk 40 Post Late Decant w ARP (5-6-08)	ccc	measured bc	0.700	-0.1912	-0.1625	-0.2193	-0.3481	0.644	0.688	0.603	0.449
SB4VS2-06	38	Tk 40 Post Late Decant w ARP (5-6-08)	ссс	measured bc	0.682	-0.1551	-0.1238	-0.1731	-0.3444	0.700	0.752	0.671	0.452
SB4VS2-07	32	Tk 40 Post Late Decant w ARP + 2% Na2O (5-6-08)	ссс	measured bc	0.715	-0.1779	-0.1415	-0.1905	-0.3339	0.664	0.722	0.645	0.464
SB4VS2-08	35	Tk 40 Post Late Decant w ARP + 2% Na2O (5-6-08)	ссс	measured bc	0.695	-0.1739	-0.1431	-0.1739	-0.3415	0.670	0.719	0.670	0.456
SB4VS2-09	38	Tk 40 Post Late Decant w ARP + 2% Na2O (5-6-08)	ссс	measured bc	0.677	-0.1492	-0.1392	-0.1602	-0.3487	0.709	0.726	0.691	0.448
SB4VS2-01	32	Tk 40 Post Late Decant (5-6-08)	quenched	measured bc	0.722	-0.1783	-0.1389	-0.2427	-0.3435	0.663	0.726	0.572	0.453
SB4VS2-02	35	Tk 40 Post Late Decant (5-6-08)	quenched	measured bc	0.702	-0.1598	-0.1273	-0.2294	-0.3569	0.692	0.746	0.590	0.440
SB4VS2-03	38	Tk 40 Post Late Decant (5-6-08)	quenched	measured bc	0.681	-0.1261	-0.0908	-0.1545	-0.3210	0.748	0.811	0.701	0.478
SB4VS2-04	32	Tk 40 Post Late Decant w ARP (5-6-08)	quenched	measured bc	0.719	-0.1942	-0.1476	-0.2194	-0.3420	0.639	0.712	0.603	0.455
SB4VS2-05	35	Tk 40 Post Late Decant w ARP (5-6-08)	quenched	measured bc	0.700	-0.1965	-0.1561	-0.2123	-0.3623	0.636	0.698	0.613	0.434
SB4VS2-06	38	Tk 40 Post Late Decant w ARP (5-6-08)	quenched	measured bc	0.682	-0.1366	-0.1087	-0.1645	-0.3320	0.730	0.779	0.685	0.466
SB4VS2-07	32	Tk 40 Post Late Decant w ARP + 2% Na2O (5-6-08)	quenched	measured bc	0.715	-0.1620	-0.1272	-0.1886	-0.3219	0.689	0.746	0.648	0.477
SB4VS2-08	35	Tk 40 Post Late Decant w ARP + 2% Na2O (5-6-08)	quenched	measured bc	0.695	-0.1611	-0.1321	-0.1723	-0.3423	0.690	0.738	0.673	0.455
SB4VS2-09	38	Tk 40 Post Late Decant w ARP + 2% Na2O (5-6-08)	quenched	measured bc	0.677	-0.1351	-0.1267	-0.1448	-0.3427	0.733	0.747	0.716	0.454

Table 6 cont. Normalized PCTs by Glass ID/Compositional View for SB4/Second Decant Glasses with Frit 510

Figure 3. Log NL[B] versus B del Gp model with a 95% confidence interval for individual PCTs.^g

^g In plots "a" and "b" it appears that some glasses may be outside the 95% confidence band. A computational algorithm was developed to electronically compare the model predictions with the upper confidence bound. All of the data fall within the 95% confidence bands, thus eliminating the uncertainty. The size of the markers causes the edges to overlap the upper confidence bound.

5.0 Conclusions

Frit 510 is a viable option for the processing of SB4 after a *second* Tank 40 decant with or without the addition of products from the Actinide Removal Process (ARP) as well as 2 wt% Na₂O. The addition of ARP did not have any negative impacts on the acceptability and predictability of the variability study glasses.

All of the glasses that were selected for this study satisfy the PCCS criteria and are deemed processable and acceptable for the DWPF, except for the SB4VS2-03 (sludge-only at 38% WL) target composition. This glass fails the T_L criterion and would not be considered processable based on SME acceptability decisions.

The durabilities of all of the study glasses (both quenched and ccc) are well below that of the NL [B] of the reference EA glass (16.695 g/L) and are predictable using the current PCCS models. Very little variation existed between the NL [B] of the quenched and ccc versions of the glasses. There is some evidence of a trend toward a less durable glass as WL increases for some of the sludge projections.

6.0 References

- 1. F.C. Raszewski, T.B. Edwards, D.K. Peeler, D.R. Best, I.A. Reamer, and R.J. Workman, "Initial SB4 Tank 40H Decant Variability Study with Frit 510," Savannah River National Laboratory, Aiken, SC, Report No. WSRC-STI-2008-00149, 2008.
- F.C. Raszewski, M.E. Stone, T.B. Edwards, and D.K. Peeler, "The Impact of a Second Tank 40H Decant on the Frit 510 - SB4 System: Projected Operating Windows and CPC Processing," Savannah River National Laboratory, Aiken, SC, Report No. WSRC-TR-2008-00141, 2008.
- 3. J. Bricker, "SB4 Variability Studies for a Second Tank 40H Decant of up to 100,000 Gallons (TTR)," Savannah River National Laboratory, Aiken, SC, Report No. HLW-DWPF-TTR-2008-0025, Rev. 0, 2008.
- 4. F.C. Raszewski and M.E. Stone, "Experimental Testing to Support Additional SB4 Tank 40 Decants (TT&QAP)," Savannah River National Laboratory, Aiken, SC, Report No. WSRC-STI-2008-00254, Rev. 0, 2008.
- 5. S.L. Marra and C.M. Jantzen, "Characterization of Projected DWPF Glass Heat Treated to Simulate Canister Centerline Cooling," Westinghouse Savannah River Company, Aiken, SC, Report No. WSRC-TR-92-142, Rev. 1, 1993.
- 6. T.B. Edwards, "An Analytical Plan for Measuring the Chemical Compositions of Variability Study Glasses for SB4 after a Second Decant," Savannah River National Laboratory, Aiken, SC, Report No. SRNL-SCS-2008-00061 2008.
- "Standard Test Methods for Determining Chemical Durability of Nuclear, Hazardous, and Mixed Waste Glasses and Multiphase Glass Ceramics: The Product Consistency Test (PCT)," ASTM International, West Conshohocken, PA, Report No. ASTM C 1285-02, 2002.

- 8. T.B. Edwards, "An Analytical Plan for Measuring the PCT Solutions of Variability Study Glasses for SB4 after a Second Decant," Savannah River National Laboratory, Aiken, SC, Report No. SRNL-SCS-2008-00063, 2008.
- 9. C.M. Jantzen, J.B. Picket, K.G. Brown, T.B. Edwards, and D.C. Beam, "Process/Product Models for the Defense Waste Processing Facility (DWPF): Part I. Predicting Glass Durability from Composition Using a Thermodynamic Hydration Energy Reaction Model (THERMO)," Westinghouse Savannah River Company, Aiken, SC, Report No. WSRC-TR-93-672, Rev. 1, 1995.

Appendix A:

Tables and Figures Supporting the Analysis of the Chemical Composition Measurements of the SB4 Variability Study Glasses in Support of a Second Decant

This page intentionally left blank.

Glass ID	Blk	Seq.	Lab ID	Al (wt%)	Ba (wt%)	Ca (wt%)	Ce (wt%)	Cr (wt%)	Cu (wt%)	La (wt%)	Mg (wt%)	Mn (wt%)
Batch 1	1	1	BCHLM11	2.52	0.124	0.847	< 0.010	0.073	0.304	< 0.010	0.8	1.29
Ustd	1	2	UstdLM11	2.14	< 0.010	0.913	< 0.010	0.161	0.005	< 0.010	0.674	2.14
SB4VS2-04	1	3	A02LM11	4.45	0.024	0.639	0.012	0.041	0.019	0.013	0.527	1.57
SB4VS2-01	1	4	A07LM21	4.58	0.015	0.663	0.014	0.042	0.021	0.012	0.55	1.57
SB4VS2-09	1	5	A08LM21	5.29	0.024	0.735	0.025	0.039	0.02	0.015	0.61	1.78
SB4VS2-01	1	6	A07LM11	4.54	0.016	0.655	0.014	0.043	0.021	0.013	0.562	1.52
SB4VS2-04	1	7	A02LM21	4.34	0.024	0.628	0.012	0.041	0.019	0.014	0.541	1.47
SB4VS2-07	1	8	A04LM11	4.32	0.013	0.639	0.015	0.038	0.019	0.014	0.499	1.46
SB4VS2-03	1	9	A05LM21	5.33	0.023	0.784	0.024	0.042	0.021	0.014	0.622	1.8
SB4VS2-06	1	10	A03LM11	5.24	0.022	0.749	0.019	0.041	0.021	0.013	0.616	1.81
SB4VS2-08	1	11	A01LM11	4.71	0.025	0.675	0.021	0.038	0.02	0.013	0.569	1.66
Batch 1	1	12	BCHLM12	2.52	0.129	0.83	< 0.010	0.077	0.303	< 0.010	0.838	1.29
Ustd	1	13	UstdLM12	2.07	< 0.010	0.902	< 0.010	0.171	0.005	< 0.010	0.718	2.06
SB4VS2-05	1	14	A06LM21	4.8	0.024	0.697	0.021	0.042	0.02	0.014	0.598	1.66
SB4VS2-03	1	15	A05LM11	5.38	0.027	0.77	0.022	0.047	0.022	0.015	0.695	1.76
SB4VS2-07	1	16	A04LM21	4.29	0.015	0.616	0.017	0.043	0.022	0.015	0.566	1.48
SB4VS2-05	1	17	A06LM11	4.88	0.024	0.703	0.021	0.041	0.021	0.013	0.591	1.65
SB4VS2-02	1	18	A09LM21	5.1	0.027	0.715	0.013	0.04	0.022	0.015	0.637	1.78
SB4VS2-09	1	19	A08LM11	5.16	0.024	0.745	0.02	0.041	0.019	0.015	0.641	1.84
SB4VS2-06	1	20	A03LM21	5.24	0.024	0.747	0.019	0.043	0.022	0.013	0.642	1.82
SB4VS2-08	1	21	A01LM21	4.75	0.026	0.674	0.022	0.041	0.021	0.014	0.601	1.61
SB4VS2-02	1	22	A09LM11	5.32	0.029	1.11	0.018	0.039	0.022	0.016	0.683	1.71
Batch 1	1	23	BCHLM13	2.51	0.135	0.839	< 0.010	0.08	0.311	< 0.010	0.874	1.33
Ustd	1	24	UstdLM13	2.09	< 0.010	0.925	< 0.010	0.174	0.006	< 0.010	0.73	2.21
Batch 1	2	1	BCHLM21	2.5	0.124	0.815	< 0.010	0.073	0.296	< 0.010	0.817	1.25
Ustd	2	2	UstdLM21	2.13	< 0.010	0.891	< 0.010	0.162	0.007	< 0.010	0.685	2.1
SB4VS2-03	2	3	A05LM22	5.35	0.023	0.768	0.026	0.041	0.023	0.013	0.624	1.74
SB4VS2-07	2	4	A04LM22	4.29	0.013	0.617	0.018	0.04	0.023	0.014	0.527	1.41
SB4VS2-05	2	5	A06LM12	4.88	0.021	0.693	0.022	0.038	0.023	0.012	0.553	1.61
SB4VS2-06	2	6	A03LM12	5.26	0.022	0.736	0.021	0.041	0.023	0.013	0.627	1.7
SB4VS2-01	2	7	A07LM12	4.53	0.015	0.64	0.015	0.043	0.023	0.012	0.574	1.39
SB4VS2-04	2	8	A02LM22	4.34	0.024	0.619	0.013	0.041	0.021	0.014	0.541	1.38
SB4VS2-02	2	9	A09LM22	5.03	0.024	0.706	0.015	0.037	0.023	0.014	0.613	1.6
SB4VS2-03	2	10	A05LM12	5.34	0.024	0.766	0.023	0.044	0.024	0.014	0.66	1.68
SB4VS2-09	2	11	A08LM22	5.28	0.024	0.729	0.027	0.039	0.022	0.015	0.624	1.67
Batch 1	2	12	BCHLM22	2.49	0.125	0.825	< 0.010	0.074	0.302	< 0.010	0.821	1.23
Ustd	2	13	UstdLM22	2.09	< 0.010	0.89	< 0.010	0.164	0.008	< 0.010	0.694	2.07
SB4VS2-01	2	14	A07LM22	4.56	0.015	0.65	0.015	0.042	0.023	0.012	0.563	1.52
SB4VS2-09	2	15	A08LM12	5.17	0.022	0.744	0.022	0.038	0.021	0.014	0.609	1.7
SB4VS2-07	2	16	A04LM12	4.29	0.012	0.634	0.017	0.038	0.022	0.014	0.511	1.41
SB4VS2-04	2	17	A02LM12	4.43	0.023	0.629	0.013	0.041	0.021	0.013	0.536	1.45

Table A1. Measured Elemental Concentrations (wt%) for Samples Prepared Using Lithium Metaborate (part 1)

Glass ID	Blk	Seq.	Lab ID	Al (wt%)	Ba (wt%)	Ca (wt%)	Ce (wt%)	Cr (wt%)	Cu (wt%)	La (wt%)	Mg (wt%)	Mn (wt%)
SB4VS2-02	2	18	A09LM12	5.32	0.027	1.1	0.019	0.036	0.024	0.015	0.649	1.6
SB4VS2-06	2	19	A03LM22	5.2	0.022	0.745	0.02	0.041	0.024	0.012	0.626	1.76
SB4VS2-08	2	20	A01LM22	4.74	0.024	0.66	0.023	0.038	0.022	0.013	0.58	1.6
SB4VS2-08	2	21	A01LM12	4.68	0.024	0.663	0.022	0.037	0.022	0.013	0.572	1.56
SB4VS2-05	2	22	A06LM22	4.83	0.023	0.687	0.022	0.04	0.022	0.013	0.59	1.65
Batch 1	2	23	BCHLM23	2.5	0.127	0.829	< 0.010	0.075	0.303	< 0.010	0.827	1.27
Ustd	2	24	UstdLM23	2.05	< 0.010	0.901	< 0.010	0.164	0.008	< 0.010	0.697	2.02
Batch 1	3	•	Batch glass	2.55	0.121	0.821	< 0.010	0.072	0.298	< 0.010	0.784	1.32
Ustd	3		U glass	2.12	< 0.010	0.881	< 0.010	0.163	< 0.010	< 0.010	0.682	2.07
SB4VS2-09	3		A08 11	5.33	0.023	0.729	0.02	0.037	0.021	0.014	0.587	1.8
SB4VS2-09	3	•	A08 12	5.36	0.023	0.737	0.02	0.037	0.021	0.014	0.594	1.81
SB4VS2-09	3	•	A08 21	5.28	0.024	0.715	0.025	0.039	0.021	0.015	0.615	1.83
SB4VS2-09	3	•	A08 22	5.32	0.025	0.715	0.025	0.039	0.021	0.015	0.623	1.84
SB4VS2-02	3		A09 11	5.37	0.027	1.07	0.017	0.035	0.023	0.015	0.625	1.74
SB4VS2-02	3	•	A09 12	5.29	0.027	1.07	0.017	0.035	0.023	0.014	0.627	1.76
SB4VS2-02	3		A09 21	5.2	0.025	0.705	0.013	0.037	0.023	0.014	0.604	1.83
SB4VS2-02	3		A09 22	5.19	0.025	0.693	0.013	0.037	0.023	0.014	0.594	1.78
Batch 1	3		Batch glass	2.58	0.118	0.799	< 0.010	0.07	0.29	< 0.010	0.773	1.37
Ustd	3		U glass	2.13	< 0.010	0.886	< 0.010	0.162	< 0.010	< 0.010	0.684	2.3

 Table A1. Measured Elemental Concentrations (wt%) for Samples Prepared Using Lithium Metaborate (part 1)

Glass ID	Blk	Seq.	Lab ID	Na (wt%)	Ni (wt%)	Pb (wt%)	S (wt%)	Si (wt%)	Ti (wt%)	U (wt%)	Zr (wt%)
Batch 1	1	1	BCHLM11	7.06	0.54	< 0.010	0.012	23.3	0.381	< 0.100	0.062
Ustd	1	2	UstdLM11	8.86	0.762	< 0.010	0.012	21.2	0.542	1.91	< 0.010
SB4VS2-04	1	3	A02LM11	7.97	0.393	0.019	0.069	23	0.251	2.39	0.021
SB4VS2-01	1	4	A07LM21	7.63	0.387	0.021	0.062	22.9	0.017	2.44	0.017
SB4VS2-09	1	5	A08LM21	8.93	0.465	0.023	0.09	21.1	0.275	2.77	0.023
SB4VS2-01	1	6	A07LM11	7.55	0.401	0.022	0.064	22.7	0.017	2.4	0.018
SB4VS2-04	1	7	A02LM21	7.92	0.4	0.019	0.074	22.3	0.258	2.34	0.022
SB4VS2-07	1	8	A04LM11	8.32	0.358	0.018	0.068	22.6	0.241	2.28	0.021
SB4VS2-03	1	9	A05LM21	7.85	0.406	0.02	0.074	20.7	0.018	2.85	0.022
SB4VS2-06	1	10	A03LM11	8.3	0.455	0.029	0.09	21	0.296	2.8	0.021
SB4VS2-08	1	11	A01LM11	8.6	0.418	0.023	0.086	22	0.276	2.53	0.019
Batch 1	1	12	BCHLM12	6.85	0.563	< 0.010	0.016	23.3	0.391	< 0.100	0.063
Ustd	1	13	UstdLM12	8.87	0.805	< 0.010	0.012	21	0.561	1.89	< 0.010
SB4VS2-05	1	14	A06LM21	8.09	0.448	0.022	0.081	21.8	0.281	2.53	0.02
SB4VS2-03	1	15	A05LM11	7.97	0.468	0.024	0.078	20.7	0.02	2.85	0.024
SB4VS2-07	1	16	A04LM21	8.35	0.42	0.023	0.08	22.5	0.271	2.26	0.022
SB4VS2-05	1	17	A06LM11	8.2	0.434	0.02	0.081	21.8	0.275	2.57	0.02
SB4VS2-02	1	18	A09LM21	7.95	0.457	0.022	0.075	22.4	0.018	2.73	0.023
SB4VS2-09	1	19	A08LM11	8.92	0.469	0.023	0.091	21.2	0.281	2.76	0.026
SB4VS2-06	1	20	A03LM21	8.26	0.468	0.03	0.091	21	0.303	2.83	0.021
SB4VS2-08	1	21	A01LM21	8.79	0.449	0.024	0.089	21.7	0.287	2.47	0.019
SB4VS2-02	1	22	A09LM11	8.02	0.441	0.021	0.073	21.7	0.018	2.65	0.023
Batch 1	1	23	BCHLM13	6.72	0.584	< 0.010	0.016	23.6	0.404	< 0.100	0.065
Ustd	1	24	UstdLM13	8.85	0.815	< 0.010	0.014	21.5	0.576	1.93	< 0.010
Batch 1	2	1	BCHLM21	6.97	0.545	< 0.010	0.012	23.1	0.381	< 0.100	0.061
Ustd	2	2	UstdLM21	8.76	0.773	< 0.010	0.015	21.1	0.548	1.92	< 0.010
SB4VS2-03	2	3	A05LM22	7.85	0.41	0.02	0.069	20.5	0.018	2.85	0.021
SB4VS2-07	2	4	A04LM22	8.32	0.396	0.019	0.073	22.2	0.26	2.24	0.021
SB4VS2-05	2	5	A06LM12	8.07	0.409	0.017	0.079	21.6	0.264	2.52	0.019
SB4VS2-06	2	6	A03LM12	8.27	0.464	0.03	0.089	20.8	0.301	2.76	0.021
SB4VS2-01	2	7	A07LM12	7.5	0.408	0.022	0.064	22.1	0.017	2.35	0.018
SB4VS2-04	2	8	A02LM22	7.87	0.409	0.019	0.075	22	0.261	2.29	0.022
SB4VS2-02	2	9	A09LM22	7.76	0.439	0.02	0.071	21.5	0.017	2.6	0.022
SB4VS2-03	2	10	A05LM12	7.79	0.445	0.021	0.075	20.3	0.019	2.79	0.023
SB4VS2-09	2	11	A08LM22	8.83	0.474	0.023	0.094	20.7	0.279	2.71	0.023
Batch 1	2	12	BCHLM22	6.57	0.55	< 0.010	0.012	23	0.384	< 0.100	0.062
Ustd	2	13	UstdLM22	8.76	0.782	< 0.010	0.013	21	0.559	1.9	< 0.010
SB4VS2-01	2	14	A07LM22	7.52	0.402	0.021	0.066	22.7	0.017	2.4	0.018
SB4VS2-09	2	15	A08LM12	8.78	0.447	0.021	0.087	20.8	0.271	2.7	0.024
SB4VS2-07	2	16	A04LM12	8.17	0.367	0.017	0.073	22.5	0.246	2.24	0.021
SB4VS2-04	2	17	A02LM12	7.85	0.401	0.018	0.071	22.5	0.258	2.33	0.022

Table A1. Measured Elemental Concentrations (wt%) for Samples Prepared Using Lithium Metaborate (part 2)

Glass ID	Blk	Seq.	Lab ID	Na (wt%)	Ni (wt%)	Pb (wt%)	S (wt%)	Si (wt%)	Ti (wt%)	U (wt%)	Zr (wt%)
SB4VS2-02	2	18	A09LM12	7.96	0.419	0.019	0.067	21.4	0.018	2.6	0.022
SB4VS2-06	2	19	A03LM22	8.1	0.454	0.028	0.088	20.7	0.295	2.75	0.02
SB4VS2-08	2	20	A01LM22	8.64	0.427	0.022	0.086	21.6	0.274	2.47	0.018
SB4VS2-08	2	21	A01LM12	8.46	0.421	0.021	0.08	21.5	0.273	2.47	0.018
SB4VS2-05	2	22	A06LM22	8.05	0.442	0.02	0.081	21.8	0.275	2.55	0.02
Batch 1	2	23	BCHLM23	6.73	0.556	< 0.010	0.013	23.1	0.389	< 0.100	0.063
Ustd	2	24	UstdLM23	8.66	0.785	< 0.010	0.012	20.6	0.558	1.85	< 0.010
Batch 1	3		Batch glass	6.64	0.525	< 0.010	0.014	22.4	0.37	< 0.100	0.059
Ustd	3		U glass	8.81	0.782	< 0.010	0.015	20.9	0.549	1.91	< 0.010
SB4VS2-09	3		A08 11	8.94	0.441	0.021	0.088	21.4	0.262	2.79	0.023
SB4VS2-09	3		A08 12	8.98	0.445	0.021	0.085	21.2	0.265	2.81	0.023
SB4VS2-09	3		A08 21	9.02	0.469	0.023	0.091	21.5	0.273	2.83	0.022
SB4VS2-09	3		A08 22	8.95	0.472	0.024	0.094	20.8	0.274	2.81	0.022
SB4VS2-02	3		A09 11	8	0.412	0.018	0.069	22.7	0.017	2.71	0.021
SB4VS2-02	3		A09 12	8.04	0.411	0.018	0.068	22.8	0.017	2.72	0.02
SB4VS2-02	3		A09 21	7.97	0.436	0.02	0.074	22.5	0.017	2.8	0.02
SB4VS2-02	3		A09 22	8.07	0.429	0.019	0.074	22.8	0.017	2.8	0.02
Batch 1	3		Batch glass	6.79	0.516	< 0.010	0.018	23.1	0.362	< 0.100	0.059
Ustd	3		U glass	8.93	0.773	< 0.010	0.013	21.2	0.547	2	< 0.010

Table A1. Measured Elemental Concentrations (wt%) for Samples Prepared Using Lithium Metaborate (part 2)
Glass ID	Block	Sequence	Lab ID	B (wt%)	Fe (wt%)	Li (wt%)
Batch 1	1	1	BCHPF11	2.44	9.16	2.00
Ustd	1	2	UstdPF11	2.83	7.32	2.40
SB4VS2-02	1	3	A09PF11	2.80	8.79	1.43
SB4VS2-04	1	4	A02PF21	2.88	6.47	2.48
SB4VS2-05	1	5	A06PF21	2.81	7.21	2.39
SB4VS2-04	1	6	A02PF11	2.91	6.68	2.46
SB4VS2-05	1	7	A06PF11	2.79	7.63	2.38
SB4VS2-01	1	8	A07PF11	2.93	7.40	2.49
SB4VS2-01	1	9	A07PF21	2.90	6.74	2.50
SB4VS2-07	1	10	A04PF11	2.86	6.56	2.43
SB4VS2-06	1	11	A03PF11	2.61	7.65	2.20
Batch 1	1	12	BCHPF12	2.32	8.92	2.02
Ustd	1	13	UstdPF12	2.69	7.07	2.38
SB4VS2-09	1	14	A08PF11	2.57	7.03	2.23
SB4VS2-06	1	15	A03PF21	2.63	7.65	2.26
SB4VS2-08	1	16	A01PF21	2.03	6.67	2.26
SB4VS2-08	1	17	A01PF11	2.72	6.80	2.33
SB4VS2-09	1	18	A08PF21	2.61	7 14	2.33
SB4VS2-02	1	10	A09PF21	2.61	6.90	2.29
SB4VS2-02	1	20	A05PE11	2.00	8.04	2.35
SB4VS2-03	1	20	A050F21	2.07	8.04	2.20
SB4VS2-03	1	21	A03FF21	2.03	6.02	2.24
Botch 1	1	22	DCUDE12	2.91	8.07	2.00
Latd	1	23	LatdDE12	2.33	6.97	2.00
Usia Datab 1	1	24	DCUDE21	2.08	0.98	2.57
Batch I	2	1	BCHPF21	2.42	8.90	1.97
	2	2		2.80	7.18	2.39
SB4VS2-01	2	3	A0/PF22	2.91	6.55	2.46
SB4VS2-06	2	4	A03PF22	2.64	7.53	2.22
SB4VS2-07	2	5	A04PF22	2.93	6.40	2.48
SB4VS2-04	2	6	A02PF22	2.88	6.35	2.45
SB4VS2-09	2	7	A08PF12	2.62	7.19	2.24
SB4VS2-02	2	8	A09PF12	2.72	8.30	1.40
SB4VS2-07	2	9	A04PF12	2.86	6.48	2.38
SB4VS2-05	2	10	A06PF12	2.84	7.81	2.41
SB4VS2-09	2	11	A08PF22	2.64	7.24	2.28
Batch I	2	12	BCHPF22	2.32	8.78	1.98
Ustd	2	13	UstdPF22	2.72	7.06	2.37
SB4VS2-06	2	14	A03PF12	2.63	7.63	2.16
SB4VS2-03	2	15	A05PF22	2.67	8.04	2.22
SB4VS2-08	2	16	A01PF22	2.74	6.69	2.33
SB4VS2-08	2	17	A01PF12	2.76	6.86	2.31
SB4VS2-01	2	18	A07PF12	2.90	7.22	2.47
SB4VS2-03	2	19	A05PF12	2.61	7.73	2.24
SB4VS2-04	2	20	A02PF12	2.82	6.43	2.46
SB4VS2-02	2	21	A09PF22	2.65	6.82	2.31
SB4VS2-05	2	22	A06PF22	2.77	6.98	2.37
Batch 1	2	23	BCHPF23	2.32	8.98	1.98
Ustd	2	24	UstdPF23	2.70	7.03	2.37
Batch 1	3	1	Batch 1	2.47	8.70	2.01
Ustd	3	2	Ustd	2.83	8.65	1.38
SB4VS2-09	3	3	A08 11	2.68	7.35	2.31
SB4VS2-09	3	4	A08 12	2.72	7.41	2.33
SB4VS2-09	3	5	A08 21	2.72	7.47	2.31
SB4VS2-09	3	6	A08 22	2.65	7.55	2.28
SB4VS2-02	3	7	A09 11	2.89	7.36	2.48
SB4VS2-02	3	8	A09 12	2.84	7.40	2.45
SB4VS2-02	3	9	A09 21	2.84	7.67	2.41
SB4VS2-02	3	10	A09 22	2.88	7.45	2.43
Batch 1	3	11	Batch 1	2.41	8.98	2.03
Ustd	3	12	Ustd	2.85	9.30	1.39

Table A2. Measured Elemental Concentrations (wt%)for Samples Prepared Using Peroxide Fusion

Solution ID	Al	В	Ba	Ca	Ce	Cr	Cu	Fe	La	Li	Mg	Mn	Na	Ni	Pb	S	Si	Ti	U	Zr
Batch glass	2.55	2.47	0.121	0.821	< 0.010	0.072	0.298	8.70	< 0.010	2.01	0.784	1.32	6.64	0.525	< 0.010	0.014	22.4	0.370	< 0.100	0.059
U glass	2.12	2.83	< 0.010	0.881	< 0.010	0.163	< 0.010	8.65	< 0.010	1.38	0.682	2.07	8.81	0.782	< 0.010	0.015	20.9	0.549	1.91	< 0.010
A08 11	5.33	2.68	0.023	0.729	0.020	0.037	0.021	7.35	0.014	2.31	0.587	1.80	8.94	0.441	0.021	0.088	21.4	0.262	2.79	0.023
A08 12	5.36	2.72	0.023	0.737	0.020	0.037	0.021	7.41	0.014	2.33	0.594	1.81	8.98	0.445	0.021	0.085	21.2	0.265	2.81	0.023
A08 21	5.28	2.72	0.024	0.715	0.025	0.039	0.021	7.47	0.015	2.31	0.615	1.83	9.02	0.469	0.023	0.091	21.5	0.273	2.83	0.022
A08 22	5.32	2.65	0.025	0.715	0.025	0.039	0.021	7.55	0.015	2.28	0.623	1.84	8.95	0.472	0.024	0.094	20.8	0.274	2.81	0.022
A09 11	5.37	2.89	0.027	1.07	0.017	0.035	0.023	7.36	0.015	2.48	0.625	1.74	8.00	0.412	0.018	0.069	22.7	0.017	2.71	0.021
A09 12	5.29	2.84	0.027	1.07	0.017	0.035	0.023	7.40	0.014	2.45	0.627	1.76	8.04	0.411	0.018	0.068	22.8	0.017	2.72	0.020
A09 21	5.20	2.84	0.025	0.705	0.013	0.037	0.023	7.67	0.014	2.41	0.604	1.83	7.97	0.436	0.020	0.074	22.5	0.017	2.80	0.020
A09 22	5.19	2.88	0.025	0.693	0.013	0.037	0.023	7.45	0.014	2.43	0.594	1.78	8.07	0.429	0.019	0.074	22.8	0.017	2.80	0.020
Batch glass	2.58	2.41	0.118	0.799	< 0.010	0.070	0.290	8.98	< 0.010	2.03	0.773	1.37	6.79	0.516	< 0.010	0.018	23.1	0.362	< 0.100	0.059
U glass	2.13	2.85	< 0.010	0.886	< 0.010	0.162	< 0.010	9.30	< 0.010	1.39	0.684	2.30	8.93	0.773	< 0.010	0.013	21.2	0.547	2.00	< 0.010

Table A3: LM and PF Reruns (Measurements are in wt% elementals.)

			Measured					
Glass		Measured	Bias-Corrected	Targeted	Diff of	Diff of	% Diff of	% Diff of
ID	Oxide	(wt%)	(wt%)	(wt%)	Measured	Meas BC	Measured	Meas BC
SB4VS2-01	Al ₂ O ₃	8.6019	8.8575	8.6332	-0.0313	0.2243	-0.4%	2.6%
SB4VS2-01	B_2O_3	9.3699	9.5962	9.5200	-0.1501	0.0762	-1.6%	0.8%
SB4VS2-01	BaO	0.0170	0.0181	0.0249	-0.0079	-0.0068	-31.6%	-27.4%
SB4VS2-01	CaO	0.9123	0.9574	0.9527	-0.0404	0.0047	-4.2%	0.5%
SB4VS2-01	Ce ₂ O ₃	0.0170	0.0170	0.0224	-0.0054	-0.0054	-24.0%	-24.0%
SB4VS2-01	Cr ₂ O ₃	0.0621	0.0604	0.0558	0.0063	0.0046	11.3%	8.2%
SB4VS2-01	CuO	0.0275	0.0290	0.0199	0.0076	0.0091	38.4%	45.6%
SB4VS2-01	Fe ₂ O ₃	9.9757	10.0071	9.8673	0.1084	0.1398	1.1%	1.4%
SB4VS2-01	La ₂ O ₃	0.0144	0.0144	0.0187	-0.0043	-0.0043	-23.2%	-23.2%
SB4VS2-01	Li ₂ O	5.3392	5.5150	5.4400	-0.1008	0.0750	-1.9%	1.4%
SB4VS2-01	MgO	0.9324	0.9620	0.9339	-0.0015	0.0281	-0.2%	3.0%
SB4VS2-01	MnO	1.9368	2.0276	1.9803	-0.0435	0.0473	-2.2%	2.4%
SB4VS2-01	Na ₂ O	10.1774	9.9718	10.1966	-0.0192	-0.2248	-0.2%	-2.2%
SB4VS2-01	NiO	0.5084	0.5394	0.5507	-0.0423	-0.0113	-7.7%	-2.0%
SB4VS2-01	PbO	0.0232	0.0232	0.0206	0.0026	0.0026	12.4%	12.4%
SB4VS2-01	SiO	48.3482	48.8504	48.5258	-0.1776	0.3246	-0.4%	0.7%
SB4VS2-01	SO4	0.1917	0.1917	0.1863	0.0054	0.0054	2.9%	2.9%
SB4VS2-01	TiO	0.0284	0.0296	0.0159	0.0125	0.0137	78.3%	86.4%
SB4VS2-01	U ₃ O ₀	2.8271	3.0359	3.0093	-0.1822	0.0266	-6.1%	0.9%
SB4VS2-01	ZrO	0.0240	0.0240	0.0258	-0.0018	-0.0018	-7.1%	-7.1%
SB4VS2-01	Sum	99.3346	100.7277	100.0001	-0.6655	0.7276	-0.7%	0.7%
SB4VS2-02	AlaOa	9.8774	10.0543	9,4426	0.4348	0.6117	4.6%	6.5%
SB4VS2-02	B ₂ O ₂	9,0050	9.0118	9,1000	-0.0950	-0.0882	-1.0%	-1.0%
SB4VS2-02	B ₂ O ₃	0.0294	0.0323	0.0272	0.0022	0.0051	8.3%	18.7%
SB4VS2-02	CaO	0.9861	1 0481	1.0421	-0.0560	0.0060	-5.4%	0.6%
SB4VS2-02	CeaOa	0.0183	0.0183	0.0245	-0.0062	-0.0062	-25.2%	-25.2%
SB4VS2-02	Cr ₂ O ₃	0.0541	0.0541	0.0610	-0.0069	-0.0069	-11.3%	-11.3%
SB4VS2-02	CuO	0.0286	0.0306	0.0218	0.0068	0.0088	31.4%	40.3%
SB4VS2-02	FeaOa	10.3892	10.5126	10.7924	-0.4032	-0.2798	-3.7%	-2.6%
SB4VS2-02	La ₂ O ₂	0.0172	0.0172	0.0204	-0.0032	-0.0032	-15.9%	-15.9%
SB4VS2-02	Li203	5.1705	5.2900	5.2000	-0.0295	0.0900	-0.6%	1.7%
SB4VS2-02	MgO	1.0431	1.1103	1.0215	0.0216	0.0888	2.1%	8.7%
SB4VS2-02	MnO	2.2273	2.2706	2.1660	0.0613	0.1046	2.8%	4.8%
SB4VS2-02	Na ₂ O	10.7452	10.6081	10 4025	0.3427	0.2056	3.3%	2.0%
SB4VS2-02	NiO	0.5478	0.6007	0.6023	-0.0545	-0.0016	-9.0%	-0.3%
SB4VS2-02	PhO	0.0211	0.0211	0.0225	-0.0014	-0.0014	-6.0%	-6.0%
SB4VS2-02	SiO	47.5459	48.5605	46.5126	1.0333	2.0479	2.2%	4.4%
SB4VS2-02	SO4	0.2138	0.2138	0.2038	0.0101	0.0101	4.9%	4.9%
SB4VS2-02	TiO	0.0290	0.0312	0.0174	0.0116	0.0138	66.6%	79.3%
SB4VS2-02	U ₃ O ₈	3.1853	3.3714	3.2914	-0.1061	0.0800	-3.2%	2.4%
SB4VS2-02	ZrO ₂	0.0289	0.0289	0.0282	0.0007	0.0007	2.4%	2.4%
SB4VS2-02	Sum	101.1633	102.8858	100.0001	1.1631	2.8857	1.2%	2.9%
SB4VS2-03	Al ₂ O ₂	10.1088	10.4092	10.2520	-0.1432	0.1572	-1.4%	1.5%
SB4VS2-03	B2O2	8.5166	8.7223	8.6800	-0.1634	0.0423	-1.9%	0.5%
SB4VS2-03	BaO	0.0271	0.0288	0.0295	-0.0024	-0.0007	-8.2%	-2.5%
SB4VS2-03	CaO	1.0802	1.1336	1.1314	-0.0512	0.0022	-4.5%	0.2%
SB4VS2-03	Ce ₂ O ₂	0.0278	0.0278	0.0266	0.0013	0.0013	4.8%	4.8%
SB4VS2-03	Cr_2O_3	0.0636	0.0618	0.0663	-0.0027	-0.0045	-4.1%	-6.8%
SB4VS2-03	CuO	0.0282	0.0296	0.0236	0.0046	0.0060	19.3%	25.5%
SB4VS2-03	Fe ₂ O ₂	11.3768	11,4130	11.7174	-0.3406	-0.3044	-2.9%	-2.6%
SB4VS2-03	La ₂ O ₂	0.0164	0.0164	0.0222	-0.0058	-0.0058	-26.0%	-26.0%
SB4VS2-03	Li	4.8225	4,9813	4,9600	-0.1375	0.0213	-2.8%	0.4%
SB4VS2-03	MgO	1.0783	1,1123	1,1090	-0.0307	0.0033	-2.8%	0.3%
SB4VS2-03	MnO	2.2531	2.3592	2.3516	-0.0985	0.0076	-4.2%	0.3%
SB4VS2-03	NacO	10.6020	10.3878	10.6084	-0.0064	-0.2206	-0.1%	-2.1%
SB4VS2-03	NiO	0.5500	0.5835	0.6539	-0.1039	-0.0704	-15.9%	-10.8%
SB4VS2-03	PhO	0.0229	0.0229	0.0244	-0.0015	-0.0015	-6.2%	-6.2%
SB4VS2-03	SiO	43,9626	44,4198	44,4993	-0.5367	-0.0795	-1.2%	-0.2%

			Measured					
Glass		Measured	Bias-Corrected	Targeted	Diff of	Diff of	% Diff of	% Diff of
ID	Oxide	(wt%)	(wt%)	(wt%)	Measured	Meas BC	Measured	Meas BC
SB4VS2-03	SO_4	0.2217	0.2217	0.2212	0.0005	0.0005	0.2%	0.2%
SB4VS2-03	TiO ₂	0.0313	0.0327	0.0189	0.0124	0.0138	65.5%	72.9%
SB4VS2-03	U ₃ O ₈	3.3430	3.5900	3.5735	-0.2305	0.0165	-6.4%	0.5%
SB4VS2-03	ZrO_2	0.0304	0.0304	0.0306	-0.0002	-0.0002	-0.7%	-0.7%
SB4VS2-03	Sum	98.1634	99.5842	99.9998	-1.8364	-0.4156	-1.8%	-0.4%
SB4VS2-04	Al ₂ O ₃	8.2949	8.5413	8.3054	-0.0105	0.2359	-0.1%	2.8%
SB4VS2-04	B_2O_3	9.2492	9.4724	9.5200	-0.2708	-0.0476	-2.8%	-0.5%
SB4VS2-04	BaO	0.0265	0.0282	0.0250	0.0015	0.0032	6.1%	12.7%
SB4VS2-04	CaO	0.8797	0.9233	0.9214	-0.0417	0.0019	-4.5%	0.2%
SB4VS2-04	Ce ₂ O ₃	0.0146	0.0146	0.0239	-0.0092	-0.0092	-38.6%	-38.6%
SB4VS2-04	Cr ₂ O ₃	0.0599	0.0583	0.0547	0.0052	0.0036	9.6%	6.5%
SB4VS2-04	CuO	0.0250	0.0263	0.0196	0.0054	0.0067	27.7%	34.4%
SB4VS2-04	Fe ₂ O ₃	9.2680	9.2971	9.5727	-0.3047	-0.2756	-3.2%	-2.9%
SB4VS2-04	La ₂ O ₃	0.0158	0.0158	0.0188	-0.0030	-0.0030	-15.8%	-15.8%
SB4VS2-04	Li ₂ O	5.3015	5.4762	5.4400	-0.1385	0.0362	-2.5%	0.7%
SB4VS2-04	MgO	0.8893	0.9175	0.8895	-0.0002	0.0280	0.0%	3.1%
SB4VS2-04	MnO	1.8948	1.9834	1.9547	-0.0599	0.0287	-3.1%	1.5%
SB4VS2-04	Na ₂ O	10.6526	10.4374	10.5957	0.0569	-0.1583	0.5%	-1.5%
SB4VS2-04	NiO	0.5100	0.5411	0.5450	-0.0350	-0.0039	-6.4%	-0.7%
SB4VS2-04	PbO	0.0202	0.0202	0.0215	-0.0013	-0.0013	-6.1%	-6.1%
SB4VS2-04	SiO ₂	48.0273	48.5262	48.4908	-0.4635	0.0354	-1.0%	0.1%
SB4VS2-04	SO_4	0.2165	0.2165	0.2228	-0.0063	-0.0063	-2.8%	-2.8%
SB4VS2-04	TiO ₂	0.4287	0.4481	0.4308	-0.0021	0.0173	-0.5%	4.0%
SB4VS2-04	U ₃ O ₈	2.7564	2.9599	2.9118	-0.1554	0.0481	-5.3%	1.7%
SB4VS2-04	ZrO ₂	0.0294	0.0294	0.0277	0.0017	0.0017	6.1%	6.1%
SB4VS2-04	Sum	98.5603	99.9332	99.9917	-1.4314	-0.0585	-1.4%	-0.1%
SB4VS2-05	Al ₂ O ₃	9.1594	9.4316	9.0841	0.0753	0.3475	0.8%	3.8%
SB4VS2-05	B_2O_3	9.0238	9.2418	9.1000	-0.0762	0.1418	-0.8%	1.6%
SB4VS2-05	BaO	0.0257	0.0273	0.0273	-0.0016	0.0000	-5.9%	-0.1%
SB4VS2-05	CaO	0.9724	1.0206	1.0078	-0.0354	0.0128	-3.5%	1.3%
SB4VS2-05	Ce ₂ O ₃	0.0252	0.0252	0.0261	-0.0009	-0.0009	-3.5%	-3.5%
SB4VS2-05	Cr ₂ O ₃	0.0588	0.0572	0.0598	-0.0010	-0.0026	-1.6%	-4.4%
SB4VS2-05	CuO	0.0269	0.0283	0.0215	0.0054	0.0068	25.2%	31.7%
SB4VS2-05	Fe ₂ O ₃	10.5905	10.6247	10.4702	0.1203	0.1545	1.1%	1.5%
SB4VS2-05	La ₂ O ₃	0.0152	0.0152	0.0206	-0.0054	-0.0054	-26.0%	-26.0%
SB4VS2-05	Li ₂ O	5.1400	5.3096	5.2000	-0.0600	0.1096	-1.2%	2.1%
SB4VS2-05	MgO	0.9668	0.9972	0.9729	-0.0061	0.0243	-0.6%	2.5%
SB4VS2-05	MnO	2.1208	2.2212	2.1380	-0.0172	0.0832	-0.8%	3.9%
SB4VS2-05	Na ₂ O	10.9222	10.7016	10.8390	0.0832	-0.1374	0.8%	-1.3%
SB4VS2-05	NiO	0.5513	0.5848	0.5961	-0.0448	-0.0113	-7.5%	-1.9%
SB4VS2-05	PbO	0.0213	0.0213	0.0235	-0.0022	-0.0022	-9.5%	-9.5%
SB4VS2-05	SiO ₂	46.5298	47.0153	46.4743	0.0555	0.5410	0.1%	1.2%
SB4VS2-05	SO_4	0.2412	0.2412	0.2436	-0.0025	-0.0025	-1.0%	-1.0%
SB4VS2-05	TiO ₂	0.4566	0.4772	0.4711	-0.0145	0.0061	-3.1%	1.3%
SB4VS2-05	U ₃ O ₈	2.9981	3.2196	3.1848	-0.1867	0.0348	-5.9%	1.1%
SB4VS2-05	ZrO ₂	0.0267	0.0267	0.0303	-0.0036	-0.0036	-12.0%	-12.0%
SB4VS2-05	Sum	99.8727	101.2875	99.9910	-0.1184	1.2964	-0.1%	1.3%
SB4VS2-06	Al ₂ O ₃	9.8915	10.1854	9.8627	0.0288	0.3227	0.3%	3.3%
SB4VS2-06	B ₂ O ₃	8.4603	8.6647	8.6800	-0.2197	-0.0153	-2.5%	-0.2%
SB4VS2-06	BaO	0.0251	0.0267	0.0297	-0.0046	-0.0030	-15.4%	-10.2%
SB4VS2-06	CaO	1.0414	1.0929	1.0942	-0.0528	-0.0013	-4.8%	-0.1%
SB4VS2-06	Ce ₂ O ₃	0.0231	0.0231	0.0283	-0.0052	-0.0052	-18.3%	-18.3%
SB4VS2-06	Cr ₂ O ₃	0.0607	0.0589	0.0650	-0.0043	-0.0061	-6.7%	-9.3%
SB4VS2-06	CuO	0.0282	0.0296	0.0233	0.0049	0.0063	20.9%	27.2%
SB4VS2-06	Fe ₂ O ₃	10.8872	10.9221	11.3676	-0.4804	-0.4455	-4.2%	-3.9%
SB4VS2-06	La ₂ O ₃	0.0150	0.0150	0.0223	-0.0073	-0.0073	-32.9%	-32.9%
SB4VS2-06	Li ₂ O	4.7579	4.9145	4.9600	-0.2021	-0.0455	-4.1%	-0.9%
SB4VS2-06	MgO	1.0410	1.0739	1.0563	-0.0153	0.0176	-1.4%	1.7%

			Measured					
Glass		Measured	Bias-Corrected	Targeted	Diff of	Diff of	% Diff of	% Diff of
ID	Oxide	(wt%)	(wt%)	(wt%)	Measured	Meas BC	Measured	Meas BC
SB4VS2-06	MnO	2.2887	2.3962	2.3212	-0.0325	0.0750	-1.4%	3.2%
SB4VS2-06	Na ₂ O	11.0974	10.8732	11.0824	0.0150	-0.2092	0.1%	-1.9%
SB4VS2-06	NiO	0.5857	0.6213	0.6472	-0.0615	-0.0259	-9.5%	-4.0%
SB4VS2-06	PbO	0.0315	0.0315	0.0255	0.0060	0.0060	23.6%	23.6%
SB4VS2-06	SiO ₂	44.6579	45.1227	44.4579	0.2000	0.6648	0.4%	1.5%
SB4VS2-06	SO_4	0.2681	0.2681	0.2645	0.0036	0.0036	1.4%	1.4%
SB4VS2-06	TiO ₂	0.4983	0.5209	0.5115	-0.0132	0.0094	-2.6%	1.8%
SB4VS2-06	U ₃ O ₈	3.2841	3.5266	3.4577	-0.1736	0.0689	-5.0%	2.0%
SB4VS2-06	ZrO_2	0.0280	0.0280	0.0329	-0.0049	-0.0049	-14.8%	-14.8%
SB4VS2-06	Sum	98.9710	100.3955	99.9903	-1.0193	0.4052	-1.0%	0.4%
SB4VS2-07	Al ₂ O ₃	8.1201	8.3613	8.1090	0.0111	0.2523	0.1%	3.1%
SB4VS2-07	B ₂ O ₃	9.3055	9.5303	9.5200	-0.2145	0.0103	-2.3%	0.1%
SB4VS2-07	BaO	0.0148	0.0157	0.0244	-0.0096	-0.0087	-39.4%	-35.6%
SB4VS2-07	CaO	0.8766	0.9200	0.8996	-0.0230	0.0204	-2.6%	2.3%
SB4VS2-07	Ce ₂ O ₃	0.0196	0.0196	0.0233	-0.0037	-0.0037	-15.8%	-15.8%
SB4VS2-07	Cr ₂ O ₃	0.0581	0.0565	0.0534	0.0047	0.0031	8.8%	5.7%
SB4VS2-07	CuO	0.0269	0.0283	0.0192	0.0077	0.0091	40.2%	47.5%
SB4VS2-07	Fe ₂ O ₃	9.2108	9.2407	9.3463	-0.1355	-0.1056	-1.4%	-1.1%
SB4VS2-07	La ₂ O ₃	0.0167	0.0167	0.0184	-0.0017	-0.0017	-9.2%	-9.2%
SB4VS2-07	Li ₂ O	5.2746	5.4482	5.4400	-0.1654	0.0082	-3.0%	0.2%
SB4VS2-07	MgO	0.8719	0.8994	0.8684	0.0035	0.0310	0.4%	3.6%
SB4VS2-07	MnO	1.8593	1.9468	1.9085	-0.0492	0.0383	-2.6%	2.0%
SB4VS2-07	Na ₂ O	11.1749	10.9492	11.2357	-0.0608	-0.2865	-0.5%	-2.5%
SB4VS2-07	NiO	0.4902	0.5201	0.5322	-0.0420	-0.0121	-7.9%	-2.3%
SB4VS2-07	PbO	0.0207	0.0207	0.0210	-0.0003	-0.0003	-1.3%	-1.3%
SB4VS2-07	SiO ₂	48.0273	48.5277	48.4698	-0.4425	0.0579	-0.9%	0.1%
SB4VS2-07	SO_4	0.2202	0.2202	0.2175	0.0027	0.0027	1.2%	1.2%
SB4VS2-07	TiO ₂	0.4245	0.4437	0.4206	0.0039	0.0231	0.9%	5.5%
SB4VS2-07	U ₃ O ₈	2.6591	2.8555	2.8429	-0.1838	0.0126	-6.5%	0.4%
SB4VS2-07	ZrO ₂	0.0287	0.0287	0.0270	0.0017	0.0017	6.3%	6.3%
SB4VS2-07	Sum	98.7007	100.0494	99.9972	-1.2965	0.0522	-1.3%	0.1%
SB4VS2-08	Al ₂ O ₃	8.9184	9.1834	8.8692	0.0492	0.3142	0.6%	3.5%
SB4VS2-08	B_2O_3	8.8064	9.0193	9.1000	-0.2936	-0.0807	-3.2%	-0.9%
SB4VS2-08	BaO	0.0276	0.0293	0.0267	0.0009	0.0026	3.5%	9.9%
SB4VS2-08	CaO	0.9347	0.9809	0.9839	-0.0492	-0.0030	-5.0%	-0.3%
SB4VS2-08	Ce ₂ O ₃	0.0258	0.0258	0.0255	0.0003	0.0003	1.2%	1.2%
SB4VS2-08	Cr ₂ O ₃	0.0563	0.0547	0.0584	-0.0021	-0.0037	-3.6%	-6.4%
SB4VS2-08	CuO	0.0266	0.0280	0.0210	0.0056	0.0070	26.7%	33.2%
SB4VS2-08	Fe ₂ O ₃	9.6576	9.6891	10.2225	-0.5649	-0.5334	-5.5%	-5.2%
SB4VS2-08	La ₂ O ₃	0.0155	0.0155	0.0201	-0.0046	-0.0046	-22.7%	-22.7%
SB4VS2-08	Li ₂ O	5.0216	5.1870	5.2000	-0.1784	-0.0130	-3.4%	-0.2%
SB4VS2-08	MgO	0.9626	0.9931	0.9499	0.0127	0.0432	1.3%	4.5%
SB4VS2-08	MnO	2.0756	2.1734	2.0874	-0.0118	0.0860	-0.6%	4.1%
SB4VS2-08	Na ₂ O	11.6231	11.3881	11.5390	0.0841	-0.1509	0.7%	-1.3%
SB4VS2-08	NiO	0.5456	0.5788	0.5820	-0.0364	-0.0032	-6.3%	-0.6%
SB4VS2-08	PbO	0.0242	0.0242	0.0229	0.0013	0.0013	5.8%	5.8%
SB4VS2-08	SiO ₂	46.4228	46.9057	46.4513	-0.0285	0.4544	-0.1%	1.0%
SB4VS2-08	SO_4	0.2554	0.2554	0.2379	0.0175	0.0175	7.4%	7.4%
SB4VS2-08	TiO ₂	0.4629	0.4838	0.4600	0.0029	0.0238	0.6%	5.2%
SB4VS2-08	U ₃ O ₈	2.9303	3.1468	3.1094	-0.1791	0.0374	-5.8%	1.2%
SB4VS2-08	ZrO ₂	0.0250	0.0250	0.0296	-0.0046	-0.0046	-15.6%	-15.6%
SB4VS2-08	Sum	98.8182	100.1872	99.9967	-1.1785	0.1905	-1.2%	0.2%
SB4VS2-09	Al ₂ O ₃	9.9648	10.1430	9.6294	0.3354	0.5136	3.5%	5.3%
SB4VS2-09	B ₂ O ₃	8.5368	8.5944	8.6800	-0.1432	-0.0856	-1.7%	-1.0%
SB4VS2-09	BaO	0.0264	0.0289	0.0290	-0.0026	-0.0001	-9.0%	-0.2%
SB4VS2-09	CaO	1.0230	1.0873	1.0683	-0.0453	0.0190	-4.2%	1.8%
SB4VS2-09	Ce ₂ O ₃	0.0269	0.0269	0.0277	-0.0007	-0.0007	-2.6%	-2.6%
SB4VS2-09	Cr ₂ O ₃	0.0565	0.0565	0.0634	-0.0069	-0.0069	-11.0%	-10.9%

			Measured					
Glass		Measured	Bias-Corrected	Targeted	Diff of	Diff of	% Diff of	% Diff of
ID	Oxide	(wt%)	(wt%)	(wt%)	Measured	Meas BC	Measured	Meas BC
SB4VS2-09	CuO	0.0260	0.0277	0.0228	0.0032	0.0049	13.9%	21.7%
SB4VS2-09	Fe ₂ O ₃	10.4332	10.5346	11.0988	-0.6656	-0.5642	-6.0%	-5.1%
SB4VS2-09	La ₂ O ₃	0.0172	0.0172	0.0218	-0.0046	-0.0046	-21.3%	-21.3%
SB4VS2-09	Li ₂ O	4.9167	5.0427	4.9600	-0.0433	0.0827	-0.9%	1.7%
SB4VS2-09	MgO	1.0163	1.0823	1.0313	-0.0150	0.0510	-1.5%	4.9%
SB4VS2-09	MnO	2.3032	2.3487	2.2663	0.0369	0.0824	1.6%	3.6%
SB4VS2-09	Na ₂ O	12.0225	11.8691	11.8424	0.1801	0.0267	1.5%	0.2%
SB4VS2-09	NiO	0.5857	0.6425	0.6319	-0.0462	0.0106	-7.3%	1.7%
SB4VS2-09	PbO	0.0241	0.0241	0.0249	-0.0008	-0.0008	-3.2%	-3.2%
SB4VS2-09	SiO ₂	45.1125	46.0686	44.4328	0.6797	1.6358	1.5%	3.7%
SB4VS2-09	SQ4	0.2696	0.2696	0.2583	0.0114	0.0114	4.4%	4.4%
SB4VS2-09	TiO ₂	0.4545	0.4894	0.4994	-0.0449	-0.0100	-9.0%	-2.0%
SB4VS2-09	U ₂ O ₂	3.2693	3.4608	3.3759	-0.1066	0.0849	-3.2%	2.5%
SB4VS2-09	ZrO	0.0314	0.0314	0.0321	-0.0007	-0.0007	-2.2%	-2.2%
SB4VS2-09	Sum	100 1165	101 8458	99 9964	0.1200	1 8494	0.1%	1.8%
Batch 1	AlaOa	4 7639	4 8770	4 8770	-0.1131	0.0000	-2.3%	0.0%
Batch 1	B ₂ O ₃	7 6593	7 7770	7 7770	-0.1177	0.0000	-1.5%	0.0%
Batch 1	B ₂ O ₃	0.1400	0.1510	0.1510	-0.0110	0.0000	-7.3%	0.0%
Batch 1	CaO	1 1552	1 2200	1 2200	-0.0648	0.0000	-5.3%	0.0%
Batch 1	CaO	0.0059	0.0059	0.0000	0.0059	0.0059	5.570	0.070
Batch 1	Cr_2O_3	0.1085	0.1070	0.1070	0.0035	0.0000	1.4%	0.0%
Batch 1	C12O3	0.3766	0.3990	0.3990	-0.0224	0.0000	-5.6%	0.0%
Batch 1	EaO	12 7583	12 8390	12 8390	-0.0807	0.0000	-0.6%	0.0%
Batch 1	Le O	0.0059	0.0059	0.0000	-0.0807	0.0059	-0.070	0.070
Batch 1		4 3031	4.4290	4.4290	0.0057	0.0000	2.8%	0.0%
Batch 1	M ₂ O	1 3544	4.4290	1,4190	-0.1239	0.0000	-2.8%	0.0%
Batch 1	MgO	1.5344	1.4190	1.4190	-0.0040	0.0000	-4.0%	0.0%
Datch 1	MnO No O	0.1546	0.0020	0.0020	-0.0333	0.0000	-3.2%	0.0%
Datch 1	Na ₂ O	9.1340	9.0030	9.0030	0.1510	0.0000	1.7%	0.0%
Batch 1	NIO DLO	0.0903	0.0054	0.7510	-0.0343	0.0000	-7.370	0.0%
Batch 1	PbO	40.4446	50 2200	50,2200	0.0034	0.0034	1 50/	0.0%
Datch 1	S102	49.4440	0.0402	30.2200	-0.7734	0.0000	-1.3%	0.0%
Datch 1	50 ₄	0.0425	0.0423	0.0000	0.0425	0.0425	5 70/	0.00/
Datch 1	110 ₂	0.0584	0.0770	0.0770	-0.0380	0.0000	-3.1%	0.0%
Batch I	U ₃ O ₈	0.0590	0.0629	0.0000	0.0590	0.0629	14.00/	14.00/
Datch 1	ZrO ₂	0.0834	0.0834	0.0980	-0.0140	-0.0140	-14.9%	-14.9%
Datcii I Llatd	Sum	94.4238	95.8007	93.0930	-1.20/2	0.1077	-1.5%	0.1%
Usid	Al ₂ O ₃	3.9727	4.0672	4.1000	-0.12/3	-0.0528	-3.1%	-0.8%
Usid	B ₂ O ₃	9.1445	9.0319	9.2090	-0.0043	-0.1371	-0.7%	-1./%
Usid	BaO	1.2574	1 2270	1.2010	0.0036	0.0060	2 40/	2.10/
Usta	CaO	0.0050	0.0050	0.0000	-0.0430	0.0209	-3.4%	2.1%
Ustd	Ce_2O_3	0.0039	0.0039	0.0000	0.0039	0.0039		
Usta	Cr ₂ O ₃	0.2413	0.2301	0.0000	0.2413	0.2381		
Ustd	En O	12 8216	12 0251	13 1060	0.0077	0.0001	2 804	1 204
Usta	re ₂ O ₃	12.0010	0.0050	0.0000	-0.3044	-0.1009	-2.0%	-1.2%
Usid	La_2O_3	2 0818	2.0267	2.0570	0.0039	0.0039	2 504	0.7%
Usid	Ll ₂ U McO	2.7010	1 2090	1 2100	-0.0732	-0.0203	-2.3%	-0.7%
Ustd	MgO	2 7200	2 8205	2 8020	-0.0307	-0.0011	-4.7%	-0.1%
Ustd	Ne O	2.7390	11 6924	11 7050	-0.1330	-0.0015	0.7%	-2.170
Usta	Nio	0.0001	11.0004	1 1 2 0 0	0.0043	-0.1110	10.0%	-0.9%
Usta	INIU DkO	0.9964	0.0054	0.0000	-0.1210	-0.0427	-10.9%	-3.8%
Usta	PDU	45.0500	45 7601	45 2520	0.0054	0.0054	0.6%	0.00/
Usta	51U ₂	43.0390	43.7071	43.3330	-0.2940	0.4101	-0.0%	0.9%
Usta	30 ₄	0.0397	0.0397	1.0400	0.0397	0.0397	11.00/	6 40/
Usta	110 ₂	0.9257	0.9822	2 4060	-0.1233	-0.0008	-11.8%	-0.4%
	U ₃ O ₈	2.2367	2.4060	2.4060	-0.1493	0.0000	-0.2%	0.0%
	ZrO ₂	0.0068	0.0068	0.0000	0.0068	0.0068	1.00/	0.10/
Ustd	Sum	95.5175	96./919	96.6880	-1.1/05	0.1039	-1.2%	0.1%

Measurement By Analytical Sequence Analyte=BaO (wt%)

Measurement By Analytical Sequence Analyte=CaO (wt%)

Measurement By Analytical Sequence Analyte=Ce₂O₃ (wt%) 0.035 0.03^{-} 0.025^{-} 0.02^{-} 0.01^{-} 0.01^{-} 0.001^{-} 0.005^{-} 0.01^{-} 0.005^{-}

20

Analytical Sequence

30

40

50

10

Figure A1. Oxide Measurements in Analytical Sequence for Samples Prepared Using the LM Method

Measurement By Analytical Sequence Analyte=MgO (wt%)

Measurement By Analytical Sequence Analyte=MnO (wt%)

Measurement By Analytical Sequence Analyte=Na2O (wt%) 12.5 12 С 11.5 Measurement 11 10.5 10 9.5 9 8.5 0 10 20 30 40 50 Analytical Sequence

Measurement By Analytical Sequence Analyte=NiO (wt%)

Measurement By Analytical Sequence Analyte=SO₄ (wt%)

Measurement By Analytical Sequence Analyte=TiO₂ (wt%)

Measurement By Analytical Sequence Analyte=ZrO₂ (wt%)

Figure A2. Oxide Measurements in Analytical Sequence for Samples Prepared Using the PF Method

Fe₂O₃ (wt%) By Analytical Sequence

B₂O₃ (wt%) By Analytical Sequence

Variability Chart for Al₂O₃(wt%)

(%	10- 9- 8-							+	+	+	+	×	×	× :	×	ם נ			• •	• •	•					Y	Υì	ÝY	ZZ	zz	zz	0	о с	0									
Al2O3 (wt ⁶	7- 6-																																										
	5-4-	•	•	•	1	1	1																																				ם נ
	3-	BCHLMI 1	BCHLM12	BCHLM13	BCHLM21	BCHLM22	BCHLM23	A07LM11	A07LM12	A07LM21	A07LM22	A09LM11	A09LM12	A09LM21	A09LM12	A05LM12	A05LM21	A05LM22	AUZLMI1	A02LM11 A02LM21	A02LM22	A06LM11	A06LM12	A06LM21	A06LM22	A03LM11	A03LM12	A03LM22	A04LM11	A04LM112	A04LM21 A04LM22	A01LM11	A01LM12	A01LM22	A08LM11	A08LM12	A08LM21	A08LM22	UstdLM11	UstdLM12	UstdLM13	UstdLM21	UstdLM23
				Bat	ch 1			S	SB4V	/S2-0	01	SI	B4VS	52-02		SB4V	'S2-03		SB4	VS2-	04	S	B4V	S2-05	5	SB	4VS2	-06	SB4	VS2	-07	SB	4VS2	-08	S	B4V	S2-0	9			Ustd	l	

Variability Chart for BaO (wt%)

0.16-										
0.14-	4 T T 4 4 T									
0.12-										
§ 0.10−										
0.08-										
₩ 0.06-										
0.04-										
0.02-		+ + + +					z z z z			
0.00-	411 412 421 421 423		[1] [1] [2] [2]			112 22	1112	11 2 2 2	112 22	
	CHLA CHLA CHLA CHLA	07LN 07LN 07LN 09LN	09LN 05LN 05LN 05LN	02LN 02LN 02LN	06LN 06LN	03LN 03LN 03LN	04LN 04LN 04LN	01LN 01LN	08LN 08LN 08LN	stdLN stdLN stdLN
	M M M M M M M M M M M M M M M M M M M		A A A	A A A A	A A A	A A A	AAA	A A A	AAA	
	Batch 1	SB4VS2-01 SB4VS2-	2 SB4VS2-03	SB4VS2-04	SB4VS2-05	SB4VS2-06	SB4VS2-07	SB4VS2-08	SB4VS2-09	Ustd
	Lab ID within Glass ID									

Variability Chart for CaO (wt%)

Variability Chart for Ce₂O₃ (wt%)

0.000 Molecular BCHLM11 BCHLM12 0.001 Molecular Molecular Molecular Molecular 0.002 Molecular Molecular Molecular Molecular Molecular 0.002 Molecular Molecular Molecular Molecular Molecular Molecular Molecular Molecular Molecular Molecular Molecular Molecular Molecular Molecular Molecular Molecular Molecular Molecular Molecular Molecular Molecular Molecular <th>0.030- 0.025- (36) 0.020- (36) 0.020- (36) 0.020- (36) 0.010- 0.010-</th> <th></th> <th>+ + + +</th> <th>× × × ×</th> <th></th> <th>• • • •</th> <th>^ ^ ^ ^</th> <th>Y Y Y Y</th> <th>z z ^z z</th> <th>° ° °</th> <th></th> <th></th>	0.030- 0.025- (36) 0.020- (36) 0.020- (36) 0.020- (36) 0.010- 0.010-		+ + + +	× × × ×		• • • •	^ ^ ^ ^	Y Y Y Y	z z ^z z	° ° °		
	0.005 -	BCHLM11 BCHLM12 BCHLM13 BCHLM13 BCHLM21 BCHLM22 BCHLM22 BCHLM22	A07LM11 A07LM122 A07LM22 A07LM22 A07LM22	LIM100A LIM100A SB4VS2-02	I I I I I I I I I I I I I I I I I I I	11ML20A 21ML20A 21ML20A 21ML20A 202LM20A 202LM20A	IIIWI900K SB4VS2-05	11 12<	11 10<	TIMLIOK SB4VS2-08	III A08LMI1 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 13 12 14 12 15 12 16 12 17 12 17 12 16 12 17 12 17 12 17 12 17 12 17 12 17 12 17 12 17 12 17	1 IMLIAN IC

Variability Chart for Cr₂O₃ (wt%)

Variability Chart for CuO (wt%)

Variability Chart for La₂O₃ (wt%)

Variability Chart for MgO (wt%)

Variability Chart for MnO (wt%)

3.0 2.8 2.6 2.4 0 0 W 2.0 1.8 1.6	- - - - - -	+ + + × × ×	· · · · ·	AAAYYY	z z z z ° ° ° ° ° °	
1.4	BCHLM11 BCHLM12 BCHLM13 BCHLM21 BCHLM22 BCHLM23	A07LM11 A07LM12 A07LM21 A07LM22 A09LM11 A09LM11 A09LM12 A09LM21 A09LM21	A05LM11 A05LM12 A05LM12 A05LM12 A05LM12 A02LM12 A02LM12 A02LM12	A06LM11 A06LM12 A06LM21 A06LM21 A06LM22 A03LM11 A03LM12 A03LM12 A03LM22	A04LM11 A04LM12 A04LM21 A04LM22 A04LM22 A01LM11 A01LM12 A01LM12 A01LM22	A08LM11 A08LM12 A08LM21 UstdLM11 UstdLM11 UstdLM21 UstdLM21 UstdLM21 UstdLM22
	Batch 1 Lab ID within Glass ID	SB4VS2-01 SB4VS2-02	SB4VS2-03 SB4VS2-04	SB4VS2-05 SB4VS2-06	SB4VS2-07 SB4VS2-08	SB4VS2-09 Ustd

Variability Chart for Na₂O (wt%)

12.5 12.0- 11.5- (a) 11.0- (b) 10.5- (c) 10.5- (c) 22 10.0- 9.5- 9.0-	+ + + + × × ×	< □ □ □ ◆ ◆ ◆ ◆	△ Y Y Y	z z z z o o o o	
BCHLM12 BCHLM12 BCHLM12 BCHLM12 BCHLM22 BCHLM22 BCHLM22	A07LM11 A07LM12 A07LM21 A07LM22 A09LM11 A09LM12 A09LM12	A05LM11 A05LM12 A05LM22 A05LM22 A05LM22 A02LM11 A02LM12 A02LM12 A02LM22	A06LM11 A06LM12 A06LM21 A06LM21 A06LM21 A03LM11 A03LM12 A03LM21 A03LM22	A04LM11 A04LM12 A04LM21 A04LM21 A04LM21 A01LM11 A01LM12 A01LM12 A01LM21	A08LM11 A08LM12 A08LM12 A08LM12 A08LM12 UstdLM11 UstdLM11 UstdLM12 UstdLM13 UstdLM21 UstdLM23
Batch 1	SB4VS2-01 SB4VS2-02	SB4VS2-03 SB4VS2-04	SB4VS2-05 SB4VS2-06	SB4VS2-07 SB4VS2-08	SB4VS2-09 Ustd

Variability Chart for NiO (wt%)

Variability Chart for PbO (wt%)

0.035 -							Y Y Y				
0.025 -	-	+ + + +	× × ×					z	° ₀ ° 0		
0.020- 04 0.015-					* * * *						
0.010-											
0.005 -	BCHLM11 BCHLM12 BCHLM13 BCHLM21 BCHLM22 BCHLM23	A07LM11 A07LM12 A07LM21 A07LM21	A09LM11 A09LM12 A09LM21 A09LM21	A05LM11 A05LM12 A05LM21 A05LM21	A02LM11 A02LM12 A02LM21 A02LM21	A06LM11 A06LM12 A06LM21 A06LM21	A03LM11 A03LM12 A03LM22 A03LM22	A04LM11 A04LM12 A04LM21 A04LM21	A01LM11 A01LM12 A01LM21 A01LM21	A08LM11 A08LM12 A08LM12 A08LM21 A08LM22	UstdLM11 UstdLM12 UstdLM13 UstdLM21 UstdLM22 UstdLM23
	Batch 1	SB4VS2-01	SB4VS2-02	SB4VS2-03	SB4VS2-04	SB4VS2-05	SB4VS2-06	SB4VS2-07	SB4VS2-08	SB4VS2-09	Ustd
	Lab ID within Glass ID							•			

Variability Chart for SO₄ (wt%)

Variability Chart for SiO₂ (wt%)

Variability Chart for TiO₂ (wt%)

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		• • • • [^]	AAYYYY zz ^z z	0 0 ⁰ 0 0 0 0	
0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	+ + + + + X X X 17 17 17 17 17 17 17 17 17 17	CI CI<	12 12 12 12 12 12 12 12 12 12	1 1	UstdLM11 UstdLM12 UstdLM22 UstdLM23 UstdLM23

Variability Chart for U₃O₈ (wt%)

	3.5 3.0 2.5						+	+	+	+	×	×	××				•	•	٠	\$			<u>م</u>	^	Υ	ΥΥ	Y	z	z :	z z	0	0 (o c					_	_			
J 8 (wt%)	2.0-																																						L			
U3C	1.5-																																									
	0.5-	-	-			-																																				
	0.0-	BCHLM11	BCHLM12	BCHLM13 BCHI M21	BCHLM22	BCHLM23	A07LM11	A07LM12	A07LM21	A07LM22	A09LM11	A09LM12	A09LM21 A09LM22	A05LM11	A05LM12	A05LM21	1 IW ICON	A02LM12	A02LM21	A02LM22	A06LM11	A06LM12	A06LM21	A06LM22	A03LM11	A03LM12 A03LM21	A03LM22	A04LM11	A04LM12	A04LM21 A04LM22	A01LM11	A01LM12	A01LM21 A01LM22	A08LM11	A08LM12	A08LM21	A08LM22	UstdLM11	UstdLM12	UstdLM13 11etdLM21	UstdLM22	UstdLM23
			В	atch 1			S	B4V	S2-0	1	SE	4VS	2-02	S	B4V	\$2-03		SB4V	/S2-0)4	S	B4VS	S2-05		SB	4VS2-	06	SB	4VS2	2-07	S	34VS	2-08	5	SB4V	S2-0)9			Ustd		
	1	Lab II) wit	hin G	ass II	D								-																	1											

Variability Chart for ZrO₂ (wt%)

0.09 0.08 0.07 0.06 0.05 0.05 0.03 0.03 0.02	• + + + + × × ×	× • • • • • • • •	. Y Y Y Y Z Z Z Z	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	
Batch 1 Batch 1 Bat	ECHLMZ2 BCHLMZ2 A07LM12 L1 C1 C1 <	200LM31 100LM31 100LM31 <t< td=""><td>12 203LM12 11 12 11 12 11 12 11 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 13 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 15 12 16 12 17 12 16 12 17 12 16 12 17 12 16</td><td>A001LM12 A0</td><td>Avolumize UstdLM11 UstdLM12 UstdLM22 UstdLM22 UstdLM22</td></t<>	12 203LM12 11 12 11 12 11 12 11 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 13 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 15 12 16 12 17 12 16 12 17 12 16 12 17 12 16	A001LM12 A0	Avolumize UstdLM11 UstdLM12 UstdLM22 UstdLM22 UstdLM22

Variability Chart for B₂O₃ (wt%)

9.5 9.0 (%1%) 8.5 8.0 8.0 8.0 7.5	- - - - - - - - - - - - - - - - - - -	•			-	-	-	Ŧ	+	+	. +	×	×	× ,	<				•	•	•					Y	Υ`	ΥΥ	z	Z	ZZ	0	0	0	0									
		BCHPF11	BCHPF12	BCHPF13	BCHPF21	BCHPF22	BCHPF23	A07PF11	A07PF12	A07PF21	A07PF22	A09PF11	A09PF12	A09PF21	A05PF11	A05PF12	A05PF21	VODE11	A07PF12	A02PF21	A02PF22	A06PF11	A06PF12	A06PF21	A06PF22	A03PF11	A03PF12	A03PF21 A03PF22	A04PF11	A04PF12	A04PF21 A04PF22	A01PF11	A01PF12	A01PF21	A01PF22	A08PF11	A08PF12	A08PF21	A08PF22	UstdPF11	UstdPF12	UstdPF13	UstdPF21 UstdPF22	UstdPF23
		.ab I	ID w	Bat /ithi	ch 1 n Gl	ass I	D	5	SB4V	/S2-	01	S	B4V	\$2-02	s	B4V	S2-03		SB4	VS2-0)4	S	B4VS	\$2-05	;	SB	4VS2	2-06	S	34VS	52-07	s	B4V	S2-08	8	S	B4VS	\$2-09	9			Ustd		

Variability Chart for Fe₂O₃ (wt%)

Variability Chart for Li₂O (wt%)

5.5 -	-	+ + + +	××		• • • •		Y J Y Y	z z z	0 0 ⁰ 0		
(%1%) 4.5-							Y				
0 4.0- 17 3.5-											
3.0-	-		××								
	BCHPF11 BCHPF12 BCHPF13 BCHPF21 BCHPF22 BCHPF23	A07PF11 A07PF12 A07PF21 A07PF21	A09PF11 A09PF12 A09PF21 A09PF22	A05PF11 A05PF12 A05PF21 A05PF22	A02PF11 A02PF12 A02PF21 A02PF22	A06PF11 A06PF12 A06PF21 A06PF21	A03PF11 A03PF12 A03PF21 A03PF21	A04PF11 A04PF12 A04PF21 A04PF22	A01PF11 A01PF12 A01PF21 A01PF21	A08PF11 A08PF12 A08PF21 A08PF21	UsudPF11 UsudPF12 UsudPF13 UsudPF21 UsudPF22 UsudPF23
	Batch 1	SB4VS2-01	SB4VS2-02	SB4VS2-03	SB4VS2-04	SB4VS2-05	SB4VS2-06	SB4VS2-07	SB4VS2-08	SB4VS2-09	Ustd
	Lab ID within Glass ID	•					•	•			·]

Oneway Anova Summary of Fit

Rsquare	0.907223
Adj Rsquare	0.870113
Root Mean Square Error	0.020409
Mean of Response	4.763902
Observations (or Sum Wgts)	8

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Block	2	0.02036507	0.010183	24.4464	0.0026
Error	5	0.00208262	0.000417		
C. Total	7	0.02244770			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
1	3	4.75524	0.01178	4.7250	4.7855
2	3	4.71745	0.01178	4.6872	4.7477
3	2	4.84657	0.01443	4.8095	4.8837

Std Error uses a pooled estimate of error variance

Oneway Anova Summary of Fit

Rsquare	0.624299
Adj Rsquare	0.474019
Root Mean Square Error	0.004173
Mean of Response	0.139981
Observations (or Sum Wgts)	8

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Block	2	0.00014465	0.000072	4.1542	0.0865
Error	5	0.00008705	0.000017		
C. Total	7	0.00023171			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
1	3	0.144401	0.00241	0.13821	0.15059
2	3	0.139935	0.00241	0.13374	0.14613
3	2	0.133422	0.00295	0.12584	0.14101

Std Error uses a pooled estimate of error variance

Oneway Analysis of Measurement By Block Glass ID=Batch 1, Oxide=CaO (wt%) Reference Value = 1.220 wt%

Oneway Anova Summary of Fit

Rsquare	0.675028
Adj Rsquare	0.54504
Root Mean Square Error	0.013861
Mean of Response	1.155215
Observations (or Sum Wgts)	8

Analysis of Variance

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
1	3	1.17346	0.00800	1.1529	1.1940
2	3	1.15154	0.00800	1.1310	1.1721
3	2	1.13335	0.00980	1.1082	1.1585

Oneway Anova Summary of Fit

Rsquare		
Adj Rsquare		
Root Mean Square Error	0	
Mean of Response	0.005857	
Observations (or Sum Wgts)	8	

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F	
Block	2	0	0			
Error	5	0	0			
C Total	7	0				

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
1	3	0.005857	0	0.00586	0.00586
2	3	0.005857	0	0.00586	0.00586
3	2	0.005857	0	0.00586	0.00586

Std Error uses a pooled estimate of error variance

Oneway Analysis of Measurement By Block Glass ID=Batch 1, Oxide=Cr₂O₃ (wt%)

Oneway Anova Summary of Fit

(

Rsquare	0.575309
Adj Rsquare	0.405432
Root Mean Square Error	0.0035
Mean of Response	0.108524
Observations (or Sum Wgts)	8

Analysis of Variance

ource	DF	Sum of Squares	Mean Square	F Ratio	Prob > F	
Block	2	0.00008296	0.000041	3.3866	0.1175	
Error	5	0.00006124	0.000012			
C. Total	7	0.00014420				

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
1	3	0.112056	0.00202	0.10686	0.11725
2	3	0.108158	0.00202	0.10296	0.11335
3	2	0.103774	0.00247	0.09741	0.11013

Std Error uses a pooled estimate of error variance

Oneway Anova Summary of Fit

Rsquare	0.638418
Adj Rsquare	0.493785
Root Mean Square Error	0.005561
Mean of Response	0.376635
Observations (or Sum Wgts)	8

Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio Prob > F 0.00027299 0.000136 4.4141 0.0786 Block 2 5 0.000031 0.00015461 Error C. Total 7 0.00042760

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
1	3	0.383051	0.00321	0.37480	0.39130
2	3	0.375957	0.00321	0.36770	0.38421
3	2	0.368029	0.00393	0.35792	0.37814

Oneway Anova Summary of Fit

Rsquare		
Adj Rsquare		
Root Mean Square Error	0	
Mean of Response	0.005864	
Observations (or Sum Wgts)	8	

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Block	2	0	0		
Error	5	0	0		
C. Total	7	0			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
1	3	0.005864	0	0.00586	0.00586
2	3	0.005864	0	0.00586	0.00586
3	2	0.005864	0	0.00586	0.00586

Std Error uses a pooled estimate of error variance

Oneway Analysis of Measurement By Block Glass ID=Batch 1, Oxide=MgO (wt%)

Oneway Anova Summary of Fit

Rsquare	0.599714	
Adj Rsquare	0.4396	
Root Mean Square Error	0.03959	
Mean of Response	1.354417	
Observations (or Sum Wgts)	8	

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Block	2	0.01174141	0.005871	3.7455	0.1014
Error	5	0.00783692	0.001567		
C. Total	7	0.01957833			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%	
1	3	1.38855	0.02286	1.3298	1.4473	
2	3	1.36257	0.02286	1.3038	1.4213	
3	2	1.29099	0.02799	1.2190	1.3629	

Std Error uses a pooled estimate of error variance

Oneway Anova Summary of Fit

Rsquare	0.783377
Adj Rsquare	0.696727
Root Mean Square Error	0.032237
Mean of Response	1.67049
Observations (or Sum Wgts)	8

Analysis of Variance

 Source
 DF
 Sum of Squares
 Mean Square
 F Ratio
 Prob > F

 Block
 2
 0.01879070
 0.009395
 9.0408
 0.0218

 Error
 5
 0.00519610
 0.001039
 C. Total
 7
 0.02398680

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
1	3	1.68286	0.01861	1.6350	1.7307
2	3	1.61400	0.01861	1.5662	1.6618
3	2	1.73666	0.02279	1.6781	1.7953

Oneway Analysis of Measurement By Block Glass ID=Batch 1,

Oneway Anova Summary of Fit

Rsquare	0.197061
Adj Rsquare	-0.12411
Root Mean Square Error	0.2344
Mean of Response	9.154605
Observations (or Sum Wgts)	8

Analysis of Variance

 Source
 DF
 Sum of Squares
 Mean Square
 F Ratio
 Prob > F

 Block
 2
 0.06742213
 0.033711
 0.6136
 0.5777

 Error
 5
 0.27471584
 0.054943
 0.

 C. Total
 7
 0.34213797
 0.054943

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
1	3	9.26975	0.13533	8.9219	9.6176
2	3	9.10799	0.13533	8.7601	9.4559
3	2	9.05182	0.16575	8.6258	9.4779

Std Error uses a pooled estimate of error variance

Oneway Anova Summary of Fit

Rsquare	0.666913
Adj Rsquare	0.533678
Root Mean Square Error	0.018614
Mean of Response	0.696535
Observations (or Sum Wgts)	8

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F	
Block	2	0.00346851	0.001734	5.0055	0.0640	
Error	5	0.00173233	0.000346			
C. Total	7	0.00520085				

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
1	3	0.715569	0.01075	0.68794	0.74319
2	3	0.700299	0.01075	0.67267	0.72792
3	2	0.662336	0.01316	0.62850	0.69617

Std Error uses a pooled estimate of error variance

Oneway Analysis of Measurement By Block Glass ID=Batch 1, Oxide=PbO (wt%) Reference Value = 0.0 wt%

Oneway Anova Summary of Fit

Rsquare	
Adj Rsquare	
Root Mean Square Error	
Mean of Response	0.005386
Observations (or Sum Wgts)	8

Analysis of Variance

 Source
 DF
 Sum of Squares
 Mean Square
 F Ratio
 Prob > F

 Block
 2
 4.5139e-36
 2.257e-36
 -2.5000
 0.0000

 Error
 5
 -4.514e-36
 -9.03e-37
 0
 0

 C. Total
 7
 0
 0
 0
 0

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
1	3	0.005386			
2	3	0.005386			
3	2	0.005386			

Oneway Anova Summary of Fit

Rsquare	0.623932
Adj Rsquare	0.473504
Root Mean Square Error	0.534111
Mean of Response	49.44457
Observations (or Sum Wgts)	8

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Block	2	2.3664859	1.18324	4.1477	0.0867
Error	5	1.4263751	0.28528		
C. Total	7	3.7928610			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
1	3	50.0596	0.30837	49.267	50.852
2	3	49.3465	0.30837	48.554	50.139
3	2	48.6691	0.37767	47.698	49.640

Std Error uses a pooled estimate of error variance

Oneway Anova Summary of Fit

Rsquare	0.475706
Adj Rsquare	0.265989
Root Mean Square Error	0.005891
Mean of Response	0.042317
Observations (or Sum Wgts)	8

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Block	2	0.00015744	0.000079	2.2683	0.1990
Error	5	0.00017352	0.000035		
C. Total	7	0.00033097			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
1	3	0.043940	0.00340	0.03520	0.05268
2	3	0.036949	0.00340	0.02821	0.04569
3	2	0.047934	0.00417	0.03723	0.05864

Std Error uses a pooled estimate of error variance

Oneway Anova Summary of Fit

Rsquare	0.71482
Adj Rsquare	0.600747
Root Mean Square Error	0.013565
Mean of Response	0.638427
Observations (or Sum Wgts)	8

Analysis of Variance

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
1	3	0.653856	0.00783	0.63372	0.67399
2	3	0.641624	0.00783	0.62149	0.66176
3	2	0.610488	0.00959	0.58583	0.63514

Oneway Anova Summary of Fit

Rsquare		
Adj Rsquare		
Root Mean Square Error	0	
Mean of Response	0.05896	
Observations (or Sum Wgts)	8	

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F	
Block	2	0	0			
Error	5	0	0			
C Total	7	0				

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
1	3	0.058960	0	0.05896	0.05896
2	3	0.058960	0	0.05896	0.05896
3	2	0.058960	0	0.05896	0.05896

Std Error uses a pooled estimate of error variance

Block

Oneway Anova Summary of Fit

Rsquare	0.774011
Adj Rsquare	0.683616
Root Mean Square Error	0.00156
Mean of Response	0.083412
Observations (or Sum Wgts)	8

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F	
Block	2	0.00004166	0.000021	8.5625	0.0243	
Error	5	0.00001216	2.433e-6			
C. Total	7	0.00005383				

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
1	3	0.085551	0.00090	0.08324	0.08787
2	3	0.083750	0.00090	0.08143	0.08606
3	2	0.079697	0.00110	0.07686	0.08253

Std Error uses a pooled estimate of error variance

Oneway Analysis of Measurement By Block Glass ID=Ustd, Oxide=Al₂O₃ (wt%) Reference Value = 4.1 wt%

Oneway Anova Summary of Fit

Rsquare	0.204082
Adj Rsquare	-0.11429
Root Mean Square Error	0.064631
Mean of Response	3.972674
Observations (or Sum Wgts)	8

Analysis of Variance

 Source
 DF
 Sum of Squares
 Mean Square
 F Ratio
 Prob > F

 Block
 2
 0.00535532
 0.002678
 0.6410
 0.5652

 Error
 5
 0.02088573
 0.004177
 C.
 Total
 7
 0.02624105

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
1	3	3.96795	0.03731	3.8720	4.0639
2	3	3.94906	0.03731	3.8531	4.0450
3	2	4.01519	0.04570	3.8977	4.1327

Oneway Anova Summary of Fit

Rsquare		
Adj Rsquare		
Root Mean Square Error	0	
Mean of Response	0.005583	
Observations (or Sum Wgts)	8	

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Block	2	0	0		
Error	5	0	0		
C. Total	7	0			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
1	3	0.005583	0	0.00558	0.00558
2	3	0.005583	0	0.00558	0.00558
3	2	0.005583	0	0.00558	0.00558

Std Error uses a pooled estimate of error variance

Oneway Analysis of Measurement By Block Glass ID=Ustd, Oxide=CaO (wt%)

Oneway Anova Summary of Fit

Rsquare	0.769254
Adj Rsquare	0.676956
Root Mean Square Error	0.011726
Mean of Response	1.257356
Observations (or Sum Wgts)	8

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Block	2	0.00229197	0.001146	8.3344	0.0256
Error	5	0.00068750	0.000138		
C. Total	7	0.00297947			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%	
1	3	1.27794	0.00677	1.2605	1.2953	
2	3	1.25088	0.00677	1.2335	1.2683	
3	2	1.23619	0.00829	1.2149	1.2575	

Std Error uses a pooled estimate of error variance

Oneway Analysis of Measurement By Block Glass ID=Ustd, Oxide=Ce₂O₃ (wt%) Reference Value = 0.0 wt%

Oneway Anova Summary of Fit

Rsquare	
Adj Rsquare	
Root Mean Square Error	0
Mean of Response	0.005857
Observations (or Sum Wgts)	8

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Block	2	0	0		
Error	5	0	0		
C Total	7	0			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
1	3	0.005857	0	0.00586	0.00586
2	3	0.005857	0	0.00586	0.00586
3	2	0.005857	0	0.00586	0.00586

Oneway Anova Summary of Fit

Rsquare	0.38911
Adj Rsquare	0.144754
Root Mean Square Error	0.006399
Mean of Response	0.241347
Observations (or Sum Wgts)	8

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Block	2	0.00013040	0.000065	1.5924	0.2917
Error	5	0.00020473	0.000041		
C. Total	7	0.00033513			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
1	3	0.246523	0.00369	0.23703	0.25602
2	3	0.238728	0.00369	0.22923	0.24822
3	2	0.237510	0.00452	0.22588	0.24914

Std Error uses a pooled estimate of error variance

Oneway Anova Summary of Fit

Rsquare	0.89644
Adj Rsquare	0.855016
Root Mean Square Error	0.000646
Mean of Response	0.007667
Observations (or Sum Wgts)	8

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Block	2	0.00001809	9.0429e-6	21.6406	0.0035
Error	5	0.00000209	4.1787e-7		
C. Total	7	0.00002018			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%	
1	3	0.006676	0.00037	0.00572	0.00764	
2	3	0.009597	0.00037	0.00864	0.01056	
3	2	0.006259	0.00046	0.00508	0.00743	

Std Error uses a pooled estimate of error variance

Oneway Analysis of Measurement By Block Glass ID=Ustd, Oxide=La₂O₃ (wt%) Reference Value = 0.0 wt%

Oneway Anova Summary of Fit

Rsquare	
Adj Rsquare	
Root Mean Square Error	0
Mean of Response	0.005864
Observations (or Sum Wgts)	8

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Block	2	0	0		
Error	5	0	0		
C. Total	7	0			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
1	3	0.005864	0	0.00586	0.00586
2	3	0.005864	0	0.00586	0.00586
3	2	0.005864	0	0.00586	0.00586

Oneway Analysis of Measurement By Block Glass ID=Ustd, Oxide=MgO (wt%) Reference Value = 1.21 wt%

Oneway Anova Summary of Fit

Rsquare	0.297269
Adj Rsquare	0.016177
Root Mean Square Error	0.031627
Mean of Response	1.153348
Observations (or Sum Wgts)	8

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Block	2	0.00211564	0.001058	1.0576	0.4140
Error	5	0.00500126	0.001000		
C. Total	7	0.00711689			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
1	3	1.17297	0.01826	1.1260	1.2199
2	3	1.14754	0.01826	1.1006	1.1945
3	2	1.13262	0.02236	1.0751	1.1901

Std Error uses a pooled estimate of error variance

Oneway Analysis of Measurement By Block Glass ID=Ustd, Oxide=MnO (wt%) Reference Value = 2.892 wt%

Oneway Anova Summary of Fit

Rsquare	0.315661
Adj Rsquare	0.041926
Root Mean Square Error	0.116899
Mean of Response	2.738958
Observations (or Sum Wgts)	8

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F	
Block	2	0.03151698	0.015758	1.1532	0.3874	
Error	5	0.06832731	0.013665			
C. Total	7	0.09984429				

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
1	3	2.75886	0.06749	2.5854	2.9324
2	3	2.66418	0.06749	2.4907	2.8377
3	2	2.82127	0.08266	2.6088	3.0338

Std Error uses a pooled estimate of error variance

Oneway Anova Summary of Fit

Rsquare	0.716112
Adj Rsquare	0.602556
Root Mean Square Error	0.071499
Mean of Response	11.87925
Observations (or Sum Wgts)	8

Analysis of Variance

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
1	3	11.9433	0.04128	11.837	12.049
2	3	11.7635	0.04128	11.657	11.870
3	2	11.9568	0.05056	11.827	12.087

Oneway Anova Summary of Fit

Rsquare	0.201218
Adj Rsquare	-0.11829
Root Mean Square Error	0.023495
Mean of Response	0.998435
Observations (or Sum Wgts)	8

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Block	2	0.00069527	0.000348	0.6298	0.5703
Error	5	0.00276002	0.000552		
C. Total	7	0.00345529			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%	
1	3	1.01037	0.01356	0.97550	1.0452	
2	3	0.99255	0.01356	0.95768	1.0274	
3	2	0.98937	0.01661	0.94666	1.0321	

Std Error uses a pooled estimate of error variance

Oneway Anova Summary of Fit

Rsquare		
Adj Rsquare		
Root Mean Square Error		
Mean of Response	0.005386	
Observations (or Sum Wgts)	8	

Analysis of Variance S

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Block	2	4.5139e-36	2.257e-36	-2.5000	0.0000
Error	5	-4.514e-36	-9.03e-37		
C. Total	7	0			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
1	3	0.005386			
2	3	0.005386			
3	2	0.005386			

Std Error uses a pooled estimate of error variance

Oneway Analysis of Measurement By Block Glass ID=Ustd, Oxide=SiO₂ (wt%) Reference Value = 45.353wt%

Oneway Anova Summary of Fit

Rsquare	0.348999
Adj Rsquare	0.088599
Root Mean Square Error	0.534111
Mean of Response	45.05901
Observations (or Sum Wgts)	8

Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio Prob > F Block 2 0.7646743 0.382337 1.3402 0.3419 Error 5 1.4263751 0.285275 7 C. Total 2.1910494

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
1	3	45.4245	0.30837	44.632	46.217
2	3	44.7114	0.30837	43.919	45.504
3	2	45.0323	0.37767	44.061	46.003

Oneway Anova Summary of Fit

Rsquare	0.188406
Adj Rsquare	-0.13623
Root Mean Square Error	0.004093
Mean of Response	0.039696
Observations (or Sum Wgts)	8

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Block	2	0.00001945	9.723e-6	0.5804	0.5934
Error	5	0.00008377	0.000017		
C. Total	7	0.00010322			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
1	3	0.037948	0.00236	0.03187	0.04402
2	3	0.039945	0.00236	0.03387	0.04602
3	2	0.041943	0.00289	0.03450	0.04938

Std Error uses a pooled estimate of error variance

Oneway Anova Summary of Fit

Rsquare	0.199187	
Adj Rsquare	-0.12114	
Root Mean Square Error	0.019115	
Mean of Response	0.92574	
Observations (or Sum Wgts)	8	

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Block	2	0.00045443	0.000227	0.6218	0.5739
Error	5	0.00182699	0.000365		
C. Total	7	0.00228142			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
1	3	0.933524	0.01104	0.90515	0.96189
2	3	0.925740	0.01104	0.89737	0.95411
3	2	0.914064	0.01352	0.87932	0.94881

Std Error uses a pooled estimate of error variance

Oneway Anova Summary of Fit

Rsquare	0.408143
Adj Rsquare	0.1714
Root Mean Square Error	0.045518
Mean of Response	2.256694
Observations (or Sum Wgts)	8

Analysis of Variance

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
1	3	2.25227	0.02628	2.1847	2.3198
2	3	2.22869	0.02628	2.1611	2.2962
3	2	2.30534	0.03219	2.2226	2.3881

Std Error uses a pooled estimate of error variance

58

Oxide=ZrO₂ (wt%) Reference Value = 0.0 wt% 0.15 0.1 Measurement 0.05 0 -0.05--0.1 1 2 3 Block

Oneway Analysis of Measurement By Block Glass ID=Ustd,

Oneway Anova Summary of Fit

Rsquare Adj Rsquare Root Mean Square Error 0 Mean of Response 0.006754 Observations (or Sum Wgts) 8

Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio Prob > F Block 2 0 0 Error 5 0 0 C. Total 7 0

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
1	3	0.006754	0	0.00675	0.00675
2	3	0.006754	0	0.00675	0.00675
3	2	0.006754	0	0.00675	0.00675

Oneway Analysis of Measurement By Block Glass ID=Batch 1, Oxide=B₂O₃ (wt%) Reference Value = 7.777 wt%

Oneway Anova Summary of Fit

Rsquare	0.36941
Adj Rsquare	0.117174
Root Mean Square Error	0.189583
Mean of Response	7.659337
Observations (or Sum Wgts)	8

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Block	2	0.10527592	0.052638	1.4645	0.3158
Error	5	0.17970777	0.035942		
C. Total	7	0.28498369			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
1	3	7.60970	0.10946	7.3283	7.8911
2	3	7.57750	0.10946	7.2961	7.8589
3	2	7.85656	0.13406	7.5120	8.2012

Std Error uses a pooled estimate of error variance

Oneway Analysis of Measurement By Block Glass ID=Batch 1, Oxide=Fe₂O₃ (wt%) Reference Value = 12.839 wt%

Oneway Anova Summary of Fit

Rsquare	0.324913
Adj Rsquare	0.054878
Root Mean Square Error	0.193441
Mean of Response	12.75829
Observations (or Sum Wgts)	8

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F	
Block	2	0.09004857	0.045024	1.2032	0.3745	
Error	5	0.18709799	0.037420			
C. Total	7	0.27714656				

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
1	3	12.8911	0.11168	12.604	13.178
2	3	12.7053	0.11168	12.418	12.992
3	2	12.6385	0.13678	12.287	12.990

Std Error uses a pooled estimate of error variance

Oneway Analysis of Measurement By Block Glass ID=Batch 1, Oxide=Li₂O (wt%) Reference Value = 4.429 wt%

Oneway Anova Summary of Fit

Rsquare	0.82726
Adj Rsquare	0.758165
Root Mean Square Error	0.022235
Mean of Response	4.303109
Observations (or Sum Wgts)	8

Analysis of Variance

 Source
 DF
 Sum of Squares
 Mean Square
 F Ratio
 Prob > F

 Block
 2
 0.01183851
 0.005919
 11.9727
 0.0124

 Error
 5
 0.00247199
 0.000494

 C. Total
 7
 0.01431050

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
1	3	4.32015	0.01284	4.2872	4.3532
2	3	4.25557	0.01284	4.2226	4.2886
3	2	4.34886	0.01572	4.3084	4.3893

Oneway Analysis of Measurement By Block Glass ID=Ustd, $Oxide=B_2O_3~(wt\%)$ Reference Value ~=9.209~wt%

Oneway Anova Summary of Fit

Rsquare	0.447381
Adj Rsquare	0.226333
Root Mean Square Error	0.202964
Mean of Response	8.894974
Observations (or Sum Wgts)	8

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Block	2	0.16674808	0.083374	2.0239	0.2270
Error	5	0.20597275	0.041195		
C. Total	7	0.37272083			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
1	3	8.80106	0.11718	8.4998	9.1023
2	3	8.82253	0.11718	8.5213	9.1238
3	2	9.14452	0.14352	8.7756	9.5134

Std Error uses a pooled estimate of error variance

Oneway Analysis of Measurement By Block Glass ID=Ustd, $Oxide=Fe_2O_3\ (wt\%)$ Reference Value = 13.196 wt%

Oneway Anova Summary of Fit

Rsquare	0.948237
Adj Rsquare	0.927532
Root Mean Square Error	0.341885
Mean of Response	10.82819
Observations (or Sum Wgts)	8

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F	
Block	2	10.706020	5.35301	45.7972	0.0006	
Error	5	0.584426	0.11689			
C. Total	7	11.290445				

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
1	3	10.1842	0.19739	9.677	10.692
2	3	10.1366	0.19739	9.629	10.644
3	2	12.8316	0.24175	12.210	13.453

Std Error uses a pooled estimate of error variance

Oneway Analysis of Measurement By Block Glass ID=Ustd, Oxide=Li₂O (wt%) Reference Value = 3.057 wt%

Oneway Anova Summary of Fit

Rsquare	0.999473
Adj Rsquare	0.999262
Root Mean Square Error	0.026947
Mean of Response	4.588368
Observations (or Sum Wgts)	8

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Block	2	6.8834257	3.44171	4739.694	<.0001
Error	5	0.0036307	0.00073		
C. Total	7	6.8870565			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
1	3	5.13108	0.01556	5.0911	5.1711
2	3	5.11673	0.01556	5.0767	5.1567
3	2	2.98177	0.01905	2.9328	3.0307

Figure A7. Oxide Measurements by Lab ID within Glass ID Including Auxiliary Measurements for LM Preps

Variability Gage Oxide=Al₂O₃ (wt%) Variability Chart for Measured

10-	-					••••••	• • • • • • • •		• • • •
8-		• • • •	••••						
7. 6.									
5- 4-		• • • • •							
3-	U glass UstdLM11 UstdLM12 UstdLM13 UstdLM21 UstdLM22 UstdLM23 Batch glass Batch glass BCHLM11	BCHLM13 BCHLM13 BCHLM21 BCHLM22 BCHLM23 A04LM11 A04LM12 A04LM12 A04LM21	A02LM11 A02LM12 A02LM12 A02LM21 A07LM11 A07LM12 A07LM12	A0/LM22 A01LM11 A01LM12 A01LM21 A01LM22	A06LM11 A06LM12 A06LM21 A06LM22	A09 11 A09 12 A09 21 A09 22 A09LM11 A09LM12 A09LM21	A08 11 A08 12 A08 21 A08 21 A08LM11 A08LM12 A08LM12 A08LM22 A08LM22	A03LM11 A03LM12 A03LM21 A03LM22	A05LM11 A05LM12 A05LM21 A05LM22 A05LM22
	Ustd E	Batch 1 SB4VS2-07	SB4VS2-04 SB4VS2-0	SB4VS2-08	SB4VS2-05	SB4VS2-02	SB4VS2-09	SB4VS2-06	SB4VS2-03 G
	4.100	4.877 8.109	8.305 8.633	8.869	9.084	9.443	9.629	9.863	10.252 T

Variability Gage Oxide=Al₂O₃ (wt%) Variability Chart for Measured bc

10																												_	_				-						-	•	•	•			•	•	-		• •	. •	•	•	•	•	-	•	-	•	-		•	•	
8	8- 7-																	•	•	-	-				-	-		-	-																																		
6	6- 5-									-	-	-	-	-		•	-																																														
4	4- 3-			• • •			■ 	•	•	s	-	10	6	- 1	-1	2	60	_	0	_			-1	~		2	_	0	-		-		~		~		~		0		~		~		~	_			<u> </u>	-1 -	4	1	1 -	1			1_			1.5	1-	0	
		II also	U glas	I letdI M1		USTALIM I.	UstdLM2	UstdLM2	UstdLM2	Batch glas	BCHLM1	BCHLM1	BCHLM1	DCUI MO	DCHLIME	BCHLMZ	BCHLM2	A04LM1	A04LM12	A04LM2	A04LM2		AUZLIMI	AUZLMI	A02LM2	A02LM22	A07LM1	A07LM1:	A07LM2	A071 M2	ADDI MIL	AUILMI	A01LMI	A01LM2	AUILMZ	A06LM1	AU6LML	A06LM2	A06LM2	A091	A09 I	A09.2	A09 2.	A09LMI	A09LM1	A09LM2	A09LM2	A081	AU8 L	7 00V	A ORI MI	A08LM1	A081 M7	A08LM2	A03LM1	A03LM1	A031.M2	A03LM2	A05LM1	A051 M1	A05LM2	A05LM2:	L
					U	std						В	atcl	n 1				SI	34V	S2-	07	1	SB4	VS	2-0)4	SI	34V	S2	-01	5	SB4	IVS	2-08	3	SB4	vs	2-0	5			SB	4VS	2-02	2				:	SB4	VS2	-09		-	S	B4V	/S2	-06	s	B41	VS2-	03	G
					4.1	00						4	4.87	7					8.1	09			8	3.30	5			8.6	533			8	3.86	9		9	.08	4				9	9.44	3						9.	.629					9.8	863			10	.252		Т
Variability Gage Oxide=BaO (wt%) Variability Chart for Measured

0.14																																				•	•		•
0.12-																																			-				
8 0.10-																																							
0.08-																																							
¹ 0.06 –																																							
0.04 -											_							_						_															
0.02-						-	- "	•		•	• •		-	-						•		-			•	•		-	-		"	-	•	•					
0.00	8 - 0 0	- 0 0		4 - 1 -			~ - 10	0	- 0	_	~ -	- 0		0	- 0	-	~ ~		1 -	2	- 0	-	0.	-1 -		~ ~	- 0		0			2	_	2	<u>s</u> –	0	.	- 0 -	<u>.</u>
	LM1 LM1 LM1	L M2	W	LM2	W	LM2	M1	IW	LM2 LM2	IW	W N		091	091	092	LM1	IWI	M2 M2	W	W	M2	081	081	08.7	W	W	LM2	IW	IW	M2	IMI	LMI	LM2	- M2	LM1	LMI	FILE		Lab I
	U Ustdl Ustdl	Ustdl Ustdl	A041	A041 A041	A07	A07I	170A 120A	A02I	A021 A021	A011	A011	A011	A	A		A09I	A091	A091	A06	A06I	A061 A061	A	A I	A	A08I	A081	A081 A081	A05I	A05I	A051	A03I	A03I	A03I	A03I	BCH	BCH	BCH	BCH	BCH
	Ustd		SB4	VS2-07	SB4	VS2-0	1 S	B4VS	2-04	SB	4VS2	2-08		•	SB4V	/S2-	02		SI	B4VS	52-05			SB4	VS2-0)9		SI	B4VS	2-03	SI	34V	S2-0	6	_	Ba	tch 1		Glass
Ī	0.000		0	.024	0.	025	+	0.02	5		0.027	7			0.0)27				0.02	27			0.	029				0.03	0		0.0	30			0.	.151		Targe

Variability Gage Oxide=BaO (wt%) Variability Chart for Measured bc

0.15-										• . • * • • •	
- 0.10 pc Weasned pc - 0.05 -						•••••			•••••		
0.00 -	U glass UstdLM11 UstdLM12 UstdLM13 UstdLM13 UstdLM21 UstdLM22	A04LM12 A04LM12 A04LM21 A04LM22	A07LM11 A07LM12 A07LM21 A07LM21	A02LM11 A02LM12 A02LM21 A02LM22	A01LM11 A01LM12 A01LM21 A01LM22	A09 11 A09 12 A09 21 A09 22 A09LM11 A09LM12 A09LM22 A09LM22	A06LM11 A06LM12 A06LM21 A06LM22	A08 11 A08 12 A08 21 A08 21 A08 22 A08LM11 A08LM12 A08LM21 A08LM22	A05LM11 A05LM12 A05LM12 A05LM21 A05LM21 A03LM11 A03LM12 A03LM12	A03LM22 Batch glass BCHLM11 BCHLM12 BCHLM13 BCHLM21 BCHLM23 BCHLM23	Lab I
	Ustd	SB4VS2-07	SB4VS2-01	SB4VS2-04	SB4VS2-08	SB4VS2-02	SB4VS2-05	SB4VS2-09	SB4VS2-03 SB4VS2-0	6 Batch 1	Glass
	0.000	0.024	0.025	0.025	0.027	0.027	0.027	0.029	0.030 0.030	0.151	Targe

Variability Gage Oxide=CaO (wt%) Variability Chart for Measured

1. 1. 1. 1. 1. Wease 1. 1. 0.	.6	•					•	•					•	•			1		•			1				•	•	•			•	•	•		-				•	•	•	•	•							•	•	•	:	•	•	•	•					•			1		. 1	•	
0.	.8 -	A04LM11	A04LM12	1011101	AU4LIN121	A04LM22	A02LM11	A02LM12	A DOT MOT	AUZLINIZI	AU2LM22	A07LM11	A07LM12	A07LM21	CCM ITOA	ADIT MIL	TIMITION	A01LM12	A01LM21	A01LM22	A06LM11	CITATION .	AUDLINILE	AU6LM21	A06LM22	A09 11	A09 12	A09.71	12 001	77 60W	A09LM11	A09LM12	A09LM21	A09LM22	A08 11	A08.12	10 001	AU8 21	AU8 22	A08LM11	A08LM12	A08LM21	A08LM22	A03LM11	AO2LM17	AUSLM12	A03LM21	AUSLIN 22	AUSLMII	A05LM12	A05LM21	A05LM22	Batch glass	BCHLM11	BCHLM12	BCHLM13	BCHLM21	BCHI M77	DCHLM22	BCHLM23	U glass	UstdLM11	UstdLM12	I letdI M13	Uside March	USIGILM 21	UstdLM22	UstdLM23	Lab ID
		SI	34V	/S	2-0	7	SI	341	/S2	2-04	ŀ	SE	4V	S2-	-01	5	SB4	4VS	52-	08	S	B4	vs	2-0	5			S	B4	VS	2-0	2				•		SB4	ivs	52-()9			s	SB4	vs	2-06	5	SB4	ŧvs	2-03	3			Ba	tch	1							Us	td			1	Glass ID
			0.9	90()			0.9	921				0.9	53			().98	34			1	.00	3					1	.04	2							1	.06	8					1	.09	4		1	.13	1				1.	220)							1.30	01			,	Targeted

Variability Gage Oxide=CaO (wt%) Variability Chart for Measured bc

1 1 1 1 Weasured pc 1 1 0	1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 1.0).9	•	•	•	•		•	•		•		•	•		•	•	•		•	•			•	•	•	•	•	•		-	•	•	•	•	•	•				•		•	•		8		• '				•				•	-	-	
C).8-	A04LM11	A04LM12	A04LM21	A04LM22	A02LM11	A02LM12	A02LM21	A02LM22	A07LM11	A07LM12	A07LM21	A07LM22	A01LM11	A01LM12	A01LM21	A01LM22	A06LM11	A06LM12	A061.M21	A06LM22	A09 11	A09 12	A09 21	A09 22	A09LM11	A09LM12	A09LM21	A09LM22	A08 11	A08 12	A08 21	A08 22	A08LM11	A08LM12	A08LM21	AUOLIM122	AU3LM11	VO3LM21	A03LM22	A05LM11	A05LM12	A05LM21	A05LM22	Batch glass	BCHLMI 1	BCHLM12	BCHLM13	BCHLM21	BCHLM22	DUTLIMI22	U glass I letdI MI 1	I letdI M12	USIMEMIL2	UstdLM21	UstdLM22	UstdLM23	Lab ID
		SI	34VS	52-0)7	SE	4V	S2-()4	SE	34V	S2-(01	SE	34V	s2	-08	S	B4V	VS2	-05			S	34V	S2-()2					SB	4V\$	52-0	9		:	SB4	VS2	-06	SE	34V	S2-0	13			Bato	ch 1						Us	td		'	Glass ID
			0.90	00			0.9	21			0.9	53			0.9	84			1.	008					1.0	42							1.06	58				1	.094			1.1	31				1.2	20						1.3	01			Targeted

Variability Gage Oxide=Ce₂O₃ (wt%) Variability Chart for Measured

0.030 -				_					, * , [.]	
0.020 - Weganic 0.015 - 0.010 -					. • . •	·····				
0.005 -	Batch glass BCHLM11 BCHLM12 BCHLM13 BCHLM13 BCHLM21 BCHLM22 BCHLM23	U glass UstdLM11 UstdLM13 UstdLM13 UstdLM21 UstdLM22 UstdLM23	A07LM11 A07LM12 A07LM21 A07LM21	A04LM11 A04LM12 A04LM21 A04LM22	A02LM11 A02LM12 A02LM21 A02LM22	A09 11 A09 12 A09 21 A09 21 A09LM11 A09LM12 A09LM21 A09LM22	A01LM11 A01LM12 A01LM21 A01LM22	A06LM11 A06LM12 A06LM21 A06LM22 A05LM12 A05LM12	A05LM22 A05LM22 A08 11 A08 12 A08 21 A08LM11 A08LM12 A08LM12	AUALM122 A03LM12 A03LM22 A03LM22 A03LM22
	Batch 1	Ustd	SB4VS2-01	SB4VS2-07	SB4VS2-04	SB4VS2-02	SB4VS2-08	SB4VS2-05 SB4VS2	-03 SB4VS2-09	SB4VS2-06 Gla
	0.0	000	0.022	0.023	0.024	0.024	0.025	0.026 0.027	0.028	0.028 Tar

Variability Gage Oxide=Ce₂O₃ (wt%) Variability Chart for Measured bc

Variability Gage Oxide=Cr₂O₃ (wt%) Variability Chart for Measured

0.25	• • * * • • •]
0.20 -											
≥ - 0.10- - 0.05-				••••							
-	UstdLM11 UstdLM11 UstdLM12 UstdLM13 UstdLM13 UstdLM21 UstdLM23	A04LM11 A04LM12 A04LM21 A04LM22	A02LM11 A02LM12 A02LM21 A02LM22	A07LM11 A07LM12 A07LM21 A07LM22	A01LM11 A01LM12 A01LM21 A01LM22	A06LM11 A06LM12 A06LM21 A06LM22	A09 11 A09 12 A09 21 A09 21 A09LM11 A09LM12 A09LM21 A09LM21	A08 11 A08 12 A08 21 A08 21 A08 22 A08LM12 A08LM12 A08LM21 A08LM22	A03LM11 A03LM12 A03LM21 A03LM21 A03LM22 A05LM11 A05LM12	A05LM21 A05LM22 Batch glass BCHLM11 BCHLM12 BCHLM13 BCHLM21 BCHLM23 BCHLM23	Lab ID
	Ustd	SB4VS2-07	SB4VS2-04	SB4VS2-01	SB4VS2-08	SB4VS2-05	SB4VS2-02	SB4VS2-09	SB4VS2-06 SB4VS	Batch 1	Glass I
	0.000	0.053	0.055	0.056	0.058	0.060	0.061	0.063	0.065 0.06	0.107	Targete

Variability Gage Oxide=Cr₂O₃ (wt%) Variability Chart for Measured bc

Variability Gage Oxide=CuO (wt%) Variability Chart for Measured

Variability Gage Oxide=CuO (wt%) Variability Chart for Measured bc

Variability Gage Oxide=La₂O₃ (wt%) Variability Chart for Measured

0.020-							-				
0.018-	-					_	• • • •	_			
0.016-	-			-						· · .	
0.014 -	-							-			-
0.012 -	-										
0.010 -	4										
0.008-	-										
0.006-	• • • • • • •										
0.004 -	<u>8-0-0-0</u>	8 - 0 0 - 0 0									
	LM1 LM1 LM1 LM2 LM2 LM2 LM2 LM2	J glas LMI LMI LM2 LM2 LM2 LM2	LM1 LM2 LM2	LM1 LM2 LM2	LM1 LM2 LM2	LM1 LM2 LM2	09 1 09 2 09 2 09 2 09 2 09 2 09 2 09 2 09 2	LM1 LM2 LM2	08 1 08 2 08 2 08 2 08 2 08 2 08 2 08 2 08 2	LM1 LM2 LM2	
	Batel BCH BCH BCH BCH BCH BCH	Ustd Ustd Ustd Ustd Ustd	A041 A041 A041 A041	A071 A071 A071 A071	A021 A021 A021 A021	A011 A011 A011	A A A A A 091 A A 091 A A 091 A A A A A A A A A A A A A A A A A A A	A06 A06 A06 A06	A A A A A A A A A A A A A A A A A A A	A051 A051 A051 A051	A031 A031 A031 A031
	Batch 1	Ustd	SB4VS2-07	SB4VS2-01	SB4VS2-04	SB4VS2-08	SB4VS2-02	SB4VS2-05	SB4VS2-09	SB4VS2-03	SB4VS2-06 C
	0.0	000	0.018	0.019	0.019	0.020	0.020	0.021	0.022	0.022	0.022 T

Variability Gage Oxide=La₂O₃ (wt%) Variability Chart for Measured bc

0.020							-				
0.018-			-							-	
0.016-				-						· · · .	
0.014 -								-			-
0.012 -											
0.010											
0.008 -											
0.006 -											
0.004 -	Batch glass BCHLM11 BCHLM12 BCHLM13 BCHLM13 BCHLM21 BCHLM22 BCHLM23	U glass UstdLMI 1 UstdLMI 2 UstdLM12 UstdLM21 UstdLM22 UstdLM23	A04LM11 A04LM12 A04LM21 A04LM22	A07LM11 A07LM12 A07LM21 A07LM22	A02LM11 A02LM12 A02LM21 A02LM22	A01LM11 A01LM12 A01LM21 A01LM22	A09 11 A09 12 A09 21 A09 22 A09LM11 A09LM12 A09LM21 A09LM22	A06LM11 A06LM12 A06LM21 A06LM22	A08 11 A08 12 A08 21 A08 21 A08LM11 A08LM12 A08LM21 A08LM72 A08LM72	A05LM11 A05LM12 A05LM12 A05LM21 A05LM22	A03LM11 A03LM12 A03LM21 A03LM21 T
	Batch 1	Ustd	SB4VS2-07	SB4VS2-01	SB4VS2-04	SB4VS2-08	SB4VS2-02	SB4VS2-05	SB4VS2-09	SB4VS2-03	SB4VS2-06 G
-	0.	000	0.018	0.019	0.019	0.020	0.020	0.021	0.022	0.022	0.022 T

Variability Gage Oxide=MgO (wt%) Variability Chart for Measured

1.5 1.4 1.3	5 4 - 3 -																																																	•	•	•	•	• •	•	
1.2 Heasured 1.1	2 1 1)		-			_		-	-	•		•	•	•	•	-	-		•	•	-	•	•	•	•	•	•	•			. •		•	•	-	•	•	• •	•	•	•	•	•	•	• •	•		•								
0.9	3-	A04LM11 =	TCM IPUA	A04LM21	A02LM11	A071 M17	A02LM21	A02LM22	A07LM11	A07LM12	A07LM21	A07LM22	A01LM11	A01LM12	A01LM21	A01LM22	A06LM11	A06LM12	A06LM21	A06LM22	A09 11	A09 12	A09 21	A09 22	A09LM11	A09LM12	A09LM21	A09LM22	A08 11	A08.71	A06 21	A08LM11	A08LM12	A08LM21	A08LM22	A03LM11	A03LM12	A03LM21 A03LM22	A05LM11	A05LM12	A05LM21	A05LM22	U glass	UstdLM11	UstdLM12	CIMITETI	USIGL/M21	UstdLM23	Batch olass	BCHLMI 1	BCHLM12	BCHLM13	BCHLM21	BCHLM22	BCHLM23	ab ID
		SB4	VS2	2-07	S	B4'	VS2	-04	S	B4V	S2-()1	SE	34V	S2-	08	S	B4V	S2-	05			SB	4V\$	52-0	2				5	SB4	VS2	-09			SB	4VS	2-06	SI	34V	S2-0	03			Us	td					В	atcl	h 1		G	Glass ID
		0.	.868	8		0.	890			0.9	34			0.9	50			0.9	73					1.02	22						1	031					1.05	6		1.1	09				1.2	10						1.41	9		Т	Fargeted

Variability Gage Oxide=MgO (wt%) Variability Chart for Measured bc

Variability Gage Oxide=MnO (wt%) Variability Chart for Measured

3.0- 2.8- 2.6-											•
2.4- 2.2-			-	-	• . • •			••••••••••••	· . · .	. • •	
1.8- 1.6-	••••••••	• • • •	• •	•••	-						
1.4-	Batch glass BCHLMI 1 BCHLMI 2 BCHLMI 2 BCHLM2 1 BCHLM2 1 BCHLM2 3 BCHLM2 3	A04LM11 A04LM12 A04LM21 A04LM22	A02LM11 A02LM12 A02LM21 A02LM21	A07LM11 A07LM12 A07LM21 A07LM21	A01LM11 A01LM12 A01LM21 A01LM22	A06LM11 A06LM12 A06LM21 A06LM21	A09 11 A09 12 A09 21 A09 22 A09LM11 A09LM12 A09LM21	A08 11 A08 12 A08 21 A08 21 A08LM11 A08LM12 A08LM21 A08LM21	A03LM11 A03LM12 A03LM21 A03LM22 A03LM21 A05LM11	AO5LM21 A05LM21 U glass UstdLM11 UstdLM13 UstdLM21 UstdLM21	Lab ID
	Batch 1	SB4VS2-07	SB4VS2-04	SB4VS2-01	SB4VS2-08	SB4VS2-05	SB4VS2-02	SB4VS2-09	SB4VS2-06 SB4	VS2-03 Ustd	Glass II
	1.726	1.909	1.955	1.980	2.087	2.138	2.166	2.266	2.321 2.	.352 2.892	Targete

Variability Gage Oxide=MnO (wt%) Variability Chart for Measured bc

3.0- 2.8- 2.6-	-											
2.4- Weasured by 2.2- 2.0-	-				• • • •				••••	••••		
1.8- 1.6-	111 112 122 122 122 122 122 122 123 123	111 112 121 122	= = [1] [2] [2]	111 121 122	111 112 121 122	111	11 2 2 12 11 11 12 12 12 12 12 12 12 12	11 12 12 11 11 11 12 12 12 12 12 12 12 1	111 121 122 122	111 112 122	111 112 112 122 122 122	Lab ID
	Batch I BCHLM BCHLM BCHLM BCHLM BCHL	W140E SB4VS2-07	A02LN 884A25-04	MTLOP SB4VS2-01	MTIOE SB4VS2-08	VT90E SB4VS2-05	60 V 160 V 60 V 160 V SB4VS2-02	80 V V V V V V V V V V V V V V V V V V V	VI V	402LM 405LM 895LM 884A855-03	UstdLN DrstdLN DrstdLN DrstdLN DrstdLN DrstdLN	Glass I
	1.726	1.909	1.955	1.980	2.087	2.138	2.166	2.266	2.321	2.352	2.892	Targete

Variability Gage Oxide=Na₂O (wt%) Variability Chart for Measured

12.5 12.0-									•	: • • • • • • •	• • • • • • • •]
11.5-									•••	-		
न्हु 11.0-						* • • •	••••					
Insa 10.5 -		_	•									
∑ _{10.0} -												
9.5-	• . •											
9.0-												
8.5 -	Batch glass BCHLM11 BCHLM12 BCHLM13 BCHLM21 BCHLM23 BCHLM23	A07LM11 A07LM12 A07LM21 A07LM22	A09 11 A09 12 A09 21 A09 22 A09LM11 A09LM12 A09LM21 A09LM22	A02LM11 A02LM12 A02LM21 A02LM21	A05LM11 A05LM12 A05LM21 A05LM22	A06LM11 A06LM12 A06LM21 A06LM22	A03LM11 A03LM12 A03LM21 A03LM22	A04LM11 A04LM12 A04LM21 A04LM22	A01LM11 A01LM12 A01LM21 A01LM21	U glass UstdLM11 UstdLM12 UstdLM13 UstdLM22 UstdLM23	A08 11 A08 12 A08 21 A08 21 A08 22 A08LM11 A08LM21 A08LM21 A08LM22 A08LM22	Lab ID
	Batch 1	SB4VS2-01	SB4VS2-02	SB4VS2-04	SB4VS2-03	SB4VS2-05	SB4VS2-06	SB4VS2-07	SB4VS2-08	Ustd	SB4VS2-09	Glass II
	9.003	10.197	10.403	10.596	10.608	10.839	11.082	11.236	11.539	11.795	11.842	Targete

Variability Gage Oxide=Na₂O (wt%) Variability Chart for Measured bc

Variability Gage Oxide=NiO (wt%) Variability Chart for Measured

1.0 0.5 0.8 0.7 0.6 0.5	9			•			•	•				•						•	•				1			•	•	•				•		•							•	•	•				•		•		•		•			P					•				•	•	•		
0.4	4-	A04LM11	A04LM12	A04LM21	CCM IVOV	AU4LINI22	A02LM11	A02LM12	A02LM21	VUX IOV	AUZLIMIZZ	A07LM11	A07LM12	A07LM21	CCM ITOA	ADIT MIL	TIMTIOU	A01LM12	A01LM21	A01LM22	A06LM11	VIDE VID	TIMTOU	A06LM21	A06LM22	A09 11	A09 12	A09 21	A 00 2 2	77 604	A09LM11	A09LM12	A09LM21	A09LM22	A08 11	A08 12	A 08 2 1	17 90 V	AU8 22	A08LM11	A08LM12	A08LM21	A08LM22	A03LM11	A03LM12	TCM IEUV	A03LM22	A05LM11	A05LM12	A05LM21	A05LM22	Batch glass	BCHLM11	BCHLM12	BCHLM13	DCHL MO1	BCHLM21	BCHLM22	BCHLM23	U glass	UstdLM11	LIntel MILS		UstdLM13	UstdLM21	UstdLM22	UstdLM23	Lab	ID
		SB	4V:	S2	-07		SB	4V	S2-	-04		SE	34V	S2	-01	5	SB4	4VS	52-	08	s	B4	vs	2-0:	5			S	B4'	vs	2-0	2					5	SB4	VS	2-0)9			S	B4V	VS2	-06	S	B4\	/S2-	03			В	atch	h 1							U	std				Gla	ss ID
		(0.53	32				0.5	45				0.5	51			C).58	32			0.	.59	6					0.	.60	2							(.63	2					0.	647			0.6	654				().75	51							1.1	120				Tar	geted

Variability Gage Oxide=NiO (wt%) Variability Chart for Measured bc

1 1 1	1.2 1.1 1.0																																																						•	•		•	. •	•	
Measured bc).9 -).8 -).7 -).6 -																_		_			•				•	•			•		-	•	•	•	•	•	•	•	•		•	•	• ,	•		•	•	•	•	•	•	•								
).5 -).4 -				•	•	•	•	•		'	• '	•	•	•	•	•		•		•				_			_	•																•	. •													_		
		A DAT NAT 1	A04LM12	TOW INT	AU4LM21	A04LM22	A02LM11	A02LM12	1 CM 1 CUV	CON LOV	TOTATION	A07LMI1	A07LM12	A07LM21	A07LM22	A01LM11	A01LM12	A01LM21	A01LM22	A06LM11	A06LM12	A06LM21	A06LM22	A09 11	A09 12	A09 21	A09 22	A09LM11	A09LM12	A09LM21	A09LM22	A08 11	A08 12	A08 21	A08 22	A08LM11	A08LM12	A08LM21	A08LM22	A03LM11	A03LM12	A03LM21	A03LM22	A05LM11	AUST MO1	A05LM22	Batch glass	BCHLM11	BCHLM12	BCHLM13	BCHLM21	BCHLM22	BCHLM23	U glass	UstdLM11	11stdLM12	I letdI M13	CIMPTINSO	UstdLM22	UstdLM23	Lab II
	Ī	:	SB4	VS	2-0	17	SI	341	/S2	-04		SB4	4VS	32-0	1	SB	4V	S2-	-08	SI	34V	S2-	-05			SI	34V	s2-	02			—		SI	B4V	S2-	09			SB	4V\$	\$2-0	6	SB4	VS2	2-03			В	atch	1						Us	td		•	Glass
			0.	532	2			0.5	545			0).55	1			0.5	82			0.5	96					0.6	502							0.6	32					0.64	47		0	.654				C).75	1						1.1	20			Targe

Variability Gage Oxide=PbO (wt%) Variability Chart for Measured

0.035 -										
0.025				-			• • •			
0.020 -				• • •	• • • •				•	
0.015 -										
0.010										
0.005	Batch glass BCHLM11 BCHLM12 BCHLM13 BCHLM21 BCHLM22 BCHLM22 BCHLM23	U glass UstdLM11 UstdLM12 UstdLM13 UstdLM21 UstdLM23 UstdLM23	A07LM11 A07LM12 A07LM21 A07LM21	A04LM11 A04LM12 A04LM12 A04LM21 A04LM22	A02LM11 A02LM12 A02LM21 A02LM21	A09 11 A09 12 A09 21 A09 22 A09LM11 A09LM12 A09LM21 A09LM22	A01LM11 A01LM12 A01LM21 A01LM21	A06LM11 A06LM12 A06LM21 A06LM22 A06LM22 A05LM11 A05LM12 A05LM12	A05LM22 A0811 A0812 A0821 A0821 A08LM11 A08LM12 A08LM12 A08LM72	Tap 703LM11 703LM12 703LM21 703LM22 703LM22
	Batch 1	Ustd	SB4VS2-01	SB4VS2-07	SB4VS2-04	SB4VS2-02	SB4VS2-08	SB4VS2-05 SB4VS2-0	3 SB4VS2-09	SB4VS2-06 Gla
	0.0	00	0.021	0.021	0.022	0.023	0.023	0.024 0.024	0.025	0.026 Tar;

Variability Gage Oxide=PbO (wt%) Variability Chart for Measured bc

0.035 -												
0.030 -				_							-	
o 0.023 -			•••				••	• •	•••	•• • • •		
- Weas					_			•				
0.010 -												
0.005 -	22 21 11 12 22 23 23 23 23 23 25 25 25 25 25 25 25 25 25 25 25 25 25	2 2 1 2 2 1 2 2 8		1212			- 2 - 2 - 2	1012	2 1 2 1			Lab ID
	satch gla SCHLM SCHLM SCHLM SCHLM SCHLM	U gla JstdLMI JstdLMI JstdLMI JstdLMZ JstdLMZ	A07LMI A07LMI A07LM2 A07LM2	A04LMI A04LMI A04LM2 A04LM2	A02LMI A02LMI A02LM2 A02LM2	1 90A 1 909 2 1 900 2	A01LMI A01LMI A01LMI	A06LMI A06LMI A06LMI	A05LMI A05LMI A05LM2 A05LM2	A08 A08	T 403LM1 403LM2 403LM2 403LM2	Lau ID
	Batch 1	Ustd	SB4VS2-01	SB4VS2-07	SB4VS2-04	SB4VS2-02	SB4VS2-08	SB4VS2-05	SB4VS2-03	SB4VS2-09	SB4VS2-06 G	Glass IE
	0.0	00	0.021	0.021	0.022	0.023	0.023	0.024	0.024	0.025	0.026 T	Targeter

Variability Gage Oxide=SO₄ (wt%) Variability Chart for Measured

0.25 -				_	-	.	_	• • • •		• • • • • • •	• • • •
0.20				•••••	• •	•••					
0.15-											
0.10-											
0.05-											
	Batch glass BCHLMI1 BCHLM12 BCHLM12 BCHLM21 BCHLM22 BCHLM23	U glass UstdLM11 UstdLM12 UstdLM13 UstdLM21 UstdLM22 UstdLM23	A07LM11 A07LM12 A07LM21 A07LM22	A09 11 A09 12 A09 21 A09 21 A09LM11 A09LM12 A09LM21 A09LM21	A04LM11 A04LM12 A04LM21 A04LM22	A05LM11 A05LM12 A05LM21 A05LM22	A02LM11 A02LM12 A02LM21 A02LM22	A01LM11 A01LM12 A01LM21 A01LM22	A06LM11 A06LM12 A06LM21 A06LM22	A08 11 A08 12 A08 21 A08 21 A082 A08LM11 A08LM12 A08LM21 A08LM22	A03LM11 A03LM12 A03LM21 A03LM21 A03LM22
ĺ	Batch 1	Ustd	SB4VS2-01	SB4VS2-02	SB4VS2-07	SB4VS2-03	SB4VS2-04	SB4VS2-08	SB4VS2-05	SB4VS2-09	SB4VS2-06
	0.000	0	0.186	0.204	0.217	0.221	0.223	0.238	0.244	0.258	0.265 7

Variability Gage Oxide=SO₄ (wt%) Variability Chart for Measured bc

0.30-											
0.25-				_	-	• .	-	· · · · .		•	••••
<u>ප</u> 0.20-					• • •	• •	• • • •				
- easure											
≥ - 0.10-	•										
0.05 -											
-	ch glass HLM11 HLM12 HLM13 HLM21 HLM22 HLM23 HLM23	U glass dLM11 dLM12 dLM13 dLM21 dLM21 dLM23 dLM23	7LM11 7LM12 7LM21 7LM22	A09 11 A09 12 A09 21 A09 22 9LM11 9LM12 9LM21	4LM11 4LM12 4LM21 4LM22	5LM11 5LM12 5LM21 5LM22	2LM11 2LM12 2LM21 2LM22	11.011 11.012 11.022 11.022 11.022	6LM12 6LM21 6LM22 6LM22 A08 11	A08 12 A08 21 A08 22 8LM11 8LM12 8LM21 8LM22	3LM11 3LM12 3LM21 3LM22
	BC B			A0 A	A0 A0 A0 A0 A0	Q Q Q Q	O O O O O	A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A	A A A A A A A A A A A A A A A A A A A	<u>A0</u> A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0	A0 A0 A0 A0
	Batch I	Ustd	584782-01	584v52-02	SB4vS2-07	SB4vS2-03	SB4vS2-04	SB4V52-08 SB4	1152-05	584152-09	SB4VS2-06 Gl
	0.0	000	0.186	0.204	0.217	0.221	0.223	0.238 0).244	0.258	0.265 Ta

74

Variability Gage Oxide=SiO₂ (wt%) Variability Chart for Measured

Variability Gage Oxide=SiO₂ (wt%)

Variability Chart for Measured bc

Variability Gage Oxide=TiO₂ (wt%) Variability Chart for Measured

1.0- 0.9- 0.8- 0.7- pp 0.6- 0.5- W 0.4- 0.3-			-						• • • • • •	
0.2-] 	<u></u>								
0.0	A07LM11 A07LM12 A07LM21 A07LM21	A09 11 A09 12 A09 21 A09 22 A09LM11 A09LM12 A09LM121 A09LM12	A05LM11 A05LM12 A05LM21 A05LM21 A05LM22 A04LM11	A04LM12 A04LM21 A04LM22 A04LM22 A02LM11 A02LM12 A02LM21 A02LM22	A01LM11 A01LM12 A01LM21 A01LM21 A01LM22 A05LM12 A05LM21 A05LM21	A08 11 A08 12 A08 21 A08 21 A082/M11 A08LM12 A08LM12 A08LM21 A08LM22	A03LM11 A03LM12 A03LM21 A03LM21 A03LM22	Batch glass BCHLM11 BCHLM12 BCHLM13 BCHLM13 BCHLM21 BCHLM22 BCHLM23	U glass UstdLM11 UstdLM12 UstdLM13 UstdLM21 UstdLM21 UstdLM22 UstdLM23	Lab ID
	SB4VS2-01	SB4VS2-02	SB4VS2-03 SB4	34VS2-07 SB4VS2-04	SB4VS2-08 SB4VS2-05	SB4VS2-09	SB4VS2-06	Batch 1	Ustd	Glass ID
	0.016	0.017	0.019	0.421 0.431	0.460 0.471	0.499	0.512	0.677	1.049	Targeted

Variability Gage Oxide=TiO₂ (wt%) Variability Chart for Measured bc

1.1 1.0 0.9 0.8 0.7 0.6 0.5 W 0.4 0.3 0.2							• • • •			• • • • • • •	**	
0.1 0.0	A07LM11 = 407LM12 = 407LM21 = 407LM22 = 407LM2	A09 11 A09 12 A09 21 A09 22 A09LM11 A09LM12 A09LM22 A09LM22	A05LM11	A04LM11 A04LM12 A04LM21 A04LM22 A071M11	A02LM11 A02LM12 A02LM21 A02LM22	A01LM11 A01LM12 A01LM21 A01LM22	A06LM11 A06LM12 A06LM21 A06LM22	A08 11 A08 12 A08 21 A08 22 A08LM11 A08LM21 A08LM22	A03LM11 A03LM12 A03LM21 A03LM22	Batch glass BCHLM11 BCHLM12 BCHLM13 BCHLM13 BCHLM21 BCHLM22 BCHLM23	U glass UstdLM11 UstdLM12 UstdLM13 UstdLM13 UstdLM21 UstdLM23	Lab ID
	SB4VS2-01 0.016	SB4VS2-02 0.017	SB4VS2-03 3 0.019	SB4VS2-07 S 0.421	0.431	SB4VS2-08	SB4VS2-05	SB4VS2-09 0.499	SB4VS2-06 0.512	Batch 1 0.677	Ustd 1.049	Glass II Targete

Variability Gage Oxide=U₃O₈ (wt%) Variability Chart for Measured

3.5-							• • • • • • •		•
2.5-				••••	••••	-			
P 2.0-	-	* • • • • •							
-5.1 Measu	-								
1.0-	-								
0.5-	-								
0.0-	glass MI1 MI2 M22 M22 M22 M22 M22	glass M11 M13 M13 M21 M23 M23 M11 M11 M12	M21 M22 M21 M21 M21 M21 M21 M21 M21 M21	M11 M21 M12 M11		M22 9 11 9 21 9 22 M11 M12 M21	8 11 8 21 8 22 8 22 8 22 M11 M11 M21 M21 M21	M11 M12 M12 M11 M12 M11 M12 M11 M12 M11 M12 M12	Lab ID
	BatchL BCHL BCHL BCHL BCHL BCHL	U UstdL UstdL UstdL UstdL A04L	A04LJ A04LJ A04LJ A02LJ A02LJ A02LJ	<u>A07LJ</u> <u>A07LJ</u> <u>A07LJ</u> A07LJ A01LJ	A01L1 A01L1 A06L1 A06L1 A06L1	A06LJ A06LJ A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0	A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A	A03L) A03L) A03L) A03L) A05L) A05L)	A05LJ
	Batch 1	Ustd SB4V	VS2-07 SB4VS2-04	SB4VS2-01 S	SB4VS2-08 SB4VS2-0	5 SB4VS2-02	SB4VS2-09	SB4VS2-06 SB4VS2-02	3 Glass I
	0.000	2.406 2.8	.843 2.912	3.009	3.109 3.185	3.291	3.376	3.458 3.574	Target

Variability Gage Oxide=U₃O₈ (wt%) Variability Chart for Measured bc

4.0 3.5 -						_				• • • •	• • • •
3.0-											
2.5-											
2.0-											
1.5-											
1.0-											
0.5-											
0.0-	<u>8 - 0 - 0 - 0 - 0</u>	8 - 0 0 - 0 0									
	LM1 LM1 LM1 LM1 LM2 LM2 LM2 LM2 LM2	J gla: LMI LMI LMI LM2 LM2 LM2 LM2	L MI	L M1 L M2	LM1 LM2 LM2	LM1 LM2 LM2	LM1 LM2 LM2	09 1 09 2 09 2 09 2 09 2 09 2 09 2 09 2 09 2	08 1 08 2 08 2 08 2 08 2 08 2 08 2 08 2 08 2	LM1 LM2	
	Batch BCH BCH BCH BCH BCH BCH	Ustdl Ustdl Ustdl Ustdl Ustdl	A041 A041 A041 A041	A021 A021 A021 A021	A071 A071 A071 A071	A011 A011 A011 A011	A061 A061 A061 A061	A A A A A 091 A 091 A 091 A 091 A A 091 A	A A A A081 A081 A081 A081 A081	A031 A031 A031 A031	A051 A051 A051 A051 A051
	Batch 1	Ustd	SB4VS2-07	SB4VS2-04	SB4VS2-01	SB4VS2-08	SB4VS2-05	SB4VS2-02	SB4VS2-09	SB4VS2-06	SB4VS2-03
	0.000	2.406	2.843	2.912	3.009	3.109	3.185	3.291	3.376	3.458	3.574

Variability Gage Oxide=ZrO₂ (wt%) Variability Chart for Measured

0.09-0.08-																																						•	•	•	• •	•	
0.07 -																																											
0.06-																																											
0.05 -																																											
W 0.04 -																																											
0.03-					•	•	• •	-	•	• •	-	-		. •	•	•	'				• ,			•	•	• •	•	-	•	•		•	•	•	•	• •	•						
0.02-				•														_		-																							
0.01 -																																											
0.00-	ass 11 12 21 33	22 23	= 2	12 8		212	5 2	=	21	5 2	∃	212	7 2		12	5 5	3 =	12	5	3	= !	7 17	12	=	12	3 5	Ξ	12	5	22 -	1 2	1 12	22	Ξ	12	3 5	1 S	Ξ	12	13	5 27	23	Lah ID
			M IN	I W I	ILM	ILIM	HTW HTW	ILM	TIM	E I W	409	601	607	LM 1	DLM	T		T I	TW	FW	UTW ST	U W	TW	ILM	ILM		408	408	408	108		IN	SLM.	SLM	SLM		h gla	ILM	ILM	ILM		ILM.	Luo ID
	Ustc Ustc Ustc	Usto Usto	A07	LOA DOA	A04	A04	A04	A02	A02	A02				A05	A09	A09		A01	A01	A01	A06	AOF	AOA	A05	A05	A05	1				A08	A08	408	A03	A03	EOA AOA	Batc	BCF	BCF	BCF		BCF	
	Ustd		SB4	VS2-01	SB	4VS	2-07	SB	4VS2	2-04			SB4	VS2	02		S	SB4V	S2-0	8	SB4	VS2	-05	SE	34VS	2-03			SB4	ŧVS2	2-09	-		SE	34VS	52-06			Ba	tch 1			Glass ID
	0.000		0.	026		0.02	7		0.028	3			0	.028				0.0	30		0	.030			0.03	1			(0.032	2				0.03	3			0.	098		1	Targeted

Variability Gage Oxide=ZrO₂ (wt%) Variability Chart for Measured bc

0.09-]
0.07-												
을 0.06- 문 0.05-												
- 40.0 game									_			
≥ 0.03-					• • • • • • • •			* * * *	••••	• • • •		
0.02-												
0.00-											8-0-0-0-0	-
	U gla: stdLM1 stdLM1 stdLM2 stdLM2 stdLM2 stdLM2	07LMI 07LM1 07LM2 07LM2	04LM1 04LM1 04LM2 04LM2	02LM1 02LM1 02LM2 02LM2	A09 1 A09 1 A09 2 A09 2 A09 2 09LM1 09LM2 09LM2	01LM1 01LM2 01LM2 01LM2	06LM1 06LM2 06LM2	05LM1 05LM2 05LM2 05LM2	A08 1 A08 1 A08 2 A08 2 A08 2 A08 2 08LM1 08LM1 08LM2 08LM2	03LM1 03LM1 03LM2 03LM2	atch glas CHLM1 CHLM1 CHLM1 CHLM2 CHLM2 CHLM2 CHLM2	Lab ID
												-
	Usta	364732-01	364732-07	564752-04	564752-02	564152-08	364732-05	364 1 52-03	364 (32-09	364 1 32-00	DatCH 1	Glass ID
	0.000	0.026	0.027	0.028	0.028	0.030	0.030	0.031	0.032	0.033	0.098	Targeted

9.5 Ι. 9.0 Measured 8.5 8.0 7.5 A04PF22 Tap ID A04PF21 A04PF ğ Batch 1 SB4VS2-03 SB4VS2-06 SB4VS2-09 SB4VS2-02 SB4VS2-05 SB4VS2-08 Ustd SB4VS2-01 SB4VS2-04 SB4VS2-07 Glass ID 7.777 8.680 9.100 9.209 9.520 Targeted

Variability Gage Oxide=B₂O₃ (wt%) Variability Chart for Measured

Variability Gage Oxide=B2O3 (wt%)

Variability Gage Oxide=Fe₂O₃ (wt%) Variability Chart for Measured

Variability Gage Oxide=Fe₂O₃ (wt%) Variability Chart for Measured bc

Variability Gage Oxide=Li₂O (wt%) Variability Chart for Measured

Variability Gage Oxide=Li₂O (wt%)

Figure A9. Average Measured and Bias-Corrected (bc) Versus Targeted Compositions by Glass ID by Oxide

Measured bc — Targeted

Y X Measured

Figure A9. Average Measured and Bias-Corrected (bc) Versus Targeted Compositions by Glass ID by Oxide

Y X Measured Measured bc — Targeted

Figure A9. Average Measured and Bias-Corrected (bc) Versus Targeted Compositions by Glass ID by Oxide

Y X Measured Measured bc — Targeted

Figure A9. Average Measured and Bias-Corrected (bc) Versus Targeted Compositions by Glass ID by Oxide

Y X Measured Measured bc — Targeted

Figure A9. Average Measured and Bias-Corrected (bc) Versus Targeted Compositions by Glass ID by Oxide

Y X Measured Measured bc — Targeted

Figure A9. Average Measured and Bias-Corrected (bc) Versus Targeted Compositions by Glass ID by Oxide

Y X Measured Measured bc — Targeted

Figure A9. Average Measured and Bias-Corrected (bc) Versus Targeted Compositions by Glass ID by Oxide

Figure A9. Average Measured and Bias-Corrected (bc) Versus Targeted Compositions by Glass ID by Oxide

Figure A9. Average Measured and Bias-Corrected (bc) Versus Targeted Compositions by Glass ID by Oxide

Y X Measured Measured bc — Targeted

Figure A9. Average Measured and Bias-Corrected (bc) Versus Targeted Compositions by Glass ID by Oxide

Y X Measured Measured bc — Targeted

Figure A9. Average Measured and Bias-Corrected (bc) Versus Targeted Compositions by Glass ID by Oxide

Y X Measured Measured bc — Targeted

Appendix B:

Tables and Figures Supporting the Analysis of the PCT Results for the SB4 Variability Study Glasses in Support of a Second Decant This page intentionally left blank.

	Heat								В	Li	Na	Si
Glass ID	Treatment	Block	Seq	Lab ID	B ar	Li ar	Na ar	Si ar	(ppm)	(ppm)	(ppm)	(ppm)
Soln Std	ref	1	1	STD-11	20.7	9.87	80.4	50.5	20.700	9.870	80.400	50.500
SB4VS2-06	quenched	1	2	B47	12.5	11	33.9	59.6	20.834	18.334	56.501	99.335
SB4VS2-04	ccc	1	3	B38	11.7	10.6	27	61.8	19.500	17.667	45.001	103.002
SB4VS2-03	ccc	1	4	B33	12.5	11.3	31.7	60	20.834	18.834	52.834	100.002
SB4VS2-03	quenched	1	5	B52	12.8	11.6	32.4	62.3	21.334	19.334	54 001	103.835
SB4VS2-07	ccc	1	6	B34	12.5	11.0	32.2	65.4	20.834	19.000	53 668	109.002
SB4VS2-09		1	7	B39	11.9	10.4	37.3	59.3	19.834	17 334	62 168	98 835
ARM-1	ref	1	8	B18	11	8 72	22.9	38	18 334	14 534	38.167	63 335
SB4VS2-05	quenched	1	9	B10	11	10.3	28.2	57.3	18 334	17 167	47.001	95 502
SB4VS2-04	quenched	1	10	B04	12	11.2	27.5	63.6	20.000	18.667	47.001	106.002
SB4VS2-05	queneneu	1	10	B/2	11.8	10.7	30	60.9	19 667	17.83/	50.001	101.502
SB4VS2-08	quenched	1	12	B12	12	10.7	34.6	61.6	20.000	18 167	57.668	102.669
Soln Std	ref	1	12	STD-12	10.7	9.78	80.7	49.2	19 700	9.780	80.700	102.007
SDAVS2 01	101	1	13	D12	19.7	9.76	26.4	49.2	20,000	19.224	44.001	102 825
5D4V52-01	rof	1	14	D43	24	10.5	20.4	50.8	20.000	175 000	1550.002	246 669
EA SD4VS2.02	101	1	15	D17 D00	12.2	10.5	95 20.1	50.8	20,500	19,500	1330.003	100 502
SB4VS2-02		1	10	B57	12.5	11.1	29.1	61.2	10 500	17.924	40.301	102.002
SD4VS2-08	quanched	1	1/	DJ/ D05	11./	10.7	22.2	66.2	21,000	10.500	55 501	110.226
SD4VS2-07	quenched	1	18	B00	12.0	11./	33.5	62.6	21.000	19.500	33.301	106.002
SB4VS2-01	quenched	1	19	B29	12.4	11.0	20.7	03.0	20.667	19.334	44.501	100.002
SB4VS2-02	quenched	1	20	B32	12.3	11.4	28.7	61.5	20.500	19.000	47.834	102.502
SB4VS2-06	ccc		21	B2/	11.7	10.5	55.1	58.6	19.500	17.500	55.168	97.669
blank	ref	1	22	B62	0.143	<1.00	<0.100	<0.100	0.238	0.833	0.083	0.083
SB4VS2-09	quenched	1	23	B56	11.9	10.8	38.6	59.5	19.834	18.000	64.335	99.169
Soln Std	ref	1	24	STD-13	19.9	9.85	83.2	49.6	19.900	9.850	83.200	49.600
Soln Std	ref	2	1	STD-21	19.6	9.37	76.8	48.4	19.600	9.370	76.800	48.400
SB4VS2-08	quenched	2	2	B08	11.4	10.4	32.9	58.4	19.000	17.334	54.834	97.335
SB4VS2-06	ссс	2	3	B54	11.2	10.1	31.4	56.9	18.667	16.834	52.334	94.835
ARM-1	ref	2	4	B19	9.7	7.93	20.4	35.4	16.167	13.217	34.001	59.001
SB4VS2-07	ссс	2	5	B20	11.6	11	31.4	63.7	19.334	18.334	52.334	106.169
SB4VS2-01	quenched	2	6	B13	11.5	10.9	24.7	61.7	19.167	18.167	41.167	102.835
SB4VS2-05	ccc	2	7	B46	10.5	9.76	27.3	57.7	17.500	16.267	45.501	96.169
SB4VS2-02	quenched	2	8	B40	11.4	10.8	26.2	60.5	19.000	18.000	43.668	100.835
SB4VS2-01	ссс	2	9	B50	11.3	10.7	24.9	62	18.834	17.834	41.501	103.335
SB4VS2-07	quenched	2	10	B21	11.8	11	29.8	64.3	19.667	18.334	49.668	107.169
SB4VS2-06	quenched	2	11	B36	11.5	10.5	31.2	59.4	19.167	17.500	52.001	99.002
SB4VS2-04	ссс	2	12	B48	11.1	10.3	25.5	63	18.500	17.167	42.501	105.002
Soln Std	ref	2	13	STD-22	19.6	9.65	77.9	50.9	19.600	9.650	77.900	50.900
SB4VS2-03	ccc	2	14	B01	11.2	10.3	29.1	56.9	18.667	17.167	48.501	94.835
SB4VS2-09	quenched	2	15	B53	11.5	10.3	36.2	59.3	19.167	17.167	60.335	98.835
SB4VS2-04	quenched	2	16	B61	11.2	10.8	28.7	63.4	18.667	18.000	47.834	105.669
SB4VS2-09	ссс	2	17	B35	11.3	10.2	36.3	58	18.834	17.000	60.501	96.669
EA	ref	2	18	B26	33.9	10.4	94	51.3	565.001	173.334	1566.670	855.002
SB4VS2-02	ccc	2	19	B03	11.6	10.7	28.5	59.6	19.334	17.834	47.501	99.335
SB4VS2-08	ccc	2	20	B49	10.9	10.1	33.6	59.3	18.167	16.834	56.001	98.835
SB4VS2-03	quenched	2	21	B30	11.9	11.2	32.7	59	19.834	18.667	54.501	98.335
SB4VS2-05	quenched	2	22	B02	10.3	10	28.8	55.8	17.167	16.667	48.001	93.002
Soln Std	ref	2	23	STD-23	18.9	9.49	78.7	48.5	18.900	9.490	78.700	48.500
Soln Std	ref	3	1	STD-31	19.6	9.46	78.7	48.6	19.600	9.460	78.700	48.600
SB4VS2-04	ccc	3	2	B60	11.4	10.3	25.9	60.9	19.000	17.167	43.168	101.502
SB4VS2-07	quenched	3	3	B59	12.3	11.3	31.7	64.1	20.500	18.834	52.834	106.835
SB4VS2-01	quenched	3	4	B44	11.7	11	24.8	61.1	19.500	18.334	41.334	101.835
SB4VS2-05	ccc	3	5	B15	11	10.1	29	58.9	18.334	16.834	48.334	98.169
SB4VS2-07	ссс	3	6	B41	11.3	10.5	30.7	60.3	18.834	17.500	51.168	100.502
SB4VS2-03	quenched	3	7	B58	11.8	11	32.1	57.3	19.667	18.334	53.501	95.502
SB4VS2-09	ccc	3	8	B55	10.9	10	36	56.4	18.167	16.667	60.001	94.002
SB4VS2-03	ccc	3	9	B28	11.6	10.7	32	57.4	19.334	17.834	53.334	95.669
SB4VS2-08	quenched	3	10	B51	11.4	10.7	34.8	59.5	19,000	17.834	58.001	99,169
SB4VS2-06	quenched	3	11	B31	11.4	10.5	34.4	57.8	19,000	17.500	57.334	96,335
55-152-00	quenencu	5	11	1001	-	10.5	54.4	57.0	17.000	17.300	51.554	70.335

Table B1. PSAL Measurements of the PCT Solutions for the Study Glasses As-
Received (ar) and After Appropriate Adjustments (in ppm)

	Heat								В	I i	Na	C;
Glass ID	Treatment	Plaak	Sag	Lah ID	Dor	Lior	No or	Sior	D (nnm)	(nnm)	(nnm)	(nnm)
Olass ID	Treatment	DIOCK	Seq	Lau ID	D al	LI al	INA AI	Siai	(ppin)	(ppin)	(ppin)	(ppin)
SB4VS2-06	ccc	3	12	B10	11	10.3	33	56.3	18.334	17.167	55.001	93.835
Soln Std	ref	3	13	STD-32	18.6	9.5	82	47.7	18.600	9.500	82.000	47.700
SB4VS2-09	quenched	3	14	B23	11.8	10.4	38.8	57.3	19.667	17.334	64.668	95.502
EA	ref	3	15	B07	33.5	10.4	96	50.4	558.334	173.334	1600.003	840.002
SB4VS2-05	quenched	3	16	B22	11.6	10.7	30.7	58.7	19.334	17.834	51.168	97.835
SB4VS2-01	ссс	3	17	B24	11.4	10.6	26.1	60.1	19.000	17.667	43.501	100.169
SB4VS2-02	quenched	3	18	B06	11.2	10.8	28.7	57.7	18.667	18.000	47.834	96.169
ARM-1	ref	3	19	B37	9.84	8.13	22	35.4	16.400	13.550	36.667	59.001
blank	ref	3	20	B16	0.123	<1.00	< 0.100	< 0.100	0.205	0.833	0.083	0.083
SB4VS2-04	quenched	3	21	B45	10.7	10.6	27.9	58.9	17.834	17.667	46.501	98.169
SB4VS2-02	ccc	3	22	B25	11.5	10.7	28.6	59.1	19.167	17.834	47.668	98.502
SB4VS2-08	ccc	3	23	B14	11.2	10.4	34.1	59.3	18.667	17.334	56.834	98.835
Soln Std	ref	3	24	STD-33	18.7	9.62	82.1	48.1	18.700	9.620	82.100	48.100

Table B1. PSAL Measurements of the PCT Solutions for the Study Glasses As-
Received (ar) and After Appropriate Adjustments (in ppm)

Figure B1. Laboratory PCT Measurements in Analytical Sequence for Study Glasses with and without Other Results from the Analytical Plans

Figure B2. Measurements of the Multi-Element Solution Standard by ICP Block

Summary of Fit

Rsquare	0.570332
Adj Rsquare	0.42711
Root Mean Square Error	0.498888
Mean of Response	19.47778
Observations (or Sum Wgts)	9

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Block	2	1.9822222	0.991111	3.9821	0.0793
Error	6	1.4933333	0.248889		
C. Total	8	3.4755556			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%	
1	3	20.1000	0.28803	19.395	20.805	
2	3	19.3667	0.28803	18.662	20.071	
3	3	18.9667	0.28803	18.262	19.671	
Std Error uses a pooled estimate of error variance						

Oneway Analysis of Li (ppm) By Block

Oneway Anova Summary of Fit

Rsquare	0.778789
Adj Rsquare	0.705052
Root Mean Square Error	0.09815
Mean of Response	9.621111
Observations (or Sum Wgts)	9

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Block	2	0.20348889	0.101744	10.5617	0.0108
Error	6	0.05780000	0.009633		
C. Total	8	0.26128889			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%	
1	3	9.83333	0.05667	9.6947	9.9720	
2	3	9.50333	0.05667	9.3647	9.6420	
3	3	9.52667	0.05667	9.3880	9.6653	
Std Error uses a pooled estimate of error variance						

Oneway Anova Summary of Fit

Rsquare	0.623794
Adj Rsquare	0.498392
Root Mean Square Error	1.529343
Mean of Response	80.05556
Observations (or Sum Wgts)	9

Analysis of Variance

,					
Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Block	2	23.268889	11.6344	4.9743	0.0532
Error	6	14.033333	2.3389		
C. Total	8	37,302222			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
1	3	81.4333	0.88297	79.273	83.594
2	3	77.8000	0.88297	75.639	79.961
3	3	80.9333	0.88297	78.773	83.094
Std Error uses a pooled estimate of error variance					

Oneway Analysis of Si (ppm) By Block

Oneway Anova Summary of Fit

Rsquare	0.442236
Adi Rsquare	0.256314
Root Mean Square Error	0.939858
Mean of Response	49.05556
Observations (or Sum Wgts)	9

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Block	2	4.2022222	2.10111	2.3786	0.1735
Error	6	5.3000000	0.88333		
C. Total	8	9.5022222			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%			
1	3	49.7667	0.54263	48.439	51.094			
2	3	49.2667	0.54263	47.939	50.594			
3	3	48.1333	0.54263	46.806	49.461			
Std Error uses a pooled estimate of error variance								
Figure B3. Laboratory PCT Measurements by Glass Identifier for Study Glasses and Standards

Variability Chart for B (ppm)

Variability Chart for Li (ppm)

Figure B3. Laboratory PCT Measurements by Glass Identifier for Study Glasses and Standards

Variability Chart for Na (ppm)

Variability Chart for Si (ppm)

Figure B4. Laboratory PCT Measurements by Glass Identifier for Study Glasses

Variability Chart for Li (ppm)

Figure B4. Laboratory PCT Measurements by Glass Identifier for Study Glasses

Variability Chart for Si (ppm)

Figure B5. Correlations and Scatter Plots of Normalized PCTs Over All Compositional Views and Heat Treatments

Correlations

		log NL[B (g/L)]	log NL[Li(g/L)]	log NL[Na (g/L)]	log NL[Si (g/L)]
log N	L[B (g/L)]	1.0000	0.9984	0.9919	0.9882
log N	L[Li(g/L)]	0.9984	1.0000	0.9891	0.9857
log N	L[Na (g/L)]	0.9919	0.9891	1.0000	0.9749
log N	L[Si (g/L)]	0.9882	0.9857	0.9749	1.0000
Scatte	erplot Matrix				
1-			×	×	×
-					
0.5-	log NL[B (g/L)]				
0-				_	
-		×	×	×	
- 0.8-		×		×	×
_					
0.4-		log			
_		NL[Li(g/I	L)]		
-0.2	×		*	× •	
-					
1 -		×	×		×
05-					
0.5			log NL (g/L)	[Na]	
0-	_	_	(C)	_	
-	×	× •		× 🗖	
0.6-					
0.4-					
0.2-					
0-				log NL	[Si
-0.2-	_			(g/L)	1
-0.4-	•				
	$\lfloor \times \\ \neg \neg$	<u> </u>	$ + + + \times + + + + + + + + + + + + + + + $		<u>_</u>
	0.5	1 -0.2 0 .2 .4	.6 .8 1 0 .5	5 1 -0.4 0	.2 .4 .6

EA and ARM are both represented by "X."

 Difference
 0.01105
 t Ratio
 0.862038

 Std Err Dif
 0.01281
 DF
 4

 Upper CL Dif
 0.04663
 Prob > |t|
 0.4373

 Lower CL Dif
 -0.02453
 Prob > t
 0.2186

 Confidence
 0.95
 Prob < t</td>
 0.7814

Difference	0.01573	t Ratio	1.61969
Std Err Dif	0.00971	DF	4
Upper CL Dif	0.04270	Prob > t	0.1806
Lower CL Dif	-0.01124	Prob > t	0.0903
Confidence	0.95	Prob < t	0.9097

Oneway Analysis of log[Na ppm] By Heat Treatment Glass ID=SB4VS2-01

Difference	-0.00693	t Ratio	-0.51462
Std Err Dif	0.01346	DF	4
Upper CL Dif	0.03045	Prob > t	0.6339
Lower CL Dif	-0.04431	Prob > t	0.6830
Confidence	0.95	Prob < t	0.3170

Difference	0.00468	t Ratio	0.652095
Std Err Dif	0.00717	DF	4
Upper CL Dif	0.02459	Prob > t	0.5499
Lower CL Dif	-0.01523	Prob > t	0.2750
Confidence	0.95	Prob < t	0.7250

Difference	-0.00634	t Ratio	-0.4096
Std Err Dif	0.01549	DF	4
Upper CL Dif	0.03666	Prob > t	0.7031
Lower CL Dif	-0.04935	Prob > t	0.6485
Confidence	0.95	Prob < t	0.3515

Oneway Analysis of log[Li ppm] By Heat Treatment Glass ID=SB4VS2-02

Difference	0.00655	t Ratio	0.692808
Std Err Dif	0.00946	DF	4
Upper CL Dif	0.03282	Prob > t	0.5266
Lower CL Dif	-0.01971	Prob > t	0.2633
Confidence	0.95	Prob < t	0.7367

Difference	-0.01368	t Ratio	-1.0143
Std Err Dif	0.01349	DF	4
Upper CL Dif	0.02377	Prob > t	0.3678
Lower CL Dif	-0.05112	Prob > t	0.8161
Confidence	0.95	Prob < t	0.1839

Oneway Analysis of log[Si ppm] By Heat Treatment Glass ID=SB4VS2-02

Difference	0.00155	t Ratio	0.178733
Std Err Dif	0.00868	DF	4
Upper CL Dif	0.02566	Prob > t	0.8668
Lower CL Dif	-0.02255	Prob > t	0.4334
Confidence	0.95	Prob < t	0.5666

Oneway Analysis of log[B ppm] By Heat Treatment Glass ID=SB4VS2-03

0.01468	t Ratio	0.816358
0.01799	DF	4
0.06463	Prob > t	0.4601
-0.03526	Prob > t	0.2301
0.95	Prob < t	0.7699
	0.01468 0.01799 0.06463 -0.03526 0.95	$\begin{array}{ll} 0.01468 & t \; Ratio \\ 0.01799 & DF \\ 0.06463 & Prob > t \\ -0.03526 & Prob > t \\ 0.95 & Prob < t \end{array}$

Difference	0.01992	t Ratio	1.475878
Std Err Dif	0.01350	DF	4
Upper CL Dif	0.05740	Prob > t	0.2140
Lower CL Dif	-0.01756	Prob > t	0.1070
Confidence	0.95	Prob < t	0.8930

Difference	0.02050	t Ratio	1.538054
Std Err Dif	0.01333	DF	4
Upper CL Dif	0.05750	Prob > t	0.1989
Lower CL Dif	-0.01650	Prob > t	0.0994
Confidence	0.95	Prob < t	0.9006

Difference	0.00024	t Ratio	0.020385
Std Err Dif	0.01170	DF	4
Upper CL Dif	0.03272	Prob > t	0.9847
Lower CL Dif	-0.03224	Prob > t	0.4924
Confidence	0.95	Prob < t	0.5076

Oneway Analysis of log[B ppm] By Heat Treatment Glass ID=SB4VS2-05

Oneway Analysis of log[Si ppm] By Heat Treatment Glass ID=SB4VS2-03

Difference	0.01044	t Ratio	0.814741
Std Err Dif	0.01281	DF	4
Upper CL Dif	0.04602	Prob > t	0.4609
Lower CL Dif	-0.02514	Prob > t	0.2305
Confidence	0.95	Prob < t	0.7695

Difference	0.030538	t Ratio	3.320655
Std Err Dif	0.009196	DF	4
Upper CL Dif	0.056072	Prob > t	0.0294
Lower CL Dif	0.005005	Prob > t	0.0147
Confidence	0.95	Prob < t	0.9853

Oneway Analysis of log[Li ppm] By Heat Treatment Glass ID=SB4VS2-05

Difference	0.00636	t Ratio	0.440546
Std Err Dif	0.01443	DF	4
Jpper CL Dif	0.04641	Prob > t	0.6823
Lower CL Dif	-0.03370	Prob > t	0.3412
Confidence	0.95	Prob < t	0.6588

Difference 0.4308 0.00703 t Ratio Std Err Dif 0.01632 DF 4 0.05236 Prob > |t| 0.6888Upper CL Dif Lower CL Dif -0.03829 Prob > t 0.3444Confidence $0.95 \ Prob < t \ 0.6556$

Difference	-0.01416	t Ratio	-1.51791
Std Err Dif	0.00933	DF	4
Upper CL Dif	0.01174	Prob > t	0.2036
Lower CL Dif	-0.04006	Prob > t	0.8982
Confidence	0.95	Prob < t	0.1018

Difference	0.01857	t Ratio	1.235848
Std Err Dif	0.01503	DF	4
Upper CL Dif	0.06030	Prob > t	0.2841
Lower CL Dif	-0.02315	Prob > t	0.1421
Confidence	0.95	Prob < t	0.8579

Difference	0.01514	t Ratio	1.821929
Std Err Dif	0.00831	DF	4
Upper CL Dif	0.03821	Prob > t	0.1426
Lower CL Dif	-0.00793	Prob > t	0.0713
Confidence	0.95	Prob < t	0.9287

Difference	0.00855	t Ratio	0.564277
Std Err Dif	0.01515	DF	4
Upper CL Dif	0.05060	Prob > t	0.6027
Lower CL Dif	-0.03351	Prob > t	0.3014
Confidence	0.95	Prob < t	0.6986

Difference	0.01248	t Ratio	1.863764
Std Err Dif	0.00670	DF	4
Upper CL Dif	0.03107	Prob > t	0.1358
Lower CL Dif	-0.00611	Prob > t	0.0679
Confidence	0.95	Prob < t	0.9321

Difference	0.01590	t Ratio	1.023061
Std Err Dif	0.01555	DF	4
Upper CL Dif	0.05906	Prob > t	0.3641
Lower CL Dif	-0.02726	Prob > t	0.1821
Confidence	0.95	Prob < t	0.8179

Oneway Analysis of log[Li ppm] By Heat Treatment Glass ID=SB4VS2-07

Difference	0.01439	t Ratio	1.113337
Std Err Dif	0.01293	DF	4
Upper CL Dif	0.05028	Prob > t	0.3280
Lower CL Dif	-0.02150	Prob > t	0.1640
Confidence	0.95	Prob < t	0.8360

Oneway Analysis of log[Na ppm] By Heat Treatment Glass ID=SB4VS2-07

Difference	0.00193	t Ratio	0.127262
Std Err Dif	0.01518	DF	4
Upper CL Dif	0.04408	Prob > t	0.9049
Lower CL Dif	-0.04022	Prob > t	0.4524
Confidence	0.95	Prob < t	0.5476

Difference	0.01196	t Ratio	1.058549
Std Err Dif	0.01130	DF	4
Upper CL Dif	0.04334	Prob > t	0.3495
Lower CL Dif	-0.01942	Prob > t	0.1747
Confidence	0.95	Prob < t	0.8253

Difference	0.01272	t Ratio	1.093109
Std Err Dif	0.01164	DF	4
Upper CL Dif	0.04503	Prob > t	0.3358
Lower CL Dif	-0.01959	Prob > t	0.1679
Confidence	0.95	Prob < t	0.8321

Difference	0.01104	t Ratio	1.179564
Std Err Dif	0.00936	DF	4
Upper CL Dif	0.03701	Prob > t	0.3035
Lower CL Dif	-0.01494	Prob > t	0.1518
Confidence	0.95	Prob < t	0.8482

Difference	0.00158	t Ratio	0.194675
Std Err Dif	0.00810	DF	4
Upper CL Dif	0.02407	Prob > t	0.8551
Lower CL Dif	-0.02092	Prob > t	0.4276
Confidence	0.95	Prob < t	0.5724

Difference	-0.00078	t Ratio	-0.09577
Std Err Dif	0.00818	DF	4
Upper CL Dif	0.02193	Prob > t	0.9283
Lower CL Dif	-0.02350	Prob > t	0.5358
Confidence	0.95	Prob < t	0.4642

Oneway Analysis of log[B ppm] By Heat Treatment Glass ID=SB4VS2-09

Difference	0.01402	t Ratio	1.17557
Std Err Dif	0.01193	DF	4
Upper CL Dif	0.04715	Prob > t	0.3050
Lower CL Dif	-0.01910	Prob > t	0.1525
Confidence	0.95	Prob < t	0.8475

Difference	0.01255	t Ratio	1.573801
Std Err Dif	0.00798	DF	4
Upper CL Dif	0.03470	Prob > t	0.1906
Lower CL Dif	-0.00959	Prob > t	0.0953
Confidence	0.95	Prob < t	0.9047

Oneway Analysis of log[Na ppm] By Heat Treatment Glass ID=SB4VS2-09

Difference	0.01540	t Ratio	1.433141
Std Err Dif	0.01075	DF	4
Upper CL Dif	0.04524	Prob > t	0.2251
Lower CL Dif	-0.01444	Prob > t	0.1126
Confidence	0.95	Prob < t	0.8874

Oneway Analysis of log[Si ppm] By Heat Treatment Glass ID=SB4VS2-09

Difference	0.00599	t Ratio	0.731473
Std Err Dif	0.00819	DF	4
Upper CL Dif	0.02872	Prob > t	0.5050
Lower CL Dif	-0.01674	Prob > t	0.2525
Confidence	0.95	Prob < t	0.7475

Comp View=measured Variability Chart for log NL[Li(g/L)]

Comp View=measured Variability Chart for log NL[Na (g/L)]

Comp View=measured bc Variability Chart for log NL[B (g/L)]

Comp View=measured bc Variability Chart for log NL[Li(g/L)]

Comp View=measured bc Variability Chart for log NL[Si (g/L)]

Comp View=targeted Variability Chart for log NL[B (g/L)]

Comp View=targeted Variability Chart for log NL[Na (g/L)]

Comp View=targeted Variability Chart for log NL[Si (g/L)]

Exhibit B8. del Gp (ΔG_p) Predictions versus Common Logarithm Normalized Leachate (log NL[.]) for B, Li, Na, and Si Over All Compositional Views and Heat Treatments

Legend	Glass Standard or Heat Treatment-Compositional View
z 1	ARM
♦ 2	EA
• 3	measured bc-ccc
4	measured bc-quenched
• 5	measured-ccc
6	measured-quenched
• 7	targeted-ccc
8	targeted-quenched

Bivariate Fit of log NL[B (g/L)] By del Gp

Bivariate Fit of log NL[Li (g/L)] By del Gp

Legend		
		Glass Standard or Heat Treatment-Compositional View
z	1	ARM
♦	2	EA
•	3	measured bc-ccc
	4	measured bc-quenched
•	-5	measured-ccc
	6	measured-quenched
•	7	targeted-ccc
	8	targeted-quenched

Bivariate Fit of log NL[B (g/L)] By del Gp

Bivariate Fit of log NL[Na (g/L)] By del Gp

Bivariate Fit of log NL[Li (g/L)] By del Gp

Bivariate Fit of log NL[Si (g/L)] By del Gp

$\begin{array}{c} \mbox{Exhibit B10. del Gp} \ (\Delta G_p) \ \mbox{Predictions versus Common Logarithm Normalized} \\ \mbox{Leachate} \ (\log \ \mbox{NL[.]}) \ \mbox{for B, Li, Na, and Si} \\ \mbox{Over All Compositional Views for ccc Glasses} \end{array}$

Legend		
		Glass Standard or Heat Treatment-Compositional View
z	1	ARM
\$	2	EA
•	3	measured bc-ccc
	4	measured bc-quenched
•	5	measured-ccc
	6	measured-quenched
•	7	targeted-ccc
	8	targeted-quenched

Bivariate Fit of log NL[B (g/L)] By del Gp

Bivariate Fit of log NL[Si (g/L)] By del Gp

Distribution:

C.J. Bannochie, 773-42A A.B. Barnes, 999-W D.R. Best, 786-1A D.B. Burns, 786-5A B.A. Davis, 704-27S T.B. Edwards, 999-W H.H. Elder, 766-H T.L. Fellinger, 704-26S K.M. Fox, 999-W J.M. Gillam, 766-H J.C. Griffin, 773-A B.A. Hamm, 766-H C.C. Herman, 999-W J.F. Iaukea, 704-30S J.E. Marra, 773-A R.T. McNew, 704-27S T.A. Nance, 773-42A J.D. Newell, 999-W J.E. Occhipinti, 704-S D.K. Peeler, 999-W F.C. Raszewski, 999-W J.W. Ray, 704-S I.A. Reamer, 999-1W H.B. Shah, 766-H M.E. Stone, 999-W J. Stuberfield, 766-H M.F. Williams, 999-1W R.J. Workman, 999-1W A.L. Youchak, 999-W