Key Words: Saltstone, Concrete, Hydraulic Conductivity, Moisture Retention Characteristics

Retention: Permanent

HYDRAULIC AND PHYSICAL PROPERTIES OF SALTSTONE GROUTS AND VAULT CONCRETES

Kenneth Dixon John Harbour Mark Phifer

NOVEMBER 2008

Savannah River National Laboratory Savannah River Nuclear Solutions Aiken, SC 29808

DISCLAIMER

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U.S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied:

- 1. warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or
- 2. representation that such use or results of such use would not infringe privately owned rights; or
- 3. endorsement or recommendation of any specifically identified commercial product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.

Printed in the United States of America

Prepared For U.S. Department of Energy

SRNL-STI-2008-00421, REVISION 0

Key Words: Saltstone, Concrete, Hydraulic Conductivity, Moisture Retention Characteristics

Retention: Permanent

HYDRAULIC AND PHYSICAL PROPERTIES OF SALTSTONE GROUTS AND VAULT CONCRETES

NOVEMBER 2008

Savannah River National Laboratory Savannah River Nuclear Solutions Aiken, SC 29808

REVIEWS AND APPROVALS

Authors

K CD who	11/12/2008
Kenneth Dixon, Environmental Sciences and Biotechnology	Date
John Harbour, Process Science and Engineering	11/12/2008
John Harbour, Process Science and Engineering	Date
Mark Phifer, Environmental Sciences and Biotechnology	11/12/08
Wank I mioi, Environmental Sciences and Diotechnology	Date
V	
Design Check	
11/Man & James	11/17/2018
William E. Jones, Environmental Sciences and Biotechnology	Date
Approvals	
9	11/12/2008
Jack Mayer, Manager, Environmental Sciences and Biotechnology	Date
Boly 20	11/12/68
Bob Aylward, Manager, Environmental Sciences and Biotechnology	Date

SRNL-STI-2008-00421, REVISION 0

Leathe Lalnes Burns	11/17/08
Heather Burns, Project Manager, Environmental and Chemical Processing T	echnology Date
David a. Cambey Dave Crowley, Manager, Radiological Performance Assessment	/1/20/08 Date
Jeff Griffin, Manager, Environmental and Chemical Processing Technology	///2//08 Date
2 Heurnan	11/17/08
Jeffry Newman, 3116 Documentation Preparation Leut H. Koseuley	11/17/08
Kent Rosenberger, Lead, 3116 Support	Date

TABLE OF CONTENTS

LIST OF FIGURES	
LIST OF TABLES	
LIST OF ACRONYMS	
1.0 EXECUTIVE SUMMARY	1
2.0 INTRODUCTION	2
3.0 METHODS	
3.1 Saltstone Sample Preparation	4
3.1.1 DDA Saltstone Sample Preparation	4
3.1.2 ARP/MCU Saltstone Sample Preparation	4
3.1.3 SWPF Saltstone Sample Preparation	4
3.1.4 Saltstone Permeant Preparation	
3.2 concrete Sample Preparation	5
3.2.1 Vault 1/4 Concrete Preparation	5
3.2.2 Vault 2 Concrete Preparation	6
3.3 Hydraulic and Geotechnical Testing	
3.3.1 Saltstone Grout Hydraulic and Physical Property Testing	
3.3.2 Vault Concrete Hydraulic and Physical Property Testing	
3.4 Determination of van Genuchten Transport Parameters	
4.0 RESULTS	
4.1 Fresh Properties of the Saltstone mixes	
4.2 Heat of Hydration of the Saltstone mixes	
4.3 Compressive Strength Testing	
4.4 Saltstone and Vault Concrete Hydraulic and Physical Properties	
4.4.1 DDA Saltstone Hydraulic and Physical Properties	
4.4.2 ARP/MCU Saltstone Hydraulic and Physical Properties	
4.4.3 SWPF Saltstone Hydraulic and Physical Properties	
4.4.4 Vault 1/4 Concrete Hydraulic and Physical Properties	
4.4.5 Vault 2 Mix 1 Concrete Hydraulic and Physical Properties	
4.4.6 Vault 2 Mix 2 Concrete Hydraulic and Physical Properties	
4.5 Analysis of Moisture Retention Characteristics	
4.6 Recommended Hydraulic and Physical Properties	
5.0 SUMMARY	
6.0 REFERENCES	
APPENDIX A. Development of Saltstone Permeants	
APPENDIX B. Strength Reports	
APPENDIX C. MCT Data Sheets on Saltstone	
APPENDIX D. MCT Data Sheets on Vault Concretes	
APPENDIX E. Calculations to correct for salt precipitation	
APPENDIX F. Recommended Characteristic Curve Data	
APPENDIX G. Design Check Documentation	202

LIST OF FIGURES

Figure 1. Bivariate fit of simulant density as a function of measured weight percent solids	24
Figure 2. Normalized Heat (J/g of premix) from DDA, ARP/MCU, and SWPF saltstone at 0.0	
w/pm ratio.	24
Figure 3. Compressive strength as a function of curing period for DDA, ARP/MCU, and SW	PF
Saltstone.	25
Figure 4. Compressive strength as a function of curing period for Vault 1/4, Vault 2 Mix 1, as	
Vault 2 Mix 2.	
Figure 5. Moisture retention curves for the 28 day DDA saltstone samples.	
Figure 6. Moisture retention curves for the 90 day DDA saltstone samples.	
Figure 7. Moisture retention curves for the 28 day ARP/MCU saltstone samples	
Figure 8. Moisture retention curves for the 90 day ARP/MCU saltstone samples	
Figure 9. Moisture retention curves for the 28 day SWPF saltstone samples.	
Figure 10. Moisture retention curves for the 90 day SWPF saltstone samples.	
Figure 11. Moisture retention curves for the 28 day Vault 1/4 concrete samples.	
Figure 12. Moisture retention curves for the 28 day Vault 2 Mix 1 concrete samples	
Figure 13. Moisture retention curves for the 28 day Vault 2 Mix 2 concrete samples	
Figure 14. Characteristic Curves for the DDA Saltstone (using 28 and 90 day retention data).	
Figure 15. Characteristic Curves for the ARP/MCU Saltstone (using 28 and 90 day retention	
data)	
Figure 16. Characteristic Curves for the SWPF Saltstone (using 28 and 90 day retention data)	
Figure 17. Characteristic curves for MCU saltstone samples as determined by INL reported b	,
Dixon and Phifer (2007).	-
Figure 18. Characteristic Curves for the Vault 1/4 Concrete (based on 28 day minimum curin	
period).	
Figure 19. Characteristic Curves for the Vault 2 Mix 1 Concrete (based on 28 day minimum	
curing period).	. 33
Figure 20. Characteristic Curves for the Vault 2 Mix 2 Concrete (based on 28 day minimum	
curing period).	33
•••••• P•••••	
LIST OF TABLES	
Table 1. Saltstone Cementitious Materials (premix).	34
Table 2. Recipe for DDA Simulant used to Prepare Simulated Saltstone Grout Samples and the	
Permeant used for Hydraulic and Physical Testing.	
Table 3. Recipe for ARP/MCU Simulant used to Prepare Simulated Saltstone Grout Samples	
and the Permeant used for Hydraulic and Physical Testing.	
Table 4. Recipe for SWPF Simulant used to Prepare Simulated Saltstone Grout Samples and	
Permeant used for Hydraulic and Physical Testing.	
Table 5. Simulant and Permeant Properties	
Table 6. Saltstone Vault 1/4 Concrete Formulations.	
Table 7. Ingredients Used to Prepare the Vault 1/4 Concrete Samples.	
Table 8. Saltstone Vault 2, Mix 1 Concrete Formulation (670 lbs/cu yd Cementitious Material	
Class 3 Sulfate Resistant Concrete).	
Class 5 Surface Resistant Constolo).	. 50

SRNL-STI-2008-00421, REVISION 0 $\,$

Table 9. Sa	altstone Vault 2, Mix 2 Concrete Formulation (710 lbs/cu yd Cementitious Material,	,
Class	3 Sulfate Resistant Concrete).	39
Table 10.	Ingredients Used to Prepare the Vault 2 Mix 1 and Mix 2 Concrete Samples	40
Table 11.	Fresh Properties of the DDA, ARP/MCU, and SWPF Saltstone	41
Table 12.	Compressive Strength for the DDA Saltstone Grout (Cast 3/18/2008)	41
Table 13.	Compressive Strength for the ARP/MCU Saltstone Grout (Cast 3/31/2008)	41
Table 14.	Compressive Strength for the SWPF Saltstone Grout (Cast 4/22/2008).	41
Table 15.	Compressive Strength for the Vault 1/4 Concrete (Cast 5/05/2008)	42
Table 16.	Compressive Strength for the Vault 2 Mix 1 Concrete (Cast 3/25/2008)	42
Table 17.	Compressive Strength for the Vault 2 Mix 2 Concrete (Cast 6/24/2008)	42
	Hydraulic Properties of DDA Saltstone as Measured by MCT.	
Table 19.	Physical Properties of DDA Saltstone as Measured by MCT.	43
Table 20.	Hydraulic Properties of ARP/MCU Saltstone as Measured by MCT.	44
	Physical Properties of ARP/MCU Saltstone as Measured by MCT.	
	Hydraulic Properties of SWPF Saltstone as Measured by MCT.	
	Physical Properties of SWPF Saltstone as Measured by MCT.	
	Hydraulic Properties of Vault 1/4 Concrete as Measured by MCT	
	Physical Properties of Vault 1/4 Concrete as Measured by MCT.	
Table 26.	Hydraulic Properties of Vault 2 Mix 1 Concrete as Measured by MCT	47
Table 27.	Physical Properties of Vault 2 Mix 1 Concrete as Measured by MCT	47
	Hydraulic Properties of Vault 2 Mix 2 Concrete as Measured by MCT	
Table 29.	Physical Properties of Vault 2 Mix 2 Concrete as Measured by MCT	48
Table 30.	Summary Hydraulic Properties for Saltstone and Vault Concrete Samples	49
Table 31.	Summary Physical Properties for Saltstone and Vault Concrete Samples.	50
	Moisture Retention Data for DDA Saltstone as measured by MCT	
Table 33.	Moisture Retention Data for the ARP/MCU Saltstone as measured by MCT	51
	Moisture Retention Data for the SWPF Saltstone as measured by MCT	
Table 35.	Moisture Retention Data for Vault 1/4 Concrete as measured by MCT.	52
Table 36.	Moisture Retention Data for Vault 2 Mix 1 Concrete as measured by MCT	53
	Moisture Retention Data for Vault 2 Mix 2 Concrete as measured by MCT	
	Van Genuchten Transport Parameters.	
Table 39. l	Recommended Saltstone and Vault Concrete Hydraulic and Physical Parameter Value	ıes
		54

LIST OF ACRONYMS

AEA Air entraining admixture
ARP Actinide Removal Process
CSSX Caustic side solvent extraction

DDA Deliquification, Dissolution, and Adjustment

INL Idaho National Laboratory
ITP In-Tank Precipitation Facility

LLW Low Level Waste

MCT Mactec Engineering and Consulting, Inc.
MCU Modular Caustic Side Solvent Extraction Unit

PA Performance Assessment

RETC RETention Curve

SDF Saltstone Disposal Facility

SRNL Savannah River National Laboratory

SRS Savannah River Site

SWPF Salt Waste Processing Facility

USDA United States Department of Agriculture USDOE United States Department of Energy

w/pm water to premix ratio
WRA Water reducing admixture

WSRC Washington Savannah River Company

1.0 EXECUTIVE SUMMARY

The Saltstone Disposal Facility (SDF), located in the Z-Area of the Savannah River Site (SRS), is used for the disposal of low-level radioactive salt solution. The SDF currently contains two vaults: Vault 1 (6 cells) and Vault 4 (12 cells). Additional disposal cells are currently in the design phase. The individual cells of the saltstone facility are filled with saltstone. Saltstone is produced by mixing the low-level radioactive salt solution, with blast furnace slag, fly ash, and cement (dry premix) to form a dense, micro-porous, monolithic, low-level radioactive waste form. The saltstone is pumped into the disposal cells where it subsequently solidifies. Significant effort has been undertaken to accurately model the movement of water and contaminants through the facility. Key to this effort is an accurate understanding of the hydraulic and physical properties of the solidified saltstone. To date, limited testing has been conducted to characterize the saltstone.

The primary focus of this task was to estimate the hydraulic and physical properties of three types of saltstone and two vault concretes. The saltstone formulations included saltstone premix batched with 1) Deliquification, Dissolution, and Adjustment (DDA) salt simulant (w/pm 0.60), 2) Actinide Removal Process (ARP)/Modular Caustic Side Solvent Extraction Unit (MCU) salt simulant (w/pm 0.60), and 3) Salt Waste Processing Facility (SWPF) salt simulant (w/pm 0.60). The vault concrete formulations tested included the Vault 1/4 concrete and two variations of the Vault 2 concrete (Mix 1 and Mix 2). Wet properties measured for the saltstone formulations included yield stress, plastic viscosity, wet unit weight, bleed water volume, gel time, set time, and heat of hydration. Hydraulic and physical properties measured on the cured saltstone and concrete samples included saturated hydraulic conductivity, moisture retention, compressive strength, porosity, particle density, and dry bulk density. These properties were determined following a minimum 28 day curing period. Additional testing of the three saltstone formulations was conducted following a minimum 90 day curing period. The compressive strength of each saltstone and concrete material was measured at approximately 14, 28, 56, and 90 days.

Recommended hydraulic property values for each saltstone grout and the vault concretes are provided. The hydraulic properties provided for each material include the saturated hydraulic conductivity, dry bulk density, particle density, and porosity. In addition, water retention data are presented for each material along with the van Genuchten transport parameters as determined using the RETC code.

2.0 INTRODUCTION

The Saltstone Disposal Facility (SDF), located in the Z-Area of the Savannah River Site (SRS), is used for the disposal of low-level radioactive salt solution. The SDF currently contains two vaults: Vault 1 and Vault 4. Additional disposal cells are currently in the design phase. Vault 4 is approximately 200 feet wide, 600 feet in length, and 26 feet in height. Vault 4 is divided into 12 cells with each cell measuring about 100 feet by 100 feet (Phifer et al., 2006). Vault 1 is half the size of Vault 4 measuring approximately 100 feet wide by 600 feet long with 6 cells. The individual cells of the saltstone facility are filled with saltstone. Saltstone is produced by mixing low-level radioactive salt solution, with blast furnace slag, fly ash, and cement to form a dense, micro-porous, monolithic, low-level radioactive waste form. The saltstone material contains no coarse or fine aggregate and is pumped into the disposal cells where it subsequently solidifies.

SRS is currently in the process of revising the Performance Assessment (PA) for the SDF as required by DOE Order 435.1, Radioactive Waste Management. As part of this revision, a significant effort will be undertaken to accurately model the movement of water and contaminants through the SDF. Key to this effort is an accurate understanding of the hydraulic and physical properties of the specific saltstone formulations to be placed in the SDF.

Initial testing of the saltstone grout was conducted by Yu et al. (1993). This characterization work indicated that intact saltstone had a saturated intrinsic permeability of 5.3×10^{-9} darcies using a brine solution; and a saturated hydraulic conductivity relative to water of 5.19×10^{-12} cm/s (Yu et al., 1993). These results have not been corroborated by subsequent testing and are now thought to be biased due to potential precipitation of the brine solution within the saltstone samples.

Langton (1986) measured the saturated hydraulic conductivity of "Reference Saltstone" samples containing 42.5% salt solution and 57.5% (by mass) blended cement. Langton (1986) reported saturated hydraulic conductivity of this material to be 1.1×10^{-8} cm/sec for a sample cured for 60 days. Additionally, Langton (1986) reported the results of previous hydraulic testing on saltstone samples (made with varying amounts of salt solution) with results ranging from 3.0×10^{-9} cm/sec to $<1.0 \times 10^{-11}$ cm/sec.

More recently, Harbour et al. (2007a) estimated the saturated hydraulic conductivity of a MCU saltstone using a beam bending technique. Harbour et al. (2007a) estimated the hydraulic conductivity of the saltstone ranged from 1.4 to 3.4 x 10⁻⁹ cm/sec, which is about three orders of magnitude more permeable than reported by Yu et al. (1993). Furthermore, Harbour et al. (2007a) reported a porosity of 0.62 which is substantially greater than that reported by Yu et al. (1993).

Dixon and Phifer (2007) estimated the saturated hydraulic conductivity of a MCU saltstone using standard geotechnical testing methods (ASTM 5084, flexible wall permeameter). Dixon and Phifer (2007) estimated the saturated hydraulic conductivity of the MCU saltstone relative to two different permeating fluids: groundwater equilibrated with vault concrete simulant and saltstone

pore fluid simulant. The saturated hydraulic conductivity of the saltstone relative to the groundwater equilibrated with vault concrete simulant was estimated to be 1.5×10^{-8} cm/sec. The saturated hydraulic conductivity of the saltstone relative to the saltstone pore fluid simulant was estimated to be 5.3×10^{-9} cm/sec. The dry bulk density of the saltstone was estimated to range from 0.95 to 1.06 g/cm³ with an average of 0.99 g/cm³. The porosity was estimated to range from 0.578 to 0.613 with an average of 0.596.

The purpose of this task was to measure the hydraulic and physical properties of three saltstone grout formulations and two vault concrete formulations. The saltstone formulations include saltstone premix batched with 1) Deliquification, Dissolution, and Adjustment (DDA) salt simulant (w/pm 0.60), 2) Actinide Removal Process (ARP)/ Modular Caustic Side Solvent Extraction Unit (MCU) salt simulant (w/pm 0.60), and 3) Salt Waste Processing Facility (SWPF) salt simulant (w/pm 0.60). The vault concretes tested include the Vault 1/4 concrete and the Vault 2 concretes (Mix 1 and Mix 2). Wet properties measured for the saltstone grout formulations include yield stress, plastic viscosity, wet unit weight, bleed water volume, gel time, set time, and heat of hydration. Hydraulic and physical properties measured on the cured samples included saturated hydraulic conductivity, moisture retention, porosity, and dry bulk density. These properties were determined following a minimum 28 day curing period. Additional testing was conducted on the saltstone samples following a minimum 90 day curing period. The sections that follow discuss the methods used to test samples of the saltstone and vault concretes and the results of the testing.

3.0 METHODS

The purpose of this task was to measure the hydraulic and physical properties of three saltstone grout formulations and two vault concrete formulations. The saltstone formulations tested were the DDA, ARP/MCU, and the SWPF formulations. The vault concrete formulations tested were the Vault 1/4 concrete and two variations of the Vault 2 concrete. All samples were tested for saturated hydraulic conductivity, moisture retention characteristics, compressive strength, dry bulk density, particle density, and porosity. The following samples of each material were tested to determine the hydraulic and physical properties using standard ASTM methods (or equivalent):

- 3 samples of DDA saltstone following a minimum 28 day curing period (w/pm 0.60)
- 3 samples of DDA saltstone following a minimum 90 day curing period (w/pm 0.60)
- 3 samples of ARP/MCU saltstone following a minimum 28 day curing period (w/pm 0.60)
- 3 samples of ARP/MCU saltstone following a minimum 90 day curing period (w/pm 0.60)
- 3 samples of SWPF saltstone following a minimum 28 day curing period (w/pm 0.60)
- 3 samples of SWPF saltstone following a minimum 90 day curing period (w/pm 0.60)
- 3 samples of Vault 1/4 concrete following a minimum 28 day curing period
- 3 samples of Vault 2, Mix 1 concrete following a minimum 28 day curing period
- 3 samples of Vault 2, Mix 2 concrete following a minimum 28 day curing period

3.1 SALTSTONE SAMPLE PREPARATION

Samples of three saltstone formulations were prepared for compressive strength and hydraulic and physical property testing. The cementitious materials used in the premix for each of the saltstone grout formulations were identical and were comprised of Class F fly ash (45 wt%), Grade 100 blast furnace slag (45 wt%), and Type II Portland cement (10 wt%) with an asbatched water to premix ratio (w/pm) of 0.60 (Table 1). The cementitious materials were received in 5 gallon containers from the vendors during truck delivery of the bulk materials to SPF. The cementitious materials are therefore part of one of the batches actually used in production of saltstone. For each saltstone grout formulation, the cementitious materials were mixed with a salt simulant representative of three types of decontaminated salt solution to be processed by the saltstone facility. The recipes for the simulants are presented in Table 2 through Table 4 and the physical properties of the simulants are presented in Table 5.

Wet properties measured for the saltstone formulations included yield stress, plastic viscosity, wet unit weight, bleed water volume, gel time, set time, and heat of hydration. The methods of Harbour et al. (2005) were followed to determine yield stress, plastic viscosity, gel time, bleed water volume, and wet unit weight. Porosity and heat of hydration were determined following the method of Harbour et al. 2007b and 2007c, respectively.

3.1.1 DDA Saltstone Sample Preparation

Three large batches of DDA Saltstone were batched (~ 5 kg each) to provide a sufficient amount of grout for all of the testing. Seven test cylinders (2.8 x 6 inch) were filled for hydraulic testing. The mold samples were capped, sealed, and allowed to cure in the laboratory at ambient temperature for a minimum of 28 or 90 days prior to testing. Bleed liquid leaked from the hydraulic test cylinders during the initial curing period. Compressive strength samples were cast in triplicate in 2-in. cube molds per ASTM C 109. A number of smaller vials were filled for bleed water volume, set time, gel time, wet unit weight, and porosity measurements. One additional 3 x 6 inch cylinder was filled and sealed for use in K_d measurements (Kaplan, 2008).

3.1.2 ARP/MCU Saltstone Sample Preparation

Three large batches of ARP/MCU Saltstone were batched (~ 5 kg each) to provide a sufficient amount of grout for all of the testing. Seven test cylinders (2.8 x 6 inch) were filled for hydraulic testing. The mold samples were capped, sealed, and allowed to cure in the laboratory at ambient temperature for a minimum of 28 or 90 days prior to testing. Bleed liquid leaked from the hydraulic test cylinders during the initial curing period. Compressive strength samples were cast in triplicate in 2-in. cube molds per ASTM C 109. A number of smaller vials were filled for bleed water volume, set time, gel time, wet unit weight, and porosity measurements. One additional 3 x 6 inch cylinder was filled and sealed for use in K_d measurements (Kaplan, 2008).

3.1.3 SWPF Saltstone Sample Preparation

Three large batches of SWPF Saltstone were batched (~ 5 kg each) to provide a sufficient amount of grout for all of the testing. Seven test cylinders (2.8 x 6 inch) were filled for hydraulic testing. The mold samples were capped, sealed, and allowed to cure in the laboratory at ambient

temperature for a minimum of 28 or 90 days prior to testing. Bleed liquid leaked from the hydraulic test cylinders during the initial curing period. Compressive strength samples were cast in triplicate in 2-in. cube molds per ASTM C 109. A number of smaller vials were filled for bleed water volume, set time, gel time, wet unit weight, and porosity measurements. One additional 3 x 6 inch cylinder was filled and sealed for use in K_d measurements (Kaplan, 2008).

3.1.4 Saltstone Permeant Preparation

Permeants for each of the three saltstone batches were prepared as required for use by the offsite testing laboratory. Additionally, the permeants were used to saturate the samples prior to testing. Geochemical modeling was conducted on each simulant to assess the potential for chemical reactions between the simulants and grout that could impact the hydraulic and physical property testing (Appendix A). The results of the modeling were used to develop permeants essentially equivalent to the simulants except for the exclusion of the minor phosphate and aluminate constituents. Aluminate and phosphate ions are reactive constituents in the hydration reactions and the intent was to preclude additional reactions which would not be representative of the disposal process at the SDF. Sodium hydroxide was adjusted for each permeant in order to maintain similar ionic strength and pH. The recipes for the permeants are given in Table 2 through Table 4.

3.2 CONCRETE SAMPLE PREPARATION

Sample preparation and strength testing of the Vault 1/4 and Vault 2 concretes were performed by The Washington Group at the SRS Civil Engineering Test Laboratory, Bldg. 717 – 5N. The mix design for the Vault 1/4 concrete is presented in Table 6. The Vault 2 mix designs are presented in Table 8 and Table 9. The Vault 2 concretes differ only in the amount of cementitious material with Mix 1 containing 670 lbs/yd³ and Mix 2 containing 710 lbs/yd³.

3.2.1 Vault 1/4 Concrete Preparation

Samples of the Vault 1/4 concrete were prepared according to ASTM C 192 and cured in a constant temperature (73°F) curing room at 100 % relative humidity. The ingredients and suppliers for this mix are given in Table 7. A three cubic foot concrete lab mixer was used to prepare the concrete. Prior to weighing the concrete sand, three cubic feet of the material was mixed in a wheelbarrow and its moisture content was determined. The moisture content of the coarse aggregate was also determined. These values were used to correct the batch mix water. The concrete was mixed in 2 batches of approximately 1.25 cubic feet each. The two batches were then combined in a wheelbarrow and shovel mixed for uniformity.

The laboratory mix of the Vault 1/4 concrete was prepared by placing approximately half the sand and stone and a portion of the batch water into the mixer. The mixer was then activated and the other half of the sand and stone, air entraining admixture (Microair) and water reducing agent (322 N, see footnote to Table 7) were added and mixed for five minutes. This was followed by the addition of the blast furnace slag and Portland cement. Batch water was added as needed. These ingredients were mixed for an additional five minutes then allowed to rest for five minutes. A slump test was performed and this sample was returned to the mixer. The remaining

batch water was added and the batch was mixed for an additional three minutes. The mix was allowed to rest for three minutes. The slump was re-checked, the unit weight determined, entrained air checked, and mix temperature was obtained. Samples were then cast for compressive strength testing, and hydraulic and physical property testing. Samples were tested for compressive strength at 14, 28, 56, and 90 days.

Six by twelve inch cylinders, four by eight inch cylinders, and three by six inch cylinders were cast from this mix. These cylinders were cast per ASTM C 31. The larger samples were prepared for permeability measurements (ASTM D 5084). The four by eight inch samples were prepared for compressive strength testing (ASTM C 39) and the three by six inch samples were prepared for water retention measurements (ASTM D 2325, 3152).

3.2.2 Vault 2 Concrete Preparation

Samples of the Vault 2 Mix 1 and Mix 2 concretes were prepared according to ASTM C 192 and cured in a constant temperature (73°F) curing room at 100 % relative humidity. The ingredients for each of the Vault 2 mixes were the same with the only difference being the amount of cementitious materials in each mix. The ingredients and suppliers for these mixes are given in Table 10. The method of preparation for each mix was the same and is as follows. A three cubic foot concrete lab mixer was used to prepare the Vault 2 concretes. Prior to weighing the concrete sand, three cubic feet of the material was mixed in a wheelbarrow and its moisture content was determined. The moisture content of the coarse aggregate was also determined. These values were used to correct the batch mix water. The concrete was mixed in 2 batches of approximately 1.25 cubic feet each. The two batches were then combined in a wheelbarrow and shovel mixed for uniformity.

The laboratory mix of each Vault 2 concrete was prepared by placing approximately half the sand and stone and a portion of the batch water into the mixer. The mixer was then activated and the other half of the sand and stone, air entraining admixture (Grace Darex II), and water reducing agent (Grace WRDA 35) were added and mixed for five minutes. This was followed by the addition of the blast furnace slag, fly ash, silica fume, and Portland cement. Batch water was added as needed to increase the slump within the required range (1 to 3 inches prior to adding super plasticizer). These ingredients were mixed for five minutes then allowed to rest for five minutes. A super plasticizer (Grace ADVA 380) was then added as needed to reach the final design slump for the mix (6 to 8 inches). With each addition of super plasticizer, the ingredients were mixed for five minutes then allowed to rest for five minutes prior to checking slump. After each slump test, the sample was returned to the mixer and the batch was mixed for three minutes. Once the slump was within the required range, the batch was allowed to rest for three minutes. The slump was re-checked, the wet unit weight determined, entrained air checked, and mix temperature was obtained. Samples were then cast for compressive strength testing, and hydraulic and physical property testing. Samples were tested for compressive strength at 14, 28, 56, and 90 days.

Six by twelve inch cylinders, four by eight inch cylinders, and three by six inch cylinders were cast from each mix. These cylinders were cast per ASTM C 31. The larger samples were prepared for permeability measurements (ASTM D 5084). The four by eight inch samples were

prepared for compressive strength testing (ASTM C 39) and the three by six inch samples were prepared for water retention measurements (ASTM D 2325, 3152).

3.3 HYDRAULIC AND GEOTECHNICAL TESTING

The saltstone and vault concrete samples were submitted for testing per standard ASTM methods (or equivalent) to Mactec Engineering and Consulting, Inc. (MCT), Atlanta, GA. Samples of the saltstone formulations were tested following 28 and 90 day minimum curing periods. All concrete samples were cured for a minimum of 28 days. Sample preparation and shipment to MCT was staggered so that each material was tested as closely as possible to the 28 or 90 day curing period.

3.3.1 Saltstone Grout Hydraulic and Physical Property Testing

Due to the high water to premix ratio (0.60) and low degree of hydration of each of the three types of saltstone grout, it was assumed that the samples were at or nearly saturated when received by the laboratory. This assumption is consistent with previous testing of various types of saltstone (Harbour et al., 2007a and Dixon and Phifer, 2007). Nonetheless, each saltstone grout sample was immersed in a permeant similar in composition to the simulant used to batch the grout (Section 3.1.4) to ensure that the samples were saturated. Laboratory measurements showed no significant weight gain during the saturation process, which suggests that the samples were saturated when received for testing.

For each of the three types of saltstone grout tested, the properties of the excess pore fluid remaining in the cured samples following hydration are not well documented. During hydration, a certain percentage of the water is consumed in producing the calcium silicate hydrate. Approximately 8 percent of the water used in the batching process is consumed during hydration in saltstone mixes. However, the salt is not consumed and therefore, the pore solution is concentrated as a result of this loss of water to the calcium silicate hydrate. This hydration and concentration process changes the ratio of water to simulant which is used to translate the mass of evaporable water to a mass of simulant. The density of the pore solution also increases as a result of this process. The resultant density in the pore space was determined from a graph of weight percent solids as function of simulant density for each of the three saltstone formulations (Figure 1). For each of the three saltstone formulations, the estimated properties of the concentrated pore fluid are given in Table 5.

The saturated hydraulic conductivity of each saltstone grout formulation was determined using method ASTM D 5084 (Method F, Constant Volume-Falling Head) using a flexible wall permeameter (mercury head). The laboratory tested cylinders approximately 2.8 inch diameter by 2.5 inch long cut from the original mold samples for each saltstone formulation. Each sample was tested with a permeant similar in composition to the simulant used to batch the samples (Section 3.1.4). Saturated hydraulic conductivity is a function of the porous medium and the properties of both the pore fluid and test fluid. Typically, the pore fluid and the permeating test fluid are the same; however, for the saltstone grouts, the pore fluid (concentrated simulant) and the permeating test fluid were slightly different. Since the samples were back pressure saturated with permeant, the resulting pore fluid is a combination of the concentrated simulant (as

described earlier) and the permeant used to test the sample. The differences between the simulants used to batch each type of saltstone, the resulting concentrated simulant contained within the pore spaces of the samples following curing, and the permeants used to test the samples are not believed to be significant (Table 5). Since the pore volume of each saltstone sample is large (about 150 cm³) compared to the volume of permeant introduced to the sample during saturation and testing (< 1.0 cm³), it is assumed that saturated hydraulic conductivity is relative to the concentrated simulant contained within the pore space following curing. Hence, the saturated hydraulic conductivity of each saltstone sample was converted to permeability using the following equation based on the properties of the concentrated simulant:

$$k = \frac{K \mu}{\rho g}$$

k = intrinsic permeability (darcy)

K = saturated hydraulic conductivity relative to concentrated simulant (cm/sec)

 μ = dynamic viscosity of concentrated simulant (Table 5)

 ρ = density of concentrated simulant (Table 5)

 $g = gravity (981 cm/sec^2)$

The moisture retention characteristics, dry bulk density, and porosity of each of the three saltstone formulations were measured by the laboratory. Although assumed to be at or near saturation as received by the laboratory, each sample was immersed in the appropriate permeant to ensure saturation. The determination of each of the three aforementioned properties requires the removal of the evaporable water (at 105 °C) from each sample. As a result, each measurement was adjusted for the salt content of the pore fluid (which was precipitated during drying). Thus, the raw laboratory measurements presented in (Appendix C) differ from the final results presented in the tables of this report.

The moisture retention characteristics were measured using method ASTM D 2325 by pressure plate apparatus. This method provided the moisture retention properties of each grout sample to 15 bars. The laboratory tested 0.5 inch thick wafers cut from the original mold samples of each saltstone grout. Measurements were made at the following pressures: 0.1, 0.5, 1.0, 5.0, and 15.0 bars. For moisture retention analysis, the saturated samples were weighed to determine an initial weight. These samples were then subjected to increasing pressures in a pressure plate apparatus. Between each increase in pressure, the samples were weighed. Following the final pressure increase, the samples were weighed and then oven dried. The results from these measurements were subsequently adjusted for salt precipitation as illustrated in Appendix E. Porosity (initial moisture content) and dry bulk density were estimated for each water retention sample. These results were also adjusted for salt precipitation.

The laboratory determined dry bulk density and porosity of the three saltstone formulations using the samples from the saturated hydraulic conductivity testing. Dry bulk density was calculated by subtracting the evaporable water (from heating to 105 °C) and the known amount of salt present in the grout from the mass of the saturated saltstone. This mass was then divided by the measured volume of the saturated saltstone (obtained by measurement of the saturated saltstone) to obtain the dry bulk density. Example calculations are presented in Appendix E.

Porosity (η) of the saltstone grout samples was determined by subtracting the final dry weight of the sample from the saturated weight to yield the mass of evaporable water (from heating to 105 $^{\circ}$ C) in the sample. The amount of salt present in each grout was measured when batched and this mass (adjusted for sample weight) was added to the evaporable water mass to yield the simulant mass. The volume of simulant in the sample was then determined by dividing the simulant mass by the density of the concentrated salt simulant (Table 5). The volume of simulant contained within the sample was divided by the measured sample volume to obtain porosity. Example calculations are presented in Appendix E.

Particle density for each sample was calculated based on dry bulk density and porosity $[\rho_s = \rho_b/(1-\eta)]$.

3.3.2 Vault Concrete Hydraulic and Physical Property Testing

Three samples each of the Vault 1/4, Vault 2 Mix 1, and Vault 2 Mix 2 concretes were tested for saturated hydraulic conductivity, water retention characteristics, porosity, and bulk density. Standard 6 x 12 inch cylinders of each material were submitted for use in the saturated hydraulic conductivity, dry bulk density, and porosity testing. Standard 3 x 6 inch cylinders were submitted for use in the water retention testing. Smaller diameter samples were necessary for the water retention testing due to the size of the testing equipment.

Saturated hydraulic conductivity was determined using method ASTM D 5084 (Method F, Constant Volume- Falling Head) using a flexible wall permeameter (mercury head). The laboratory tested 6 inch diameter by 5 inch long cylinders cut from the original 6 x 12 inch mold samples. These samples were tested with tap water. The saturated hydraulic conductivity of each concrete sample was converted to permeability using the following equation based on the properties of tap water:

$$k = \frac{K \mu}{\rho g}$$

k = intrinsic permeability

K = saturated hydraulic conductivity relative to tap water

 μ = dynamic viscosity of concentrated simulant (1.002E-03 g/cm-sec)

 ρ = density of concentrated simulant (1.00 g/cm³)

 $g = gravity (981 cm/sec^2)$

The water retention characteristics of each concrete sample were determined using method ASTM D 2325 by pressure plate apparatus. This method provided the water retention properties of each concrete sample to 15 bars. Measurements were made at the following pressures: 0.1, 0.5, 1.0, 5.0, and 15.0 bars. The laboratory tested wafers 0.5 inches thick which were cut from the 3 x 6 inch cylinders.

Porosity was estimated using the samples from the saturated hydraulic conductivity testing and the water retention testing following ASTM C 642. The samples were oven-dried (105 °C) to determine the final dry weight at the conclusion of testing. The final dry weight was subtracted

from the saturated weight to yield the mass of water contained within each sample. Then, using the density of water, the porosity of the each sample was determined by dividing the volume of water contained within the sample by the total volume of the sample ($\phi = ((M_{sat} - M_{dry})/p_w) / Vol)$). The dry bulk density of the concrete samples were determined by dividing the dry weight of the sample by the measured volume. Dry bulk density was estimated using both the samples from the saturated hydraulic conductivity testing and from the water retention testing. Particle density for each sample was calculated based on dry bulk density and porosity $[\rho_s = \rho_b/(1-\eta)]$.

3.4 DETERMINATION OF VAN GENUCHTEN TRANSPORT PARAMETERS

Direct measurement of the unsaturated hydraulic conductivity of large numbers of samples of cementitious materials is time consuming and cost prohibitive. An alternative to direct measurement is the use of theoretical methods to predict the unsaturated hydraulic conductivity based upon measured moisture retention data. These methods are generally based on pore-size distribution models, and have been shown to perform reasonably well for coarse textured soils and other porous media having relatively narrow pore-size distributions (USDA, 1998). Savage and Janssen (1997) compared measured drainage from concrete samples with predictive models produced from characteristic curves developed from van Genuchten curve fitting (i.e., RETC). They concluded that the van Genuchten method of predicting unsaturated hydraulic conductivity from moisture retention data was applicable to Portland cement concrete. This indicates that predictive models based on moisture retention data provide the most viable means of characterizing the hydraulic properties of large numbers of samples of cementitious materials. Therefore, this method was chosen to predict the unsaturated hydraulic conductivity of the saltstone grouts and the vault concrete samples based upon the measured moisture retention properties.

RETC (RETention Curve) (USDA, 1998), a U.S. Salinity Laboratory computer program designed for analyzing the hydraulic properties of unsaturated soils, was used to fit the measured moisture retention data for the saltstone and vault concrete samples. The program's curve fitting is based on van Genuchten's equation for soil moisture content as a function of pressure

$$\theta(h) = \theta_r + \frac{\theta_s - \theta_r}{\left[1 + (\alpha h)^n\right]^m} \qquad h \le 0$$

$$\theta(h) = \theta_s \qquad h > 0$$

where $\theta(h)$ is moisture content at the pressure head h, θ_r is residual moisture content, θ_s is the saturated moisture content, h is pressure head, α is a constant related to the inverse of the airentry pressure, and n is a measure of the pore-size distribution. The constraint m = 1 - 1/n was used as suggested by van Genuchten (van Genuchten, 1980; van Genuchten et al., 1991).

The generated moisture retention curves were based on moisture retention data only; no unsaturated hydraulic conductivity data were available for the samples. RETC's (USDA, 1998)

van Genuchten m = 1 - 1/n retention curve model was used to estimate curve fitting parameters $(\theta_r, \theta_s, \alpha, n)$ for each sample.

The curve fitting parameters $(\theta_r, \theta_s, \alpha, n)$ from RETC (USDA, 1998) were used to calculate the effective saturation (or reduced water content), S_e , at incremental pressure heads according to

$$S_e = \frac{S - S_r}{1 - S_r} = \frac{1}{\left[1 + (\alpha h)^n\right]^m}$$

where S_r denotes residual saturation. Using S_e , the relative hydraulic conductivity was calculated at incremental pressure heads using the Mualem-van Genuchten type function

$$K = S_e^L \left[1 - \left(1 - S_e^{1/m} \right)^m \right]^2$$
, where *L* is an empirical pore-connectivity parameter and assumed to be 0.5.

Saturation (S) was calculated at various pressure heads according to

$$S = S_r + \left(\frac{1 - S_r}{\left[1 + (\alpha h)^n\right]^m}\right)$$

where residual saturation, S_r , is equal to θ_r/θ_s (the residual moisture content divided by the saturated moisture content).

4.0 RESULTS

Samples of three saltstone grout formulations and two vault concrete formulations were tested to estimate hydraulic conductivity, moisture retention characteristics, porosity, and bulk density using standard ASTM methods (or equivalent). The saltstone formulations include: 1) DDA (w/pm 0.60), 2) ARP/MCU (w/pm 0.60), and 3) SWPF (w/pm 0.60). The vault concretes tested include the Vault 1/4 concrete and two variations of the Vault 2 concrete (Mix 1 and Mix 2). For saturated hydraulic conductivity, each saltstone grout sample was tested using a permeant similar in composition to the simulant used to batch the grout. The vault concrete samples were tested with tap water.

4.1 FRESH PROPERTIES OF THE SALTSTONE MIXES

The fresh properties of the three saltstone mixes were measured as part of this task and the results are summarized in Table 11. The results are in good agreement with previous measurements of these properties for the three mixes. The presence of bleed water in all of these samples reduces the actual water to premix (w/pm) ratio for these mixes from the as-batched 0.60 w/pm to 0.55 for the DDA mix and 0.58 for both the SWPF and MCU mixes. The DDA mixes have a 2 day set time compared to the 1 day set time for MCU and SWPF mixes.

4.2 HEAT OF HYDRATION OF THE SALTSTONE MIXES

The hydration reactions of the cement, slag, and fly ash generate heat (exothermic) in the process of producing the calcium silicate hydrates. The time dependence of the heat release was measured for the three saltstone mixes and these curves correspond to the development of the cured state of the grouts. Figure 2 reveals that hydration occurs over many days and that the SWPF mixes generate the most heat per gram of premix while the DDA and MCU mixes produce roughly the same amount of heat per gram of premix.

4.3 COMPRESSIVE STRENGTH TESTING

Mold samples of each material type were tested for compressive strength at 14, 28, 56, and 90 days by The Washington Group at the SRS Civil Engineering Test Laboratory, Bldg. 717 - 5N. The results of this testing are presented in Table 12 through Table 17. The detailed compressive strength test reports are presented in Appendix B. Compressive strength testing is of interest because an increase in strength over time for a specific material maybe associated with a decrease in hydraulic conductivity. Thus, a substantial increase in compressive strength for a specific material may be used as an indicator that additional hydraulic testing should be conducted to determine if the saturated hydraulic conductivity of the material has decreased.

Figure 3 shows the compressive strength results for the three saltstone materials. An increase in strength is observed for each material type with the SWPF saltstone exhibiting the greatest gain. The average compressive strength of the DDA saltstone at 28 and 90 days was 917 and 1023 psig, respectively. This represents approximately a 12 percent increase in compressive strength over the curing period. The average compressive strength of the ARP/MCU saltstone at 28 and 90 days was 1010 and 1213 psig, respectively. This represents approximately a 20 percent increase in compressive strength over the curing period. The average compressive strength of the SWPF saltstone at 28 and 90 days was 1213 and 1467 psig, respectively. This represents

approximately a 21 percent increase in compressive strength over the curing period. Based on the development of compressive strength between 28 and 90 days for each of the saltstone formulations, it was decided to test the 90 day samples of each material for hydraulic properties.

Figure 4 shows the compressive strength results for the Vault 1/4 and the Vault 2 concrete formulations. An increase in strength is noted for each material between 28 and 90 days. The average compressive strength of the Vault 1/4 concrete at 28 and 90 days was 8725 and 9430 psig, respectively. This represents approximately an 8 percent increase in compressive strength over the curing period. The average compressive strength of the Vault 2 Mix 1 concrete at 28 and 90 days was 7430 and 9285 psig, respectively. This represents approximately a 25 percent increase in compressive strength over the curing period. The strength of the mix easily exceeded the design strength of 5000 psig at 28 days and developed an additional 1855 psig of compressive strength between 28 and 90 days. The average compressive strength of the Vault 2 Mix 2 concrete at 28 and 90 days was 8255 and 10155 psig, respectively. This represents approximately an 19 percent increase in compressive strength over the curing period.

4.4 SALTSTONE AND VAULT CONCRETE HYDRAULIC AND PHYSICAL PROPERTIES

MCT estimated the hydraulic and physical properties of the saltstone and vault concrete samples using ASTM methods (or equivalent) following a minimum 28 or 90 day curing period. The supporting detailed test reports produced by MCT for the saltstone samples are provided in Appendix C, and the reports detailing the vault concrete results are included in Appendix D.

4.4.1 DDA Saltstone Hydraulic and Physical Properties

Six, 2.8 inch diameter samples of DDA saltstone were tested by MCT to estimate the saturated hydraulic conductivity, water retention characteristics, dry bulk density, and porosity. Three samples each were tested following a minimum 28 and 90 day curing period. The saturated hydraulic conductivity of the 28 day DDA saltstone ranged from 5.9 x 10⁻¹⁰ to 1.4 x 10⁻⁸ cm/sec, with a logarithmic average of 2.5 x 10⁻⁹ cm/sec (Table 18). The saturated hydraulic conductivity of the 90 day DDA saltstone ranged from 7.2 x 10⁻¹¹ to 1.1 x 10⁻¹⁰ cm/sec, with a logarithmic average of 9.6 x 10⁻¹¹ cm/sec (Table 18). The saturated hydraulic conductivity results are assumed to be relative to the concentrated DDA simulant contained with the pore space of the samples. Hence, the saturated hydraulic conductivity results were converted to intrinsic permeability based on the properties of the concentrated DDA simulant as described in Section 3.3.1. The intrinsic permeability of the 28 day DDA saltstone ranged from 7.1 x 10⁻⁷ to 1.7 x 10⁻⁵ darcy, with a logarithmic average of 3.1 x 10⁻⁶ darcy (Table 18). The intrinsic permeability of the 90 day DDA saltstone ranged from 8.7 x 10⁻⁸ to 1.3 x 10⁻⁷ darcy, with an logarithmic average of 1.1 x 10⁻⁷ darcy (Table 18). These results are summarized in Table 30.

The moisture retention properties of the DDA saltstone were also determined by MCT and are presented in Table 32. These results are adjusted for salt precipitation as described in Section 3.3.1. As stated earlier, the samples were considered to be saturated with the DDA simulant used to batch the saltstone samples. MCT tested each DDA saltstone sample at pressures ranging from $102 \text{ cm H}_2\text{O}$ (0.1 bars) to $15,296 \text{ cm H}_2\text{O}$ (15 bars), Table 32. MCT tested wafers approximately 2.8 inches in diameter and ½ inch thick from each sample using a pressure plate

apparatus. Moisture retention curves were prepared for both the 28 day and 90 day wafers taken from each sample as shown in Figure 5 and Figure 6, respectively.

Dry bulk density and porosity were measured on the samples used in the saturated hydraulic conductivity testing and on the samples used in the water retention testing (Table 19 and Table 32). After adjusting for salt precipitation, the dry bulk density of the 28 day DDA saltstone ranged from 1.04 to 1.07 g/cm³ with an arithmetic average of 1.05 g/cm³. The dry bulk density of the 90 day DDA saltstone ranged from 1.04 to 1.08 g/cm³ with an arithmetic average of 1.06 g/cm³. The porosity of the 28 day DDA saltstone ranged from 0.54 to 0.56 with an arithmetic average of 0.56. The porosity of the 90 day DDA saltstone ranged from 0.55 to 0.57 with an arithmetic average of 0.55. The high total porosity and low bulk density observed for the DDA saltstone samples may be attributed to the high water to cementitious material ratio (w/pm = 0.6) and low degree of cementitious material reaction. The particle density of the DDA saltstone was calculated based on the results from the dry bulk density and porosity measurements. The particle density of the 28 day DDA saltstone ranged from 2.32 to 2.43 g/cm³ with an arithmetic average of 2.37 g/cm³. The particle density of the 90 day DDA saltstone ranged from 2.33 to 2.48 g/cm³ with an arithmetic average of 2.37 g/cm³. The dry bulk density, porosity, and particle density results are summarized in Table 31.

4.4.2 ARP/MCU Saltstone Hydraulic and Physical Properties

Six, 2.8 inch diameter samples of ARP/MCU saltstone were tested by MCT to estimate the saturated hydraulic conductivity, water retention characteristics, dry bulk density, and porosity. Three samples each were tested following a minimum 28 and 90 day curing period. The saturated hydraulic conductivity of the 28 day ARP/MCU saltstone ranged from 2.7 x 10⁻¹⁰ to 5.4 x 10⁻⁹ cm/sec, with a logarithmic average of 2.6 x 10⁻⁹ cm/sec (Table 20). The saturated hydraulic conductivity of the 90 day ARP/MCU saltstone ranged from 6.4 x 10⁻¹⁰ to 1.1 x 10⁻⁹ cm/sec, with a logarithmic average of 8.5 x 10⁻¹⁰ cm/sec (Table 20). The saturated hydraulic conductivity results are assumed to be relative to the concentrated ARP/MCU simulant contained with the pore space of the samples. Hence, the saturated hydraulic conductivity results were converted to intrinsic permeability based on the properties of the concentrated ARP/MCU simulant as described in Section 3.3.1. The intrinsic permeability of the 28 day ARP/MCU saltstone ranged from 4.9 x 10⁻⁷ to 9.8 x 10⁻⁶ darcy, with a logarithmic average of 2.6 x 10⁻⁶ darcy (Table 20). The intrinsic permeability of the 90 day ARP/MCU saltstone ranged from 1.2 x 10⁻⁶ to 2.0 x 10⁻⁶ darcy, with a logarithmic average of 1.6 x 10⁻⁶ darcy (Table 20). These results are summarized in Table 30.

The moisture retention properties of the ARP/MCU saltstone were also determined by MCT and are presented in Table 33. These results are adjusted for salt precipitation as described in Section 3.3.1. As stated earlier, the samples were considered to be saturated with the ARP/MCU simulant used to batch the saltstone samples. MCT tested each ARP/MCU saltstone sample at pressures ranging from 102 cm H₂O (0.1 bars) to 15,296 cm H₂O (15 bars), Table 33. MCT tested wafers approximately 2.8 inches in diameter and ½ inch thick from each sample using a pressure plate apparatus. Moisture retention curves were prepared for both the 28 day and 90 day wafers taken from each sample as shown in Figure 7 and Figure 8, respectively.

Dry bulk density and porosity were measured on the samples used in the saturated hydraulic conductivity testing and on the samples used in the water retention testing (Table 21 and Table 33). After adjusting for salt precipitation, the dry bulk density of the 28 day ARP/MCU saltstone ranged from 0.98 to 0.99 g/cm³ with an arithmetic average of 0.98 g/cm³. The dry bulk density of the 90 day ARP/MCU saltstone ranged from 0.95 to 1.01 g/cm³ with an arithmetic average of 0.97 g/cm³. The porosity of the 28 day ARP/MCU saltstone ranged from 0.58 to 0.59 with an arithmetic average of 0.58. The porosity of the 90 day ARP/MCU saltstone ranged from 0.58 to 0.61 with an arithmetic average of 0.59. The high total porosity and low bulk density observed for the ARP/MCU saltstone samples may be attributed to the high water to cementitious material ratio (w/pm = 0.6) and low degree of cementitious material reaction. The particle density of the ARP/MCU saltstone was calculated based on the results from the dry bulk density and porosity measurements. The particle density of the 28 day ARP/MCU saltstone ranged from 2.30 to 2.41 g/cm³ with an arithmetic average of 2.35 g/cm³. The particle density of the 90 day ARP/MCU saltstone ranged from 2.30 to 2.49 g/cm³ with an arithmetic average of 2.38 g/cm³. The dry bulk density, porosity, and particle density results are summarized in Table 31.

4.4.3 SWPF Saltstone Hydraulic and Physical Properties

Six, 2.8 inch diameter samples of SWPF saltstone were tested by MCT to estimate the saturated hydraulic conductivity, water retention characteristics, dry bulk density, and porosity. Three samples each were tested following a minimum 28 and 90 day curing period. The saturated hydraulic conductivity of the 28 day SWPF saltstone ranged from 2.0 x 10⁻⁹ to 3.4 x 10⁻⁸ cm/sec, with a logarithmic average of 9.3 x 10⁻⁹ cm/sec (Table 22). The saturated hydraulic conductivity of the 90 day SWPF saltstone ranged from 1.2 x 10⁻⁹ to 8.8 x 10⁻⁸ cm/sec, with a logarithmic average of 6.0 x 10⁻⁹ cm/sec (Table 22). Of the three samples of 90 day SWPF saltstone tested for saturated hydraulic conductivity, two were slightly more than 10⁻⁹ cm/sec and the third was almost 10⁻⁷ cm/sec. The saturated hydraulic conductivity of the most permeable sample was almost two orders of magnitude greater than the other two samples whereas the difference between the minimum and maximum saturated hydraulic conductivity values for the 90 day DDA and ARP/MCU samples was less than a factor of two. Additionally, MCT reported that a prolonged power failure complicated testing of the most permeable 90 day SWPF sample. Thus, this sample may be an outlier. If this sample is excluded from the data set, the logarithmically averaged saturated hydraulic conductivity of the 90 day SWPF is 1.5 x 10⁻⁹ cm/sec.

The saturated hydraulic conductivity results are assumed to be relative to the concentrated SWPF simulant contained with the pore space of the samples. Hence, the saturated hydraulic conductivity results were converted to intrinsic permeability based on the properties of the concentrated SWPF simulant as described in Section 3.3.1. The intrinsic permeability of the 28 day SWPF saltstone ranged from 4.0 x 10⁻⁶ to 6.8 x 10⁻⁵ darcy, with a logarithmic average of 1.9 x 10⁻⁵ darcy (Table 22). The intrinsic permeability of the 90 day SWPF saltstone ranged from 2.4 x 10⁻⁶ to 1.8 x 10⁻⁴ darcy, with a logarithmic average of 1.2 x 10⁻⁵ darcy (Table 22). If the potential outlier is excluded, the logarithmically averaged intrinsic permeability of the 90 day SWPF saltstone is 3.1 x 10⁻⁶ darcy. These results are summarized in Table 30.

The moisture retention properties of the SWPF saltstone were also determined by MCT and are presented in Table 34. These results are adjusted for salt precipitation as described in Section

3.3.1. As stated earlier, the samples were considered to be saturated with the SWPF simulant used to batch the saltstone samples. MCT tested each SWPF saltstone sample at pressures ranging from 102 cm H_2O (0.1 bars) to 15,296 cm H_2O (15 bars), Table 34. MCT tested wafers approximately 2.8 inches in diameter and ½ inch thick from each sample using a pressure plate apparatus. Moisture retention curves were prepared for both the 28 day and 90 day wafers taken from each sample as shown in Figure 9 and Figure 10, respectively.

Dry bulk density and porosity were measured on the samples used in the saturated hydraulic conductivity testing and on the samples used in the water retention testing (Table 23 and Table 34). After adjusting for salt precipitation, the dry bulk density of the 28 day SWPF saltstone ranged from 1.00 to 1.05 g/cm³ with an arithmetic average of 1.03 g/cm³. The dry bulk density of the 90 day SWPF saltstone ranged from 1.00 to 1.03 g/cm³ with an arithmetic average of 1.01 g/cm³. The porosity of the 28 day SWPF saltstone ranged from 0.56 to 0.60 with an arithmetic average of 0.58. The porosity of the 90 day SWPF saltstone ranged from 0.57 to 0.59 with an arithmetic average of 0.59. The high total porosity and low bulk density observed for the SWPF saltstone samples may be attributed to the high water to cementitious material ratio (w/pm = 0.6) and low degree of cementitious material reaction. The particle density of the SWPF saltstone was calculated based on the results from the dry bulk density and porosity measurements. The particle density of the 28 day SWPF saltstone ranged from 2.39 to 2.53 g/cm³ with an arithmetic average of 2.44 g/cm³. The particle density of the 90 day SWPF saltstone ranged from 2.35 to 2.53 g/cm³ with an arithmetic average of 2.42 g/cm³. The dry bulk density, porosity, and particle density results are summarized in Table 31.

4.4.4 Vault 1/4 Concrete Hydraulic and Physical Properties

Three, 6 inch diameter samples of the Vault 1/4 concrete were tested by MCT to estimate the saturated hydraulic conductivity, dry bulk density, and porosity following a minimum 28 day curing period. The saturated hydraulic conductivity of the 28 day Vault 1/4 concrete ranged from 1.1 x 10⁻¹⁰ to 2.1 x 10⁻⁹ cm/sec, with a logarithmic average of 3.1 x 10⁻¹⁰ cm/sec (Table 24). The saturated hydraulic conductivity results are relative to tap water. The saturated hydraulic conductivity results were converted to intrinsic permeability based on the properties of tap water as described in Section 3.3.2. The intrinsic permeability of the 28 day Vault 1/4 concrete ranged from 1.1 x 10⁻⁸ to 2.2 x 10⁻⁷ darcy, with a logarithmic average of 3.2 x 10⁻⁸ darcy (Table 24). These results are summarized in Table 30.

The moisture retention properties of the Vault 1/4 concrete were determined by MCT using three inch diameter samples and are presented in Table 35. MCT tested each Vault 1/4 concrete sample at pressures ranging from 102 cm H_2O (0.1 bars) to 15,296 cm H_2O (15 bars). MCT tested wafers approximately 3 inches in diameter and $\frac{1}{2}$ inch thick from each sample using a pressure plate apparatus. Moisture retention curves were prepared for the wafers taken from each sample, Figure 11.

Dry bulk density and porosity were measured on the samples used in the saturated hydraulic conductivity testing and on the samples used in the water retention testing (Table 25 and Table 35). The dry bulk density of the 28 day Vault 1/4 concrete ranged from 2.15 to 2.31 g/cm³ with an arithmetic average of 2.24 g/cm³. The porosity of the 28 day Vault 1/4 concrete ranged from

0.10 to 0.12 with an arithmetic average of 0.11. The particle density of the Vault 1/4 concrete was calculated based on the results from the dry bulk density and porosity measurements. The particle density of the 28 day Vault 1/4 concrete ranged from 2.44 to 2.58 g/cm³ with an arithmetic average of 2.53 g/cm³. The dry bulk density, porosity, and particle density results are summarized in Table 31.

4.4.5 Vault 2 Mix 1 Concrete Hydraulic and Physical Properties

Three, 6 inch diameter samples of the Vault 2 Mix 1 concrete were tested by MCT to estimate the saturated hydraulic conductivity, dry bulk density, and porosity following a minimum 28 day curing period. The saturated hydraulic conductivity of the 28 day Vault 2 Mix 1 concrete ranged from 6.0 x 10⁻¹¹ to 2.8 x 10⁻¹⁰ cm/sec, with a logarithmic average of 1.1 x 10⁻¹⁰ cm/sec (Table 26). The saturated hydraulic conductivity results are relative to tap water. The saturated hydraulic conductivity results were converted to intrinsic permeability based on the properties of tap water as described in Section 3.3.2. The intrinsic permeability of the 28 day Vault 2 Mix 1 concrete ranged from 6.2 x 10⁻⁹ to 2.9 x 10⁻⁸ darcy, with a logarithmic average of 1.1 x 10⁻⁸ darcy (Table 26). These results are summarized in Table 30.

The moisture retention properties of the Vault 2 Mix 1 concrete were determined by MCT using three inch diameter samples and are presented in Table 36. MCT tested each Vault 2 Mix 1 concrete sample at pressures ranging from 102 cm H_2O (0.1 bars) to 15,296 cm H_2O (15 bars). MCT tested wafers approximately 3 inches in diameter and ½ inch thick from each sample using a pressure plate apparatus. Moisture retention curves were prepared for the wafers taken from each sample, Figure 12.

Dry bulk density and porosity were measured on the samples used in the saturated hydraulic conductivity testing and on the samples used in the water retention testing (Table 27 and Table 36). The dry bulk density of the 28 day Vault 2 Mix 1 concrete ranged from 2.16 to 2.21 g/cm³ with an arithmetic average of 2.19 g/cm³. The porosity of the 28 day Vault 2 Mix 1 concrete ranged from 0.08 to 0.13 with an arithmetic average of 0.12. The particle density of the Vault 2 Mix 1 concrete was calculated based on the results from the dry bulk density and porosity measurements. The particle density of the 28 day Vault 2 Mix 1 concrete ranged from 2.39 to 2.50 g/cm³ with an arithmetic average of 2.48 g/cm³. The dry bulk density, porosity, and particle density results are summarized in Table 31.

4.4.6 Vault 2 Mix 2 Concrete Hydraulic and Physical Properties

Three, 6 inch diameter samples of the Vault 2 Mix 2 concrete were tested by MCT to estimate the saturated hydraulic conductivity, dry bulk density, and porosity following a minimum 28 day curing period. The saturated hydraulic conductivity of the 28 day Vault 2 Mix 2 concrete ranged from 5.0 x 10⁻¹¹ to 3.2 x 10⁻¹⁰ cm/sec, with a logarithmic average of 9.3 x 10⁻¹¹ cm/sec (Table 28). The saturated hydraulic conductivity results are relative to tap water. The saturated hydraulic conductivity results were converted to intrinsic permeability based on the properties of tap water as described in Section 3.3.2. The intrinsic permeability of the 28 day Vault 2 Mix 2 concrete ranged from 5.2 x 10⁻⁹ to 3.3 x 10⁻⁸ darcy, with a logarithmic average of 9.6 x 10⁻⁹ darcy (Table 28). These results are summarized in Table 30.

The moisture retention properties of the Vault 2 Mix 2 concrete were determined by MCT using three inch diameter samples and are presented in Table 37. MCT tested each Vault 2 Mix 2 concrete sample at pressures ranging from 102 cm H₂O (0.1 bars) to 15,296 cm H₂O (15 bars). MCT tested wafers approximately 3 inches in diameter and ½ inch thick from each sample using a pressure plate apparatus. Moisture retention curves were prepared for the wafers taken from each sample, Figure 13.

Dry bulk density and porosity were measured on the samples used in the saturated hydraulic conductivity testing and on the samples used in the water retention testing (Table 29 and Table 36). The dry bulk density of the 28 day Vault 2 Mix 2 concrete ranged from 2.16 to 2.26 g/cm³ with an arithmetic average of 2.22 g/cm³. The porosity of the 28 day Vault 2 Mix 2 concrete ranged from 0.09 to 0.14 with an arithmetic average of 0.11. The particle density of the Vault 2 Mix 2 concrete was calculated based on the results from the dry bulk density and porosity measurements. The particle density of the 28 day Vault 2 Mix 2 concrete ranged from 2.43 to 2.55 g/cm³ with an arithmetic average of 2.50 g/cm³. The dry bulk density, porosity, and particle density results are summarized in Table 31.

4.5 ANALYSIS OF MOISTURE RETENTION CHARACTERISTICS

The measured moisture retention data for the three saltstone formulations, the Vault 1/4 concrete, and the two Vault 2 concretes (Mix 1 and Mix 2) as determined by MCT were analyzed to determine the van Genuchten transport parameters and the relative hydraulic conductivity function. For the saltstone materials, the 90 day moisture retention data was used for the analysis. Measured moisture retention data was available for three samples of each material. These data were averaged to produce a single data set for each of the three types of saltstone tested. Initially, the moisture retention data were analyzed using the RETC model (USDA, 1998). However, it was not possible to obtain a good fit of the data using RETC. Thus, a visual curve matching procedure was employed in a spreadsheet where the curve fitting parameters of the van Genuchten model (α and n) were manipulated to obtain an acceptable fit of the moisture retention data. The residual and saturated moisture content (θ_r and θ_s) used to fit each set of data was loosely constrained by the measured minimum and maximum porosities for each material. It was found that an acceptable fit could be obtained by fixing α for each material to a value of 0.15. The curve fitting parameter, α , represents the inverse of the air entry pressure and given the similarity of the three saltstone materials would not be expected to vary significantly. For each saltstone material, the standard Mualem relationship between n and m (i.e., m = 1 - 1/n) was used. The resulting characteristic curves are presented in Figure 14 through Figure 16 and the transport parameters are given in Table 38. The results for all three types of saltstone are similar to those reported by Dixon and Phifer (2007).

Previously, Idaho National Laboratory (INL) tested samples of MCU saltstone for moisture retention characteristics (Dixon and Phifer, 2007). INL measured the moisture retention characteristics of the saltstone samples by testing sub-cores of the saltstone over a range of pressures from 0 to approximately 56,086 cm of H₂O (~55 bars). This is a significantly wider range than Mactec tested the current saltstone samples. A combination of methods was used to establish the moisture retention curve including hanging column analysis (for the wet end of the

curve), pressure plate apparatus (for the middle portion of the curve), and chilled mirror analysis (for the dry end of the curve). The INL moisture retention data were analyzed to determine the van Genuchten transport parameters and the relative hydraulic conductivity function. The results from this analysis are presented in Table 38 (adjusted for salt precipitation) and Figure 17. Results from this analysis provide a comparison for the current analysis.

The RETC model was used to fit the moisture retention data for each concrete material. All parameters in the RETC model were fitted including the saturated moisture content (θ_s). All moisture retention values were given a weight of 1. The standard Mualem relationship between n and m (i.e., m = 1 – 1/n) was used. The characteristic curves for each material are presented in Figure 18 through Figure 20 and the transport parameters are given in Table 38. As with the saltstone samples, it is important to note the limited range over which moisture retention data was obtained. Beyond the range of the moisture retention data (15 bars), the characteristic curves are extrapolated. Data beyond 15 bars suction may significantly affect the shape of the characteristic curves since these low permeability materials exhibit minimal drainage at lower pressures.

4.6 RECOMMENDED HYDRAULIC AND PHYSICAL PROPERTIES

The recommended hydraulic and physical properties for each material tested are presented in Table 39. For the concretes, the logarithmic average of the 28 day saturated hydraulic conductivity is presented as the recommended value. For the saltstone grouts, the logarithmic average of the 90 day saturated hydraulic conductivity data is presented as the recommended value. For the SWPF saltstone, the recommended saturated hydraulic conductivity value may be influenced by an outlying value. Sample SWPF-TR451-3 had a saturated hydraulic conductivity almost two orders of magnitude greater than that of the other two 90 day samples whereas the difference between the minimum and maximum saturated hydraulic conductivity values for the 90 day DDA and ARP/MCU samples was less than a factor of two. The testing laboratory reported that a prolonged power failure complicated the testing of this sample. Thus, it may be appropriate to exclude this sample from the data set for saturated hydraulic conductivity.

The recommended values for porosity and dry bulk density for each saltstone material were determined based on the arithmetic average of the 90 day data. The recommended value for particle density was calculated from the porosity and dry bulk density data $[\rho_s = \rho_b/(1-\eta)]$. Recommended transport parameters were determined from the 90 day moisture retention data and presented in Table 38. The data for the characteristic curves are given in Appendix F including that for the MCU saltstone as determined by INL and reported by Dixon and Phifer (2007).

The recommended values for porosity and dry bulk density for each concrete material were determined based on the arithmetic average of the 28 day data. The recommended value for particle density was calculated from the porosity and dry bulk density data $[\rho_s = \rho_b/(1-\eta)]$. Recommended transport parameters were determined from the 28 day moisture retention data and presented in Table 38. The data for the characteristic curves are given in Appendix F.

5.0 SUMMARY

The primary focus of this task was to determine the hydraulic and physical properties of three different saltstone formulations and two vault concretes. The saltstone formulations included saltstone premix batched with 1) Deliquification, Dissolution, and Adjustment (DDA) salt simulant (premix at w/pm 0.60), 2) Actinide Removal Process (ARP)/Modular Caustic Side Solvent Extraction Unit (MCU) salt simulant (premix at w/pm 0.60), and 3) Salt Waste Processing Facility (SWPF) salt simulant (premix at w/pm 0.60). The vault concrete formulations tested included the Vault 1/4 mix and two variations of the Vault 2 concrete (Mix 1 and Mix 2).

Mold samples of each saltstone formulation were prepared for hydraulic and physical property testing. These samples were 2.8 by 6 inch cylinders. Preparation of the samples were staggered so that each formulation could be tested as closely as possible to a 28 and 90 day cure. Wet properties measured for the saltstone formulations included yield stress, plastic viscosity, wet unit weight, bleed water volume, gel time, set time, and heat of hydration. The results of these measurements are presented in Table 11.

The saltstone samples were submitted to Mactec Engineering and Consulting, Inc. (MCT) for testing per ASTM standards (or equivalent). Each saltstone formulation was tested with a permeant similar in composition to the simulant used to batch the grout. The hydraulic conductivity of a porous medium is related to the properties of the medium and the permeating fluid (density and viscosity). Each of the saltstone formulations was batched with a salt simulant (w/pm 0.60) specific to the formulation. Due to the low degree of hydration for saltstone grouts in general, it is assumed that the saltstone samples remained saturated with simulant throughout the curing process (Harbour et al., 2007a). Additionally, some of the water in the simulant is consumed during hydration (about 8 percent) which results in a slightly concentrated solution in the pore space of the saltstone compared to the initial simulant used to batch the samples. Although each type of saltstone grout was tested with a permeant similar in composition to the simulant used to batch the grout, the saturated hydraulic conductivity measurements are assumed to be relative to the concentrated simulant that comprises the pore fluid following hydration. This is a reasonable assumption due to the low permeability of the saltstone materials and the small volume of permeant that actually penetrates each sample. The saturated hydraulic conductivity data reported by the lab for each formulation were subsequently converted to intrinsic permeability using the density and viscosity estimated for the concentrated simulants. Intrinsic permeability is independent of the test fluid and is solely a function of the porous medium.

The saturated hydraulic conductivity (relative to the concentrated DDA simulant) and intrinsic permeability data for the DDA saltstone are presented in Table 18. The dry bulk density, porosity, and particle density data for the DDA saltstone are presented in Table 19 and Table 32. The saturated hydraulic conductivity (relative to the concentrated ARP/MCU simulant) and intrinsic permeability data for the ARP/MCU saltstone are presented in Table 20. The dry bulk density, porosity, and particle density data for the ARP/MCU saltstone are presented in Table 21 and Table 33. The saturated hydraulic conductivity (relative to the concentrated SWPF simulant)

and intrinsic permeability data for the SWPF saltstone are presented in Table 22. The dry bulk density, porosity, and particle density data for the SWPF saltstone are presented in Table 23 and Table 34.

The moisture retention properties of all three saltstone formulations were measured by MCT and are presented in Table 32, Table 33, and Table 34. Although the samples were assumed to be saturated, prior to testing they were immersed in a permeant similar in composition to the simulant used to batch the samples. The MCT measurements were made using pressure plate apparatus. The data for each saltstone formulation were analyzed to determine the van Genuchten transport parameters using a visual curve matching method. These parameters may be used to implicitly determine the relationship between unsaturated hydraulic conductivity and moisture content. The results from these analyses are presented in Table 38. Also included in Table 38 are previous results for MCU saltstone as determined by INL which includes data over a broader range of pressures (Dixon and Phifer, 2007).

In addition to the saltstone samples, mold samples of the two vault concrete formulations were also prepared for testing. These formulations included the Vault 1/4 mix and two variations of the Vault 2 formulation (Mixes 1 and 2). The samples used to estimate hydraulic conductivity were 6 by 12 inch cylinders. Samples prepared for moisture retention analysis were 3 by 6 inch cylinders. These samples were submitted to MCT for testing per ASTM specifications (or equivalent). These samples were tested using tap water as the permeating fluid.

The saturated hydraulic conductivity and intrinsic permeability data for the Vault 1/4 concrete are presented in Table 24. The dry bulk density, porosity, and particle density data for the Vault 1/4 concrete are presented in Table 25 and Table 35. The saturated hydraulic conductivity and intrinsic permeability data for the Vault 2 Mix 1 concrete are presented in Table 26. The dry bulk density, porosity, and particle density data for the Vault 2 Mix 1 concrete is presented in Table 27 and Table 36. The saturated hydraulic conductivity and intrinsic permeability data for the Vault 2 Mix 2 concrete are presented in Table 28. The dry bulk density, porosity, and particle density data for the Vault 2 concrete are presented in Table 29 and Table 37.

The moisture retention properties of the Vault 1/4, Vault 2 Mix 1, and Vault 2 Mix 2 concrete formulations were also measured by MCT and are presented in Table 35, Table 36, and Table 37. Prior to testing, samples of each concrete formulation were saturated with tap water. The MCT measurements were made using pressure plate apparatus. The data for the Vault 1/4, Vault 2 Mix 1, and Vault 2 Mix 2 concrete formulations were analyzed to determine the van Genuchten transport parameters using the RETC code (USDA, 1998). These parameters may be used to implicitly determine the relationship between unsaturated hydraulic conductivity and moisture content. The results from these analyses are presented in Table 38. The data for the characteristic curves are presented in Appendix F. As noted previously, the characteristic curves are extrapolated beyond the range of the moisture retention data (15 bars).

Summary hydraulic properties for all materials tested are presented in Table 30. Summary physical properties for all materials tested are presented in Table 31. Recommended hydraulic and physical properties for each material tested are presented in Table 39.

6.0 REFERENCES

- ASTM C 642. Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. ASTM International, West Conshohocken, PA.
- ASTM D 854. Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. ASTM International, West Conshohocken, PA.
- ASTM D 2325. Standard Test Method for Capillary-Moisture Relationships for Coarse- and Medium-Textured Soils by Porous-Plate Apparatus. ASTM International, West Conshohocken, PA.
- ASTM D 5084. Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter. ASTM International, West Conshohocken, PA.
- Dixon, K. L. and M. A. Phifer. 2007. Hydraulic And Physical Properties Of MCU Saltstone. WSRC-STI-2007-00649. Washington Savannah River Company, Savannah River Site, Aiken SC.
- Harbour, J. R., T. B. Edwards, E. K. Hansen, and V. J. Williams. 2005. Variability Study for Saltstone. WSRC-TR-2005-00447. Washington Savannah River Company, Savannah River Site, Aiken SC.
- Harbour, J. R., T. B. Edwards, V. J. Williams, G. W. Scherer, and D. M. Feliciano. 2007a. Permeability of Saltstone Measurement by Beam Bending. WSRC-TR-2007-00437. Washington Savannah River Company, Savannah River Site, Aiken SC.
- Harbour, J. R., V. J. Williams, T. B. Edwards, R. E. Eibling, and R. F. Schumacher. 2007b. Saltstone Variability Study Measurement of Porosity. WSRC-STI-2007-00352, Rev. 0. Washington Savannah River Company, Savannah River Site, Aiken SC.
- Harbour, J. R., V. J. Williams, and T. B. Edwards. 2007c. Heat of Hydration of Saltstone Mixes Measurement by Isothermal Calorimetry. WSRC-STI-2007-00263, Rev. 0. Washington Savannah River Company, Savannah River Site, Aiken SC.
- Kaplan, D. I., J. M. Coates, M. Siegfried, K. Roberts, and S. Serkiz. 2008. Saltstone and Radionuclide Interactions: Technetium Sorption and Desorption, Saltstone Reduction Capacity, and Radionuclide Sorption (Kd) Value. SRNS-STI-2008-00045. Savannah River Nuclear Solutions, Aiken, SC.
- Langton, C. A. 1986. Saltstone Permeability (Hydraulic Conductivity). Report No. DPST-85-982, October 1986.

- Phifer, M. A., M. R. Millings, and G. P. Flach. 2006. Hydraulic Property Data Package for the E-Area and Z-Area Soils, Cementitious Materials, and Waste Zones. WSRC-STI-2006-00198, revision 0. Washington Savannah River Company, Savannah River Site, Aiken SC.
- Savage, B. M. and D. J. Janssen. 1997. Soil Physics Principles Validated for Use in Predicting Unsaturated Moisture Movement in Portland Cement Concrete. ACI Materials Journal, Vol. 94, No. 1, January-February 1997, pp. 63-70.
- USDA, 1998. RETC for Windows, 1998, Version 1.0.0.1, U.S. Salinity Laboratory, U.S. Department of Agriculture (USDA), www.ars.usda.gov/Services/docs.htm?docid=8952.
- Van Genuchten, M. Th., 1980, A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils, Soil Science Society of America Journal, v44, 892-898.
- Van Genuchten, M. Th., F. J. Leij, and S. R. Yates, 1991, The RETC Code for Qualifying the Hydraulic Functions of Unsaturated Soils, Version 1.0, EPA Report 600/2-91/065, U.S. Salinity Laboratory, USDA, ARS, Riverside, California.
- Yu, A. D., C. A. Langton, and M. G. Serrato. 1993. Physical Properties Measurement Program (U). WSRC-RP-93-894. Westinghouse Savannah River Company, Aiken, South Carolina.

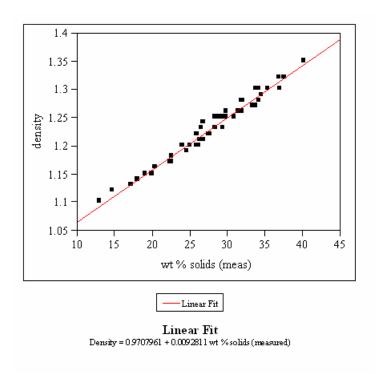


Figure 1. Bivariate fit of simulant density as a function of measured weight percent solids.

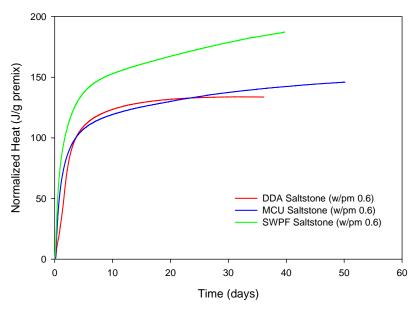


Figure 2. Normalized Heat (J/g of premix) from DDA, ARP/MCU, and SWPF saltstone at 0.60 w/pm ratio.

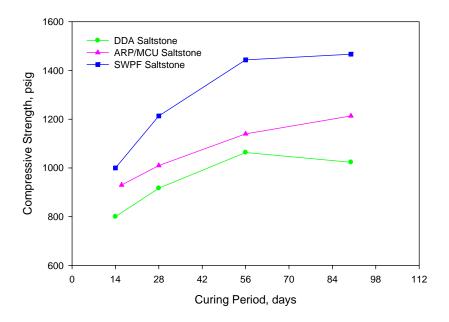


Figure 3. Compressive strength as a function of curing period for DDA, ARP/MCU, and SWPF Saltstone.

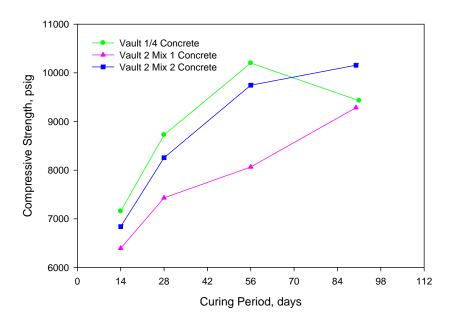


Figure 4. Compressive strength as a function of curing period for Vault 1/4, Vault 2 Mix 1, and Vault 2 Mix 2.

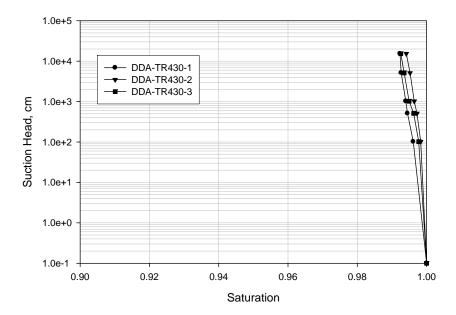


Figure 5. Moisture retention curves for the 28 day DDA saltstone samples.

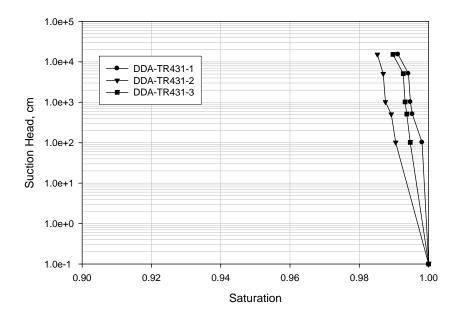


Figure 6. Moisture retention curves for the 90 day DDA saltstone samples.

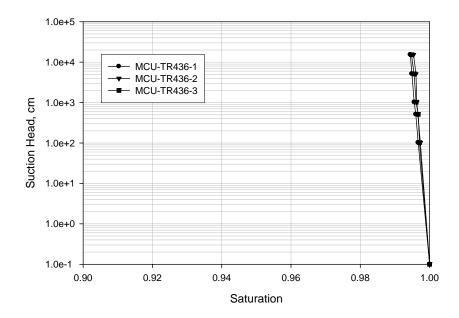


Figure 7. Moisture retention curves for the 28 day ARP/MCU saltstone samples.

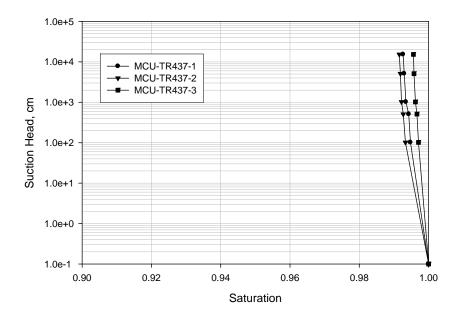


Figure 8. Moisture retention curves for the 90 day ARP/MCU saltstone samples.

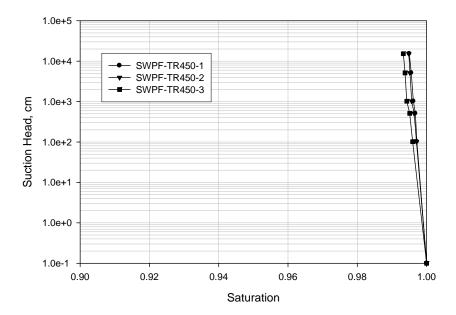


Figure 9. Moisture retention curves for the 28 day SWPF saltstone samples.

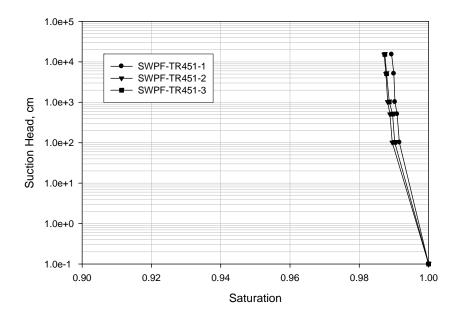


Figure 10. Moisture retention curves for the 90 day SWPF saltstone samples.

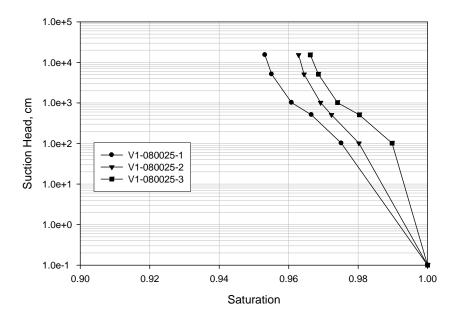


Figure 11. Moisture retention curves for the 28 day Vault 1/4 concrete samples.

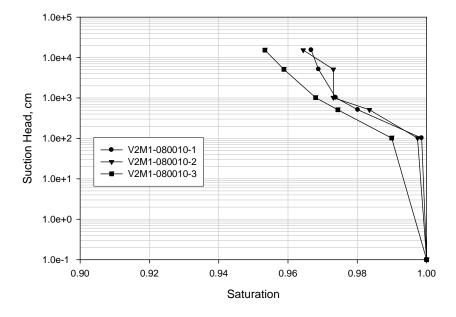


Figure 12. Moisture retention curves for the 28 day Vault 2 Mix 1 concrete samples.

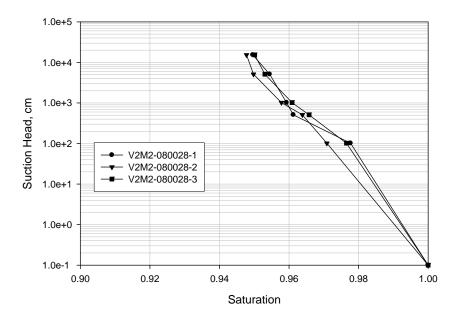


Figure 13. Moisture retention curves for the 28 day Vault 2 Mix 2 concrete samples.

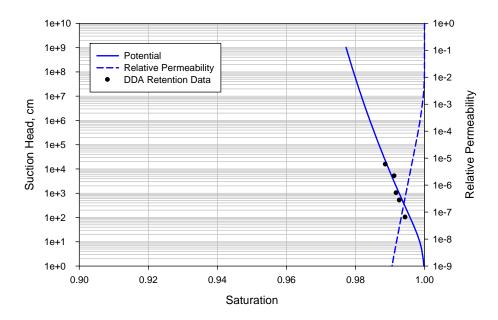


Figure 14. Characteristic Curves for the DDA Saltstone (using 28 and 90 day retention data).

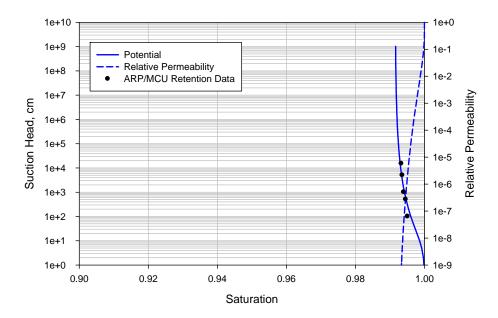


Figure 15. Characteristic Curves for the ARP/MCU Saltstone (using 28 and 90 day retention data).

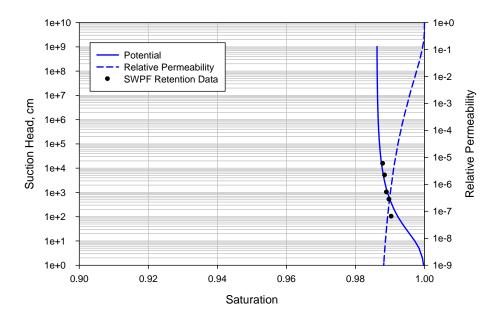


Figure 16. Characteristic Curves for the SWPF Saltstone (using 28 and 90 day retention data).

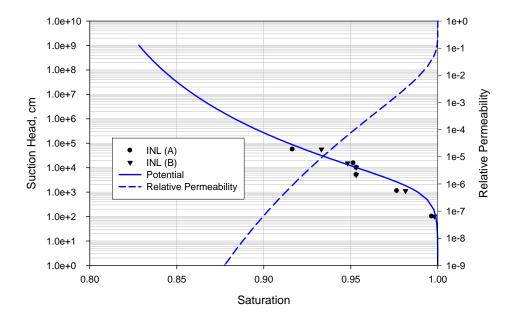


Figure 17. Characteristic curves for MCU saltstone samples as determined by INL reported by Dixon and Phifer (2007).

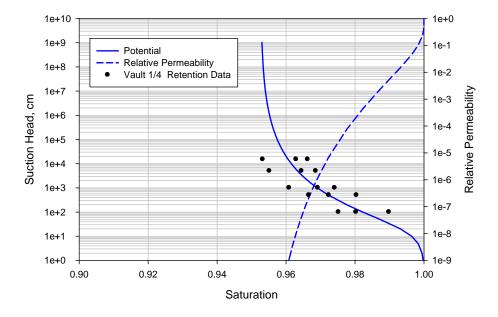


Figure 18. Characteristic Curves for the Vault 1/4 Concrete (based on 28 day minimum curing period).

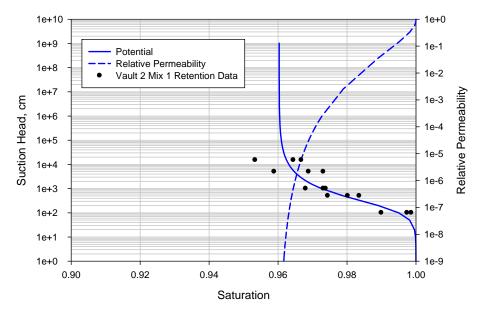


Figure 19. Characteristic Curves for the Vault 2 Mix 1 Concrete (based on 28 day minimum curing period).

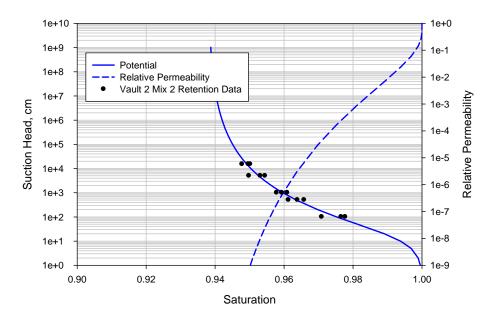


Figure 20. Characteristic Curves for the Vault 2 Mix 2 Concrete (based on 28 day minimum curing period).

Table 1. Saltstone Cementitious Materials (premix).

,		Premix Blend
Ingredient ¹	Vendor	(wt%)
Portland Cement (Type II)	Holcim	10
Blast Furnace Slag (Grade 100)	Holcim	45
Fly Ash (Class F)	Cross Station	45

¹All materials were received from the Saltstone Disposal Facility. The as-batched water to premix ratio for all three mixes was 0.60.

Table 2. Recipe for DDA Simulant used to Prepare Simulated Saltstone Grout Samples and the Permeant used for Hydraulic and Physical Testing.

	DDA Simulant ¹		DDA Per	rmeant ²
	Molarity	Mass	Molarity	Mass
Ingredient	(Moles/Liter)	(g/Liter H ₂ O)	(Moles/Liter)	(g/Liter H ₂ O)
Sodium Hydroxide, NaOH				
(50 % by weight)	0.769	61.52	0.485	38.80
Sodium Nitrate, NaNO ₃	2.202	187.15	2.202	187.15
Sodium Nitrite, NaNO ₂	0.110	7.56	0.110	7.56
Sodium Carbonate, Na ₂ CO ₃	0.145	15.36	0.145	15.36
Sodium Sulfate. Na ₂ SO ₄	0.044	6.31	0.044	6.31
Aluminum Nitrate (9 H ² 0)	0.071	26.63	0.000	0.000
Sodium Phosphate (12 H ₂ O)	0.008	3.22	0.000	0.000

¹The simulant was used to batch the grout samples.

Table 3. Recipe for ARP/MCU Simulant used to Prepare Simulated Saltstone Grout Samples and the Permeant used for Hydraulic and Physical Testing.

	ARP/MCU	J Simulant ¹	ARP/MCU	Permeant ²
T 12 4	Molarity	Mass	Molarity	Mass
Ingredient	(Moles/Liter)	(g/Liter H ₂ O)	(Moles/Liter)	(g/Liter H ₂ O)
Sodium Hydroxide, NaOH				
(50 % by weight)	1.594	127.50	1.377	110.16
Sodium Nitrate, NaNO ₃	3.159	268.48	3.159	268.48
Sodium Nitrite, NaNO ₂	0.368	25.39	0.368	25.39
Sodium Carbonate, Na ₂ CO ₃	0.176	18.65	0.176	18.65
Sodium Sulfate. Na ₂ SO ₄	0.059	8.37	0.059	8.37
Aluminum Nitrate (9 H ² 0)	0.054	20.33	0.000	0.000
Sodium Phosphate (12 H ₂ O)	0.012	4.67	0.000	0.000

¹The simulant was used to batch the grout samples.

²The permeant was used to test the grout samples for hydraulic and physical properties.

²The permeant was used to test the grout samples for hydraulic and physical properties.

Table 4. Recipe for SWPF Simulant used to Prepare Simulated Saltstone Grout Samples and the Permeant used for Hydraulic and Physical Testing.

	SWPF Simulant ¹		SWPF Pe	ermeant ²
	Molarity	Mass	Molarity	Mass
Ingredient	(Moles/Liter)	(g/Liter H ₂ O)	(Moles/Liter)	(g/Liter H ₂ O)
Sodium Hydroxide, NaOH				
(50 % by weight)	2.866	229.28	2.409	192.69
Sodium Nitrate, NaNO ₃	1.973	167.66	1.973	167.66
Sodium Nitrite, NaNO ₂	0.485	33.43	0.485	33.43
Sodium Carbonate, Na ₂ CO ₃	0.118	12.46	0.118	12.46
Sodium Sulfate. Na ₂ SO ₄	0.055	7.84	0.055	7.84
Aluminum Nitrate (9 H ² 0)	0.114	42.90	0.000	0.000
Sodium Phosphate (12 H ₂ O)	0.007	2.76	0.000	0.000

The simulant was used to batch the grout samples.

Table 5. Simulant and Permeant Properties

			Water to		
		Dynamic	Simulant Ratio	Weight Percent	Salt Content
	Density	Viscosity	$(g H_2O/g$	Solids	(g/100g wet
	(g/ml)	(cP)	simulant)	(%)	grout)
DDA Simulant	1.173	1.50	0.777	22.33	9.28
ARP/MCU Simulant	1.261	2.46	0.685	31.54	14.50
SWPF Simulant	1.248	2.78	0.711	28.88	13.00
DDA Concentrated Simulant ¹	1.190	-	0.762	-	9.28
ARP/MCU Concentrated Simulant ¹	1.273	-	0.664	-	14.50
SWPF Concentrated Simulant ¹	1.260	-	0.691		13.00
DDA Permeant	1.156	1.39	0.780	20.45	-
ARP/MCU Permeant	1.248	2.25	0.680	30.20	-
SWPF Permeant	1.224	2.46	0.710	26.08	-

¹During hydration, approximately 8% of the water contained within the simulant is consumed. This concentrates the pore fluid relative to the simulant used to batch the samples. The properties of the concentrated pore fluids were determined as described in Section 3.3.1.

²The permeant was used to test the grout samples for hydraulic and physical properties.

Table 6. Saltstone Vault 1/4 Concrete Formulations.

Ingredient ¹	Quantity (lbs/cu yd)
Type II cement (ASTM C 150)	419
Grade 100 Blast furnace slag (ASTM C 989) ²	278
Sand (ASTM C 33)	1133
No. 67 aggregate (maximum ¾ in) (ASTM C 33)	1798
Microair AEA (oz/yd³)	5.9
Master Builders 320 N WRA (oz/yd ³) ³	40
Water (maximum)	268 (32.1 gal/cu yd)
Water to cementitious material ratio	0.385
Minimum compressive strength at 28 days	4000 psig
Maximum slump	3 in

¹Taken from Phifer et al. 2006 Tables 4-5 and 4-6).
²The original formulation called for Grade 120 Blast furnace slag. Currently, only Grade 100 Blast furnace slag is

³This product line is now supplied by BASF and 320 N has been replaced with 322 N.

Table 7. Ingredients Used to Prepare the Vault 1/4 Concrete Samples.

Material	Specification	Supplier / Address	Phone Number
Portland cement (Type I/II)	ASTM C 150	LaFarge Cement P.O. Box 326 463 Judge St. Harleyville, S.C, 29448 sampled from Lafarge Ready Mix Plant, 109 Laney Walker Blvd., Augusta, GA, 30909	(803) 462-7651 (706) 798-3676
Slag cement (Grade 100)	ASTM C 989	Holcim, US Inc. 1555 Hartman Industrial Blvd. Birmingham, AL 35221	(205) 929-6813
Concrete sand	ASTM C 33	Foster Dixiana 3308 Charleston Hwy. Columbia, SC, 29172 sampled from Lafarge Ready Mix Plant, 109 Laney Walker Blvd., Augusta, GA, 30909	(803) 794-2872 (706) 798-3676
No. 67 stone 3/4 inch gravel (granite)	ASTM C 33	USA Aggregates Dogwood Quarry Appling GA, 30802 sampled from Lafarge Ready Mix Plant, 109 Laney Walker Blvd., Augusta, GA, 30909	(706) 541-0187 (706) 798-3676
Admixtures			
Microair (air entraining admixture)	ASTM C 260	BASF Corporation 106 Macon St. Reynolds, GA, 31076	(864) 607-4160
322 N (mid range water reducer) ¹	ASTM C 494		

¹322 N has replaced 320 N in the BASF AEA product line.

Table 8. Saltstone Vault 2, Mix 1 Concrete Formulation (670 lbs/cu yd Cementitious Material, Class 3 Sulfate Resistant Concrete).

Ingredient ¹	Quantity (lbs/cu yd)
Type V cement (Lehigh T-V #2; ASTM C 150)	201
Grade 100 Blast furnace slag (Holcim Grade 100 Slag; ASTM C 989)	268
Silica Fume (W. R. Grace Silica Fume; ASTM C 1240)	44.7
Type F Fly ash (SEFA Class "F" Fly Ash; ASTM C 618)	156.3
sand (Rinker Aggregates Company - Augusta Sand - Natural Washed Sand); ASTM C 33)	911
aggregate (Rinker Aggregates Company - Dogwood Quarry - #67 Granite; ASTM C 33)	1850
Water (maximum)	254.6
Water (maximum; gal/ cu yd)	30.5
Maximum water to cementitious material ratio	0.38
Grace WRDA 35 (oz/cwt c+p)	5
Grace Darex II (oz/cwt c+p)	0.4 to 0.5
Grace Adva 380 (oz/cwt c+p)	3 to 4
Minimum compressive strength of at 28 days	5000 psig
Slump range/target of before Super-P	1-3 inches / 2 inches
Slump range/target of after Super-P	6 – 8 inches / 7 inches

¹Taken from Phifer et al. 2006 Tables 4-6, DCR: AC51636A-001 Supplier Document, and personal correspondence with Carlos Chiappetto.

Table 9. Saltstone Vault 2, Mix 2 Concrete Formulation (710 lbs/cu yd Cementitious Material, Class 3 Sulfate Resistant Concrete).

Ingredient ¹	Quantity (lbs/cu yd)
Type V cement (Lehigh T-V #2; ASTM C 150)	213
Grade 100 Blast furnace slag (Holcim Grade 100 Slag; ASTM C 989)	284
Silica Fume (W. R. Grace Silica Fume; ASTM C 1240)	47.3
Type F Fly ash (SEFA Class "F" Fly Ash; ASTM C 618)	165.7
sand (Rinker Aggregates Company - Augusta Sand - Natural Washed Sand); ASTM C 33)	911
aggregate (Rinker Aggregates Company - Dogwood Quarry - #67 Granite; ASTM C 33)	1850
Water (maximum)	269.8
Water (maximum; gal/ cu yd)	32.3
Maximum water to cementitious material ratio	0.38
Grace WRDA 35 (oz/cwt c+p)	5
Grace Darex II (oz/cwt c+p)	0.4 to 0.5
Grace Adva 380 (oz/cwt c+p)	3 to 4
Minimum compressive strength of at 28 days	5000 psig
Slump range/target of before Super-P	1-3 inches / 2 inches
Slump range/target of after Super-P	6 – 8 inches / 7 inches

¹Taken from Phifer et al. 2006 Tables 4-6, DCR: AC51636A-001 Supplier Document, and personal correspondence with Carlos Chiappetto.

Table 10. Ingredients Used to Prepare the Vault 2 Mix 1 and Mix 2 Concrete Samples.

Material	Specification	Supplier / Address	Phone Number
Portland cement (Type V)	ASTM C 150	Lehigh Portland Cement Co., 8401 2 nd Ave. Leeds, AL., 35094 sampled from Lafarge Ready Mix Plant, 109 Laney Walker Blvd., Augusta, GA, 30909	(205) 699-2231 (706) 798-3676
Slag cement (Grade 100)	ASTM C 989	Holcim US Inc. 1555 Hartman Industrial Blvd. Birmingham, AL 35221	(205) 929-6813
Fly ash (Class F)	ASTM C 618	SEFA Group, 217 Cedar Rd., Lexington, SC, 29073	(803) 520-9000
Concrete sand	ASTM C 33	Foster Dixiana 3308 Charleston Hwy. Columbia, SC, 29172 sampled from Lafarge Ready Mix Plant, 109 Laney Walker Blvd., Augusta, GA, 30909	(803) 794-2872 (706) 798-3676
No. 67 stone 3/4 inch gravel (granite)	ASTM C 33	USA Aggregates Dogwood Quarry Appling GA, 30802 sampled from Lafarge Ready Mix Plant, 109 Laney Walker Blvd., Augusta, GA, 30909	(706) 541-0187 (706) 798-3676
Admixtures			
DAREX II (air entraining admixture)	ASTM C 260	Grace Construction Products, 6606	
WRDA 35 (mid range water reducer)	ASTM C 494	Marshall Blvd., Lithonia, GA, 30058 sampled from Lafarge	(877) 423-6491 (706) 798-3676
Adva 380 (super plasticizer)	ASTM C 494 Type F	Ready Mix Plant, 109 Laney Walker Blvd., Augusta, GA, 30909	

Table 11. Fresh Properties of the DDA, ARP/MCU, and SWPF Saltstone.

Sample Id	Yield Stress (Pa)	Plastic Viscosity (cP)	Gel Time (minutes)	One Day Bleed (volume %)	Set Time (days)
DDA-TR430	6.3	89	> 90	5.0	2
MCU-TR436	3.4	79	40	1.5	1
SWPF-TR450	3.3	83	> 100	2.5	1

Table 12. Compressive Strength for the DDA Saltstone Grout (Cast 3/18/2008).

Days		Compressive Strength ^{1,2} (psig)				
Aged	Date Tested	Measured Average				
14	4/01/2008	820	790	790	800	
28	4/15/2008	910	940	900	917	
56	5/13/2008	1060	1070	1060	1063	
90	6/16/2008	1020	1010	1040	1023	

¹Samples were 2-in cube mold samples and were tested per ASTM C 109.

Table 13. Compressive Strength for the ARP/MCU Saltstone Grout (Cast 3/31/2008).

Days						
Aged	Date Tested	Measured Avera				
16	4/16/2008	970	1000	820	930	
28	4/28/2008	1000	1000	1030	1010	
56	5/26/2008	1130	1120	1170	1140	
90	6/29/2008	1200	1230	1210	1213	

¹Samples were 2-in cube mold samples and were tested per ASTM C 109.

Table 14. Compressive Strength for the SWPF Saltstone Grout (Cast 4/22/2008).

Days		Compressive Strength ^{1,2} (psig)					
Aged	Date Tested	Measured Averag					
14	5/06/2008	1020	1000	980	1000		
28	5/20/2008	1210	1200	1230	1213		
56	6/17/2008	1420	1420	1490	1443		
90	7/21/2008	1480	1450	1470	1467		

¹Samples were 2-in cube mold samples and were tested per ASTM C 109.

²Lab Batch ID 080013.

²Lab Batch ID 080014.

²Lab Batch ID 080021.

Table 15. Compressive Strength for the Vault 1/4 Concrete (Cast 5/05/2008).

Days		Compressive Strength ^{1,2} (psig)				
Aged	Date Tested	Meas	Average			
14	5/19/2008	7440	6870	7155		
28	6/02/2008	8700	8750	8725		
56	6/30/2008	10170	10230	10200		
90	8/03/2008	9570	9290	9430		

¹Samples were 4 x 8 inch cylinders and were tested per ASTM C 39. ²Lab Batch ID 080025.

Table 16. Compressive Strength for the Vault 2 Mix 1 Concrete (Cast 3/25/2008).

Days		Compressive Strength ^{1,2} (psig)				
Aged	Date Tested	Meas	Average			
14	4/08/2008	6390	6400	6395		
28	4/22/2008	7550	7310	7430		
56	5/20/2008	8050	8080	8065		
90	6/23/2008	9450	9120	9285		

¹Samples were 4 x 8 inch cylinders and were tested per ASTM C 39. ²Lab Batch ID 080010.

Table 17. Compressive Strength for the Vault 2 Mix 2 Concrete (Cast 6/24/2008).

Days		Compressive Strength ^{1,2} (psig)				
Aged	Date Tested	Measured Averag				
14	7/08/2008	6880	6800	6840		
28	7/22/2008	8170	8340	8255		
56	8/19/2008	9930	9560	9745		
90	9/22/2008	10050	10260	10155		

¹Samples were 4 x 8 inch cylinders and were tested per ASTM C 39.

²Lab Batch ID 080028.

Table 18. Hydraulic Properties of DDA Saltstone as Measured by MCT.

Sample Id	Sample Type	Minimum Curing Period (days)	Permeating Solution ¹	Saturated Hydraulic Conductivity ² (cm/s)	Permeability ³ (darcy)
DDA-TR430-1	2.8" Mold	28	DDA	1.4 x 10 ⁻⁸	1.7 x 10 ⁻⁵
DDA-TR430-2	2.8" Mold	28	DDA	5.9 x 10 ⁻¹⁰	7.1 x 10 ⁻⁷
DDA-TR430-3	2.8" Mold	28	DDA	2.0 x 10 ⁻⁹	2.4 x 10 ⁻⁶
DDA-TR431-1	2.8" Mold	90	DDA	1.1 x 10 ⁻¹⁰	1.3 x 10 ⁻⁷
DDA-TR431-2	2.8" Mold	90	DDA	7.2 x 10 ⁻¹¹	8.7 x 10 ⁻⁸
DDA-TR431-3	2.8" Mold	90	DDA	1.1 x 10 ⁻¹⁰	1.3 x 10 ⁻⁷

¹DDA permeant (Table 2) used as permeating solution.

Table 19. Physical Properties of DDA Saltstone as Measured by MCT.

Sample Id	Sample Type	Minimum Curing Period (days)	Dry Bulk Density (g/cm³)¹	Particle Density (g/cm³)²	Porosity ³
DDA-TR430-1	2.8" Mold	28	1.04	2.36	0.56
DDA-TR430-2	2.8" Mold	28	1.05	2.39	0.56
DDA-TR430-3	2.8" Mold	28	1.04	2.40	0.56
DDA-TR431-1	2.8" Mold	90	1.05	2.34	0.55
DDA-TR431-2	2.8" Mold	90	1.08	2.48	0.57
DDA-TR431-3	2.8" Mold	90	1.06	2.38	0.56

¹Dry bulk density corrected for salt precipitation as described in Section 3.3.1.

²Saturated hydraulic conductivity relative to concentrated DDA simulant.

³Permeability is independent of the pore fluid and can be converted to saturated hydraulic conductivity for any solution using the equation in Section 3.3.1

²Particle density calculated as $\rho_s = \rho_b/(1-\eta)$ where ρ_b is dry bulk density and η is porosity.

³Porosity corrected for salt precipitation as described in Section 3.3.1.

Table 20. Hydraulic Properties of ARP/MCU Saltstone as Measured by MCT.

Sample Id	Sample Type	Minimum Curing Period (days)	Permeating Solution ¹	Saturated Hydraulic Conductivity ² (cm/s)	Permeability ³ (darcy)
MCU-TR436-1	2.8" Mold	28	ARP/MCU	5.4 x 10 ⁻⁹	9.8 x 10 ⁻⁶
MCU-TR436-2	2.8" Mold	28	ARP/MCU	2.1 x 10 ⁻⁹	3.8 x 10 ⁻⁶
MCU-TR436-3	2.8" Mold	28	ARP/MCU	2.7 x 10 ⁻¹⁰	4.9 x 10 ⁻⁷
MCU-TR437-1	2.8" Mold	90	ARP/MCU	1.1 x 10 ⁻⁹	2.0 x 10 ⁻⁶
MCU-TR437-2	2.8" Mold	90	ARP/MCU	8.8 x 10 ⁻¹⁰	1.6 x 10 ⁻⁶
MCU-TR437-3	2.8" Mold	90	ARP/MCU	6.4 x 10 ⁻¹⁰	1.2 x 10 ⁻⁶

¹ARP/MCU permeant (Table 3) used as permeating solution.

Table 21. Physical Properties of ARP/MCU Saltstone as Measured by MCT.

Sample Id	Sample Type	Minimum Curing Period (days)	Dry Bulk Density (g/cm³)¹	Particle Density (g/cm³)²	Porosity ³
MCU-TR436-1	2.8" Mold	28	0.98	2.30	0.58
MCU-TR436-2	2.8" Mold	28	0.98	2.33	0.58
MCU-TR436-3	2.8" Mold	28	0.98	2.34	0.58
MCU-TR437-1	2.8" Mold	90	0.95	2.35	0.59
MCU-TR437-2	2.8" Mold	90	0.96	2.39	0.60
MCU-TR437-3	2.8" Mold	90	0.97	2.49	0.61

¹Dry bulk density corrected for salt precipitation as described in Section 3.3.1.

²Saturated hydraulic conductivity relative to the concentrated ARP/MCU simulant.

³Permeability is independent of the pore fluid and can be converted to saturated hydraulic conductivity for any solution using the equation in Section 3.3.1.

²Particle density calculated as $\rho_s = \rho_b/(1-\eta)$ where ρ_b is dry bulk density and η is porosity. ³Porosity corrected for salt precipitation as described in Section 3.3.1.

Table 22. Hydraulic Properties of SWPF Saltstone as Measured by MCT.

Sample Id	Sample Type	Minimum Curing Period (days)	Permeating Solution ¹	Saturated Hydraulic Conductivity ² (cm/s)	Permeability ³ (darcy)
SWPF-TR450-1	2.8" Mold	28	SWPF	1.2 x 10 ⁻⁸	2.4 x 10 ⁻⁵
SWPF-TR450-2	2.8" Mold	28	SWPF	3.4 x 10 ⁻⁸	6.8 x 10 ⁻⁵
SWPF-TR450-3	2.8" Mold	28	SWPF	2.0 x 10 ⁻⁹	4.0 x 10 ⁻⁶
SWPF-TR451-1	2.8" Mold	90	SWPF	1.2 x 10 ⁻⁹	2.4 x 10 ⁻⁶
SWPF-TR451-2	2.8" Mold	90	SWPF	2.0 x 10 ⁻⁹	4.0 x 10 ⁻⁶
SWPF-TR451-3 ⁴	2.8" Mold	90	SWPF	8.8 x 10 ⁻⁸	1.8 x 10 ⁻⁸

¹SWPF permeant (Table 4) used as permeating solution.

Table 23. Physical Properties of SWPF Saltstone as Measured by MCT.

Sample Id	Sample Type	Minimum Curing Period (days)	Dry Bulk Density (g/cm³)¹	Particle Density (g/cm³)²	Porosity ³
SWPF-TR450-1	2.8" Mold	28	1.01	2.40	0.58
SWPF-TR450-2	2.8" Mold	28	1.00	2.43	0.59
SWPF-TR450-3	2.8" Mold	28	1.02	2.53	0.60
SWPF-TR451-1	2.8" Mold	90	1.00	2.45	0.59
SWPF-TR451-2	2.8" Mold	90	1.01	2.42	0.58
SWPF-TR451-3	2.8" Mold	90	1.00	2.46	0.59

¹Dry bulk density corrected for salt precipitation as described in Section 3.3.1.

²Saturated hydraulic conductivity relative to the concentrated SWPF simulant.

³Permeability is independent of the pore fluid and can be converted to saturated hydraulic conductivity for any solution using the equation in Section 3.3.1.

⁴This sample may be an outlier.

²Particle density calculated as $\rho_s = \rho_b/(1-\eta)$ where ρ_b is dry bulk density and η is porosity. ³Porosity corrected for salt precipitation as described in Section 3.3.1.

Table 24. Hydraulic Properties of Vault 1/4 Concrete as Measured by MCT.

Sample Id	Sample Type	Minimum Curing Period (days)	Permeating Solution	Saturated Hydraulic Conductivity (cm/s)	Permeability (darcy)
V1-080025-4	6" Mold	28	Water	1.3×10^{-10}	1.3 x 10 ⁻⁸
V1-080025-5	6" Mold	28	Water	2.1 x 10 ⁻⁹	2.2 x 10 ⁻⁷
V1-080025-6	6" Mold	28	Water	1.1 x 10 ⁻¹⁰	1.1 x 10 ⁻⁸

Table 25. Physical Properties of Vault 1/4 Concrete as Measured by MCT.

Sample Id	Sample Type	Minimum Curing Period (days)	Dry Bulk Density (g/cm³)	Particle Density (g/cm³)¹	Porosity
V1-080025-4	6" Mold	28	2.27	2.57	0.12
V1-080025-5	6" Mold	28	2.31	2.58	0.10
V1-080025-6	6" Mold	28	2.27	2.55	0.10

¹Particle density calculated as $\rho_s = \rho_b/(1-\eta)$ where ρ_b is dry bulk density and η is porosity.

Table 26. Hydraulic Properties of Vault 2 Mix 1 Concrete as Measured by MCT.

Sample Id	Sample Type	Minimum Curing Period (days)	Permeating Solution	Saturated Hydraulic Conductivity (cm/s)	Permeability (darcy)
V2M1-080010-4	6" Mold	28	Water	7.8×10^{-11}	8.0 x 10 ⁻⁹
V2M1-080010-5	6" Mold	28	Water	2.8 x 10 ⁻¹⁰	2.9 x 10 ⁻⁸
V2M1-080010-6	6" Mold	28	Water	6.0 x 10 ⁻¹¹	6.2 x 10 ⁻⁹

Table 27. Physical Properties of Vault 2 Mix 1 Concrete as Measured by MCT.

Sample Id	Sample Type	Minimum Curing Period (days)	Dry Bulk Density (g/cm³)	Particle Density (g/cm³)¹	Porosity
V2M1-080010-4	6" Mold	28	2.18	2.47	0.12
V2M1-080010-5	6" Mold	28	2.21	2.39	0.08
V2M1-080010-6	6" Mold	28	2.16	2.49	0.13

¹Particle density calculated as $\rho_s = \rho_b/(1-\eta)$ where ρ_b is dry bulk density and η is porosity.

Table 28. Hydraulic Properties of Vault 2 Mix 2 Concrete as Measured by MCT.

Sample Id	Sample Type	Minimum Curing Period (days)	Permeating Solution	Saturated Hydraulic Conductivity (cm/s)	Permeability (darcy)
V2M2-080028-4	6" Mold	28	Water	5.0×10^{-11}	5.2 x 10 ⁻⁹
V2M2-080028-5	6" Mold	28	Water	5.0×10^{-11}	5.2 x 10 ⁻⁹
V2M2-080028-6	6" Mold	28	Water	3.2×10^{-10}	3.3 x 10 ⁻⁸

Table 29. Physical Properties of Vault 2 Mix 2 Concrete as Measured by MCT.

Sample Id	Sample Type	Minimum Curing Period (days)	Dry Bulk Density (g/cm³)	Particle Density (g/cm³)¹	Porosity
V2M2-080028-4	6" Mold	28	2.16	2.50	0.14
V2M2-080028-5	6" Mold	28	2.17	2.43	0.09
V2M2-080028-6	6" Mold	28	2.21	2.46	0.10

¹Particle density calculated as $\rho_s = \rho_b/(1-\eta)$ where ρ_b is dry bulk density and η is porosity.

Table 30. Summary Hydraulic Properties for Saltstone and Vault Concrete Samples.

	Minimum Curing		Hydraulic	turated Conductivity ¹ m/sec)			Permeability (darcy)				
Description	Period (days)	Minimum	Maximum	Arithmetic Average	Logarithmic Average	Minimum	Maximum	Arithmetic Average	Logarithmic Average		
DDA Saltstone	28	5.9 x 10 ⁻¹⁰	1.4 x 10 ⁻⁰⁸	5.5 x 10 ⁻⁰⁹	2.5 x 10 ⁻⁰⁹	7.1 x 10 ⁻⁰⁷	1.7 x 10 ⁻⁰⁵	6.7 x 10 ⁻⁰⁶	3.1 x 10 ⁻⁰⁶		
DDA Sanstone	90	7.2 x 10 ⁻¹¹	1.1 x 10 ⁻¹⁰	9.7 x 10 ⁻¹¹	9.6 x 10 ⁻¹¹	8.7 x 10 ⁻⁰⁸	1.3 x 10 ⁻⁰⁷	1.2 x 10 ⁻⁰⁷	1.1 x 10 ⁻⁰⁷		
ARP/MCU	28	2.7 x 10 ⁻¹⁰	5.4 x 10 ⁻⁰⁹	2.6 x 10 ⁻⁰⁹	2.6 x 10 ⁻⁰⁹	4.9 x 10 ⁻⁰⁷	9.8 x 10 ⁻⁰⁶	4.7 x 10 ⁻⁰⁶	2.6 x 10 ⁻⁰⁶		
Saltstone	90	6.4 x 10 ⁻¹⁰	1.1 x 10 ⁻⁰⁹	8.7 x 10 ⁻¹⁰	8.5 x 10 ⁻¹⁰	1.2 x 10 ⁻⁰⁶	2.0 x 10 ⁻⁰⁶	1.6 x 10 ⁻⁰⁶	1.6 x 10 ⁻⁰⁶		
	28	2.0 x 10 ⁻⁰⁹	3.4 x 10 ⁻⁰⁸	1.6 x 10 ⁻⁰⁸	9.3 x 10 ⁻⁰⁹	4.0 x 10 ⁻⁰⁶	6.8 x 10 ⁻⁰⁵	3.2 x 10 ⁻⁰⁵	1.9 x 10 ⁻⁰⁵		
SWPF Saltstone ²	90	1.2 x 10 ⁻⁰⁹	8.8 x 10 ⁻⁰⁸	3.0×10^{-08} (1.6 x 10 ⁻⁰⁹)	$6.0 \times 10^{-09} $ (1.5×10^{-09})	2.4 x 10 ⁻⁰⁶	1.8 x 10 ⁻⁰⁴	$6.1 \times 10^{-05} $ (3.2×10^{-06})	$\begin{array}{c} 1.2 \times 10^{-05} \\ (3.1 \times 10^{-06}) \end{array}$		
Vault 1/4 Concrete	28	1.1 x 10 ⁻¹⁰	2.1 x 10 ⁻⁰⁹	7.8 x 10 ⁻¹⁰	3.1 x 10 ⁻¹⁰	1.1 x 10 ⁻⁰⁸	2.2 x 10 ⁻⁰⁷	8.0 x 10 ⁻⁰⁸	3.2 x 10 ⁻⁰⁸		
Vault 2 Mix 1 Concrete	28	6.0 x 10 ⁻¹¹	2.8 x 10 ⁻¹⁰	1.4 x 10 ⁻¹⁰	1.1 x 10 ⁻¹⁰	6.2 x 10 ⁻⁰⁹	2.9 x 10 ⁻⁰⁸	1.4 x 10 ⁻⁰⁸	1.1 x 10 ⁻⁰⁸		
Vault 2 Mix 2 Concrete	28	5.0 x 10 ⁻¹¹	3.2 x 10 ⁻¹⁰	1.4 x 10 ⁻¹⁰	9.3 x 10 ⁻¹¹	5.2 x 10 ⁻⁰⁹	3.3 x 10 ⁻⁰⁸	1.4 x 10 ⁻⁰⁸	9.6 x 10 ⁻⁰⁹		

¹Saturated hydraulic conductivity values for saltstone materials are relative to the concentrated simulants as given in Table 5. The saturated hydraulic conductivity of the vault concretes are relative to tap water.

²The 90 day saturated hydraulic conductivity data may be influenced by an outlying value. If this value is excluded, the arithmetically averaged saturated hydraulic conductivity is 1.6×10^{-9} cm/sec and the logarithmically averaged saturated hydraulic conductivity is 1.5×10^{-9} cm/sec. If the value is also excluded for permeability, arithmetically averaged permeability is 3.2×10^{-6} darcy and the logarithmically averaged permeability is 3.1×10^{-6} darcy.

Table 31. Summary Physical Properties for Saltstone and Vault Concrete Samples.

Description	Minimum Curing Period		Bulk Density (g/cm³)			Particle Density (g/cm³)			Porosity (fraction)		
	(days) Minimu		Maximum	Arithmetic Average	Minimum	Maximum	Arithmetic Average	Minimum	Maximum	Arithmetic Average	
DDA Saltstone	28	1.04	1.07	1.05	2.32	2.43	2.37	0.54	0.56	0.56	
	90	1.04	1.08	1.06	2.33	2.48	2.37	0.55	0.57	0.55	
ARP/MCU Saltstone	28	0.98	0.99	0.98	2.30	2.41	2.35	0.58	0.59	0.58	
	90	0.95	1.01	0.97	2.30	2.49	2.38	0.58	0.61	0.59	
SWPF Saltstone	28	1.00	1.05	1.03	2.40	2.53	2.45	0.56	0.60	0.58	
	90	1.00	1.03	1.01	2.35	2.53	2.44	0.57	0.59	0.59	
Vault 1/4 Concrete	28	2.15	2.31	2.24	2.44	2.58	2.53	0.10	0.12	0.11	
Vault 2 Mix 1 Concrete	28	2.16	2.21	2.19	2.39	2.50	2.48	0.08	0.13	0.12	
Vault 2 Mix 2 Concrete	28	2.16	2.26	2.22	2.43	2.55	2.50	0.09	0.14	0.11	

Table 32. Moisture Retention Data for DDA Saltstone as measured by MCT.

					Pote	ntial		
					(cı	n)		
			0	-101.97	-509.87	-1,019.74	-5,098.72	-15,296.16
	Minimum		(0.00 bars)	(-0.10 bars)	(-0.50 bars)	(-1.0 bars)	(-5.0 bars)	(-15.0 bars)
	Curing	Bulk						
	Period	Density ¹			Volumetric Mo	isture Content	1	
Sample Id	(days)	(g/cm3)			(cm^3/cm^3)	cm ³)		
DDA-TR430-1	28	1.07	0.560	0.558	0.557	0.557	0.556	0.556
DDA-TR430-2	28	1.06	0.545	0.544	0.544	0.543	0.542	0.542
DDA-TR430-3	28	1.06	0.545	0.544	0.543	0.542	0.541	0.541
DDA-TR431-1	90	1.06	0.551	0.550	0.549	0.548	0.548	0.546
DDA-TR431-2	90	1.06	0.550	0.545	0.544	0.543	0.543	0.542
DDA-TR431-3	90	1.04	0.553	0.550	0.549	0.549	0.549	0.547

¹Dry bulk density and volumetric moisture content corrected for salt precipitation as described in Section 3.3.1.

Table 33. Moisture Retention Data for the ARP/MCU Saltstone as measured by MCT.

				Potential (cm)							
			0								
	Minimum		(0.00 bars)	(-0.10 bars)	(-0.50 bars)	(-1.0 bars)	(-5.0 bars)	(-15.0 bars)			
	Curing Period	Bulk Density ¹		Volumetric Moisture Content ¹							
Sample Id	(days)	(g/cm ³)			(cm ³ /	/cm ³)					
MCU-TR436-1	28	0.98	0.582	0.580	0.580	0.580	0.579	0.579			
MCU-TR436-2	28	0.98	0.590	0.588	0.588	0.588	0.588	0.587			
MCU-TR436-3	28	0.99	0.592	0.590	0.590	0.590	0.589	0.589			
MCU-TR437-1	90	1.01	0.584	0.580	0.580	0.580	0.579	0.579			
MCU-TR437-2	90	0.98	0.585	0.581	0.580	0.580	0.580	0.580			
MCU-TR437-3	90	0.95	0.587	0.586	0.585	0.585	0.585	0.585			

¹Dry bulk density and volumetric moisture content corrected for salt precipitation as described in Section 3.3.1.

Table 34. Moisture Retention Data for the SWPF Saltstone as measured by MCT.

					Pote (cr			
			0	-101.97	-509.87	-1,019.74	-5,098.72	-15,296.16
	Minimum		(0.00 bars)	(-0.10 bars)	(-0.50 bars)	(-1.0 bars)	(-5.0 bars)	(-15.0 bars)
	Curing	Bulk						
	Period	Density ¹		·	Volumetric Mo		t ¹	
Sample Id	(days)	(g/cm3)			(cm ³ /	/cm ³)		
SWPF-TR450-1	28	1.05	0.576	0.575	0.575	0.574	0.574	0.574
SWPF-TR450-2	28	1.05	0.570	0.568	0.568	0.567	0.567	0.567
SWPF-TR450-3	28	1.05	0.566	0.563	0.563	0.562	0.562	0.562
SWPF-TR451-1	90	1.00	0.579					
SWPF-TR451-2	90	1.03	0.599	0.593	0.592	0.592	0.592	0.591
SWPF-TR451-3	90	1.02	0.588	0.582	0.582	0.581	0.581	0.581

¹Dry bulk density and volumetric moisture content corrected for salt precipitation as described in Section 3.3.1.

Table 35. Moisture Retention Data for Vault 1/4 Concrete as measured by MCT.

					Potential							
			(cm)									
			0	0 -101.97 -509.87 -1,019.74 -5,098.72 -15,296.16								
	Minimum		(0.00 bars)	(-0.10 bars)	(-0.50 bars)	(-1.0 bars)	(-5.0 bars)	(-15.0 bars)				
	Curing	Bulk										
	Period	Density			Volumetric Mo	oisture Conten	t					
Sample Id	(days)	(g/cm3)		_	(cm ³ /	/cm ³)	_					
V1-080025-x	28	2.25	0.117	0.114	0.113	0.112	0.111	0.111				
V1-080025-x	28	2.15	0.122	0.120	0.119	0.118	0.118	0.117				
V1-080025-x	28	2.19	0.124	0.122	0.121	0.120	0.120	0.119				

Table 36. Moisture Retention Data for Vault 2 Mix 1 Concrete as measured by MCT.

				Potential								
				(cm)								
			0	-101.97	-509.87	-1,019.74	-5,098.72	-15,296.16				
	M::		(0.00 bars)	(-0.10 bars)	(-0.50 bars)	(-1.0 bars)	(-5.0 bars)	(-15.0 bars)				
	Minimum Curing	Bulk										
	Period	Density		•	Volumetric Mo	isture Conten	t					
Sample Id	(days)	(g/cm3)			(cm ³ /	(cm ³)						
V2M1-080010-1	28	2.18	0.128	0.128	0.125	0.125	0.124	0.124				
V2M1-080010-2	28	2.21	0.116	0.116	0.114	0.113	0.113	0.112				
V2M1-080010-3	28	2.19	0.127	0.125	0.123	0.123	0.122	0.121				

Table 37. Moisture Retention Data for Vault 2 Mix 2 Concrete as measured by MCT.

					Pote	ntial		
					(cı	n)		
			0	-101.97	-509.87	-1,019.74	-5,098.72	-15,296.16
	Minimum		(0.00 bars)	(-0.10 bars)	(-0.50 bars)	(-1.0 bars)	(-5.0 bars)	(-15.0 bars)
	Curing	Bulk						
	Period	Density			Volumetric Mo	isture Conten	t	
Sample Id	(days)	(g/cm3)			(cm ³ /	(cm ³)		
V2M2-080028-1	28	2.26	0.113	0.110	0.109	0.108	0.108	0.107
V2M2-080028-2	28	2.25	0.111	0.108	0.107	0.106	0.105	0.105
V2M2-080028-3	28	2.26	0.109	0.106	0.105	0.105	0.104	0.104

Table 38. Van Genuchten Transport Parameters.

Material	θ_s (cm ³ /cm ⁻³)	$\frac{\theta_{\rm r}}{({\rm cm}^3/{\rm cm}^3)}$	α (1/cm)	n	m ¹
DDA Saltstone	0.570	0.540	0.150	1.03	0.0291
ARP/MCU Saltstone	0.590	0.585	0.150	1.23	0.1870
MCU Saltstone – INL ²	0.700	0.550	0.0007	1.12	0.1071
SWPF Saltstone	0.580	0.572	0.150	1.30	0.2308
Vault 1/4 Concrete	0.121	0.115	0.054	1.27	0.2099
Vault 2 Mix 1 Concrete	0.124	0.119	0.006	1.65	0.3951
Vault 2 Mix 2 Concrete	0.111	0.104	0.077	1.24	0.1952

¹Data analyzed using Mualem relationship between n and m where m = 1 - 1/n.

Table 39. Recommended Saltstone and Vault Concrete Hydraulic and Physical Parameter Values

Saltstone	Saturated Hydraulic Conductivity ^{1,2} (cm/s)	Particle Density ² (g/cm ³)	Dry Bulk Density ³ (g/cm ³)	Porosity ³	Van Genuchten Transport Parameters ⁴
DDA	9.6 x 10 ⁻¹¹	2.37	1.06	0.55	Appendix F
ARP/MCU	8.5 x 10 ⁻¹⁰	2.38	0.97	0.59	Appendix F
SWPF ⁵	$6.0 \times 10^{-09} $ (1.5×10^{-09})	2.42	1.01	0.58	Appendix F
Vault 1/4	3.1 x 10 ⁻¹⁰	2.53	2.24	0.12	Appendix F
Vault 2 Mix 1	1.1 x 10 ⁻¹⁰	2.50	2.21	0.12	Appendix F
Vault 2 Mix 2	9.3 x 10 ⁻¹¹	2.50	2.22	0.11	Appendix F

¹Saturated hydraulic conductivity values for saltstone materials are relative to the concentrated simulants as given in Table 5. The saturated hydraulic conductivity of the vault concretes are relative to tap water.

²Analysis of MCU saltstone previously reported by Dixon and Phifer (2007).

²Logarithmically averaged saturated hydraulic conductivity from Tables 20, 22, 24, 26, 28, and 30. Used 90 day data for saltstone and 28 day data for concrete.

²Particle density calculated as $\rho_s = \rho_b/(1-\eta)$ where ρ_b is dry bulk density and η is porosity using 90 day data for saltstone and 28 day for concretes.

³Average dry bulk density and porosity from Tables 21, 23, 25, 27, 29, and 31. Used 90 day data for saltstone and 28 day data for concretes.

⁴Characteristic curve data is contained in Appendix F.

⁵The SWPF saturated hydraulic conductivity value provided in parenthesis is the recommended value excluding a potential outlying value. Sample SWPF-TR451-3 had a saturated hydraulic conductivity almost two orders of magnitude greater than that of the other two 90 day samples whereas the difference between the minimum and maximum saturated hydraulic conductivity values for the 90 day DDA and ARP/MCU samples was less than a factor of two. The testing laboratory reported that a prolonged power failure complicated the testing of this sample. Thus, it may be appropriate to exclude this sample from the data set for saturated hydraulic conductivity.

		SRNL-STI-2	2008-00421, REVIS	ION (
APPENDIX A.	DEVELOPMENT	OF SALTSTO	NE PERMEANT	CS

Miles Denham/SRNL/Srs 03/27/2008 04:45 PM To Kenneth Dixon/SRNL/Srs@srs

oc Mark Phifer/SRNL/Srs@Srs, John Harbour/SRNL/Srs@Srs, Vickie Williams/SRNL/Srs@Srs, Frances Williams/SRNL/Srs@Srs

bcc

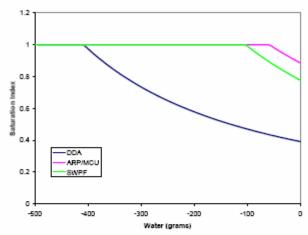
Subject Permeant Simulant for Saltstone Tests

History: A This message has been replied to and forwarded.

Ken,

Sorry for the delay in these calculations. I have spent a fair amount of time trying to find appropriate Pitzer parameters to deal with aluminum at such high ionic strengths and trying other calculations to try and get around the lack of appropriate data. I finally gave up and ran calculations with and without aluminum in the original permeant simulant. The following is a summary of the calculations:

Saturation Indices in simulant


NaNO3	SI (1=saturated)
DDA	0.35
ARP/MCU	0.83
SWPF	0.79

Several aluminum phases are oversaturated according to these calculations, but I have little faith in these because of the lack of appropriate thermdynamic data.

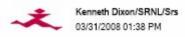
Reaction of simulant with simulated cement

Several aluminum-bearing phases precipitate at the expense of CSH -- the net porosity difference being minimal. Again, I am not sure I have faith in this because of the aluminum problem.

3) Removal of water from simulant (no aluminum present) -- this is meant to test whether water removed from any further hydration of the cement will drive NaNO3 to precipitate. The figure below shows that over 40% of the water (400 grams/kg solution) would have to be removed from the DDA simulant to exceed NaNO3 saturation. For the ARP/MCU and the SWPF simulants the amounts are smaller, 10% for SWPF and 6% for ARP/MCU.

Conclusions

- If John has seen no evidence of aluminum phases precipitating in these simulants, it suggests we can be pretty skeptical of the prediction that aluminum phases will precipitate. If we wanted to be sure, we could leave the aluminum out of the simulants used in the tests. The solution would remain about the same ionic strength and pH.
- 2) NaNO3 should not precipitate if the DDA simulant is used -- 40% of the water will not be removed even if some cement hydration occurs. This is probably true for the other simulants as well, but they are much closer to saturation with NaNO3.


Recommendation

If John sees no harm in it, remove the aluminum from the simulants. Otherwise, I think they should be fine.

I hope this helps,

Miles

SRNL-STI-2008-00421, REVISION 0

To Miles Denham/SRNL/Srs@Srs, John Harbour/SRNL/Srs@Srs, Mark Phifer/SRNL/Srs@Srs Heather Burns/SRNL/Srs@Srs

bcc

Subject Re: Permeant Simulant for Saltstone Tests

Pursuant to our phone conversation this afternoon, we will eliminate aluminum nitrate nonahydrate and trisodium phosphate dodecahydrate from the DDA, ARP/MCU, and SWPF simulants. Sodium hydroxide will be adjusted as necessary for each simulant based on the elimination of these compounds. These modifications will only be made to the permeants and not to the solution used to batch the samples. Based on calculations performed by Miles Denham, these adjustments appear to be necessary to prevent precipitation issues which could adversely affect our permeability data (see attached e-mail from Denham).

Additionally, we agreed that we should test one DDA sample for hydraulic conductivity with the high pressure head system simultaneous to testing the remaining samples using the standard method. This appears to be prudent based on recent hydraulic conductivity data from John Harbour which suggests that the standard method may not be capable of measuring conductivity values much less than 1X10° cm/sec. If a significant discrepancy is noted between the two methods for the DDA saltstone, we will need to discuss having all samples testing using the high pressure system. If this is necessary, then the schedule will be delayed as the lab can only test one sample at the time with this method.

Ken 5-5205

APPENDIX B. STRENGTH REPORTS

DDA Saltstone Strength Report Page 1

Summary Report of Testing Activities	Page 1 of 2
X Report Cover Sheet	
Approvals (If required) Work Package No.:	N/A
Civil Materials Testing Supervisor: QCIR No.: N/A	
W. L. Mhyre Project No.: LWHS	VOPW
Quality Programs & Civil Materials Testing Manager: Design Category: W. Pope Design Category: Design Category:	N/A
Report No.: 2008-LWIISVOPW-000	Date: 6-16-08
Lab No.: 080013 Test Method: N/A	
Discipline: Civil Testing Description: Grout Mix	Designs
Location: Bldg. 717-5N Reported to: J. Ha	rbour, 819-8420
Summary: The following is a list of the compressive strength test results from 12, 2" X 2" cubes of	east from mix DDA.
The samples were cast by SRNL at their ACTL facility on 3-18-08.	
Mix Design, Lab. No., Cast Date, Days aged, Date Tested, Load, lbs., Un	it Load, psi
DDA 080013a 3-18-08 14 4-1-08 3,107	820
080013b 14 3,161	790
080013c 14 3,046	790
14 Day Average = 800 psi	
DDA 080013d 3-18-08 28 4-15-08 3.621	910
080013e 28 3,665	940
080013f 28 3,551	900
28 Day Average = 920 psi	
N/A	
N/A	
M&TE: See Coments Page 2 Cal. Due Date: See Coments Page 2 Procedure:	C-QCP-0201
NCR No.: N/A Rev:	0
Test Results: Conforming Nonconforming *X N/A PCNs:	N/A
Specs;	N/A
Remarks: *Data submitted for Engineering Review. Rev:	N/A
Cubes tested 4-1-08 and 4-15-08 were tested per Procedure C-QCP-020 Rev. 1	N/A
PCN 2.	
N/A	
Inspector (Print/Sign): charles A. Bookhamer Charle G. Bookhener Level: I	Date: 6./6.08
Reviewer (Print/Sign): W.L.MHYRE N. L. WYK Level: TIL	Date: 6/16/08

BB 6/23/08

DDA Saltstone Strength Report Page 2 ASR 18-250 (11/07) Washington Group Savannah River Site Summary Report of Testing Activities (Continuation Sheet) Report No.: 2008-LWIISVOPW-0001 Report Title: Grout Mix Designs Item# Summary Mix Design, Lab No., Date Cast, Days aged, Date Tested, Load, lbs., Unit Load, psi N/A 080013g 080013h DDA 3-18-08 5-13-08 4145 1060 56 4148 1070 4137 080013i 56 1060 56 Day Average = 1060 psi DDA 080013j 90 6-16-08 4065 1020 080013k 90 4031 1010 90 0800131 4160 1040 90 Day Average = 1020 psi M & TE: TM-4, due 12-28-08; CM-50, due8-30-08; CM-59, due7-26-08; CM-49, due7-28-08; CM-60, due 7-26-08; CDS-167, 9-12-08

ARP/MCU Saltstone Strength Report Page 1

SR 18-203 (11/07)	Sav	ann	gton Group ah River Site		
!	Summary Re	epoi	t of Testing Activi	ties	Page 1 of 2
	X Report		Cover Sheet		
Approvals (lf required)		Work Package No.:		i/A
Civil Materials Testing Supervisor:			QCIR No.:	N/A	
W. L. Mhyre			Project No.:	LWIISV	OPW
Quality Programs & Civil Material	s Testing Manage	er:	Design Category:	1	N/A
W. Pope			Report No.: 2008-L	WIISVOPW-0002	Date: 7-01-08
Lab No.: 080014		Test	Method:	N/A	
Discipline: Civil Tes	sting		Description:	Grout Mix De	signs
Location: Bld	lg. 717-5N		Reported to:	J. Harb	our, 819-8420
080014b 080014c 21 Day Average = 960 psi	8-08 28		4-28-08	3,880 1, 3,636 8 3,956 1, 3,950 1,	70 000 120 000 000 030
20 Day Average - 1,010 psi			N/A		
M&TE: See Coments Page 2	Cal. Due Date:	S	ee Coments Page 2	Procedure:	C-QCP-0201
NCR No.:	N/A	_		Rev: PCNs:	0 N/A
Results: Conforming	None	onfo	ming X N/A	Specs:	N/A
Remarks: *Data sub	omitted for Engin	eerin	g Review.		N/A
Cubes tested 4-21-08 and 4-28-08				Rev:	N/A
PCN 2.				DCFs:	N/A
nspector (Print/Sign): <u>Charles A</u> Reviewer (Print/Sign): <u>W.L. M</u> L	8 - V ho was	1/0	Larle G. Bolehow	evel: _I_	Date: 7-1-08
	DEDI TIOMEN	9	//	evel: I	Date: 1/01/08

ARP/MCU Saltstone Strength Report Page 2

	Washington Group Savannah River Site	of 2
	Summary Report of Testing Activities (Continuation Sheet)	
Report Title:	Grout Mix Designs Report No.: 2008-LWII	SVOPV
Item#	Summary	
N/A	Mix Design Lab No. Date Cast Days aged Date Tested Load, lbs. Unit Load, psi	
	MCU 080014g 3-31-08 57 5-27-08 4,483 1,130 080014h 4,471 1,120	
	080014h 4,4/1 1,120 080014i 4,696 1,170	
	57 Day Average = 1,140 psi	
	MCU 080014j 3-31-08 90 6-30-08 4,758 1,200	
	080014k 4,835 1,230	
	90 Day Average = 1,210 psi	
	90 Day Average = 1,210 psi	
	\$ TE: TM-4, due 12-28-08; CM-50, due8-30-08; CM-59, due7-26-08; CM-49, due7-28-08; CM-60, 6-08	due

SWPF Saltstone Strength Report Page 1

		on Grou					
		River Site				Page 1	of 2
Summary R	•	_				- mgc -1	- ⁰ -
X Report	t	°	Cover Sheet	<u> </u>			
Approvals (If required)		Work Pac	kage No.:		_ N	/A	
ivil Materials Testing Supervisor:		QCIR No.	.:		N/A		
V. L. Mhyre		Project No	0.:	L	wiisvo	PW	
uality Programs & Civil Materials Testing Manag	ger:	Design Ca	itegory:		N	/A	
V. Pope		Report No	o.: 2008-L	WIISVOP	W-0003	Date:	7/21/08
ab No.: 080021	Test M	ethod:			N/A		
viscipline: CIVIL TESTING	De	scription:		GROUT	MIX DI	ESIGNS	
ocation: BLDG. 717-5N		R	eported to:		. HARBO	OUR, 819	-8420
Summary: The following is a list of the compressi SWPF. The samples were cast by SRNL at their		cility on 4/2	2/08.				mix
Mix No. Lab. No. Date Cast Age,	days	Date Test	ed I	.oad, lb.	Unit I	.oad, psi	
SWPF 080021a 4/22/08 14		5/06/08	4,1		1,020		
080021b			4,0		1,000		
080021c			3,9	67	980		
14 Day Average = 1,000 psi							
SWPF 080021d 4/22/08 28		5/20/08	4,8	70	1,210		
080021e			4,8	37	1,200		
080021f			4,98	82	1,230		
28 Day Average = 1,210 psi							
I&TE: Refer to comments pg.2 Cal. Due Date:	Refer	to commen	ts pg.2	Procedur	e:	C-QCP	-020
CR No.: N/A				Rev:		0	
est Conforming Non	conform	ing *	X _{N/A}	PCNs:		N/A	
emarks: *Data submitted for Engi	neering I	Zeviow.		Specs:		N/A	
emarks: Data submitted for Engi	meering r	ceview.		Rev:		N/A	
				DCFs:		N/A	
aspector (Print/Sign): W.L. MHYRE/X. t	2.14	egel .		Level: 17		ate: 7/	21/08
eviewer (Print/Sign): M. Lhael Koval	Mich	LLU K	oal	Level:	E D	ate: 7/	23/08
							7.23.

Page 64 of 204

SWPF Saltstone Strength Report Page 2

ASR 18-250 (11/07)

Washington Group Savannah River Site

Summary Report of Testing Activities (Continuation Sheet)

Page 2 _____ of 2 ____

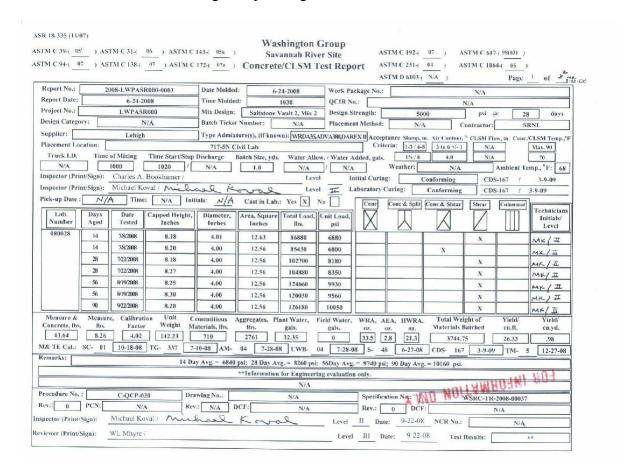
Item #				S	ımmary		
N/A	Mix Design	Lab No.	Date Cast	Days aged	Date Tested	Load, lbs.	Unit Load, psi
	SWPF		4-22-08		6-17-08	5,633	1,420
		080021h				5,645	1,420
		080021i				5,925	1,490
	56 Day Aver	age = 1,44	0 psi				
	SWPF	080021j	4-22-08	90	7-21-08	6,056	1,480
	- 3777	080021k		20	/-21-00	5,913	1,450
	-	0800211				5,947	1,470
	90 Day Aver		0 psi			3,347	1,470
			× p==				
	-						
	-						
	-					/	
						$-\!$	
	-					\leftarrow	
	-				\sim		
	-				_~/		
	-				/ A		
	-				/		
	-				/		
			/				
	-		-				
	_		$-\!\!\!\!/-$				
	-		<i>-</i>				
	-	-					
	-	$-\!\!/-$					
	-	-					
	-						
	- /-						
	- <i>-</i>						
	1						
		-28-08; C	M-50, due8-	30-08; CM-	59, due7-26-08	S; CM-49, d	ue7-28-08; CM-60, du
7-26-08							
-							

Vault 1/4 Strength Report Page 1

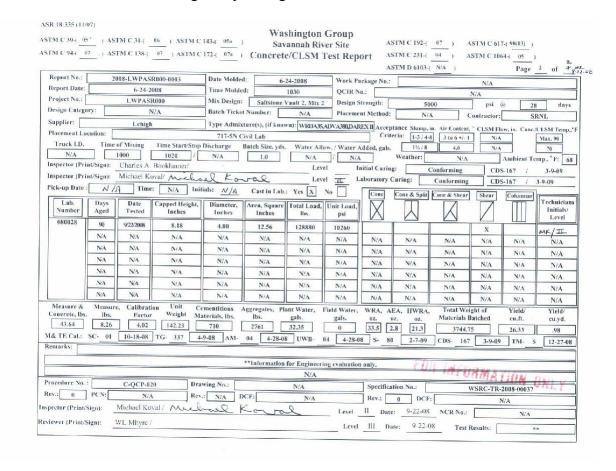
ASR 18-335 (11/0						shington (Group						
ASTM C 39-(05°	_	_				vannah Riv			TM C 192-(TM C 231-(TM C 617-(TM C 1064-		
ASTM C 94-(07	7) AS	TM C 138-(07) ASTM (2 172-(07a)	Concret	e/CLSM 1	est Repo		TM C 231-(TM D 6103-(181 C 1004-		1 of 2
Report No.:		008-LWPAS	2000 0002	Date Molded		-5-2008	Work Pac				N/A	Tuge _	===
Report Date:		5-5-20		Time Molded		1430	OCIR No.				/A		
Project No.:		LWPASI		Mix Design:	Saltstone	Vault 1, Mix 4	Design Str	rength:	500		psi @	28	days
Design Categor	ry:	N	i/A	Batch Ticket	Number:	N/A	Placement	Method:	N/A	Co	ontractor:	SF	RNL
Supplier:		LaFarg	e	Type Admixt	ure(s), (if kno	wn): WRDA35,	ADVA380,DARE	ХП Ассер	tance Slump, in	n. Air Content, 3	CLSM Flow	, in. Conc.	CLSM Temp., F
Placement Loc	ation:			717-5N C				Crite	eria: 1-3 / 4-8	3 to 6 +/- 1	N/A		Max. 90
Truck I.D.	Time	of Mixing	Time Start/Sto	Discharge l	Batch Size, yds	. Water Allo	w. / Water Ac	lded, gals.	2	3.0	N/A		70
N/A	┙┕	1000	1020 /	N./A	1	N/A	/ N/A		Weather:	N/A			mp., °F: 68
			1 Koval				-	itial Curing	٠ ــــــــــــــــــــــــــــــــــــ	onforming		167 /	9-12-08
			Bookhamus)				= ,	boratory (Ouring:	Conforming	CDS-	167 / 9	9-12-08
Pick-up Date :	NIF	7 Time	: <i>N/A</i> In	itials: NH	Cast in Lat	.: Yes X	No	Conc	Cone & Split	Cone & Shear	Shear	Columnar	Technicians
Lab. Number	Days Aged	Date Tested	Capped Height, Inches	Diameter, Inches	Area, Square Inches	Total Load, lbs.	Unit Load, psi	X	\square				Initials/ Level
080025	14	5/19/2008	8.13	4.00	12.56	93460	7440				X		CAB/IF
	14	5/19/2008	8.16	4.00	12.56	86310	6870		X				CAB/I
	28	6/2/2008	8.13	4.00	12.56	109240	8700			X			CAB/I
	28	6/2/2008	8.13	4.00	12.56	109920	8750				X		CAB/I
11 1	56	6/30/2008	8.17	4.00	12.56	127770	10170				X		CAB / II
	56	6/30/2008	8.15	4.00	12.56	128460	10230				X		CAO /II
	90	8/3/2008	8.19	4.00	12.56	120140	9570		x				MK/I
Measure & Concrete, lbs.	_	Facto	Weight	daterials, lbs.	lbs.	lant Water,	gals.	ez.	EA, HWRA,	Total Weig Materials B	atched	Yield/ cu.ft.	Yield/ cu.yd.
44.56	8.28	4.02	145.85	710	2761	32,35			2.8 21.3	3744.7		25.68	.95
M& TE Cal.:	SC- 01	10-18-08	TG- 337	7-10-08 AM-	04 7-28-	08 UWB-	04 7-28-08	8 S- 4	8 6-27-08	CDS- 167	9-12-08	TM 5	12-27-08
Remarks:			14	Day Avg. = 7160	psi; 28 Day A	Avg. =8720 psi;	56Day Avg.	=10190 ps	i; 90 Day Avg	=9420 psi.			
					**Informatio	n for Engineeri	ng evaluation	only.					
						N/A				SRC-TR-2			
Procedure No.		C-QCP-0		rawing No.:		N/A		Specific		9K8-14-08	C-SPS-G	-00065 Ø	<u>, </u>
Rev.: 0	PCN:	N/		1.010	OCF:	N/A		Rev.:	0 DCF		N	/A	
Inspector (Print/	Sign):	Micha	el Koval	huchage	l, Kon	ral_	Level _	II Dat	e: 8.3.06	NCR No.:		N/A	
Reviewer (Print/S	Sign):	WILLIA	n LMHVA	<u>e/X. bi</u>	Usag	r	Level	<i>Z</i> /Z D	ate: <i>B/14</i>	Ø Test I	Results:		••
					-								8-19-08

Vault 1/4 Concrete Strength Report Page 2

ASR 18-335 (11/	07)				Was	hington (Groun						
ASTM C 39-(05	o AST	TM C 31-(06) ASTM C	143-(05a)		annah Rive		A	STM C 192-(STM C 617-		
_	_	_		172-(07a)				rt A	STM C 231-(04) A	STM C 1064	4-(05)	MK8 14-0
	, 1101				Concrete	, CLIDINI I	est repe		STM D 6103-(Page	12 of 2
				Date Molded:			Twent no	kage No.:					
Report No.:	20	008-LWPASI		=		5-2008	OCIR No				N/A		
Report Date:		5-5-20		Time Molded:		1430	╡`				N/A		
Project No.:		LWPASE		Mix Design:		ault 1, Mix 4	Design St		500] psi @	28	
Design Catego	ory:	_	VA.	Batch Ticket N		N/A		t Method:	1012		ontractor:		RNL
Supplier:		LaFarg	е			n): WRDA35,4	ADVA380,DARI	XIII Accep	otance Slump, in			w, in. Cone/	
Placement Lo	_			717-5N Civ					1-3/4-8	3 to 6 +/- 1	N/A	-	Max. 90
Truck I.D.		of Mixing	Time Start/Stop		tch Size, yds.		w. / Water A	dded, gals	Weather:	3.0	N/A		70 68 mp., °F: N/A g
N/A		1000	1020 /	N/A		N/A	_/ N/A			N/A			1-
Inspector (Pri		Michael		wichal				itial Curin		onforming		-167 /	9-12-08
			BooKhamer /	Charles a.	8 ookbam		=	moratory	Curing:	Conforming	CDS	-167 /	9-12-08
Pick-up Date	10/	7 Time	: N/of Ini	tials: <u><i>N 1</i></u>	Cast in Lab.:	: Yes X	No	Cone	Cone & Split	Cone & Shear	Shear	Columnar	Technicians
Lab.	Days	Date	Capped Height,			Total Load,	Unit Load,	\square	П	\square	\square	Ш	Initials/
Number	Aged	Tested	Inches	Inches	Inches	lbs.	psi	\triangle	\triangle	\triangle		Ш	Level
080025	90	8/3/2008	8.21	4.00	12.56	116640	9290		X				MILIT
	90 spare	8/3/2008	Piscond										Discord
1		N/A			N/A		N/A						
		N/A			N/A		N/A		-				
		N/A			N/A	\vdash	N/A						
1		N/A		1	N/A		N/A						-
	╟─┈┤	N/A		╫──╫	N/A		N/A		-		-		
<u> </u>	لــــــال		ion Unit (TECH 1		Total We	abt of	Yield/	Yield/
Measure & Concrete, lbs		e, Calibrat Factor	1011	Cementitious Ag	gregates, Pi	ant Water, 1 gals.	Field Water, gals.	OZ.	AEA, HWRA,	Materials 1		cu.ft.	cu.yd.
44.56	8.28	4.02	145.85	710	2761	32.35	0	33.5	2.8 21.3	3744.7	5	25.68	.95
M& TE Cal.:	SC- 01	10-18-08	TG- 337 7	-10-08 AM-	04 7-28-00	8 UWB-	04 7-28-0	8 S-	48 6-27-08	CDS- 167	9-12-08	TM- 5	5 12-27-08
Remarks:			14	Day Avg. = 7160	psi: 28 Day A	vg. =8720 psi:	56Day Avg.	= 10190 p	si: 90 Day Ayg.	= 9420 psi.			
						for Engineeri			,				
						N/A			€ W5R	C-TR-OL	02-cc0	37	
Procedure No	.: [C-QCP-0	20 Dr	awing No.:		N/A		Specific	ation No.:	1K 8 -14 -0	8 e-srs-c	3-00085 E	<u> </u>
Rev.: 0	PCN:	N/	A Re	v.: N/A DO	T:	N/A		Rev.: [0 DCF:			N/A	
Inspector (Print	/Sign): /	wich as	el Koval	/ Mirline	e Ko	voe	Level	II Da	te: 8.3.0	NCR No.:		N/A	
Reviewer (Print	/Sien): i	1/11/100	1) DIVINGO	12.6.1	Vint				Date: 8/4/6		Results: [**
The state of the s		HILLIAM	AL LIPTON	1 xi. W. M	11/2	_		<u></u> '	4/4/0	- rest	L.		
					0								8.19.08


Vault 2 Mix 1 Concrete Strength Report Page 1

ASR 18-335 (11/0	7)				Was	shington	Group						
STM C 39-(_05") AS1	FM C 31-(_	06) ASTM C	143-(05a)	Sav	annah Riv	ver Site	AS	TM C 192-(07) AS	STM C 617-	(98(03))	
STM C 94-(07) AS	TM C 138-(07) ASTM C	172-(07a)	Concrete	e/CLSM '	Test Repo	rt AS	TM C 231-(04) AS	TM C 1064	H(_05))
								AS	STM D 6103-(N/A ·)		Page	1 of 2
Report No.:	20	008-LWPASI	R000-0001	Date Molded	3-	25-2008	Work Pac	kage No.:			N/A		
Report Date:		3-25-20	008	Time Molded	t:	1600	QCIR №	.:		N	VA.		
Project No.:		LWPASE	R000	Mix Design:	Saltstone '	Vault 2, Mix 1	Design St	rength:	500	00	psi @	21	g days
Design Categor	ry:	N	i/A	Batch Ticket	Number:	N/A	Placemen	t Method:	N/A	c	ontractor:	S	RNL
Supplier:		Lehigh, Ty	pe V	Type Admixt	ture(s), (if kno	wn): WRDA35	ADVA380,DARF	XII Ассер	tance Slump, is	n. Air Content,	CLSM Flor	w, in. Conc.	/CLSM Temp.,
Placement Loc	ation:			717-5N C				Crite	eria: 1-3 / 4-8	3 to 6 +/- 1	N/A		Max. 90
Truck I.D.	Time	of Mixing	Time Start/Stop	Discharge I	Batch Size, yds	. Water All	low. / Water Ad	dded, gals.	2/7	3,2	N/A		72
N/A		1540	1545	N/A	1.0	N/A	/ N/A		Weather:	N/A	/	Ambient Te	emp., *F: 70
			Bockhaner		a Rook de			itial Curin		onforming	CDS	-167 /	9-12-08
			Koval/Min	Chas & K		Lev	el <u>I</u> La	boratory (Curing:	Conforming	CDS	-167/	9-12-08
Pick-up Date :	NIA	Time	: N/A Ini	tials: <u>N/A</u>	Cast in Lab	.: Yes X	No	Cone	Cone & Split	Cone & Shear	Shear	Columnar	
Lab. Number	Days Aged	Date Tested	Capped Height, Inches	Diameter, Inches	Area, Square Inches	Total Load, lbs.	Unit Load, psi	\boxtimes	\square	\square	И		Technician Initials/ Level
080010	14	4/8/2008	8.17	4.00	12.56	80220	6390				x		CA8/1
1	14	4/8/2008	8.25	4.00	12.56	80330	6400				X		CAB/I
	28	4/22/2008	8.25	4,00	12.56	94880	7550				X		CAB/#
1 1	28	4/22/2008	8,32	4,00	12.56	91800	7310				X		CAB/#
1 1	56	5/20/2008	8.17	4,00	12.56	101100	8050		·x				MK/I
1 1	56	5/20/2008	8.09	4.00	12.56	101480	8080		X				MK/I
1 1	90	6/23/2008	8.20	4.00	12,56	118720	9450				x		CA8/1
Measure & Concrete, lbs.	Measur lbs.	re, Calibrat		ementitious /	Aggregates, P	lant Water, gals.	Field Water,		EA, HWRA,	Total Wei	ght of	Yield/ cu.ft.	Yield/ cu.yd.
43.12	8.11	4.02	140.74	670	2761	30.5	0	33	3.5 25	3689.6	2	26.22	.97
M& TE Cal.:	SC- 01	10-18-08	TG- 337 4	1-9-08 AM-	04 4-28-0	8 UWB-	04 4-28-0	8 S- 8	0 2-7-09	CDS- 167	9-12-08	TM-	5 12-27-08
Remarks:			**14 Da	y Avg. = 6380 p	si; **28 Day /	vg. = 7430 ps	si; **56Day A	rg. = 8060	psi; **90 Day	Avg. = 9280 p	si.		
					**Information	for Engineer	ring evaluation	only.					
						N/A							
Procedure No.	: [C-QCP-0	20 Dr	awing No.:		N/A		Specific	ation No.:		WSRC-TR-	2008-0003	
Rev.: 0	PCN:	N/.	A Re	v.: N/A I	OCF:	N/A		Rev.:	0 DCF	: [N	V/A	
nspector (Print/		Charles A.	Bookhamer/	arte de.	Bookfrag	neg	Level	ll Dat	e: 6-23-08	NCR No.:		N/A	
Reviewer (Print/S	Sign): (NILLIAM	L. MAYRE	XIII	nti U	flage	Level	ZZZ D	ate: <u>762</u>	E Test	Results:		**
													77.2.


Vault 2 Mix 1 Concrete Strength Report Page 2

ASR 18-335 (11/07)		Washington C	Group						
STM C 39-(05") ASTM C 31-(06) ASTM C	143-(05a)	Savannah Rive	er Site		M C 192-(_	FM C 617-(9	8(03)	
STM C 94-(07) ASTM C 138-(07) ASTM C	2172-(_07a_) Conc	rete/CLSM T	est Repor	rt AST	M C 231-(_0	4) AST	TM C 1064-(05)	
				AST	M D 6103-(N/A)		Page _2	of 2
Report No.: 2008-LWPASR000-0001	Date Molded:	3-25-2008	Work Pack	age No.:			N/A		
Report Date: 3-25-2008	Time Molded:	1600	QCIR No.:			N/.			
Project No.: LWPASR000		one Vault 2, Mix 1	Design Str		5000		psi @	28	days
Design Category: N/A	Batch Ticket Number:	2.112.2	Placement		N/A		ntractor:	SR	
Supplier: Lehigh, Type V	Type Admixture(s), (if	known): WRDA35,A	DVA380,DARE	Acceptar					
Placement Location:	717-5N Civil Lab			Criteri	10.40	3 to 6 +/- 1	N/A	نا !	Max. 90
Truck I.D. Time of Mixing Time Start/Sto			w. / Water Ad		2/7 /eather:	3.2 N/A	N/A	l L	72 1p., °F: 70
Inspector (Print/Sign): Chocles A. Bosthome	N/A 1.0	N/A Level	N/A Init	ial Curing:		nforming	CDS-16		9-12-08
Inspector (Print/Sign): Michael Koval /	Vilal Fox	MANUEL		oratory Cu		Conforming	CDS-16		-12-08
			· 🗖						12-00
				Cone C	one & Split	one & Shear	Shear	olumnar	Technicians
Lab. Days Date Capped Height, Number Aged Tested Inches	Diameter, Area, Sq Inches Inche	tuare Total Load, ibs.	Unit Load, psi	X		\bowtie		Ш	Initials/ Level
080010 90 6/23/2008 8.20	4.00 12.56	114530	9120				x		AB/I
N/A	N/A		N/A						
N/A	N/A		N/A						
N/A	N/A		N/A						
N/A	N/A		N/A						
N/A	N/A		N/A						
N/A	N/A		N/A						
	Cementitious Aggregate daterials, lbs. lbs.	s, Plant Water, F	ield Water, gals.	WRA, AE	, HWRA,	Total Weigl Materials Ba		/ield/ cu.ft.	Yield/ cu.yd.
43.12 8.11 4.02 140.74	670 2778.3	28.5	0	33 3.5	25	3690.26		26.22	.97
M& TE Cal.: SC- 01 10-18-08 TG- 337	4-9-08 AM- 04 4	-28-08 UWB- 0	4 4-28-08	S- 80	2-7-09	CDS- 167	9-12-08	TM- 5	12-27-08
Remarks: **14 D	ay Avg. = 6380 psi; **28 I	Day Avg. = 7430 psi;	**56Day Av	z. = 8060 psi	**90 Day A	vg. = 9280 psi	i.		
		ation for Engineering							
		N/A							
Procedure No.: C-QCP-020 Da	rawing No.:	N/A		Specification	on No.:	W	SRC-TR-200	8-00037	
	ev.: N/A DCF:	N/A		Rev.:	DCF:		N/A		
nspector (Print/Sign): Charles A. Bookhamer/			Level 7	77 Date:	6-23-08	NCR No.:		N/A	
Reviewer (Print/Sign): WILLIAM L. MHRE	- Mulliam L. 1	skyr	Level	ZZZ Date	1/02/0	≝ Test R	esults:	**	1
							,		0

Vault 2 Mix 2 Concrete Strength Report Page 1

Vault 2 Mix 2 Concrete Strength Report Page 2

SRNI.	-STI-2008-00	1421 R	EVISION (
171111	-17 1-4000-01	/ +	17 A 17214 A 41

APPENDIX C. MCT DATA SHEETS ON SALTSTONE

Project No.

6155-08-0031 DO 2

Tested By

HJ

Project Name

Saltstone Grout & Vault Concrete

Test Date 4/18/2008

Boring No.

TR430-1 (DDA)

Reviewed By JW

Sample No.

Core

Review Date 10/14/2008

Sample Depth

n/a

Lab No.

8584

Sample Description Grout

ASTM D5084 - Method F (CVFH)

111111111111111111111111111111111111111	/
Sample Type:	Core
Sample Orientation:	Vertical
Initial Water Content, %:	42.4
Wet Unit Weight, pcf:	106.5
Dry Unit Weight, pcf:	74.8
Compaction, %:	N/A
Hydraulic Conductivity, cm/sec. @20 °C	1.4E-08

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013

Revision 10 08-13-2007

PERMEABILITY TEST

(ASTM D5084 - 03) (Method F, Constant Volume Falling Head)

 Project Number 6155-08-0031 DO 2
 Tested By HJ

 Project Name
 Saltstone Grout & Vault Concret Test Date 04/18/08

 Boring No.
 TR430-1 (DDA)
 Reviewed By JW

 Sample No.
 Core
 Review Date 10/14/08

 Sample Depth n/a
 Lab No. 8584

Consolidation

Chamber Pressure, psi

Confining Pressure, psi Initial Burett Reading Frnal Burett Reading Volume Change, cc

Back Pressure, psi

3.021 3.021 3.021 3.021 3.021 19.42 2.36	Diameter, In Location 1 2			
3.021 3.021 3.021 3.021 19.42 2.36		L	Pan No.	T.05
3.021 3.021 3.021 19.42 2.36		2.861 W.	Wet Soil+Pan erame	554.27
3.021 3.021 19.42 2.36	Location 2	┾	Dry Soil + Pan orame	180 43
3.021 19.42 2.36	Location 3	+	Pan Weight orams	8 32
19.42	Average 2.	2.861 M	Moisture Content. %	43.2
2.36	Wet Soil + Tare, grams 54;	542.85 Dr	Dry Unit Weight nof	24.0
	L	╄	Saturation %	105.0
Soil Sample Wt, g 542.85 Dry	-	381.30	Diameter, in	3 861
Dry UW, pef 74.8 Moi	L	42.4	Leneth, in.	3 00 1
Saturation, % 103.2			Volume, in	10.42

Permeant used DDA Simulant

Elsnood Time	,		-						
All I made	₽ (22	22	ΔZp	Temp	Intial	Final	×	×
(sec)	(cm)	(cm)	(cm)	(cm)	္စ	Hydraulic	Hydraulic	cm/sec	cm/sec
						Gradient	Gradient		at 20 °C
1200		22.40	21.00	1.40	23.3	33.9	315		2 400 00
3720	1.70	21.00	18.60	2.40	23.3	21.5	37.6	- 1	2.30E-08
10200		21.00	15.85	515	22.2	200	27.7	1,000-03	1.53E-08
21000		00.00		2	63.53	31.0	277	- 1	1.31E-08
7000	7.70	21.00	12.70	8.30	23.3	31.6	17.5		1.16F.08
30300		21.00	10.80	10.20	23.3	31.6	14.2		000000
84840	1.70	21.00	4.60	16.40	22.0	210	7	- 1	1.0825-08
				10.45	503	31.0	3.7	1.13E-08	1.03E-08

	1 4F.08 com/occ	THE OF CHIESE	Subcontract No. ACS4317N Specification No. V. CO. C. O.
	Ave. k at 20 °C		cm² Remarks:
Sample	Orientation	Vertical	0.031416 cm ²
Compaction	%	N/A	eg M
Max. Density Compaction	(bet)	N/A	
of Trials Sample	Type	Core	cm²
No. of Trials		9	$a_n = 0.76712 \text{ cm}^2$ $A = 41.47 \text{ cm}^2$

Specification No. K-SPC-G-0013

Revision 10 08-13-2007 Delivery Order No. 02

 $C = M_1S/(G_{15g}-1) = 0.0004443$ for 15° to 25°

7.67 cm 0.18505 1/cm

S=L/A=

1.04095

TP-4 UNIT WEIGHT OF SAMPLE

Project No.: 6155-08-0031 DO 2

Lab No: 8584

Project Name: Saltstone Grout & Vault Concrete

Tested By: HJ

Date: 04/18/08

Boring No.: TR430-1 (DDA)

Depth: n/a

Sample ID: Core

Reviewed By: JW

Date: 10/14/08

	Sample , <i>inches</i>	Inside D of Cut Tub		Moist	ure Conten	t
1	3.021			Tare No.	T-25	
2	3.021	Top_	2.861	Tare Weight	0.00	grams
3	3.021	Bottom	2.860	Wet Weight + Tare	542.85	grams
Average	3.02	Average_	2.861	Dry Weight + Tare	381.30	grams
			-	Moisture Content	42.4	%

Total Weight of Soil + Tube Section	542.85	grams
Weight of Clean, Dry Tube Section	0.00	grams
Wet Weight of Soil	1.20	lbs
Volume of Sample	0.011	ft ³

RESULT SUMMARY

Moisture Content	42.4	%
Wet Density	106.5	pcf
Dry Density	74.8	pcf
Specific Gravity	2.3611	
Porosity	0.49	_

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013, Rev. 10 08-13-2007

Project No.

6155-08-0031

Tested By

HJ

Project Name

Saltstone Grout & Vault Concrete Test Date

4/18/2008

Reviewed By JW

Boring No. Sample No. TR430-2 (DDA)

Review Date 10/14/2008

Sample Depth

Core

Lab No.

8585

n/aSample Description Grout

ASTM D5084 - Method F (CVFH)

Sample Type:	Core
Sample Orientation:	Vertical
Initial Water Content, %:	42.3
Wet Unit Weight, pcf:	107.1
Dry Unit Weight, pcf:	75.2
Compaction, %:	N/A
Hydraulic Conductivity, cm/sec. @20 °C	5.9E-10

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013

Revision 10 08-13-2007

PERMEABILITY TEST (ASTM D5084 - 03) (Method F, Constant Volume Falling Head)

 Project Number 6155-08-0031
 Tested By HJ

 Project Name
 Saltstone Grout & Vault Concret Test Date 04/18/08

 Boring No.
 TR430-2 (DDA)
 Reviewed By JW

 Sample No.
 Core
 Review Date 10/14/08

 Sample Depth
 n/a
 Lab No. 8585

 Sample Description
 Grout

Consolidation

Chamber Pressure, psi

Confining Pressure, psi Initial Burett Reading Final Burett Reading Volume Change, cc

Back Pressure, psi

	Initial	Initial Sample Data		Final Sample Data	ata
Length, in	u	Diameter, in		Pan No	27.0
Location 1	3.049	Location 1	2.875	Wet Soil+Pan orams	N-04
Location 2	3.040	Location 2	2.878	Dry Soil + Pan grams	300.17
Location3	3.041	Location 3	2.880	Pan Weight ground	0.00
Average	3.043	Average	2.878	Moisture Contact 92	43.0
Volume, in ³	19.79	Wet Soil + Tare, grams	556.43	Dev Unit Wolcht	25.0
SG Messured	2.39	Tare Weight, grams	0.00	Saturation %	7.07
Soil Sample Wt., g	556.43	Dry Soil +Tare, grams	390.04	Dispussion, 70	0.40
Dry UW, pef	75.2	Moisture Content, %	42.3	Length in	2.073
Saturation, %	102.9			Volume in	05.01

Permeant used DDA Simulant

Hydraulic Hydraulic emisec emisec	Gradient	Credition	33.2 43.1 4.715.10	24 4 33 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	32.7 7.28E-10	33.2 28.9 7.93E-10	22.0	01-3097 1.007	33.2 ZI.8 5.63E-10	33.2 214 5 6E.10	1000	
	(crun)			0.25								
	(cm)		22.05	21.85	10.60	13:00	19.10	15.40		15.15		
	(cm)		22.10	22.10	22 10	A	22.10	22.10	01.00	22.10		
(1-1)	(clll)		1.70	1.70	1.70		1.70	1.70	1 30	1.70		
(coo)	(996)	0000	7400	7800	76080	00000	23600	328740	348060	COORE		

5.9E-10 cm/sec	Subcontract No. AC34317N Specification No. R.SPC-G-0013 Revision 10 08-13-2007 Delivery Order No. 02
Avg. k at 20 °C	cm² Remarks: for 15° to 25°
Sample Orientation Vertical	a _p = 0.031416 cm ² M ₁ = 0.03018 M ₂ = 1.04095 4 ₁ S/(G _{1g} -1)= 0.0004423 for 15° to 25°
Compaction % N/A	a _p = M ₁ = M ₂ = A ₁ S/(G ₁₀ -1)= (
Max. Density Compaction (pcf) % N/A N/A	C = M
Type Core	cm² cm² J/cm
No. of Trials S	a, = 0.76712 cm ² A = 41.96 cm ² L = 7.73 cm S=L/A= 0.18422 I/cm

TP-4 UNIT WEIGHT OF SAMPLE

Project No.: 6155-08-0031 DO 2

Lab No: 8585

Project Name: Saltstone Grout & Vault Concrete

Tested By: HJ

Date: 04/18/08

Boring No.: TR430-2 (DDA)

Depth: n/a

Sample ID: Core

Reviewed By: JW

Date: 10/14/08

Total S Height,		Inside Di		Moist	ure Conten	t
1	3.049			Tare No.	R-64	- ×
2	3.04	Top	2.875	Tare Weight	0.00	grams
3	3.041	Bottom	2.880	Wet Weight + Tare	556.43	grams
Average	3.04	Average	2.878	Dry Weight + Tare	390.94	grams
				Moisture Content	42.3	_ _%

Total Weight of Soil + Tube Section	556.43	grams	
Weight of Clean, Dry Tube Section	0.00	grams	
Wet Weight of Soil	1.23		- 1
Volume of Sample	0.011	ft 3	

RESULT SUMMARY

Moisture Content	42.3	%
Wet Density	107.1	pcf
Dry Density	75.3	pcf
Specific Gravity	2.392145	
Porosity	0.50	_

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013, Rev. 10 08-13--2007

Project No.

6155-08-0031 DO 2

Tested By

HJ

Project Name

Saltstone Grout & Vault Concrete Test Date

4/18/2008

Boring No.

TR430-3 (DDA)

Reviewed By JW

Sample No.

Core

Review Date 10/14/2008

Sample Depth

n/a

Lab No.

8586

Sample Description Grout

ASTM D5084 - Method F (CVFH)

Tacinous (C)	/
Sample Type:	Core
Sample Orientation:	Vertical
Initial Water Content, %:	42.5
Wet Unit Weight, pcf:	107.1
Dry Unit Weight, pcf:	75.1
Compaction, %:	N/A
Hydraulic Conductivity, cm/sec. @20 °C	2.0E-09

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013

Revision 10 08-13-2007

PERMEABILITY TEST

(ASTM D5084 - 03) (Method F, Constant Volume Falling Head)

Grout Sample Description

Consolidation

Chamber Pressure, psi

Back Pressure, psi

Confining Pressure, psi Initial Burett Reading Final Burett Reading

Diameter, in Location I Location 2 Location 3	2.908 2.902 2.908 2.906
Location Location Location	
Location	
Location	
Average	
Wet Soil + Tare, grams	Wet
Tare Weight, grams	Pa
Dry Soil +Tare, grams	à
Moisture Content, %	Mo

Permeant used DDA Simulant

Volume Change, cc

Flancard Time	,								
2	γ,	Z	ZP	ΔZp	Temp	Intial	Final	×	٠.
	(cm)	(EIII)	(cm)	(cm)	(°C)	Hydraulio	Hydraulic	cm/sec	cm/sec
1						Gradient	Gradient		at 20 °C
2100	1.70	22.20	21.80	0.40	23.8	34.0	242	A 100 00	2 000
6210	1.70	21.80	21.00	0.80	23.8	34.5	37.6	4.19E-09	3.83E-09
15120	1.70	21.80	20.50	1 30	0 00	400	36.0	2.92E-09	2.67E-09
00000	1 30	00.00		200	0.52	34.2	31.9	1.97E-09	1.80E-09
0000	1.70	71.80	20.30	1.50	23.8	34.2	31.6	1.71E-09	1.57E-00
27480	1.70	21.80	20.00	1.80	23.8	24.7	21.0	20 000	, 000 00
81060	1.70	21.80	18 50	00.0	0.00	7 .	0.10	1.335-09	1.395-09
		2017	19:30	0.30	23.3	34.2	28.4	9.90E-10	9.16E-10

	Avg. k at 20 °C 2.0E-09 cm/sec	Subcontract No. ACS4317N Specification No. R.SPC-G-0013 Revision 10 08-13-2007 Delivery Order No. 02
	Avg. k at 20 °C	cm² Remarks; for 15° to 25°
Sample	Vertical	a _p = 0.031416 cm ² M ₁ = 0.03018 M ₂ = 1.04095 ·1)= 0.0004284 for l
Compaction %	N/A	a _p = 0.031416 cm ² M ₁ = 0.03018 M ₂ = 1.04095 C=M ₁ S/(G _{Hg} ·1)= 0.0004284 for 15° to 25°
Max. Density Compaction	N/A	C
Sample	Core	om² om om //em
No. of Trials	9	a _n = 0.76712 cm ² A = 41.37 cm ² L = 7.38 cm S-L/A= 0.17842 1/cm

TP-4 UNIT WEIGHT OF SAMPLE

Project No.: 6155-08-0031 DO 2

Lab No: 8586

Project Name: Saltstone Grout & Vault Concrete

Tested By: HJ

Date: 04/18/08

Boring No.: TR430-3 (DDA)

Depth: n/a

Sample ID: Core

Reviewed By: JW

Date: 10/14/08

Total S Height,	ample inches	Inside D		Moist	t	
1	2.908			Tare No.	T-7	
2	2.902	Top	2.854	Tare Weight	0.00	 grams
3	2.908	Bottom	2.860	Wet Weight + Tare	523.84	grams
Average	2.91	Average	2.857	Dry Weight + Tare	367.49	grams
				Moisture Content	42.5	-%

Total Weight of Soil + Tube Section	523.84	grams
Weight of Clean, Dry Tube Section	0.00	grams
Wet Weight of Soil	1.15	lbs
Volume of Sample	0.011	ft ³

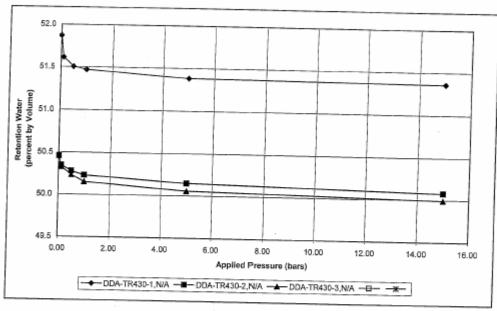
RESULT SUMMARY

Moisture Content	42.5	%
Wet Density	107.1	pcf
Dry Density	75.1	pcf
Specific Gravity	2.396608	
Porosity	0.50	_

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013, Rev. 10 08-13-2007


Water Retention Test (ASTM D3152)

Project No Tested By Reviewed By

6155-08-0031 DO2 HJ/JW JW

Project Name Test Date Review Date

Saltstone Grout & Vault Concrete 5/21/08 10/14/08

Sample No.	Initial	Dry Unit				Appl	ied Pre	ssure (b	ars)			
& Depth (ft)	Moisture	Weight	0.00	0.10	0.5	1.0	5.0					
	% by Vol.	(pcf)			Re	tained V		ercent b	v volu	me)		
DDA-TR430-1,N/A	51.9	76.1	51.9	51.6	51.5	51.5	51.4	51.4	, +010	1		
DDA-TR430-2,N/A	50.5	75.3	50.5	50.3	50.3	50.2	50.1	50.1		+	-	
DDA-TR430-3,N/A	50.5	74.8	50.5	50.3	50.2	50.2	50.1	50.0		+	+-	_
										1		+-
										_	+	_

Remarks:

Subcontract No. AC54317N Specification No K-SPC-G-0013 Revision 10 08-13-2007 Delivery Order No 02

Water Retention Test (ASTIM D3152)

Project No 6155-08-0031 DO2
Tested By HJ/JW
Reviewed By JW

Project Name Test Date Review Date

Saltstone Grout & Vault Concrete 5/21/2008

10/14/2008

Sample No.	DDA-TR430-1	DDA-TR435-8	DDA-TF430-3	
Depth (ft)	N/A	N/A	N/A	
Lab No.	8584	8585	8586	_
Ring No.	N/A	N/A	N/A	
Container Weight. (g)	D.	0	0	
Container Diameter (cm)	7.224	7.328	7.303	
Container Height, (cm)	2,198	2.373	2.273	 +
Container Volume (cm³)	90.09	100.08	95.21	_
Wt. of Wet Soil + Container (g)	156.54	171.31	162.21	_
Wt. of Dry Soil + Container (g)	109.81	120.81	114,15	-
Moisture Content (%)	42.6	41.8	42.1	 _
Dry Unit Weight (pcf)	76.06	75.32	74.81	
nitial WLWet Soil + Container (g)	156.54	171.31	162.21	 _
nitial Wt. Container (g)	0.00	0.00	0.00	 -
nitial Moisture, % by Volume	51,9	50.5	50.5	

Remarks: Subcontract No. AC54317N
Specification No K-SPC-G-0013
Revision 10 08-13-2007
Delivery Order No 02

	Pressure pal	01	1.45	7.25	14.5	72.5	217.5	 	
No.	bars	0.0	0.10	0.5	1.0	5.0	15.0		
	Date / Read By			0.0	1.0	5.0	10.0	 	
8584	Weight of Soil + Ring	156.54	156.31	156.21	156.18	156.1	156.08	 	
	Weight of Ring	0	0	0	0/	0.	130.00	 	
	Retained Water (%)	51.9	51.6	51.5	51.5	51.4	51.4		
8585	Weight of Soil + Ring	171.31	171.2	171.13	171.08	171		 	1
	Weight of Ring	0	0		0	1/1	170.93	 -	
	Retained Water (%)	50.5	50.3	50.3	50.2	50.1	50.1	 	
8586	Weight of Soil + Ring	162,21	162.07	161.98	161.9	161.81	161,75	 	
[Weight of Ring	0.	0	0	0	101.01		 	
	Retained Water (%)	50.5	50.3	50.2	50.2	50.1	50.0	 	
-								 _	-+-
1									
_									
ŀ									
				-	-				

No. of Samples No. of Tests per Sample

Project No.

6155-08-0031 DO 2

Tested By H

HJ

Project Name

Saltstone Grout & Vault Concrete Test Date

....

7/24/2008

Boring No. Sample No.

TR431-1 (DDA)

Reviewed By JW

Core Age 90 Days

Review Date 10/14/2008

Lab No.

8878

Sample Depth

n/a

Sample Description Grout

ASTM D5084 - Method F (CVFH)

TESTIN DEVOY - INTERNOUT (CV	2 22)
Sample Type:	Core
Sample Orientation:	Vertical
Initial Water Content, %:	41.0
Wet Unit Weight, pcf:	106.6
Dry Unit Weight, pcf:	75.6
Compaction, %:	N/A
Hydraulic Conductivity, cm/sec. @20 °C	1.1E-10

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013

Revision 10 08-13-2007

(ASTM D5084 - 03) (Method F, Constant Volume Falling Head) PERMEABILITY TEST

Project Name Saltstone Grout & Vault Concret Test Date 07/24/08 Review Date 10/14/08 Lab No. 8878 Reviewed By JW Tested By HJ Project Number 6155-08-0031 DO 2 Core Age 90 Days TR431-1 (DDA) Sample Depth n/a Sample No. Boring No.

Grout

Sample Description

$\mathcal{O}_{\mathcal{I}}$	
巴	
CI	
Y	
\geq	
	-
ा बी 🗐	

Consolidation

Confining Pressure, psi Chamber Pressure, psi

Back Pressure, psi

Initial Burett Reading Final Burett Reading Volume Change, cc

Length, in Disameter, in 2.894 Wet Soil+Pan, grams 4.1 Location 1 2.430 Location 1 2.893 Dry Soil + Pan, grams 4.4 Location 2 2.431 Location 3 2.894 Pan Weight, grams 3 Average 2.431 Average 2.894 Pan Weight, grams 3 Average 2.431 Average 2.894 Moisture Content, % 6 Average 2.34 Tare Weight, grams 0.00 Saturation, % 6 Sample Wt, g 447.21 Dry Soil + Tare, grams 317.16 Diameter, in. 6 Average 75.6 Moisture Content, % 41.0 Length, in. 7 Average 102.9 Woldmer, in. 7 6 Average 41.0		Initial	Initial Sample Data		Final Sample Data	Jata
2.430 Location 1 2.894 Wet Soil+Pan, grams 2.431 Location 2 2.893 Dry Soil + Fan, grams 2.431 Location 3 2.894 Pan Weight, grams 2.431 Average 2.894 Moisture Content, % 15.98 Wet Soil + Tare, grams 447.21 Dry Unit Weight, pef 2.34 Tare Weight, grams 0.00 Saturation, % 447.21 Dry Soil + Tare, grams 317.16 Diameter, in. 75.6 Moisture Content, % 41.0 Longth, in. 102.9 Volume, in³	Length, i	u	Diameter, in		Pan No.	LJ-20
2.431 Location 2 2.893 Dry Soil + Fan, grams 2.431 Location 3 2.894 Pan Weight, grams 2.431 Average 2.894 Moisture Content, % 15.98 Wet Soil + Tare, grams 447.21 Dry Unit Weight, pef 2.34 Tare Weight, grams 0.00 Saturation, % 447.21 Dry Soil + Tare, grams 317.16 Diameter, in. 75.6 Moisture Content, % 41.0 Longth, in. 102.9 Volume, in. Volume, in.	ocation 1	2.430	Location 1	2.894	Wet Soil+Pan, grams	456.34
2.431 Location 3 2.894 2.431 Average 2.894 15.98 Wet Soil + Tare, grams 447.21 2.34 Tare Weight, grams 0.00 447.21 Dry Soil +Tare, grams 317.16 75.6 Moisture Content, % 41.0 102.9	ocation 2	2.431	Location 2	2.893	Dry Soil + Pan, grams	325.50
2.431 Average 2.894 15.98 Wet Soil + Tare, grams 447.21 2.34 Tare Weight, grams 0.00 447.21 Dry Soil +Tare, grams 317.16 75.6 Moisture Content, % 41.0 102.9 41.0	ocation3	2.431	Location 3	2.894	Pan Weight, grams	8.34
15.98 Wet Soil + Tare, grams 447.21 2.34 Tare Weight, grams 0.00 447.21 Dry Soil + Tare, grams 317.16 75.6 Moisture Content, % 41.0	Average	2,431	Average	2.894	Moisture Content, %	41.3
2.34 Tare Weight, grams 0.00 447.21 Dry Soil +Tare, grams 317.16 75.6 Moisture Content, % 41.0	olume, in ³	15.98		447.21	Dry Unit Weight, pcf	75.6
447.21 Dry Soil +Tare, grams 317.16 75.6 Moisture Content, % 41.0	Measured	2.34		0.00	Saturation, %	103.5
75.6 Moisture Content, % 41.0	Sample Wt., g			317.16	Diameter, in.	2.894
102.9	y UW, pef	75.6		41.0		2,431
	turation, %	102.9			Volume, in ³	15.99

Permeant used DDA Simulant

×	cm/sec	at 20 °C		9.58E-11				
24	cm/sec		1.56E-10		1.07E-10			
Final	Hydraulic	Gradient	43.8		42.7			
Intial	Hydraulic	Gradient	44.0		44.0			
Temp	(°C)		23.2	23.2	23.2	23.2	25.5	
ΔΖρ	(cm)		0.10	0.40	09.0	1.00	1.65	
qz	(cm)		23.20	22.90	22.70	22.30	21.65	
23	(cm)		23.30	23.30	23.30	23.30	23.30	
Z ₀	(cm)		1.70	1.70			1.70	
Elapsed Time	(360)		10800	65820	95640	161760	239280	

	1.1E-10 cm/sec		Subcontract No. AC54317N	Specification No. K-SPC-G-0013	
	Avg. k at 20 °C		cm² Remarks:		
Sample	Orientation	Vertical	0.031416 cm	0.03018	
Compaction	%	N/A	a,e	™ı™	
io. of Trials Sample Max. Density Compaction Sample	(bct)	N/A			
Sample	Type	Core	cm²	cm³	
No. of Trials			a _n = 0.76712 cm ³	A - 42.42 cm	

Revision 10 08-13-2007 Delivery Order No. 02

 $C = M_1S/(G_{Hg}-1) = 0.0003494$ for 15° to 25°

0.14552 1/cm 6.17 cm

S=L/A=

1.04095

TP-4 UNIT WEIGHT OF SAMPLE

Project No.: 6155-08-0031 DO 2

Lab No: 8878

Project Name: Saltstone Grout & Vault Concrete

Tested By: HJ

Date: 07/24/08

Boring No.: TR431-1 (DDA)

Depth: n/a

Sample ID: Core Age 90 Days

Reviewed By: JW

Date: 10/14/08

Total Sample Height, inches		Inside Diameter of Cut Tube, inches		Moisture Content		
1	2.43			Tare No.	LJ-20	
2	2.431	Top	2.894	Tare Weight	0.00	grams
3	2.431	Bottom	2.894	Wet Weight + Tare	447.21	grams
Average	2.43	Average_	2.894	Dry Weight + Tare	317.16	grams
				Moisture Content	41.0	- %

Total Weight of Soil + Tube Section	447.21	grams
Weight of Clean, Dry Tube Section	0.00	grams
Wet Weight of Soil	0.99	lbs
Volume of Sample	0.009	ft ³

RESULT SUMMARY

Moisture Content	41.0	%
Wet Density	106.6	pcf
Dry Density	75.6	pcf
Specific Gravity	2.341953	
Porosity	0.48	

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013, Rev. 10 08-13-2007

PERMEABILITY TEST

(ASTM D5084 - 03) (Method F, Constant Volume Falling Head)

 Project Number 6155-08-0031 DO 2
 Tested By HJ

 Project Number 6155-08-0031 DO 2
 Tested By HJ

 Project Name
 Saltstone Grout & Vault Concret
 Test Date 07/24/08

 Boring No.
 TR431-2 (DDA)
 Reviewed By JW

 Sample No.
 Core Age 90 Days
 Review Date 10/14/08

 Sample Depth
 n/a
 Grout

 Grout
 Grout
 Grout

Consolidation

Chamber Pressure, psi

Confining Pressure, psi Initial Burett Reading Final Burett Reading

Back Pressure, psi

		and ordered by the states		Final Samule Date	lata
Length, in	-	Diameter, in		Don'No	
T acceptant	ì.			ran Ivo.	DB-14
Location I	2.485	Location	2.868	Wet Soil+Pan, erame	450.24
Location 2	2.485	Location 2	2,768	Dry Soil + Dan oneme	100.000
Location3	2.485	Location 3	2 868	Don Wainers and Brening	320.80
Average	2.485	Average	2 834	Mointena Contract 87	8.24
Votemen in				stressons Comedity 70	41.3
rotuile, III	15.67	Wet Soil + Tare, grams	449.80	Dry Unit Weight, nef	27.4
SG Measured	2.48	Tare Weight, grams	000	Saturation %	1000
Soil Sample Wt., g	449.80	Dry Soil +Tare, grams	318.56	Dismeter in	2 4045
Dry UW, pef	77.4	Moisture Content, %	41.2	I enoth in	2.4843
Saturation, %	102.1			Volume in 3	C/08:7

Permeant used DDA Simulant

Volume Change, cc

	34	cm/sec	20.00	200	8.00E-11	44.00	/.30E-11	7 112.11	11-211	7.22E-11		6.63E-11	11 007 7	0.000-11	
	24	cm/sec		1		1	-1	7.68E.11	1	7.79E-11	3 150 11	7.13E-11	7.21E-11	110101	
	Final	Hydraulic	Gradient			45.6		45.1			44.9	2	44.1		
	Intial	Hydraulic	Gradient	16.6	40.0	46.6	200	46.6	1	90.0	9 99	200	46.6		
· de	Temp	(00)		72.7	4.5.4	23.2		23.2	0.00	2.52	23.2		23.2		
4~	QZ2	(cm)		0.40	2	0.50	0.00	0.75	000	2000	1.10		1.20		
de	207	(cm)		24.70		24.60	2000	24.33	24.20		24.00	99 00	23.30		
28	877	(cm)		25.10	40.00	25.10	25.10	VI.64	25.10	00.00	25.10	25.10	45.10		
Z.	۴ ((cm)		1.70	4	0/.7	1 70		1.70	1 30	2.70	1.70	200		
Elapsed Time	1	(3ec)		77400	1054201	075001	164580		195360	261060	000107	283260			

		Subcontract No. AC543		
	Ave. k at 20 of			Remarks:
Sample	Orientation	Vertical		a _p = 0.031416 cm ²
Compaction	%	N/A		I d
Max. Density	(bct)	N/A		
ds Sample	Type	Cone		am,
No. of Trials		9		a, = 0.76712 cm²

Subcontract No. ACSA117N	Specification No. K.SBC.C. 0013	Revision 10 OR-13 2007	Delivery Order No. 02	10.00
Remarks:				
a _p = 0.031416 cm ²	M ₁ = 0.03018	M ₂ = 1.04095	C=M ₁ S/(G _{Hg} -1)= 0.0003723 for 15° to 25°	
a, - 0.76712 cm²	A = 40.70 cm ²	L= 6.31 cm	S=1./A= 0.15505 1/cm	

TP-4 UNIT WEIGHT OF SAMPLE

Project No.: 6155-08-0031 DO 2

Lab No: 8879

Project Name: Saltstone Grout & Vault Concrete

Tested By: HJ

Date: 07/24/08

Boring No.: TR431-2 (DDA)

Depth: n/a

Sample ID: Core Age 90 Days

Reviewed By: JW

Date: 10/14/08

H	Total Sample Height, inches		iameter e, <i>inches</i>	Moisture Content		
1	2.485			Tare No.	DB-14	
2	2.485	Top	2.868	Tare Weight	0.00	grams
3	2.485	Bottom	2.800	Wet Weight + Tare	449.80	grams
Average	2.49	Average_	2.834	Dry Weight + Tare	318.56	grams
				Moisture Content	41.2	%

Total Weight of Soil + Tube Section	449.80	
Weight of Clean, Dry Tube Section	0.00	grams
Wet Weight of Soil	0.99	lbs
Volume of Sample	0.009	-ft³

RESULT SUMMARY

Moisture Content	41.2	%
Wet Density	109.3	pcf
Dry Density	77.4	pcf
Specific Gravity	2.484399	
Porosity	0.50	

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013, Rev. 10 08-13--2007

Project No.

6155-08-0031 DO 2

Tested By

HJ

Project Name

Saltstone Grout & Vault Concrete Test Date

8/21/2008

Boring No.

TR431-3 (DDA)

Reviewed By JW

Sample No.

Core Age 90 Days

Review Date 10/14/2008

Sample Depth

N/A

Lab No.

8880

Sample Description Grout

ASTM D5084 - Method F (CVFH)

Sample Type:	Core
Sample Orientation:	Vertical
Initial Water Content, %:	41.4
Wet Unit Weight, pcf:	107.2
Dry Unit Weight, pcf:	75.8
Compaction, %:	N/A
Hydraulic Conductivity, cm/sec. @20 °C	1.1E-10

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013

Revision 10 08-13-2007

Project No.

6155-08-0031 DO 2

Tested By

HJ

Project Name

Saltstone Grout & Vault Concrete

Test Date

Boring No.

TR431-2 (DDA)

Reviewed By JW

7/24/2008

Sample No.

Core Age 90 Days

Review Date 10/14/2008

Sample Depth

n/a

Lab No.

8879

Sample Description Grout

ASTM D5084 - Method F (CVFH)

110001 (0)	111)
Sample Type:	Core
Sample Orientation:	Vertical
Initial Water Content, %:	41.2
Wet Unit Weight, pcf:	109.3
Dry Unit Weight, pcf:	77.4
Compaction, %:	N/A
Hydraulic Conductivity, cm/sec. @20 °C	7.2E-11

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013

Revision 10 08-13-2007

(ASTM D5084 - 03) (Method F, Constant Volume Falling Head) PERMEABILITY TEST

Project Name Salfstone Grout & Vault Concret Tested By HJ
Boring No. TR431-3 (DDA) Reviewed By JW
Sample No. Core Age 90 Days Review Date 10/14/08 Grout Sample Description

Consolidation

Chamber Pressure, psi

Back Pressure, psi

Confining Pressure, psi

Initial Burett Reading Final Burett Reading Volume Change, oc

	-			***	_		_	-	m	9
Data	T-3	496.25	368.78	51.11	40.1	75.8	100.0	2.861	2,483	15.96
Final Sample Data	Pan No.	Wet Soil+Pan, grams	Dry Soil + Pan, grams	Pan Weight, grams	Moisture Content, %	Dry Unit Weight, pof	Saturation, %	Diameter, in.	Length, in.	Volume, in
		2.861	2.859	2.864	2.861	449.19	0.00	317.67	41.4	
Initial Sample Data	Diameter, in	Location 1	Location 2	Location 3	Average	Wet Soil + Tare, grams	Tare Weight, grums	Dry Soil +Tare, grams	Moisture Content, %	
Initial	u	2.479	2,461	2.508	2.483	15.96	2.37	449.15	75.8	103.2
	Length, in	Location 1	Location 2	Location3	Average	Volume, in ³	SG Measured	Soil Sample Wt., g	Dry UW, pef	Saturation, %

Permeant used DDA Simulant

Elapsed Time	Ze	82	ęz	Δzν	Тетр	Intial	Final	24	
(398)	(cm)	(cm)	(cm)	(cm)	Ç	Hydraulic	Hydraulic	cm/sec	cm/sec
						Gradient	Gradient		at 20 °C
16200		21.90	21.80	0.10	23.2	40.3		_	1.08E-10
70440		21.90	21.50	0.40	23.2			_	
100560	1.70	21.90	21.20	0.70	23.2	40.3	38.8	1.33E-10	
230760		24,40	22.80	1,60	23.2				
316680		24.40	22.40	2.00	23.2			-	

	n Avg. k at 20 °C	
Sample	Orientatio	Vertical
y Compaction	%	N/A
fax. Densit	(bct)	N/A
Sample	Type	Core
No. of Trials		s

1.1E-10 cm/sec

Without Man A Control	Specification No. K-SPC-G-0013	Revision 10 08-13-2007	Delivery Order No. 02
-	Kemanks		
0.021416 2003	M ₁ = 0.03018	1.04095	$C = M_1S((G_{10}-1) = 0.0003651$ for 15° to 25°
	M F	M2==	$C = M_1^2 S/(G_{Ho}-1) =$
7,47123	41.47 cm²	6.31 cm	0.15205 1/cm

S=L/A=

TP-4 UNIT WEIGHT OF SAMPLE

Project No.: 6155-08-0031 DO 2

Lab No: 8880

Project Name: Saltstone Grout & Vault Concrete

Tested By: HJ

Date: 08/21/08

Boring No.: TR431-3 (DDA)

Depth: n/a

Sample ID: Core Age 90 Days

Reviewed By: JW

Date: 10/14/08

Total S Height,	-	Inside Di of Cut Tub		Moist	ure Conten	t
I	2.479			Tare No.	T-3	
2	2.461	Top_	2.861	Tare Weight	0.00	grams
3	2.508	Bottom	2.861	Wet Weight + Tare	449.19	grams
Average	2.48	Average_	2.861	Dry Weight + Tare	317.67	grams
				Moisture Content	41.4	%

Total Weight of Soil + Tube Section	449.19	grams
Weight of Clean, Dry Tube Section	0.00	grams
Wet Weight of Soil	0.99	Ibs
Volume of Sample	0.009	ft ⁵

RESULT SUMMARY

Moistu	re Content	41.4	%
Wet De	ensity	107.2	pcf
Dry De	nsity	75.8	pcf
Specific	c Gravity	2.371823	
Porosit	y	0.49	_

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013, Rev. 10 08-13-2007

Water Retention Test (ASTM D3152)

 Project No
 6155-08-0031 DO2

 Tested By
 HJ/JW

 Reviewed By
 JW

Project Name Test Date Review Date

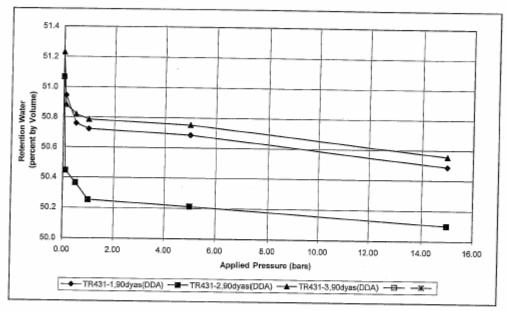
Saltstone Grout & Vault Concrete 8/19/2008 10/14/2008

Sample No.	TR431-1	TR431-2	TR431-3		_
Depth (ft)	Pikisas(DDA)	90dym(00A)	96-bins (CDA)	-	_
Lab No.	8878	8879	8880		_
Ring No.	N/A	N/A	N/A		
Container Weight. (g)	0	0	0		
Container Diemeter (cm)	7.340	7.292	7.248		_
Container Height, (cm)	1.921	1.733	2.228		_
Container Volume (cm³)	81.28	72.37	91.88		_
Wt. of Wet Soil + Container (g)	139.19	123.89	156.27		_
Wt. of Dry Soil + Container (g)	97.68	86.93	109.20		-
Moisture Content (%)	42.5	42.5	43.1		-
Dry Unit Weight (pcf)	74.99	74.95	74.17		_
initial WLWet Soil + Container (g)	139,19	129.89	156.27		_
Initial Wt. Container (g)	0.00	0.00	0.00		-
Initial Moisture, % by Volume	51.1	59.4	51.2		_

Remarks: Subcontract No. AC54317N Specification No K-SPC-G-0013 Revision 10 08-13-2007 Delivery Order No 02

	Pressure psi	0	1.45	7.25	14.5	72.5	217.5	 	-
No.	bars	0.0	0.10	0.5	1.0	5.0	15.0	 	+-
	Date / Read By				- 1.0	3.0	15.0	 	-
8878	Weight of Soil + Ring	139.19	139.09	138.94	138.91	138,88	138.72		_
	Weight of Ring	0	0	0	100.51	130.00			
	Retained Water (%)	51.1	50.9	50.8	50.7	50.7	50.5	 	\perp
8879	Weight of Soil + Ring	123.89	123.44	123.38	123.3	123.27	123.19	 	-
	Weight of Ring	0	0	0	0	0	0	 	+
	Retained Water (%)	51.1	50.4	50.4	50.3	50.2	50,1	 	+
8880 1	Weight of Soil + Ring	156.27	155.95	155.89	155,88	155.83	155.65	 	+
	Weight of Ring	0	0	0	0	D	0	 	-
	Retained Water (%)	51.2	50.9	50.8	50.8	50.8	50.6		-
								 	+
-									-
ŀ									
-									1
_									_

No. of Samples No. of Tests per Sample



Water Retention Test (ASTM D3152)

Project No Tested By Reviewed By 6155-08-0031 DO2 HJ/JW JW

Project Name Test Date Review Date

Saltstone Grout & Vault Concrete 8/19/08 10/14/08

Sample No.	Initial	Dry Unit				Appli	ed Pres	sure (b	ars)			
& Depth (ft)	Moisture	Weight	0.00	0.10	0.5	1.0	5.0	15.0	-			\top
	% by Vol.	(pcf)			Ret	tained W	ater (pe		v volu	me)		
TR431-1,90dyas(DDA)	51.1	75.0	51.1	50.9	50.8	50.7	50.7	50.5	,	1	7	_
TR431-2,90dyas(DDA)	59.4	75.0	51.1	50.4	50.4	50.3	50.2	50.1		1	+-	+-
TR431-3,90dyas(DDA)	51.2	74.2	51.2	50.9	50.8	50.8	50.8	50.6		-	_	+

Remarks:

Subcontract No. AC54317N Specification No K-SPC-G-0013 Revision 10 08-13-2007

Project No.

6155-08-0031 DO 2

Tested By

HJ

Project Name

Saltstone Grout & Vault Concrete Test Date

5/5/2008

Boring No.

TR436-1 (MCU)

Reviewed By JW

Sample No.

Core

Review Date 10/14/2008

Sample Depth

n/a

Lab No.

8591

Sample Description Grout

ASTM D5084 - Method F (CVFH)

THE RESERVE TO THE PARTY (C)	/
Sample Type:	Core
Sample Orientation:	Vertical
Initial Water Content, %:	39.6
Wet Unit Weight, pcf:	106.8
Dry Unit Weight, pcf:	76.5
Compaction, %:	N/A
Hydraulic Conductivity, cm/sec. @20 °C	5.4E-09

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013

Revision 10 08-13-2007

PERMEABILITY TEST (ASTM D5084 - 03) (Method F, Constant Volume Falling Head)

// MACTEC

 Project Number 6155-08-0031 DO 2
 Tested By HJ

 Project Name
 Saltstone Grout & Vault Concret
 Tested By HJ

 Boring No.
 TR436-1 (MCU)
 Reviewed By JW

 Sample No.
 Core
 Review Date 10/14/08

 Sample Depth
 n/a
 Lab No. 8591

 Sample Description
 Grout

e e	Į.	202.00	502.38	113.4	41.7	75.5	1007	2 880	3.638	23.85
Final Sample Data	Pan No.	Wet Soil+Pan, erams	Dry Soil + Pan. ersms	Pan Weight, grams	Moisture Content %	Dry Unit Weight pof	Saturation %	Diameter in	Length, in.	Volume, in
		2.894	2.887	2,887	2.889	668.47	0.00	478.98	39.6	
Initial Sample Data	Diameter, in	Location 1	Location 2	Location 3	Average	Wet Soil + Tare, grams	Tare Weight, grams	Dry Soil +Tare, grams	Moisture Content, %	
Initial	u	3.638	3.636	3.640	3.638	23.85	2.30	668.47	76.5	103.7
	Length, in	Location 1	Location 2	Location3	Average	Volume, in ³	SG Measured	Soil Sample Wt., g.	Dry UW, pef	Saturation, %

Permeant used MCU Simulant

Consolidation

Chamber Pressure, psi

Back Pressure, psi

Confining Pressure, psi

Initial Burett Reading Final Burett Reading Volume Change, cc

1007									
Elapsed Time	20	22	qz	ΔZp	Тетр	Intial	Final	-*	*
(sec)	(cm)	(GEE)	(cm)	(cm)	(°C)	Hydraulic	Hydraulic	cm/sec	cm/sec
						Gradient	Gradient		at 20 °C
2880	1.70	24.20	23.50	0.70	23.3	30.6	29.6	60.2009	6 645 00
0969	1.70	24.20	22.90	1.30	23.3	30.6	28.8	4 67E 00	4 335 00
13260	1.70	24.20	21.55	2.65	23.3	30.6	0.00	50-TIO	4.325-09
71220	1.70	04.00	000		2	20.0	507	5.17E-09	4.78E-09
1		44.50	2,30	14.30	23.9	30.6	10.4	7.98E-09	7.28E-09
9540		10.80	10.00	08'0	23.3	12.4	11.2	5.28F-09	4 88E-00
									CO-Tropy

	2011
m,	
0.76712 ci	
	A = 0.76712 cm ² A = 42.30 cm ²

0.21845 1/cm

S-1./A=

9.24 cm

TP-4 UNIT WEIGHT OF SAMPLE

 Project No.:
 6155-08-0031 DO 2
 Boring No.:
 TR436-1 (MCU)

 Lab No:
 8591
 Depth:
 n/a

 Project Name:
 Saltstone Grout & Vault Concrete
 Sample ID:
 Core

Tested By: HJ Reviewed By: JW

Date: 05/05/08 Date: 10/14/08

1	Sample , <i>inches</i>	Inside Diameter of Cut Tube, inches		Moist	sture Content		
1	3.638			Tare No.	AD-1		
2	3.636	Тор	2.894	Tare Weight	0.00	grams	
3	3.64	Bottom	2.884	Wet Weight + Tare	668.47	grams	
Average	3.64	Average	2.889	Dry Weight + Tare	478.98	grams	
		L		Moisture Content	39.6	%	

Total Weight of Soil + Tube Section	668.47	grams
Weight of Clean, Dry Tube Section	0.00	grams
Wet Weight of Soil	1.47	Ibs
Volume of Sample	0.014	ft ³

RESULT SUMMARY

Moisture Content	39.6	%
Wet Density	106.8	pcf
Dry Density	76.5	pcf
Specific Gravity	2.30378	
Porosity	0.47	

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013, Rev. 10 08-13--2007

Project No.

6155-08-0031 DO 2

Tested By

Project Name

Saltstone Grout & Vault Concrete Test Date

HJ

Boring No.

5/5/2008

Sample No.

TR436-2 (MCU)

Reviewed By JW

Core

Review Date 10/14/2008

Sample Depth

n/a

Lab No.

8592

Sample Description Grout

ASTM D5084 - Method F (CVFH)

TABLES DECOT MEMORIA (C)	/
Sample Type:	Core
Sample Orientation:	Vertical
Initial Water Content, %:	40.0
Wet Unit Weight, pcf:	107.1
Dry Unit Weight, pcf:	76.5
Compaction, %:	N/A
Hydraulic Conductivity, cm/sec. @20 °C	2.1E-09

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013

Revision 10 08-13-2007

(ASTM D5084 - 03) (Method F, Constant Volume Falling Head) PERMEABILITY TEST

 Project Number
 6155-08-0031 DO 2
 Tested By HJ

 Project Name
 Saltstone Grout & Vault Concret
 Test Date
 05/05/08

 Boring No.
 TR436-2 (MCU)
 Reviewed By JW

 Sample No.
 Core
 Review Date
 10/14/08

 Sample Depth
 n/a
 Lab No. 8592
 Grout Sample Description

Consolidation

Chamber Pressure, psi Confining Pressure, psi Initial Burett Reading Final Burett Reading Volume Change, cc

Back Pressure, psi

	Initial	Initial Sample Data		Final Sample Data	ata
Length, in		Diameter, in		Pan No	V.10
Location 1	3.902	Location 1	2.884	Wet Soil+Pan anamo	771 36
Location 2	3.903	Location 2	2.887	Dry Soil + Pan prems	560.05
Location3	3.900	Location 3	2.888	Pan Weight erams	47.74
Average	3.902	Average	2.886	Moisture Contract %	1.7
Volume, in	25.52	Wet Soil + Tare, grams	717.48	Dry Hait Wolche nof	9 2
SG Measured	2.33	Tare Weight, grams	0.00	Sahamation 02	200
Soil Sample Wt., g	717.48	Dry Soil +Tare, grame	512 62	Diameter in	100.7
Dry UW, pef	76.5	Moisture Content, %	40.0		2,000
Saturation, %	103.6				3,502

Permeant used MCU Simulant

-	cm/sec	at 20 °C	6 03E-00	50-GE0-03	1.95E-09	1.54E_00		1.43E-09	1.32E.09		1.315-09	
4	оев/шо			000000	4-13E-09	1.68E-09	00 440	1.338-09	1.43E-09	1 417 000	1.415-09	
Final	Hydraulic	Gradient	26.9		ı			20.02				
Intial	Hydraulic	Gradient		0 90	l		26.0		26.9	090	2003	
Temp	(Ç		23.6	23.6		23.6	23.6	0.00	23.3	23.3		
Δz _p	(cm)		0.70	09'0		3.60	4.80	30.3	0.73	7.25		
-SZ	(cm)		22.90	22.30	00.01	19.30	18.10	31.91	21.01	15.65		
52	(cm)		23.60	22.90	22.00	75.30	22.90	22 90	200	22.90		
20	(cm)		1.70	1.70	1 20	1.70	1.70	1.70		1.70		
Elapsed Time	(sec)	0000	3480	7920	92400	00100	97500	158760		000007		

1 tr 00	Z.A.E. CHISEC	Subcontract No. AC54317N Specification No. K-SPC-G-0013 Revision 10 08-13-2007 Delivery Order No. 02
Ave. It at 20 of	0 00 00 00 00	n² . Remarks: r 15° to 25°
on Sample Orientation	Vertical	$a_p = 0.031416 \text{ cm}^2$ $M_1 = 0.03018$ $M_2 = 1.04095$ $C = M_1 S/(G_{16g} - 1) = 0.0005638 \text{ for } 15^* \text{ to } 25^*$
Compaction %	N/A	, s, M,
No. of Trials Sample Max. Density Compaction Type (pcf) %	NA	C=D
Sample Type	Core	cm² cm² cm U/cm
No. of Trials	9	- 0.76712 cm ² - 42.20 cm ² - 9.91 cm \text{A} = 0.23481 1/cm
		A - L - A - A - A - A - A - A - A - A -

Project No.: 6155-08-0031 DO 2

Lab No: 8592

Project Name: Saltstone Grout & Vault Concrete

Tested By: HJ

Date: 05/05/08

Boring No.: TR436-2 (MCU)

Depth: n/a

Sample ID: Core

Reviewed By: JW

Date: 10/14/08

Total Sample Height, inches		Inside D of Cut Tub		Moisture Content				
1	3.902			Tare No.	X-19			
2	3.903	Top	2.884	Tare Weight	0.00	grams		
3	3.9	Bottom	2.888	Wet Weight + Tare	717.48	grams		
Average	3.90	Average_	2.886	Dry Weight + Tare	512.52	grams		
				Moisture Content	40.0	%		

Total Weight of Soil + Tube Section	717.48	grams
Weight of Clean, Dry Tube Section	0.00	grams
Wet Weight of Soil	1.58	lbs
Volume of Sample	0.015	ft ³

RESULT SUMMARY

Moisture Content	40.0	%
Wet Density	107.1	pcf
Dry Density	76.5	pcf
Specific Gravity	2.327971	
Porosity	0.47	

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013, Rev. 10 08-13--2007

Project No.

6155-08-0031 DO 2

Tested By HJ

Project Name

Saltstone Grout & Vault Concrete

Boring No.

TR436-3 (MCU)

5/5/2008 Reviewed By JW

Test Date

Sample No.

Core

Sample Depth

n/a

Review Date 10/14/2008

Lab No.

8593

Sample Description Grout

ASTM D5084 - Method F (CVFH)

Sample Type:	Core		
Sample Orientation:	Vertical		
Initial Water Content, %:	39.6		
Wet Unit Weight, pcf:	105.4		
Dry Unit Weight, pcf:	75.5		
Compaction, %:	N/A		
Hydraulic Conductivity, cm/sec. @20 °C	2.7E-10		

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013

Revision 10 08-13-2007

PERMEABILITY TEST

(ASTM D5084 - 03) (Method F, Constant Volume Falling Head)

Project Number 6155-08-0031 DO 2 Tested By HJ
Project Name Saltstone Grout & Vault Concret Test Date 05/05/08
Boring No. TR436-3 (MCU) Reviewed By JW Review Date 10/14/08 Lab No. 8593 Grout Sample No. Core Sample Depth n/a Sample Description

Consolidation

Confining Pressure, psi Chamber Pressure, psi

Back Pressure, psi

Initial Burett Reading Final Burett Reading Volume Change, cc

	Initial	Initial Sample Data		Final Sample Data)ata
Length, in	,	Diameter, in		Pan No.	AB-3
Location 1	3.705	Location 1	2.880	Wet Soil+Pan, grams	776.15
Location 2	3.703	Location 2	2.883	Dry Soil + Pan, grams	573.23
Location3	3.701	Location 3	2.885	Pan Weight, grams	85.12
Average	3.703	Average	2.882	Moisture Content, %	41.6
Volume, in ³	24.16	Wet Soil + Tare, grams	681.38	Dry Unit Weight, pcf	77.0
SG Measured	2.34	Tare Weight, grams	0.00	Saturation, %	108.5
Soil Sample Wt., g	681.38	Dry Soil +Tare, grams	488.11	Diameter, in.	2.882
Dry UW, pcf	77.0	Moisture Content, %	39.6	Length, in.	3.703
Saturation, %	103.3			Volume, in	24.16

Permeant used MCU Simulant

×	cm/sec	at 20 °C	2.66E-10	2.80E-10	2.79E-10	2.39E-10		
-16	cm/sec				1	2.62E-10		
Final	Hydraulic	Gradient		30.7				
Intial	Hydraulic	Gradient		31.0				
Temp	(°C)		23.3	23.3	23.3	23.9		
ΔΖρ	(cm)		2.85	0.20	0.25	0.90		
q2	(GEE)		24.90	24.70	24.65	24.00		
23	(cm)		27.75	24.90	24.90	24.90		
Z ₀	(cm)		1.70	1.70	1.70	1.70	-	
Elapsed Time	(360)		225600	15960	20040	84240		

	Avg. k at 20 °C 2.7E-10 cm/sec	
Sample	Orientation	Vertical
Compaction	%	N/A
Max. Density	(bct)	N/A
Sample	Type	Core
Trials		4

Subcontract No. AC54317N	Specification No. K-SPC-G-0013	Revision 10 08-13-2007	Delivery Order No. 02
Remarks:			
0.031416 cm²	0.03018	1.04095	$M_1S/(G_{1d}-1)=0.0005364$ for 15° to 25°
n a	M ₁ =	M_z =	$C = M_1S/(G_{ \mathcal{U}}-1)=$

0.22342 1/cm

S=L/A=

9.41 cm

a_a = 0.76712 cm² 42.10 cm²

Project No.: 6155-08-0031 DO 2

Lab No: 8593

Project Name: Saltstone Grout & Vault Concrete

Tested By: HJ

Date: 05/05/08

Boring No.: TR436-3 (MCU)

Depth: n/a

Sample ID: Core

Reviewed By: JW

Date: 10/14/08

Total Sample Height, inches		Inside Diameter of Cut Tube, inches		Moisture Content				
1	3.705			Tare No.	AB-3			
2	3.703	Top	2.880	Tare Weight	0.00	grams		
3	3.701	Bottom	2.885	Wet Weight + Tare	681.38	grams		
Average	3.70	Average_	2.883	Dry Weight + Tare	488.11	grams		
				Moisture Content	39.6	%		

Total Weight of Soil + Tube Section	681.38	grams
Weight of Clean, Dry Tube Section	- 0.00	grams
Wet Weight of Soil	1.50	lbs
Volume of Sample	0.014	ft ³

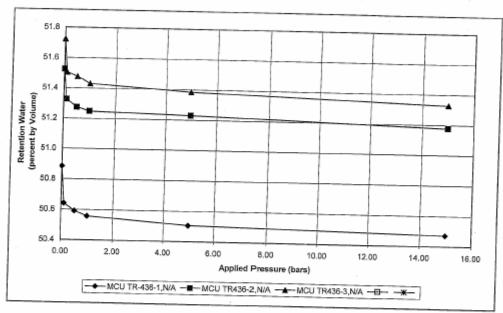
RESULT SUMMARY

Moisture Content	39.6	%
Wet Density	107.4	pcf
Dry Density	76.9	pcf
Specific Gravity	2.338571	
Porosity	0.47	

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013, Rev. 10 08-13--2007


Water Retention Test (ASTM D3152)

Project No Tested By Reviewed By

6155-08-0031 DO2 HJ/JW JW

Project Name Test Date Review Date

Saltstone Grout & Vault Concrete 5/21/08 10/14/08

Sample No.	Initial	Dry Unit				Appl	ied Pres	sure (b	ars)			_
& Depth (ft)	Moisture	Weight 1	0.00	0.10	0.5	1.0	5.0	15.0		7		Т
	% by Vot.	(pcf)			Ret	ained V				ıma\		
MCU TR-436-1,N/A	50.9	75.7	50.9	50.6	50.6	50.6	50.5	50.5	y voic	ine)		_
MCU TR436-2,N/A	51.5	75.7	51.5	51.3	51.3	51.2	51.2	51.2				-
MCU TR436-3,N/A	51.7	76.2	51.7	51.5	51.5	51.4	51.4	51.2		+	+	
										_		_
	[_		-

Remarks:

Subcontract No. AC54317N Specification No K-SPC-G-0013 Revision 10 08-13-2007 Delivery Order No 02

Water Retention Test (ASTM D3152)

Project No 6155-08-0031 DO2
Tested By HJ/J/W
Reviewed By JW

Project Name Test Date Review Date

Saltstone Grout & Vault Concrete 5/21/2008 10/14/2008

Sample No.	MCU TRH36-1	MICU TRACES	MCU TR436-3		
Depth (ft)	N/A	N/A	N/A	_	-
Lab No.	8591	8592	9583	-	-
Ring No.	N/A	N/A	N/A		-
Container Weight. (g)	0	0	IN/A		-
Container Diameter (cm)	7.339	7,318	7.317		-
Container Height, (cm)	2.812	2.739	2.595	-	-
Container Volume (cm ³)	118.95	115.20			-
Wt. of Wet Soil + Container (g)	204.75	199.12	109.12		
Wt. of Dry Soil + Container (g)	144.22	139.76	189.77		
Moisture Content (%)	42.0		133.33		
Ory Unit Weight (pcf)	75.65	42.5	42.3		
nitial Wt.Wet Soil + Container (g)		75.70	76.25		
nitial Wt. Container (g)	204.75	199.12	189.77		
nitial Malabase A/ 5 Malabase	0.00	0.00	0.00		
nitial Moisture, % by Volume	50.9	51.5	51.7		

Remarks: Subcontract No. AC54317N
Specification No K-SPC-G-0013
Revision 10 06-13-2007
Delivery Order No 02

Lab	Pressure psi	10	4.461	7.017					
No.	bars		1.45	7.25	14.5	72.5	217.5		
	Date / Read By	0.0	0.10	0.5	1.0	5.0	15.0		
0.00	Date / Read By		1				10.0		
8591	Weight of Soil + Ring	204.75	204.48	204.4	204.38	204.3	201.00		
	Weight of Ring	0	0	0	2.04.00	204.3	204.26		
	Retained Water (%)	50.9	50.8	50.8	50.0	- DI	0		7
8592	Weight of Soil + Ring	199.12	198.89		50.6	50.5	50.5		
	Weight of Ring		196.89	198.83	198.8	198.78	198.72		_
	Retained Water (%)	0	0	0	0	0	0		
0500	Melaha (0)	51.5	51.3	51.3	51.2	51.2	51.2		 -
9003	Weight of Soil + Ring	189.77	189.53	189,5	189,45	189.4	189.34		
	Weight of Ring	0	0	0	0	700.4	108.34		
	Retained Water (%)	51.7	51.5	51.5	51.4	51.4			
				01.0	31.4	31.4	51.3		
									_
- 1		-							+
									 _
- }									
								_	

No. of Samples No. of Tests per Sample

Project No.

6155-08-0031 DO 2

Tested By

BM

Project Name

Saltstone Grout & Vault Concrete

Test Date

8/19/2008

Boring No.

TR437-1 (MCU)

Reviewed By JW

Sample No.

Core Age 90 Days

Review Date 10/14/2008

Sample Depth

n/a

Lab No.

8884

Sample Description Grout

ASTM D5084 - Method F (CVFH)

The second of th	111)
Sample Type:	Core
Sample Orientation:	Vertical
Initial Water Content, %:	42.4
Wet Unit Weight, pcf:	106.7
Dry Unit Weight, pcf:	75.0
Compaction, %:	N/A
Hydraulic Conductivity, cm/sec. @20 °C	1.1E-09

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013

Revision 10 08-13-2007

PERMEABILITY TEST

(ASTM D5084 - 03) (Method F, Constant Volume Falling Head)

Project Name Salistone Grout & Vault Concret Test Date 08/19/08

Boring No. TR437-1 (MCU) Reviewed By JW
Sample No. Core Age 90 Days Review Date 10/14/no Lab No. 8884 Grout Sample Description Sample Depth n/a

Consolidation

Chamber Pressure, psi

Confining Pressure, psi

Back Pressure, psi

Initial Burett Reading Final Burett Reading Volume Change, cc

	Initial	Initial Sample Data		Final Sample Data)ata
Length, in		Diameter, in		Pan No.	AB-11
Location 1	2.203	Location I	2.902	Wet Soil+Pan, grams	496.68
Location 2	2.217	Location 2	2.889	Dry Soil + Pan, grams	372.82
Location3	2.226	Location 3	2.893	Pan Weight, grams	85.95
Average	2.215	Average	2.895	Moisture Content, %	43.2
Volume, in ³	14.58	Wet Soil + Tare, grams	408.39	Dry Unit Weight, pof	75.0
SG Measured	2.35	Tare Weight, grams	0.00	Saturation, %	106.2
Soil Sample Wt., g	408.39	Dry Soil +Tare, grams	286.87	Diameter, in.	2.895
Dry UW, pcf	75.0	Moisture Content, %	42.4	Length, in.	2.215
Saturation, %	104.2			Volume, in	14.58

MCC

Permeant used

×	cm/sec	at 20 °C	1.27E-09	1.19E-09	1.03E-09	9.73E-10	9.28B-10	
*	cm/sec				1.08E-09			
Final	Hydraulic	Gradient			39.3			
Intial	Hydraulic	Gradient			50.3			
Temp	္စ		22.5	22.5	22.0	23.0	23.0	
ΔΖρ	(cm)		0.70	1.50	4.70	6.20	8.50	
qz	(cm)		23.50	22.70	19.50	18.00	15.70	
22	(cm)		24.20	24.20	24.20	24.20	24.20	
2°2	(cm)				1.70			
Elapsed Time	(sec)		7800	18060	72180	102900	159540	

	1.1E-09 cm/sec		Subcontract No. AC54317N	Specification No. K-SPC-G-0013	Revision 10 08-13-2007	Delivery Order No. 02
-	Avg. k at 20 °C		cm² Remarks:			$C = M_1S/(G_{Hg}-1) = 0.0003182$ for 15° to 25°
Sample	Orientation	Vertical	0.031416 cm ²	0.03018	1.04095	0.0003182
Compaction	%	N/A	a _d	M ₁ =	M_2	M ₁ S/(G _{Hg} -1)=
No. of Trials Sample Max. Density Compaction Sample	(bed)	N/A				C=3
Sample	Type	Core	cm ₂	cm ²	cm	I/cm
No. of Trials		5	0.76712 cm²	42.45 cm ²	5.63	0.13253 I/cm
			ď	٧.	7	=V/I=S

PERMEABILITY TEST (ASTM DS084 02) Offer 2 2

(ASTM D5084 - 03) (Method F, Constant Volume Falling Head)
Project Number 6155,08,0021 D0.2

 Project Number 6155-08-0031 DO 2
 Tested By BM

 Project Name
 Saltstone Grout & Vault Concret Test Date 08/19/08

 Boring No.
 TR437-1 (MCU)
 Reviewed By JW

 Sample No.
 Core Age 90 Days
 Review Date 10/14/08

 Sample Depth
 n/a
 Lab No. 8884

 Sample Description
 Grout

MACTEC	

Consolidation

Chamber Pressure, psi

Confining Pressure, psi Initial Burett Reading Final Burett Reading Volume Change, cc

Back Pressure, psi

	Initial	Initial Sample Data		Final Sample Data)ata
Length, in	u	Diameter, in		Pan No	
Location 1	2.203	Location 1	2,902	Wet Soil4Dan owner	III-QV
Location 2	2.217	Location 2	2.880	Dry Soil + Pur groups	970,08
Location3	2.226	Location 3	2.893	Pan Weight prams	372.62
Average	2.215	Average	2.895	Moisture Content %	43.7
Volume, in3	14.58	Wet Soil + Tare, grams	408.30	Dry Hale Weight and	2.5.
SG Measured	2.35	Tare Weight, grams	000	Saturation %	0.07
Soil Sample Wt, g	408.39	Dry Soil +Tare, grams	286.87	Diameter in	2 805
Dry UW, pcf	75.0	Moisture Content, %	42.4	Lenoth in	3316
Saturation, %	104.2			Volume in ³	Clara.

MCU

Permeant used

Elanced Time	,								
amilia populare	ş	ZS	g	ΔZ _p	Temp	Initial	Final		۷
(3008)	(cm)	(cm)	(cm)	(cm)	္စ	Hydraulic	Hydraulic	cm/sec	cm/sec
						Gradient	Gradient		at 20 %
7800		24.20	23.50	0.70	22.5	50.3	48.6	1 34P, 00	1 370 00
18060		24.20	22.70	1.50	22.5	503	46.0	1 940 00	1.6 /E-U9
72180	1.70	24.20	19.50	4.70	0000		40.0	1.275-09	1.196-09
102000		24.00		2	0.22	200	39.3	1.08E-09	1.03E-09
000000		74.40	18.00	6.20	23.0	50.3	35.9	1.05E-09	0.77F-10
129240		24.20	15.70	8.50	23.0	50.3	30.5	01 2300	0.000
								Vi-Sup-IV	7.20E-1U

	1.1E-09 cm/ccc	200	Subcontract No. AC54317N Specification No. K.SPC-G-0013 Revision 10 08-13-2007 Delivery Order No. 02
	Avg. k at 20 °C		cm² Remarks: for 15° to 25°
Sample	Orientation	Vertical	$a_y = 0.031416 \text{ cm}^2$ $M_1 = 0.03018$ $M_2 = 1.04095$ $C = M_1 S/(G_{1/6} - 1) = 0.0003182 \text{ for } 15^\circ \text{ to } 25^\circ$
Compaction	%	N/A	$M_1^a = M_1^a = M_2^a = 0$ $M_2^a = 0$ $M_1^a = 0$
Max	(bet)	NA	, i
Sample	Type	Core	cm² cm L/cm
No. of Trials		\$	s _e = 0.76712 cm ² A = 42.45 cm ² L = 5.63 cm S=L/A= 0.13253 1/cm

Project No.: 6155-08-0031 DO 2 Boring No.: TR437-1 (MCU) Lab No: 8884 Depth: n/a Project Name: Saltstone Grout & Vault Concrete Sample ID: Core Age 90 Days Tested By: HJ

Reviewed By: JW Date: 08/19/08

Date: 10/14/08

Total S Height,	•	Inside D of Cut Tub		Moist	ure Conten	t
I	2.203			Tare No.	AB-11	
2	2.217	Top	2.900	Tare Weight	0.00	grams
3	2.226	Bottom	2.890	Wet Weight + Tare	408.39	grams
Average	2.22	Average	2.895	Dry Weight + Tare	286.87	grams
				Moisture Content	42.4	%

Total Weight of Soil + Tube Section	408.39	grams
Weight of Clean, Dry Tube Section	0.00	grams
Wet Weight of Soil	0.90	lbs
Volume of Sample	0.008	ft ³

RESULT SUMMARY

Moisture	Content	42.4	%
Wet Dens	ity	106.7	pcf
Dry Dens	ity	74.9	pcf
Specific G	Fravity	2.348237	
Porosity		0.49	*******

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013, Rev. 10 08-13--2007

Project No.

6155-08-0031 DO 2

Tested By

BM

Project Name

Saltstone Grout & Vault Concrete

Test Date

8/19/2008

Boring No.

TR437-2 (MCU)

Reviewed By JW

Sample No.

Core Age 90 days

Review.Date 10/14/2008

Sample Depth

Lab No.

8885

Sample Description Grout

ASTM D5084 - Method F (CVFH)

110000000000000000000000000000000000000	/
Sample Type:	Core
Sample Orientation:	Vertical
Initial Water Content, %:	42.0
Wet Unit Weight, pcf:	107.6
Dry Unit Weight, pcf:	75.8
Compaction, %:	N/A
Hydraulic Conductivity, cm/sec. @20 °C	8.8E-10

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013

Revision 10 08-13-2007

PERMEABILITY TEST (ASTM D5084 - 03) (Method F, Constant Volume Falling Head)

Tested By BM	et Test Date 08/19/08	Reviewed By JW	Review Date 10/14/08	Lab No. 8885	
5-08-0031 DO 2	Saltstone Grout & Vault Concret Test Date 08/19/08	TR437-2 (MCU)	e Age 90 days		Grout
Project Number 6155-08-0031 DO 2	Project Name Salt	Boring No. TR4	Sample No. Con	Sample Depth n/a	Sample Description

	Initial	Initial Sample Data		Final Sample Data	ata
Length, in	1	Diameter, in		Pan No.	4-19
Location 1	2.147	Location 1	2.902	Wet Soil+Pan, grams	450.34
Location 2	2.151	Location 2	2.889	Dry Soil + Pan, grams	330.83
Location3	2.144	Location 3	2.883	Pan Weight, grams	50.43
Average	2.147	Average	2.891	Moisture Content, %	42.6
Volume, in ³	14.10	Wet Soil + Tare, grams	398.19	Dry Unit Weight, pcf	75.8
SG Measured	2.39	Tare Weight, grams	00'0	Saturation, %	105.2
Soil Sample Wt., g	398.19	Dry Soil +Tare, grams	280.40	Diameter, in.	2.891
Dry UW, pef	75.8	Moisture Content, %	42.0	Length, in.	2.147
Saturation, %	103.7	-		Volume, in ³	14.09

Permeant used

Elapsed Time	Z ₀	22	qz	. Azp.	Тетр	Intial	Final	- K	.24
(586)	(cm)	(GIII)	(cm)	(cm)	ွ	Hydraulio	Hydraulic	om/sec	cm/sec
						Gradient	Gradient		at 20 °C
2160		22.80	22.30	0.50	23.2			1.34E-09	1.24E-09
318960	1.70	22.80	9.80	13.00	23.2	48.6	17.4		
13320		23.50	22.55	0.95	22.5				
24600		23.50	22.00	1.50	22.5		46.6		
79680		23.50	20.15	3.35	22.5	50.2	42.2	6.76E-10	
164760		23.50	17.70	5.80	22.5		36.3		

	8.8E-10 cm/sec		
	Avg. k at 20 °C		
Sample	Orientation	Vertical	
Compaction	%	N/A	
Max. Density	(bct)	N/A	
Sample	Type	Core	
No. of Trials		9	

	s: Subcontract No. AC54317N	Specification No. K-SPC-G-0013	Revision 10 08-13-2007	Delivery Order No. 02
	Remarks:			
Vertibeal	a ₂ = 0.031416 cm ²	0.03018	1.04095	$C = M_1S/(G_{Hg}-1) = 0.0003092$ for 15° to 25°
VAL	ag.	Mı=	M ₂ =	$(_{1}S/(G_{18}c^{-1}))=$
V COLO IVA IVA VIIIVAL				C = M
ans	cm²	cm²	cm	1/cm
,	0.76712	42.35	L = 5.45 cm	=L/A= 0.12876 1/cm
_	1 °	= V	1	-I/A-

Consolidation

Chamber Pressure, psi

Back Pressure, psi

Confining Pressure, psi Initial Burett Reading

Final Burett Reading Volume Change, cc

Project No.: 6155-08-0031 DO 2

Lab No: 8885

Project Name: Saltstone Grout & Vault Concrete

Tested By: HJ

Date: 08/19/08

Boring No.: TR437-2 (MCU)

Depth: n/a

Sample ID: Core Age 90 Days

Reviewed By: JW

Date: 10/14/08

		Sample , <i>inches</i>	Inside Diameter of Cut Tube, inches		Moist	t	
	1	2.147			Tare No.	T-19	
ı	2	2.151	Top	2.900	Tare Weight	0.00	grams
۱	3	2.144	Bottom	2.881	Wet Weight + Tare	398.19	grams
١	Average	2.15	Average_	2.891	Dry Weight + Tare	280.40	grams
					Moisture Content	42.0	%

Total Weight of Soil + Tube Section	398.19	grams
Weight of Clean, Dry Tube Section	0.00	grams
Wet Weight of Soil	0.88	Ibs
Volume of Sample	0.008	· ft s

RESULT SUMMARY

Moisture Content	42.0	%
Wet Density	107.7	pcf
Dry Density	75.8	pcf
Specific Gravity	2.389783	
Porosity	0.49	_

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013, Rev. 10 08-13--2007

Project No.

6155-08-0031 DO 2

Tested By

BM

Project Name

Saltstone Grout & Vault Concrete Test Date

8/19/2008

Boring No.

TR437-3 (MCU)

Reviewed By JW

Sample No.

Core Age 90 Days

Review Date 10/14/2008

Sample Depth

Lab No.

8886

Sample Description Grout

ASTM D5084 - Method F (CVFH)

ABIN D3004 - Memou F (C)	TH)
Sample Type:	Core
Sample Orientation:	Vertical
Initial Water Content, %:	43.2
Wet Unit Weight, pcf:	108.9
Dry Unit Weight, pcf:	76.1
Compaction, %:	N/A
Hydraulic Conductivity, cm/sec. @20 °C	6.4E-10

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013

Revision 10 08-13-2007

PERMEABILITY TEST (ASTM D5084 - 03) (Method F, Constant Volume Falling Head)

 Project Number 6155-08-0031 DO 2
 Tested By BM

 Project Name
 Saltstone Grout & Vault Concret
 Test Date 08/19/08

 Boring No.
 TR437-3 (MCU)
 Reviewed By JW

 Sample No.
 Core Age 90 Days
 Review Date 10/14/08

 Sample Depth
 n/a
 Lab No. 8886

 Sample Description
 Grout

Consolidation

Chamber Pressure, psi

Back Pressure, psi

Confining Pressure, psi Initial Burett Reading

Final Burett Reading Volume Change, oc

Final Sample Data	AB-25	arms 499.16	rams 373.42	ms 84.16	t, % 43.5	.pef 76.1	103.9	2.875	2.231	14.48
Final Sar	Pan No.	Wet Soil+Pan, grams	Dry Soil + Pan, grams	Pan Weight, grams		Dry Unit Weight, pcf	Saturation, %	Diameter, in.	Length, in.	Volume, in
		2.870	2.872	2.884	2.875	414.21	00'0	289.26	43.2	
Initial Sample Data	Diameter, in	Location 1	Location 2	Location 3	Average	Wet Soil + Tare, grams	Tare Weight, grams	Dry Soil +Tare, grams	Moisture Content, %	
Initial	u	2.231	2.239	2.224	2.231	14.49	2.49	414.21	76.1	103.2
	Length, in	Location 1	Location 2	Location3	Average	Volume, in	SG Measured	Soil Sample Wt., g	Dry UW, pef	Saturation, %

MCU

Permeant used

Elapsed Time	Z ₀	23	qz	ďZ∇	Temp	Intial	Finst	246	k
(sec)	(cm)	(cm)	(cm)	(cm)	ွ	Hydraulic	Hydraulic	cm/sec	cm/sec
						Gradient	Gradient		at 20 °C
57540	1.70	15.80	14.40	1.40	22.5				5.80E-10
92160	1.70	15.80	13.50	2.30	22.5	31.3	26.0	6.56E-10	6.18E-10
251520	1.70	15.30	9.70	5.60	22.5				6.81E-10
165160	1.70	15.30	11.20	4.10	22.5	30.2	20.7		6.98E-10

	Avg. k at 20 °C 6.4E-10 cm/sec		Subcontract No. AC54317N	Specification No. K-SPC-G-0013	Revision 10 08-13-2007	Delivery Order No. 02	
	Avg. k at 20 °C		cm² Remarks:			$C = M_1S/(G_{Hg}-1) = 0.0003248$ for 15° to 25°	
Sample	Orientation	Vertical	a _p = 0.031416 cm ²	0.03018	1.04095	0.0003248	
Compaction	%	N/A	ed.	M,=	M_2	$A_1S/(G_{Hg}-1)=$	
No. of Trials Sample Max. Density Compaction Sample	(bct)	N/A				C=)	
Sample	Type	Core	cm²	cm ²	cm	I/cm	
No. of Trials		4	a,= 0.76712 cm²	41.89 cm ²	5.67 cm	S=L/A= 0.13530 L/cm	
			e e	A a	$\Gamma =$	=T/A=	

Project No.: 6155-08-0031 DO 2

Lab No: 8886

Project Name: Saltstone Grout & Vault Concrete

Tested By: HJ

Date: 08/19/08

Boring No.: TR437-3 (MCU)

Depth: n/a

Sample ID: Core Age 90 Days

Reviewed By: JW

Date: 10/14/08

Total S Height,		Inside Di of Cut Tub		Moist	ure Conten	t
1	2.231		,	Tare No.	AB-25	
2	2.239	Top	2.870	Tare Weight	0.00	grams
3	2.224	Bottom	2.880	Wet Weight + Tare	414.21	grams
Average	2.23	Average	2.875	Dry Weight + Tare	289.26	grams
		Ĺ		Moisture Content	43.2	%

Total Weight of Soil + Tube Section	414.21	grams
Weight of Clean, Dry Tube Section	0.00	grams
Wet Weight of Soil	0.91	lbs
Volume of Sample	0.008	ft ³

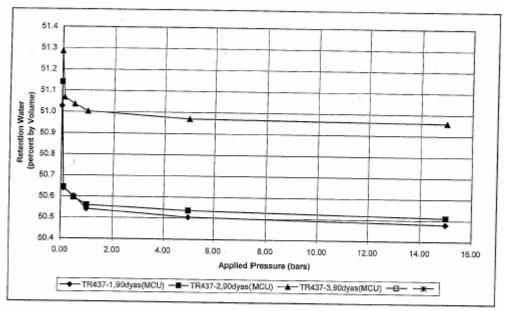
RESULT SUMMARY

Moisture Content	43.2	%
Wet Density	108.9	pcf
Dry Density	76.1	pcf
Specific Gravity	2.488207	
Porosity	0.51	

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013, Rev. 10 08-13--2007


Water Retention Test (ASTM D3152)

Project No Tested By Reviewed By

6155-08-0031 DO2 HJ/JW JW

Project Name Test Date Review Date

Saltstone Grout & Vault Concrete 8/19/08 10/14/08

Sample No.	Initial	Dry Unit				Appl	ied Pres	sure (ba	ars)			
& Depth (ft)	Moisture	Weight	0.00	0.10	0.5	1.0	5.0	15.0		1	\neg	
	% by Vol.	(pcf)			Re	tained V	Vater (p		v volu	me)		
TR437-1,90dyas(MCU)	51.0	77.8	51.0	50.6	50.6	50.5	50.5	50.5	,	T		
TR437-2,90dyas(MCU)	51.1	75.8	51.1	50.6	50.6	50.6	50.5	50.5			_	
TR437-3,90dyas(MCLI)	51.3	74.1	51.3	51.1	51.0	51.0	51.0	51.0		_	+	+
											_	

Remarks:

Subcontract No. AC54317N

Specification No K-SPC-G-0013 Revision 10 08-13-2007

Water Retention Test (ASTM D3152)

Project Name Test Date Review Date

Saltstone Grout & Vault Concrete 8/19/2008 10/14/2008

Sample No.	TR437-1	TR437-2	TR437-3	
Depth (ft)	90c(ww(360L))	19tyus(MOU)	98dyws#MCL/)	
Lab No.	8884	8885	8886	
Ring No.	N/A	N/A	N/A	_
Container Weight. (g)	0	0	0	
Container Diameter (cm)	7.300	7.320	7.342	
Container Height, (cm)	1.968	1.965	2.172	
Container Volume (cm³)	82.37	82.69	91.96	
Wt. of Wet Soil + Container (g)	144.73	142.7	156.29	
Wt. of Dry Soil + Container (g)	102.70	100.41	109.13	
Moisture Content (%)	40.9	42.1	43.2	
Dry Unit Weight (pcf)	77.80	75.77	74.05	
Initial Wt.Wet Soil + Container (g)	144.73	142.70	156.29	
Initial Wt. Container (g)	0.00	0.00	0.00	
nitial Moisture, % by Volume	51.0	51.1	51.3	

Remarks: Subcontract No. AC54317N
Specification No K-SPC-G-0013
Revision 10 08-13-2007
Delivery Order No 02

	Pressure psi	. 0	1.45	7.25	14.5	72.5	217.5			_
No.	bars	0.0	0.10	0.5	1.0.	5.0	15.0		-	+
	Date / Read By					0.0	15.0	_	_	+
	Weight of Soil + Ring	144.73	144.41	144.38	144.33	144.3	144.28	_		+
	Weight of Ring	0	. 0	0	0	0	0	-		+
	Retained Water (%)	51.0	50.6	50.8	50.5	50.5	50.5	-+-		+-
	Weight of Soil + Ring	142.7	142.29	142.25	142.22	142.2	142.18	_		+
	Weight of Ring	0	0	0	0	0	176.10	_		-
	Retained Water (%)	51.1	50.6	50.6	50.6	50.5	50.5		_	+-
8888	Weight of Soil + Ring	156.29	156.09	156.06	156.03	156	155.99	_		+
	Weight of Ring	0	0	0	0	0	0			-
	Retained Water (%)	51.3	51.1	51.0	51.0	51.0	51.0			+
ŀ								1		+
					_					
		_		-						
ı			-	-				-		-
Ī										+

No. of Samples No. of Tests per Sample

Project No.

6155-08-0031 DO 2

Tested By

HJ

Project Name

Saltstone Grout & Vault Concrete

Test Date

6/4/2008

Boring No.

TR450-1 (SWPF)

Reviewed By JW

Review Date 10/14/2008

Sample No.

Core

8727

Sample Depth

n/a

Lab No.

Sample Description Grout

ASTM D5084 - Method F (CVFH)

THE THE TAX TO THE TAX TO TAX	
Sample Type:	Core
Sample Orientation:	Vertical
Initial Water Content, %:	40.8
Wet Unit Weight, pcf:	108.6
Dry Unit Weight, pcf:	77.1
Compaction, %:	N/A
Hydraulic Conductivity, cm/sec. @20 °C	1.2E-08

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013

Revision 10 08-13-2007

PERMEABILITY TEST

(ASTM D5084 - 03) (Method F, Constant Volume Falling Head)

Project Number 6155-08-0031 DO 2 Tested By HJ
Project Name Saltstone Grout & Vault Concret Test Date 06/04/08 Review Date 10/14/08 Reviewed By JW TR450-1 (SWPF) Core Boring No. Sample No.

Grout n/a Sample Description Sample Depth

Lab No. 8727

ion	75	65	10	0	0	0
Consolidation	Chamber Pressure, psi	Back Pressure, psi	Confining Pressure, psi	Initial Burett Reading	Final Burett Reading	Volume Change, oc

41.9

Moisture Content, % Dry Unit Weight, pcf

2.883 09'099 0.00 469.11

Wet Soil + Tare, grams

23.17 2.39 09.099

Average

3.550 3.537 3.576

Tare Weight, grams

Dry Soil +Tare, grams Moisture Content, %

soil Sample Wt., g

SG Messured

Volume, in"

Average

2,7

Saturation, % Dry UW, pof

77.1

Pan Weight, grams

673.74 477.30

Dry Soil + Pan, grams Wet Soil+Pan, grams

> 2.884 2.882

Location 2 Location 3

Location 1

Initial Sample Data

Length, in

Location 1 Location 2 Location3

2.884

Final Sample Data

Pan No.

107.4

Saturation, % Diameter, in. Length, in. Volume, in³

40.8

77.1

2,883

Permeant used SWPF Simulant

23.17

1.00E-08at 20 °C 1.52E-08 1.52E-08 1.06E-08 9.63E-09 8.75E-09 om/sec 1.73E-08 9.84E-09 1.72E-08 1.08E-08 1.19E-08 1.13E-08 cm/sec 21.4 5.5 16.7 6.2 Hydraulic Gradient Final 33.3 33.3 33.3 31.4 31.4 Hydraulic Gradient Intial 25.0 25.0 25.0 25.0 25.3 Temp Ç 18.70 10.10 10.20 6.90 17.20 Ç Z² 15.40 6.90 17.30 14.10 22.50 7.00 (E) Ŕ 25,60 25.60 25.60 24.20 24.20 24.20 g (j 1.70 1.70 1.70 2,3 cm) 28680 82920 72720 18240 4320 17580 Elapsed Time (300)

Orientation Sample Vertical Max. Density Compaction N/A × (bet) Ϋ́χ Sample Type Cone Vo. of Trials

1.2E-08 cm/sec Avg. k at 20 °C

Specification No. K-SPC-G-0013 Subcontract No. AC54317N Delivery Order No. 02 Revision 10 08-13-2007 Remarks: C=M₁S/(G_{Hg}-1)- 0.0005139 for 15° to 25° 0.031416 cm² 0.03018

1.04095

0.21404 1/cm

S=L/A-

42.12 cm²

9.02 cm

0.76712 cm²

Ų. M_2

// MACTEC

i .	Sample , inches	Inside D of Cut Tul		Moist	ure Conten	t
1	3.536			Tare No.	R-20	-
2	3.537	Top	2.884	Tare Weight	0.00	grams
3	3.576	Bottom	2.882	Wet Weight + Tare	660.60	grams
Average	3.55	Average	2.883	Dry Weight + Tare	469.11	grams
				Moisture Content	40.8	- _%

Total Weight of Soil + Tube Section	660.60	grams
Weight of Clean, Dry Tube Section	0.00	grams
Wet Weight of Soil	1.46	lbs
Volume of Sample	0.013	

RESULT SUMMARY

ľ	Moisture Content	40.8	%
7	Wet Density	108.6	pcf
I	Dry Density	77.1	pcf
S	Specific Gravity	2.385699	
F	orosity	0.48	_

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013, Rev. 10 08-13-2007

Project No.

6155-08-0031 DO 2

Tested By

HJ

Project Name

Saltstone Grout & Vault Concrete

Test Date

6/12/2008

Boring No.

TR450-2 (SWPF)

Reviewed By JW

Sample No.

Core

Review Date 10/14/2008

Sample Depth

n/a

Lab No.

8728

Sample Description Grout

ASTM D5084 - Method F (CVFH)

Hydraulic Conductivity, cm/sec. @20 °C	3.4E-08
Compaction, %:	N/A
Dry Unit Weight, pcf:	76.7
Wet Unit Weight, pcf:	108.7
Initial Water Content, %:	41.9
Sample Orientation:	Vertical
Sample Type:	Core

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013

Revision 10 08-13-2007

(ASTM D5084 - 03) (Method F, Constant Volume Falling Head) PERMEABILITY TEST

 Project Number 6155-08-0031 DO 2
 Tested By HJ

 Project Name
 Saltstone Grout & Vault Concret Test Date 06/12/08

 Boring No.
 TR450-2 (SWPF)
 Reviewed By JW

 Sample No.
 Core
 Review Date 10/14/08

 Sample Depth n/a
 Lab No. 8728

Lab No. 8728

Sample Description

TEC	
MAC	

Consolidation

Chamber Pressure, psi Confining Pressure, psi Initial Burett Reading Final Burett Reading Volume Change, cc

Back Pressure, psi

	Initial	Initial Sample Data		Final Sample Data	ata
Length, in	0	Diameter, in		Pan No.	R-21
Location 1	3.132	Location 1	2.873	Wet Soil+Pan, grams	584.85
Location 2	3.049	Location 2	2.881	Dry Soil + Pan, grams	412.92
Location3	3.084	Location 3	2.885	Pan Weight, grams	8 27
Average	3.088	Average	2.880	Moisture Content, %	42.5
Volume, in3	20.11	Wet Soil + Tare, grams	574.00	Dry Unit Weight nef	7.6.7
SG Measured	2.43		0.00	Saturation, %	105.6
Soil Sample Wt., g	574.00	Dry Soil +Tare, grams	404.65	Diameter, in.	2 88
Dry UW, pcf	76.7	Moisture Content, %	41.9	Length. in.	3 088
Saturation, %	104.0			Volume, in ³	20.11

Permeant used SWPF Simulant

(sec) (cm) (cm) <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>										
(cm) (cm) (cm) (cm) (cm) (a) (a) Hydraulic Hydraulic Hydraulic Hydraulic 3780 1.70 17.90 9.90 8.00 25.0 25.0 12.6 3720 1.70 24.80 19.60 5.20 25.0 37.0 28.3 0620 1.70 24.80 13.10 11.70 25.0 37.0 17.5 6620 1.70 24.80 10.55 14.25 25.0 37.0 13.2 6180 1.70 23.40 16.80 6.60 25.0 34.8 23.8 28800 1.70 23.40 6.70 16.70 25.0 34.8 6.9	Ime	z,	ZB	qz	Δz	Temp	Intial	Final	24	.4
1.70 17.90 9.90 8.00 25.0 26.0 12.6 1.70 24.80 19.60 5.20 25.0 37.0 28.3 1.70 24.80 13.10 11.70 25.0 37.0 17.5 1.70 24.80 10.55 14.25 25.0 37.0 13.2 1.70 23.40 16.80 6.60 25.0 34.8 23.8 1.70 23.40 6.70 16.70 25.0 34.8 6.9	ଚ	(cm)	(cm)	(CEE)	(cm)	(C)	Hydraulic	Hydraulic	cm/sec	cm/sec
1.70 17.90 9.90 8.00 25.0 26.0 12.6 1.70 24.80 19.60 5.20 25.0 37.0 28.3 1.70 24.80 13.10 11.70 25.0 37.0 17.5 1.70 24.80 10.55 14.25 25.0 37.0 13.2 1.70 23.40 16.80 6.60 25.0 34.8 23.8 1.70 23.40 6.70 16.70 25.0 34.8 6.9							Gradient	Gradient		at 20 °C
1.70 24.80 19.60 5.20 25.0 37.0 28.3 1.70 24.80 13.10 11.70 25.0 37.0 17.5 1.70 24.80 10.55 14.25 25.0 37.0 13.2 1.70 23.40 16.80 6.60 25.0 34.8 23.8 1.70 23.40 6.70 16.70 25.0 34.8 6.9	3780	1.70	17.90	9.90	8.00	25.0	26.0	12.6	8.56E-08	7.61E-08
1.70 24.80 13.10 11.70 25.0 37.0 17.5 1.70 24.80 10.55 14.25 25.0 37.0 13.2 1.70 23.40 16.80 6.60 25.0 34.8 23.8 1.70 23.40 6.70 16.70 25.0 34.8 6.9	3720	1.70	24.80	19.60	5.20	25.0		28.3	3.22E-08	2 86F.08
1.70 24.80 10.55 14.25 25.0 37.0 13.2 1.70 23.40 16.80 6.60 25.0 34.8 23.8 1.70 23.40 6.70 16.70 25.0 34.8 6.9	10620	1.70	24.80	13.10	11.70	25.0		17.5	3.16E-08	2 815.08
1.70 23.40 16.80 6.60 25.0 34.8 23.8 1.70 23.40 6.70 16.70 25.0 34.8 6.9	16620		24.80	10.55	14.25	25.0		13.2	2 77E.AR	2 460 00
1.70 23.40 6.70 16.70 25.0 34.8 6.9	6180		23.40	16.80	09'9	25.0		23.8	2 76E.08	3 460 09
	28800		23.40	6.70	16.70	25.0		69	2 51E.08	2.70E-08
										200

	Avg. k at 20 °C 3.4E-08 cm/sec		Subcontract No. ACS4317N	Specification No. K-SPC-G-001	Revision 10 08-13-2007	Delivery Order No. 02
	Avg. k at 20 °C	,	m ² Remarks:			or 15° to 25°
Sample	Orientation	Vertical	$a_p = 0.031416 \text{ cm}^2$	0.03018	1.04095	0.0004483 f
Compaction	*	N/A	B d	M ₁ =	M ₂ =	C = M ₁ S/(G _{Pg} -1)= 0.0004483 for 15" to 25"
No. of Trials Sample Max. Density Compaction	(bod)	N/A				C=D
Sample	Type	Core	m ₂	cm²	E -	/cm
No. of Trials		9	0.76712 cm ²	42.01 c		0.18670 I/cm
		_	= °s	 	1	S=L/A=

Project No.: 6155-08-0031 DO 2

Lab No: 8728

Project Name: Saltstone Grout & Vault Concrete

Tested By: HJ

Date: 06/12/08

Boring No.: TR450-2 (SWPF)

Depth: n/a

Sample ID: Core

Reviewed By: JW

Date: 10/14/08

	Sample , <i>inches</i>	Inside D of Cut Tul		Moisture Content				
1	3.132			Tare No.	R-21			
2 3.049		Top	2.885	Tare Weight	0.00	grams		
3	3.084	Bottom	2.873	Wet Weight + Tare	574.00	grams		
Average	3.09	Average_	2.879	Dry Weight + Tare	404.65	grams		
				Moisture Content	41.9	%		

Total Weight of Soil + Tube Section	574.00	grams
Weight of Clean, Dry Tube Section	0.00	grams
Wet Weight of Soil	1.27	lbs
Volume of Sample	0.012	ft ³

RESULT SUMMARY

Moisture Content	41.9	%
Wet Density	108.8	pcf
Dry Density	76.7	pcf
Specific Gravity	2.428175	
Porosity	0.49	

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013, Rev. 10 08-13--2007

Project No.

6155-08-0031 DO 2

Tested By

HJ

Project Name

Saltstone Grout & Vault Concrete Test Date

6/4/2008

Boring No.

TR450-3 (SWPF)

Reviewed By JW

Sample No.

Core

Review Date 10/14/2008

Sample Depth

n/a

Lab No.

8729

Sample Description Grout

ASTM D5084 - Method F (CVFH)

Sample Type:	Core
Sample Orientation:	Vertical
Initial Water Content, %:	41.6
Wet Unit Weight, pcf:	110.7
Dry Unit Weight, pcf:	78.2
Compaction, %:	N/A
Hydraulic Conductivity, cm/sec. @20 °C	2.0E-09

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013

Revision 10 08-13-2007

PERMEABILITY TEST (ASTM D5084 - 03) (Method F, Constant Volume Falling Head)

 Project Number 6155-08-0031 DO 2
 Tested By HJ

 Project Name
 Saltstone Grout & Vault Concret Test Date 06/04/08

 Boring No.
 TR450-3 (SWPF)
 Reviewed By JW

 Sample No.
 Core
 Review Date 10/14/08

 Sample Depth
 n/a
 Lab No. 8729

 Sample Description
 Grout

Consolidation

Chamber Pressure, psi

Back Pressure, psi

Confining Pressure, psi

Initial Burett Reading Final Burett Reading Volume Change, oc

	Initial	musi Sample Data		Final Sample Data	Jata
Length, in	e e	Diameter, in		Pan No.	BG-1
Location 1	3.814	Location I	2.873	Wet Soil+Pan, grams	722.28
Location 2	3.738	Location 2	2.863	Dry Soil + Pan, grams	511.50
Location3	3.799	Location 3	2.880	Pan Weight, grams	8.28
Average	3.784	Average	2.872	Moisture Content, %	41.9
Volume, in3	24.51	Wet Soil + Tare, grams	712.50	Dry Unit Weight, nef	78.2
SG Measured	2.53	Tare Weight, grams	0.00	Saturation, %	103.9
Soil Sample Wt., g	712.50	Dry Soil +Tare, grams	503.26	Diameter, in.	2.872
Dry UW, pef	78.2	Moisture Content, %	41.6	Length, in.	3.784
Saturation, %	103.1			Volume, in ³	24.51

Permeant used SWPF Simulant

	7	cm/sec	at 20 °C	L	_	\perp	\perp	4	_	
	*	cm/sec				1	1	1 500 00	1.32E-U9	
	Final	Hydraulic	Gradient		27.5					
	Intial	Hydraulic	Gradient	29.2				20.7		
	Temp	(°C)		27.2	27.2	25.0	25.0	24.4		
	Δz_p	(cm)		0.70	1.25	4.60	5.80	7.50		
	qz	(cm)		23.30	22.75	19.40	18.20	16.50		
	ī,	(cam)		24.00	24.00	24.00	24.00	24.00		
	Ŋ	(cm)						1.70		
Phonone de Tre	Etapsed Time	(sec)		2400	11340	00669	101280	156540		

No. of 171218 Sample Max. Density Compaction Sample Avg. k at 20 °C 2.0E-09 cm/sec Sa.		2.0E-09 cm/sec		Subcortract No. ACSA117N	ALL CACCOLL MORNINGS	Specification No. K-SPC-G-0013	Denietor 10 09 13 2007	COOPERATION OF TOTAL	Delivery Order No. 02
mple Max. Der		Avg. k at 20 °C)					4	or 15° to 25°
mple Max. Der	Sample	Orientation	Vertical	0.031416 a		0.03018	1.04095		0.0005521 ft
mple Max. Der	Compaction	%	N/A	ď		M,-	M ₂ -		(1S/(GH-1)-
a ₄ = 0.76712 cm ² A = 41.80 cm ² L = 9.61 cm S=L/A= 0.22994 1/cm	Max. Density	(bet)	N/A						C
A = 41.80 L = 9.61 S=L/A = 0.22994	Sample	Type	Core	cm ²		cm.	am:		I/cm
a, = A = L = S=L/A=	No. of Irials		2	0.76712	41.00	41.80	19.61	700000	0.62399
			_	er"	1	ξ,		0-1/4-	- LVVI-0

Project No.: 6155-08-0031 DO 2 Lab No: 8729

Project Name: Saltstone Grout & Vault Concrete

Tested By: HJ

Date: 06/04/08

Boring No.: TR450-3 (SWPF)

Depth: n/a

Sample ID: Core

Reviewed By: JW

Date: 10/14/08

Total S Height,		Inside Di of Cut Tub		Moisture Content				
1	3.814			Tare No.	BG-1			
2	3.738	Top	2.863	Tare Weight	0.00	grams		
3	3.799	Bottom	2.880	Wet Weight + Tare	712.50	grams		
Average	3.78	Average	2.872	Dry Weight + Tare	503.26	grams		
				Moisture Content	41.6	%		

Tatal Walata (SQ 11 a T 1 a a d			_
Total Weight of Soil + Tube Section	712.50	grams	
Weight of Clean, Dry Tube Section	0.00	grams	
Wet Weight of Soil	1.57	lbs	
Volume of Sample	0.014	ft ³	

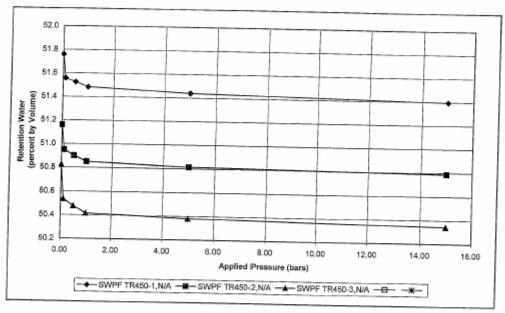
RESULT SUMMARY

Moisture Content	41.6	%
Wet Density	110.8	pcf
Dry Density	78.2	pcf
Specific Gravity	2.533665	
Porosity	0.51	

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013, Rev. 10 08-13--2007


Water Retention Test (ASTM D3152)

Project No Tested By Reviewed By

6155-08-0031 DO2 HJ/JW JW

Project Name Test Date Review Date

Saltstone Grout & Vault Concrete 6/18/08 10/14/08

Sample No.	Initial	Dry Unit				Appl	ied Pres	ssure (ba	ars)	_		
& Depth (ft)	Moisture	Weight	0.00	0.10	0.5	1.0	5.0	15.0	,	1	T	_
	% by Vol.	(pcf)			Ret	tained V	Vater (p	ercent by	v volu	me)	_	1
SWPF TR450-1,N/A	51.8	78.8	51.8	51.6	51.5	51.5	51.4	51.4	,	T	1	_
SWPF TR450-2,N/A	51.2	78.7	51.2	50.9	50.9	50.9	50.8	50.8		+		+-
SWPF TR450-3,N/A	50.8	78.2	50.8	50.5	50.5	50.4	50.4	50.3			-	-
												-

Remarks:

Subcontract No. AC54317N Specification No K-SPC-G-0013 Revision 10 08-13-2007 Delivery Order No 02

Water Retention Test (ASTM D3152)

Project No 6155-08-0031 DO2
Tested By HJ/J/W
Reviewed By JW

Project Name Test Date Review Date

Saltstone Grout & Vault Concrete 6/18/2008 10/14/2008

Remarks: Subcontract No. AC54317N Specification No K-SPC-G-0013 Revision 10 08-13-2007 Delivery Order No 02

Sample No.	SWPF TR490-1	6WPF TR450-2:	SWPF TRASE-3		
Depth (ft)	N/A	N/A	N/A		_
Lab No.	8727	8728	8729		-
Ring No.	N/A	N/A	N/A	-	
Container Weight. (g)	0	0	0		-
Container Diameter (cm)	7.305	7.31	7.323		
Container Height, (cm)	2.238	1.938	1.984		+
Container Volume (cm³)	93.80	81.34	83.56		+
Wt. of Wet Soil + Container (g)	167.02	144.14	147.2		-
Wt. of Dry Soil + Container (g)	118.47	102.53	104.73		-
Moisture Content (%)	41.0	40.6	40.6		
Ory Unit Weight (pcf)	78.81	78.66	78.21		
nitial Wt.Wet Soil + Container (g)	187.02	144,14	147.20		-
nitial Wt. Container (g)	0.00	0.00	0.00		_
nitial Moisture, % by Volume	51.8	51.2	50.8		

	Pressure psi	0	1,45	7.25	14.5	72.5	217.5			
No.	bars	0.0	0.10	0.5	1.0	5.0	15.0			
	Date / Read By		27.12		- 1.0	5.0	15.0		-	
8727	Weight of Soil + Ring	167.02	166,83	166.8	166.76	166,72	166,68	_		
	Weight of Ring	0	0	0	0	0	0			-
	Retained Water (%)	51.8	51.6	51.5	51.5	51.4	51.4			
8728	Weight of Soil + Ring	144.14	143.97	143.93	143.89	143.86	143.84	_		
	Weight of Ring	0	0	0	0	0	0			-
	Retained Water (%)	51.2	50,9	50.9	50.9	50.8	50.8			_
	Weight of Soil + Ring	147.2	146.96	146.91	146.86	146.83	146.8	_	_	_
	Weight of Ring	0	0	0	0	0	0			_
_	Retained Water (%)	50.8	50.5	50.5	50.4	50.4	50.3		_	+-
-									\rightarrow	
- }					-					
_									-	
ŀ										
t		-		_						

No. of Samples No. of Tests per Sample

Project No.

6155-08-0031 DO 2

Tested By

BM

Project Name

Saltstone Grout & Vault Concrete Test Date

9/10/2008

Boring No.

TR451-1 (SWPF)

Reviewed By HJ

Sample No.

Core Age 90 Days

Review Date 10/6/2008

Sample Depth

n/a

Lab No.

8881

Sample Description Grout

ASTM D5084 - Method F (CVFH)

	/
Sample Type:	Core
Sample Orientation:	Vertical
Initial Water Content, %:	42.3
Wet Unit Weight, pcf:	109.1
Dry Unit Weight, pcf:	76.6
Compaction, %:	N/A
Hydraulic Conductivity, cm/sec. @20 °C	1.2E-09

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013

Revision 10 08-13-2007

PERMEABILITY TEST

(ASTM D5084 - 03) (Method F, Constant Volume Falling Head)

Project Number 6155-08-0031 DO 2
Project Name Saltstone Grout & Vault Concret Test Date 09/10/08
Boring No. TR451-1 (SWPF) Reviewed By HJ
Sample No. Core Age 90 Days Review Date 10/06/08
Sample Depth n/a Lab No. 8881
Sample Description Grout

Consolidation

Chamber Pressure, psi

Back Pressure, psi

Confining Pressure, psi Initial Burett Reading

Final Burett Reading Volume Change, oc

	_	_	_	_		_	_			
)ata		372.00	261.06	0	42.5	76.6	107.5	2.851	2,033	12.98
Final Sample Data	Pan No.	Wet Soil+Pan, grams	Dry Soil + Pan, grams	Pan Weight, grams	Moisture Content, %	Dry Unit Weight, pcf	Saturation, %	Diameter, in.	Length, in.	Volume, in ³
		2.850	2.849	2,855	2.851	371.56	0.00	261.06	42.3	
Initial Sample Data	Diameter, in	Location 1	Location 2	Location 3	Average	Wet Soil + Tare, grams	Tare Weight, grams	Dry Soil +Tare, grams	Moisture Content, %	
Initial	u	2.025	2.028	2.045	2.033	12.98	2.39	371.56	76.6	107.1
	Length, in	Location 1	Location 2	Location3	Average	Volume, in	SG Measured	Soil Sample Wt., g	Dry UW, pef	Saturation, %

SWPF

Permeant used

Elspeed Time	Z ₀	z	qz	ΔΖρ		Intial	Final	*	×
(306)	(can)	(EII)	(cm)	(cm)	(°C	Hydraulic	Hydraulic	om/sec	cm/sec
						Gradient	Gradient		at 20 °C
73080	1.70	24.40	19.80	.4.60	23.2	55.3			9.04E-10
10620		22.70	22.00	0.70	23.2	51.1	49.4	1.00E-09	9.27E-10
23040		22.70	19.80	2.90	23.2				1.88E-09

	Avg. k at 20 °C	
Sample	Orientation	Vertical
Compaction	%	N/A
Max. Density Compact	(bct)	N/A
Sample	Type	Core
No. of Trials		en

1.2E-09 cm/sec

Subcontract No. AC54317N	Specification No. K-SPC-G-0013	Revision 10 08-13-2007	Delivery Order No. 02
Remarks			
0.031416 cm²	M ₁ = 0.03018	1.04095	0.00033009 for 15° to 25°
l d	M ₁ =	M ₂ m	$C = M_1S/(G_{Hg}-1) = 0$

0.12533 1/cm

S=L/A=

41.20 cm² 5.16 cm

0.76712 cm²

Project No.: 6155-08-0031 DO 2

Lab No: 8881

Project Name: Saltstone Grout & Vault Concrete

Tested By: HJ

Date: 09/10/08

Boring No.: TR451-1 (SWPF)

Depth: n/a

Sample ID: Core Age 90 Days

Reviewed By: JW

Date: 10/14/08

H	Sample , <i>inches</i>	Inside D of Cut Tul		Moist	ure Conten	t
1	2.025			Tare No.		
2	2.028	Top	2.850	Tare Weight	0.00	grams
3	2.045	Bottom	2.852	Wet Weight + Tare	371.56	grams
Average	2.03	Average	2.851	Dry Weight + Tare	261.06	grams
				Moisture Content	42.3	%

Total Weight of Soil + Tube Section	371.56	grams
Weight of Clean, Dry Tube Section	0.00	grams
Wet Weight of Soil	0.82	lbs
Volume of Sample	0.008	ft ³

RESULT SUMMARY

Moisture Content	42.3	%
Wet Density	109.1	pcf
Dry Density	76.6	pcf
Specific Gravity	2.385699	
Porosity	0.49	_

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013, Rev. 10 08-13--2007

Project No.

6155-08-0031 DO 2

Tested By

Project Name

Saltstone Grout & Vault Concrete

BM

Boring No.

Test Date 9/10/2008

TR451-2 (SWPF)

Reviewed By JW

Sample No.

Core Age 90 Days

Review Date 10/14/2008

Sample Depth

Lab No.

8882

Sample Description Grout

ASTM D5084 - Method F (CVFH)

The state of the s	111)
Sample Type:	Core
Sample Orientation:	Vertical
Initial Water Content, %:	40.7
Wet Unit Welght, pcf:	109.0
Dry Unit Weight, pcf:	77.5
Compaction, %:	N/A
Hydraulic Conductivity, cm/sec. @20 °C	2.0E-09

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013

Revision 10 08-13-2007

PERMEABILITY TEST

(ASTM D5084 - 03) (Method F, Constant Volume Falling Head)

Project Number 6155-08-0031 DO 2 Tested By BM Project Name Saltstone Grout & Vault Concret Test Date 09/10/08 Review Date 10/14/08 Lab No. 8882 Reviewed By JW Core Age 90 Days TR451-2 (SWPF) Grout Sample Depth n/a Sample Description Sample No. Boring No.

Consolidation

Chamber Pressure, psi

Confining Pressure, psi

Back Pressure, psi

Initial Burett Reading Final Burett Reading Volume Change, ec

	Initial Sample Data		Final Sample Data	Dafa N-11
	Location 1	2.887	Wet Soil+Pan, grams	445.96
	Location 2	2.873	Dry Soil + Pan, grams	330.94
	Location 3	2.882	Pan Weight, grams	51.11
,	Average	2.881	Moisture Content, %	41.1
Wet Soi	Wet Soil + Tare, grams	396.66	Dry Unit Weight, pcf	77.5
Tare V	Tare Weight, grams	00.00	Saturation, %	104.8
Dry Soi	Dry Soil +Tare, grams	282.00	Diameter, in.	2.881
Moistu	Moisture Content, %	40.7	Length, in.	2.127
			Volume, in	13.87

SWPF

Permeant used

~	cm/sec	at 20 °C	2,48E-09					
×	cm/sec					1.63E-09		
Final	Hydraulio	Gradient				30.4		
Intial	Hydraulic	Gradient				45.1		
Тетр	္တ		23.2	23.2	23.2	23.2	23.2	
ζzγ	(cm)		00'1	1.80	2.80	6.10	6.90	
£	(em)		20.10	19.30	18.30	15.00	14.20	
82	(cm)		21.10	21.10	21.10	21.10	21.10	
Za	(cm)					1.70		
Elapsed Time	(308)		0969	12780	21360	74880	98160	

	Avg. k at 20 °C		
Sample	Orientation	Vertical	
Compaction	%	N/A	
Max. Density	(bct)	N/A	
Sample	Type	Core	
No. of Trials		5	

0.12851 1/cm

S-I./A-

0.76712 cm² 42.04 cm² 5.40 cm

Project No.: 6155-08-0031 DO 2

Lab No: 8882

Project Name: Saltstone Grout & Vault Concrete

Tested By: HJ

Date: 09/10/08

Boring No.: TR451-2 (SWPF)

Depth: n/a

Sample ID: Core Age 90 Days

Reviewed By: JW

Date: 10/14/08

	Sample , <i>inches</i>	Inside Di of Cut Tub		Moist	ure Conten	
I	2.157			Tare No.	N-11	
2	2.073	Top	2.887	Tare Weight	0.00	grams
3	2.152	Bottom	2.875	Wet Weight + Tare	396.66	grams
Average	2.13	Average	2.881	Dry Weight + Tare	282.00	grams
				Moisture Content	40.7	-%

Total Weight of Soil + Tube Section	396.66	grams
Weight of Clean, Dry Tube Section	0.00	grams
Wet Weight of Soil	0.87	Ibs
Volume of Sample	0.008	ft ³

RESULT SUMMARY

Moisture Content	40.7	%
Wet Density	109.0	pcf
Dry Density	77.5	pcf
Specific Gravity	2.420541	
Porosity	0.49	_

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013, Rev. 10 08-13--2007

PERMEABILITY TEST (ASTM D5084 - 03) (Method F, Constant Volume Falling Head)

// MACTEC

 Project Number 6155-08-0031 DO 2
 Tested By BM

 Project Name
 Salistone Grout & Vault Concret
 Test Date 09/10/08

 Boring No.
 TR451-3 (SWPF)
 Reviewed By JW

 Sample No.
 Core Age 90 Days
 Review Date 10/14/08

 Sample Depth
 n/a
 Grout

	Initial	Initial Sample Data		Final Sample Data	Data
Length, in	_	Diameter, in		Pan No.	
Location 1	2.040	Location 1	2.880	Wet Soil+Pan, grams	379.00
Location 2	2.017	Location 2	2.869	Dry Soil + Pan, grams	266.52
Location3	2.010	Location 3	2.904	Pan Weight, grams	
Average	2.022	Average	2.884	Moisture Content, %	42.2
Volume, in ³	13.21	Wet Soil + Tare, grams	378.54	Dry Unit Weight, pcf	76.8
SG Measured	2.40	Tare Weight, grams	0.00	Saturation, %	106.6
Soil Sample Wt., g	378.54	Dry Soil +Tare, grams	266.52	Diameter, in.	2.884
Dry UW, pef	76.8	Moisture Content, %	42.0	Length, in.	2.022
Saturation, %	106.2			Volume, in ³	13.21

SWPF

Permeant used

Consolidation

Chamber Pressure, psi

Confining Pressure, psi

Back Pressure, psi

Initial Burett Reading Final Burett Reading Volume Change, cc

zb ΔZ _p Temp Intial Final k (cm) (°C) Hydraulic Hydraulic cm/sec 10.40 14.70 22.5 57.3 19.8 8.92E-08 5.00 20.10 22.5 57.3 6.1 1.01E-07 13.10 13.80 22.5 61.7 26.5 8.95E-08 6.70 20.20 22.5 61.7 26.5 8.95E-08 10.40 16.20 22.5 61.7 9.74E-08 7.50 16.20 22.5 60.9 19.7 9.19E-08 7.50 16.80 22.5 55.3 12.5 9.41E-08					9.55E-08	ı	at 20 °C	cm/sec	м
AZ _p Terup Intial Final (cm) (°C) Hydraulic Hydraulic 40 14.70 22.5 57.3 00 20.10 22.5 57.3 10 13.80 22.5 61.7 70 20.20 22.5 61.7 40 16.20 22.5 60.9 30 16.80 22.5 55.3								cm/sec	×
Δz _p Temp Intia (cm) (°C) Hydra 40 14.70 22.5 00 20.10 22.5 10 13.80 22.5 70 20.20 22.5 40 16.20 22.5 30 16.80 22.5 30 16.80 22.5							Gradient	Hydraulic	Final
AZ _p Tem (cm) (°C 40 14.70 20.10 1.0 13.80 70 20.20 70 20.20 70 20.20 30 16.80							Gradient	Hydraulic	Intial
04 00 00 00 00 00 00 00 00 00 00 00 00 0	22.5	22.5	22.5	22.5	22.5	22.5		(၁.)	Temp
2b (cm) 10.40 5.00 13.10 6.70 7.50	16.80	16.20	20.20	13.80	20.10	14.70		(cm)	ΔZp
	7.50	10.40	6.70	13.10	5.00	10.40		(cm)	qz
Za (cert) 25.10 25.00 26.90 26.90 26.90 26.90 26.90 26.90 24.30	2430	26.60	26.90	26.90	25.10	25.10	-	(cm)	BZ.
2°s (cm) (1.70 (1.	1.70							(cm)	2°
(3ec) (3ec) (3ec) (3ec) (6480 (2760 (3600 (3600 (4620	4620	3600	2400	2760	6480	3480		(sec)	Elapsed Time

Avg. k at 20 °C 8.8E-08 cm/sec			Subcontract No. AC54317N	Specification No. K-SPC-G-0013	Revision 10 08-13-2007	Delivery Order No. 02	
	Avg. k at 20 °C		Remarks:			.5°	
Sample	Orientation	Vertical	0.031416 cm ²	0.03018	1.04095	$C = M_1S/(G_{Hg}-1) = 0.0002926$ for 15° to 25°	
Compaction	%	N/A	E g	M.	M2=	$f_1S/(G_{Hg}-1)=$	
Vo. of Trials Sample Max. Density Compaction Sample	(bct)	N/A				C=2	
Sample	Type	Core	cm ³	cm²	cm	1/cm	
No. of Trials		9	0.76712 cm²	42.15 cm ³	5.14 cm	0.12187 1/cm	
			 8	- V		-V/T-S	

Project No.: 6155-08-0031 DO 2

Lab No: 8883

Project Name: Saltstone Grout & Vault Concrete

Tested By: HJ

Date: 09/10/08

Boring No.: TR451-3 (SWPF)

Depth: n/a

Sample ID: Core Age 90 Days

Reviewed By: JW

Date: 10/14/08

Total S Height,	inches	Inside D		Moist	ure Conten	t	
1	2.04			Tare No.			
2	2.017	Top	2.880	Tare Weight	0.00	grams	
3	2.01	Bottom	2.888	Wet Weight + Tare	378.54	grams	
Average	2.02	Average_	2.884	Dry Weight + Tare	266.52	grams	
L				Moisture Content	42.0	%	

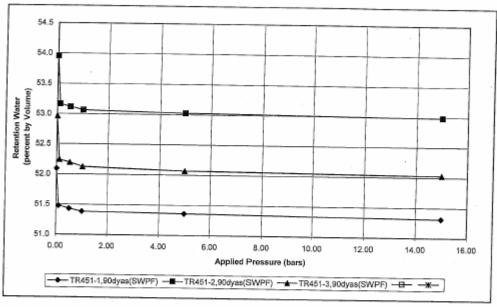
Total Weight of Soil + Tube Section	378.54	grams
Weight of Clean, Dry Tube Section	0.00	grams
Wet Weight of Soil	0.83	lbs
Volume of Sample	0.008	ft ³

RESULT SUMMARY

Moisture Content	42.0	%
Wet Density	109.2	pcf
Dry Density	76.9	pcf
Specific Gravity	2.402716	
Porosity	0.49	

Remarks:

Subcontract No. AC54317N


Specification No. K-SPC-G-0013, Rev. 10 08-13--2007

Project No Tested By Reviewed By 6155-08-0031 DO2 HJ/JW JW

Project Name Test Date Review Date

Saltstone Grout & Vault Concrete 8/19/08 10/14/08

Sample No.	Initial	Dry Unit				Appli	ed Pres	sure (b	ars)			
& Depth (ft)	Moisture	Weight	0.00	0.10	0.5	1.0	5.0.	15.0			1	7
	% by Vol.	(pcf)			Ret	ained W	/ater (pe	ercent b	v volu	me)	_	-
TR451-1,90dyas(SWPF)	44.0	75.6	52.1	51.5	51.4	51.4	51.4	51.3	, 10.0	Τ,	T	\top
TR451-2,90dyas(SWPF)	54.0	77.7	54.0	53.2	53.1	53.1	53.0	53.0			+	-
TR451-3,90dyas(SWPF)	53.0	76.8	53.0	52.2	52.2	52.1	52.1	52.0		+	+-	+
												_
											-	

Remarks:

Subcontract No. AC54317N Specification No K-SPC-G-0013 Revision 10 08-13-2007

Project No 6155
Tested By HJ/J
Reviewed By JW

6155-08-0031 DQ2 HJ/JW Project Name Test Date Review Date

Saltstone Grout & Vault Concrete 8/19/2008 10/14/2008

Sample No.	TR451-1	TR451-2	TR451-3		
Depth (ft)	90dyas(SWPF)	90dyus(\$9VPF)	90dyau(SMPF)		-
Lab No.	8881	8882	8883		
Ring No.	N/A	N/A	N/A		
Container Weight. (g)	0	0	0		
Container Diameter (cm)	7.263	7.237	7.318		
Container Height, (cm)	2.079	1.936	2.037		
Container Volume (cm³)	86.13	79,64	85.68		
Wt. of Wet Soil + Container (g)	149.22	142.13	150.77		1
Wt. of Dry Soil + Container (g)	104.35	99.16	105.39	-	
Moisture Content (%)	43.0	43.3	43.1		
Dry Unit Weight (pcf)	75.60	77.70	76.76		
Initial Wt.Wet Soil + Container (g)	142.22	142.13	150.77		
Initial Wt. Container (g)	0.00	0.00	0.00		
Initial Moisture, % by Volume	44.0	54.0	53.0		

Remarks: Subcontract No. AC54317N
Specification No K-SPC-G-0013
Revision 10 06-13-2007
Delivery Order No 02

	Pressure psi	0	1:45	7.25	14.5	72.5	217.5			
No.	bars	0.0	0.10	0.5	1.0	5.0	15.0			\rightarrow
	Date / Read By				1.0	0.0	13.0	_		
8881	Weight of Soil + Ring	149.22	148.69	148.65	148.61	148,59	148.55	_	-+-	-
	Weight of Ring	0	0	0	0	0	0	_		
	Retained Water (%)	52.1	51.5	51.4	51.4	51.4	51.3			
8882	Weight of Soil + Ring	142.13	141.5	141.46	141.42	141.39	141,36			_
	Weight of Ring	0	0	0	0	0/	0	_		
	Retained Water (%)	54.0	53.2	53.1	53.1	53.0	53.0			
	Weight of Soil + Ring	150.77	150.15	150.11	150.05	150	149.97		-	
	Weight of Ring	0	0	0	0	0	0			_
	Retained Water (%)	53.0	52.2	52.2	52.1	52.1	52.0	-	_	_
ļ									\rightarrow	-
-										
-										

No. of Samplès No. of Tests per Sample

_____3 6

	SRNL-STI-2008-00421, REVISION	1 (
ADDENDIN D. MORDATEA CHEEN		
APPENDIX D. MCT DATA SHEET	IS ON VAULT CONCRETES	

Project No.

6155-08-0031 DO 2

Tested By

HJ

Project Name

Saltstone Grout & Vault Concrete

Test Date

8/5/2008

Boring No.

VI-080025-4

Reviewed By JW

Sample No.

Core 28 days (6x12)

Review Date 10/14/2008

Sample Depth

N/A

Lab No.

8969

Sample Description Concrete

ASTM D5084 - Method F (CVFH)

The state of the s	~ ~~/
Sample Type:	Core
Sample Orientation:	Vertical
Initial Water Content, %:	5.2
Wet Unit Weight, pcf:	148.7
Dry Unit Weight, pcf:	141.4
Compaction, %:	N/A
Hydraulic Conductivity, cm/sec. @20 °C	1.3E-10

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013

Revision 10 08-13-2007

(ASTM D5084 - 03) (Method F, Constant Volume Falling Head) PERMEABILITY TEST

Project Name Saltstone Grout & Vault Concret Tested By HJ
Bornin VI-080025-4
Bornin VI-080025-4 Reviewed By JW Review Date 10/14/08 Lab No. 8969 Core 28 days (6x12) Concrete Sample Depth N/A Sample Description Sample No.

Consolidation

Confining Pressure, psi Chamber Pressure, psi

Back Pressure, psi

Initial Burett Reading Final Burett Reading Volume Change, cc

	Initial	Initial Sample Data		Final Sample Data)ata
Length, in	u	Diameter, in		Pan No.	
Location 1	5.709	Location 1	6.005	Wet Soil+Pan, grams	6279.80
Location 2	5.674	Location 2	6.010	Dry Soil + Pan, grams	5966.70
Location3	5.623	Location 3	6.012	Pan Weight, grams	0
Average	5.669	Average	600.9	Moisture Content, %	5.2
Volume, in ³	160.76	Wet Soil + Tare, grams	6276.20	Dry Unit Weight, pcf	141.4
SG Measured	2.57	Tare Weight, grams	0.00	Saturation, %	100.4
Soil Sample Wt., g	6276.20	Dry Soil +Tare, grams	5966.70	Diameter, in.	6009
Dry UW, pef	141.4	Moisture Content, %	5.2	Length, in.	5.669
Saturation, %	99.2			Volume, in ³	160.77

Water

Permeant used

_	Elapsed Time	Z°	12	qz	Δz _p	Тетр	Intial	Final	×	м
_	(sec)	(cm)	(cm)	(cm)	(cm)	္ရွ	Hydraulic	Hydraulic	cm/sec	cm/sec
_							Gradient	Gradient		at 20 °C
_	0009	-	23.60	23.30	0.30	.23.2	1.61	18.8	4.52B-10	4.19E-10
_	61380		23.60	23.10	0.50	23.2		18.7	7.40E-11	6.86E-11
_	94920		23.60	22.75	0.85	23.2	19.1	18.3	8.21E-11	7.61E-111
	148800	1.70	23.60	22.40	1.20	23.2			7.46E-11	6.91E-11
	181500		23.60	22.20	1.40	23.2	19.1	17.8	7.17E-11	6.64B-11
	235500	1.70	23.60	22.00	1.60	23.2	1.61		6.35E-11	5.88E-11
_										

	1.3E-10 cm/sec		
	Avg. k at 20 °C		
Sample	Orientation	Vertical	
Compaction	%	N/A	
Max. Density	(bod)	N/A	
Sample	Type	Core	
No. of Trials		9	

182.96 cm²

14.40 cm

0.76712 cm²

0.07870 I/cm

S-LVA=

Project No.: 6155-08-0031 DO 2 Lab No: 8969

Project Name: Saltstone Grout & Vault Concrete

Tested By: HJ

Date: 08/19/08

Boring No.: V1-080025-4

Depth: n/a

Sample ID: Core Age 28 Days (6x12)

Reviewed By: JW

Date: 10/14/08

Total S Height,	•	Inside D of Cut Tub		Moisture Content		
1	5.709			Tare No.		
2	5.674	Top_	6.005	Tare Weight	0.00	grams
3	5.623	Bottom	6.013	Wet Weight + Tare	6276.20	grams
Average	5.67	Average_	6.009	Dry Weight + Tare	5966.70	grams
				Moisture Content	5.2	%

Total Weight of Soil + Tube Section	6276.20	grams
Weight of Clean, Dry Tube Section	0.00	grams
Wet Weight of Soil	13.84	lbs
Volume of Sample	0.093	ft ³

RESULT SUMMARY

Moisture Content	5.2	%
Wet Density	148.7	pcf
Dry Density	141.4	pcf
Specific Gravity	2.57043	
Porosity	0.12	_

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013, Rev. 10 08-13--2007

Project No.

6155-08-0031 DO 2

Tested By

HJ

Project Name

Saltstone Grout & Vault Concrete Test Date

9/10/2008

Boring No.

V1-080025-5

Reviewed By JW

Sample No.

Core 28 days (6x12)

Review Date 10/14/2008

Sample Depth

NA

Lab No.

8970

Sample Description Concrete

ASTM D5084 - Method F (CVFH)

ASTA D3004 - Methou F (C)	(FH)
Sample Type:	Core
Sample Orientation:	Vertical
Initial Water Content, %:	4.5
Wet Unit Weight, pcf:	151.0
Dry Unit Weight, pcf:	144.5
Compaction, %:	N/A
Hydraulic Conductivity, cm/sec. @20 °C	2.1E-09

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013

Revision 10 08-13-2007

PERMEABILITY TEST (ASTM D5084 - 03) (Method F, Constant Volume Falling Head)

 Project Number 6155-08-0031 DO 2
 Tested By HJ

 Project Name
 Saltstone Grout & Vault Concret Test Date 09/10/08

 Boring No.
 VI-080025-5
 Reviewed By JW

 Sample No.
 Core 28 days (6x12)
 Review Date 10/14/08

 Sample Depth N/A
 Lab No. 8970

 Sample Description
 Concrete

Consolidation

Clamber Pressure, psi

Back Pressure, psi

Confining Pressure, psi Initial Burett Reading Final Burett Reading Volume Change, co

6.025
6.020
6.021
6.022
6291.40
0.00
6020.50

Permeant used

			$\overline{}$	_	_	_	_	_	_
×	cm/sec	at 20 °C							
ж	can/sec		4.10E-09	3.73E-09	1.65E-09	1.34E-09	1.26B-09	1.24E-09	
Final	Hydraulic	Gradient	17.8	15.9	20.4	6.81	17.3	12.0	
Intial	Hydraulic	Gradient				21.0			
Тетр	(°C)		23.2	23.2	23.2	23.2	23.2	23.2	
ΔZ _p	(cm)		2.30	4.30	09'0	2.20	4.00	9.70	
q2	(cm)		21.80	19.80	24.70	23.10	21.30	15.60	
22	(cm)		24.10	24.10	25.30	25.30	25.30	. 25.30	
Z ₀	(ma)		0.70	1.70	1.70	1.70	1.70	1.70	
Elapsed Time	(sec)		2100	11040	3000	14100	28500	83100	

	C 2.1E-09 cm/sec		Subcontract No. ACS4317N	Specification No. K-SPC-G-0013	Revision 10 08-13-2007
	Avg. k at 20 °C		2m2 Remarks:		
Sample	Orientation	Vertical	ap= 0.031416 cm ²	0.03018	1.04095
Compaction	%	N/A	# 4 8	M	M ₂ =
No. of Trials Sample Max. Density Compaction Sample	(bat)	N/A			
Sample	Type	Core	,mz	Sm2	SID.
No. of Trials		. 9	= 0.76712 cm ²	183.75 cm²	14.16 cm
			= "e	Α=	L'

Delivery Order No. 02

 $C = M_1 S/(G_{Hg}-1) = 0.0001850$ for 15° to 25°

0.07704 1/cm

S=L/A=

Project No.: 6155-08-0031 DO 2

Lab No: 8970

Project Name: Saltstone Grout & Vault Concrete

Tested By: HJ

Date: 09/10/08

Boring No.: V1-080025-5

Depth: n/a

Sample ID: Core Age 28 Days (6x12)

Reviewed By: JW

Date: 10/14/08

ll .	Sample , <i>inches</i>	Inside Diameter of Cut Tube, inches		Moist	ure Conten	t
1	5.58			Tare No.		
2	5.6	Top	6.026	Tare Weight	0.00	grams
3	5.54	Bottom	6.020	Wet Weight + Tare	6291.40	grams
Average	5.57	Average_	6.023	Dry Weight + Tare	6020.50	grams
				Moisture Content	4.5	%

Total Weight of Soil + Tube Section	6291.40	grams
Weight of Clean, Dry Tube Section	0.00	grams
Wet Weight of Soil	13.87	lbs
Volume of Sample	0.092	ft ³

RESULT SUMMARY

Moisture Content	4.5	%
Wet Density	150.9	pcf
Dry Density	144.4	pcf
Specific Gravity	2.57043	
Porosity	0.10	-

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013, Rev. 10 08-13--2007

Project No.

6155-08-0031 DO 2

Core 28 days (6x12)

Tested By

HJ

Project Name

Saltstone Grout & Vault Concrete Test Date

9/10/2008

Boring No. Sample No. V1-080025-6

Reviewed By JW

Review Date 10/14/2008

Sample Depth

N/A

Lab No.

8971

Sample Description Concrete

ASTM D5084 - Method F (CVFH)

Sample Type:	Core
Sample Orientation:	Vertical
Initial Water Content, %:	4.5
Wet Unit Weight, pcf:	149.2
Dry Unit Weight, pcf:	142.8
Compaction, %:	N/A
Hydraulic Conductivity, cm/sec. @20 °C	

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013

Revision 10 08-13-2007

PERMEABILITY TEST

(ASTM D5084 - 03) (Method F, Constant Volume Falling Head)

Project Number 6155-08
Project Name Saltston
Boring No. V1-0800
Sample No. Core 28
Sample Depth N/A Sample Description

MINACTEC	MACIEC					Consolidation	Clamber Pressure, psi 78	Back Pressure, psi 68	Confining Pressure, psi 10	Initial Burett Reading 0	Final Burett Reading 0	Volume Change, cc 0		Permeant used		
. 111	ना ह्या					Jata		6191.60	5926.80	0	4.5	142.8	93.1	6.013	5.568	158.11
Falling Head)	HJ 09/10/08	JW	10/14/08	8971		Final Sample Data	Pan No.	Wet Soil+Pan, grams	Dry Soil + Pan, grams	Pan Weight, grams	Moisture Content, %	Dry Unit Weight, pcf	Saturation, %	Diameter, in.	Length, in.	Volume, in ³
Volume	Tested By HJ Test Date 09/	Reviewed By JW	Review Date 10/14/08	Lab No. 8971				6.013	60009	6.017	6.013	6191.60	0.00	5926.80	4.5	
- 03) (Method F, Constant Volume Falling Head)	155-08-0031 DO 2 Tested By HJ alstone Grout & Vault Concret Test Date 09/10/08		ore 28 days (6x12) Re		Concrete	Initial Sample Data	Diameter, in	Location 1	Location 2	Location 3	Average	Wet Soil + Tare, grams	Tare Weight, grams	Dry Soil +Tare, grams	Moisture Content, %	
- 03) (Me	155-08-00 altstone C	71-080025-6	ore 28 da	V/A	uo	Initial		5.520	5.548	5.637	5.568	158.12	2.57	6191.60	142.8	93.1

Length, in

Location 1

(cm) (cm) (cm) (°C) Hydraulic Hydraulic of 24.60 24.40 0.20 23.2 20.4 20.2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Elapsed Time	20	uz	qz	ďzγ	Temp	Intial	Final	×	×
1.70 24.60 24.40 0.20 23.2 20.4 20.2 1.70 24.60 24.20 0.40 23.2 20.4 20.2 1.70 23.50 22.80 0.70 23.2 19.4 18.7 1.70 23.50 22.40 1.10 23.2 19.4 18.4 1.70 23.50 21.95 1.55 23.2 19.4 17.9	(306)	(EIII)	(cm)	(cm)	<u>E</u>	(0,0)	Hydraulic	Hydraulic	cm/sec	cm/sec
1.70 24.60 24.40 0.20 23.2 20.4 20.2 1.70 24.60 24.20 0.40 23.2 20.4 20.0 1.70 23.50 22.80 0.70 23.2 19.4 18.7 1.70 23.50 22.40 1.10 23.2 19.4 18.4 1.70 23.50 21.95 1.55 23.2 19.4 17.9							Gradient	Gradient		at 20 °C
1.70 24.60 24.20 0.40 23.2 20.4 20.0 1.70 23.50 22.80 0.70 23.2 19.4 18.7 1.70 23.50 22.40 1.10 23.2 19.4 18.4 1.70 23.50 21.95 1.55 23.2 19.4 17.9	12600		24.60	24.40	0.20	23.2	20.4			1.25E-10
1.70 23.50 22.80 0.70 23.2 19.4 18.7 1.70 23.50 22.40 1.10 23.2 19.4 18.4 1.70 23.50 21.95 1.55 23.2 19.4 17.9	23520		24.60	24.20	0.40	23.2	20.4			1.34E-10
1.70 23.50 22.40 1.10 23.2 19.4 18.4 1.70 23.50 21.95 1.55 23.2 19.4 17.9	25800		23.50	22.80	0.70	23.2	19.4			1.05E-10
1.70 23.50 21.95 1.55 23.2 19.4 17.9	83160		23.50	22.40	1,10	23.2	19.4	18.4		1.11E-10
	146100		23.50	21.95	1.55	23.2	19.4	17.9	9.76E-11	9.04E-11

Avg. k at 20 °C 1.1E-10 cm/sec			Subcontract No. AC54317N	Specification No. K-SPC-G-0013	Revision 10 08-13-2007	Delivery Order No. 02
Avg. k at 20 °C			cm² Remarks:			for 15° to 25°
Sample Orientation	Vertical		0.031416 cm ²	0.03018	1.04095	0.0001854
Compaction %	N/A		ll de	M_{i}	M2-	$C = M_1S/(G_{He}-1) = 0.0001854$ for 15° to 25°
No. of Trials Sample Max, Density Compaction Sample Type (pcf) % Orientation	N/A					C=3
Sample Type	Core		cm,	cm²	EI S	I/cm
No. of Trials	5		a _a = 0.76712 cm ²	183.21 cm ²	14.14 cm	0.07720 1/cm
		•	11 80	-V	-	S=L/A=

Soil Sample Wt., g

SG Measured

Saturation, % Dry UW, pef

Average Volume, in³

Location3 Location 2

Project No.: 6155-08-0031 DO 2 Boring
Lab No: 8971

Project Name: Saltstone Grout & Vault Concrete

Tested By: HJ

Date: 09/10/08

Boring No.: V1-080025-5

Depth: n/a

Sample ID: Core Age 28 Days (6x12)

Reviewed By: JW

Date: 10/14/08

H	Sample , inches	Inside D		Moist	ure Conten	t .
1	5.52			Tare No.		
2	5.548	Тор	6.017	Tare Weight	0.00	grams
3	5.637	Bottom	6.009	Wet Weight + Tare	6191.60	grams
Average	5.57	Average_	6.013	Dry Weight + Tare	5926.80	grams
				Moisture Content	4.5	96

Total Weight of Soil + Tube Section	6191.60	grams
Weight of Clean, Dry Tube Section	0.00	grams
Wet Weight of Soil	13.65	lbs
Volume of Sample	0.092	ft ³

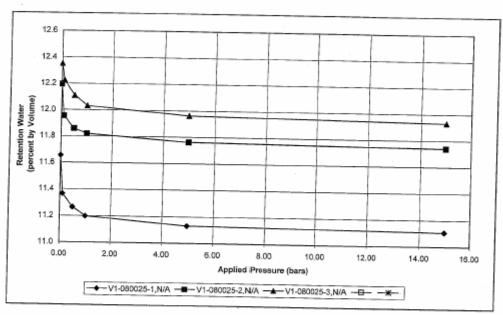
RESULT SUMMARY

Moisture Content	4.5	%
Wet Density	149.2	pcf
Dry Density	142.8	pcf
Specific Gravity	2.57043	
Porosity	0.11	

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013, Rev. 10 08-13-2007



Project No Tested By Reviewed By

6155-08-0031 DO2 HJ/JW

Project Name Test Date Review Date

Saltstone Grout & Vault Concrete 9/9/08 10/14/08

Sample No.	Initial	Dry Unit				Appli	ed Pres	sure (bars))		
& Depth (ft)	Moisture	Weight	0.00	0.10	0.5	1.0	5.0	15.0			T
	% by Vol.	(pcf)			Ret	ained W	ater (pe	ercent by v	olume)		
V1-080025-1,N/A	11.7	140.3	11.7	11.4	11.3	11.2	11.1	11.1)		7
V1-080025-2,N/A	12.2	133.9	12.2	12.0	11.9	11.8	11.8	11.7	_	+	+
V1-080025-3,N/A	12.4	136.5	12.4	12.2	12.1	12.0	12.0	11.9		-	+
										+	-
											+-

Remarks:

Subcontract No. AC54317N Specification No K-SPC-G-0013 Revision 10 08-13-2007 Delivery Order No 02

 Project No
 6155-08-0031 DO2

 Tested By
 HJ/JW

 Reviewed By
 JW

Project Name Test Date Review Date

Saltstone Grout & Vault Concrete 9/9/2008 10/14/2008

Sample No.	V1-080025-1	V1-090005-0	V1-080025-3		
Depth (ft)	NAM.	N/A	N/A		-
Lab No.	8966	8967	8968		_
Ring No.	N/A	N/A	N/A		_
Container Weight, (g)	0	0	0		-
Container Diameter (cm)	7,610	7.792	7.718		
Container Height, (cm)	1.975	2.177	2.203	-	_
Container Volume (cm ³)	89.83	103.81	103.07		
Wt. of Wet Soil + Container (g)	212.48	235,34	238.11		-
Wt. of Dry Soil + Container (g)	202.01	222.68	225.38		-
Moisture Content (%)	5.2	5.7	5.6		+
Dry Unit Weight (pcf)	140.32	133.85	136.45		-
nitial Wt.Wet Soil + Container (g)	212.48	235.34	238.11		+
nitial Wt. Container (g)	0.00	0.00	0.00		
nitial Moisture, % by Volume	11.7	12.2	12.4		

Remarks: Subcontract No. AC54317N
Specification No K-SPC-G-0013
Revision 10 08-13-2007
Delivery Order No 02

	Pressure	psi	0	1.45	7.25	14.5	72.5	217.5			_
No.		bars	0.0	0.10	0.5	1.0	5.0	15.0	_		-
	Date / Rea						5.5	10.0	-		+-
		Soil + Ring	212.48	212.22	212.13	212.07	212,01	211.99	_	-	+
	Weight of		0	0	0	0	0	0	_		-
	Retained \		11.7	11.4	11.3	11.2	11.1	11.1			+
		Soil + Ring	235.34	235.09	234.99	234.95	234.89	234.87			+-
	Weight of		0	0	0	. 0	0	0			+
	Retained \		12.2	12.0	11.9	11.8	11.8	11.7			+-
		Soil + Ring	238.11	237.98	237.88	237.78	237.71	237.68			+
	Weight of	Ring	0	0	0	0	0	0			-
	Retained V	Vater (%)	12.4	12.2	12.1	12.0	12.0	11.9			+-
-										_	+
											-
-											
			-								

No. of Samples No. of Tests per Sample

Project No.

6155-08-0031 DO 2

Tested By

HJ

Project Name

Saltstone Grout & Vault Concrete

Test Date

7/21/2008

Boring No.

V2M1 80010-4

Reviewed By JW

Sample No.

Core

Review Date 10/15/2008

Sample Depth

n/a

Lab No.

8597

Sample Description Concrete

ASTM D5084 - Method F (CVFH)

Sample Type:	Core
Sample Orientation:	Vertical
Initial Water Content, %:	5.4
Wet Unit Weight, pcf:	143.4
Dry Unit Weight, pcf:	136.0
Compaction, %:	N/A
Hydraulic Conductivity, cm/sec. @20 °C	7.8E-11

Remarks:	

PERMEABILITY TEST (ASTM D5084 - 03) (Method F, Constant Volume Falling Head)

 Project Number 6155-08-0031 DO 2
 Tested By HJ

 Project Name
 Saltstone Grout & Vault Concret
 Test Date 07/21/08

 Boring No.
 V2M1 80010-4
 Reviewed By JW

 Sample No.
 Core
 Review Date 10/15/08

 Sample Depth
 I/a

 Sample Description
 Concrete

	Initial	Initial Sample Data		Final Sample Data	Dafa
Length, in	in	Diameter, in		Pan No	A D. 10
Location 1	4.659	Location 1	6.005	Wet Soil+Pun grams	5070 20
Location 2	4.712	Location 2	9009	Dry Soil + Pan gramo	4821.20
Location3	4.662	Location 3	6.005	Pan Weight, orsens	108
Average	4.678	Average	900'9	Moisture Content. %	5.5
Volume, in3	132.52	Wet Soil + Tare, grams	4989.20	Dry Unit Weloht nof	136.0
SG Measured	2.52		0.00	Saturation %	130.0
Soil Sample Wt., g	4989.20	н	4732.10	Diameter, in.	6.006
Dry UW, pcf	136.0		5.4	Length, in.	4 678
Saturation, %	87.9			Volume in	132 53

Permeant used

Consolidation

Chamber Pressure, psi

Confining Pressure, psi

Back Pressure, psi

Initial Burett Reading Final Burett Reading Volume Change, co

Elapsed Time	N ²	82	zp	Δz _p	Temp	Intial	Final	×	-
	(m ₀)	(cm)	(cm)	(cm)	(°C)	Hydraulic	Hydraulic	cm/sec	cm/sec
-+						Gradient	Gradient		at 20 °C
_	1.70	25.70	25.50	0.20	23.5	25.4		1 125 10	T AAD SA
-	1.70	25.70	25.35	0.35	23.5	25.4		1160 10	1,040-10
77220	1.70	25.70	. 25.05	0.65	23.0	25.4	24.7	C 70D 11	1.00E-10
0	1.70	25.70	24.95	0.75	23.0	25.4	34.6	5.70D-11	2.385-11
-							O'LL	3:00D-11	4.00E-11
t									
†			,						

	7 00 44	.orAl cm/sec		
	Ave It at 20 of		Remarks:	
Sample	Orientation	Vertical	0.031416 cm² 0.03018	1.04095
Compaction	%	NA	e W	M_2 =
Max. Density Compaction	(bed)	N/A		
Sample	Type	Core	cm²	cm
No. of Trials		~	0.70	11.88 cm
			4, <	5

 $C = M_1S/(G_{Hg}-1) = 0.0001561$ for 15° to 25°

0.06500 1/cm

S=L/A=

Project No.: 6155-08-0031 DO 2

Lab No: 8597

Project Name: Saltstone Grout & Vault Concrete

Tested By: HJ

Date: 07/21/08

Boring No.: V2M1-800104-4

Depth: n/a

Sample ID: Core Age 28 Days (6x12)

Reviewed By: JW

Date: 10/14/08

Total Sample Height, <i>inches</i>		Inside Diameter of Cut Tube, inches		Moisture Content				
1	4.659			Tare No.	AB-19			
2	4.712	Top	6.005	Tare Weight	0.00	grams		
3	4.662	Bottom	6.007	Wet Weight + Tare	4989.20	grams		
Average	4.68	Average	6.006	Dry Weight + Tare	4732.10	grams		
				Moisture Content	5.4	%		

Total Weight of Soil + Tube Section	4989.20	grams
Weight of Clean, Dry Tube Section	0.00	grams
Wet Weight of Soil	11.00	lbs
Volume of Sample	0.077	ft ³

RESULT SUMMARY

Moisture Content	5.4	%
Wet Density	143.4	pcf
Dry Density	136.0	pcf
Specific Gravity	2.5195534	
Porosity	0.13	_

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013, Rev. 10 08-13--2007

Project No.

6155-08-0031 DO 2

Tested By HJ

Project Name

Saltstone Grout & Vault Concrete

Test Date 5/24/2008

Boring No.

V2M1 80010-5

Reviewed By JW

Sample No.

Core

Review Date 10/15/2008

Sample Depth

n/a

Lab No.

8598

Sample Description Concrete

ASTM D5084 - Method F (CVFH)

Sample Type:	Core
Sample Orientation:	Vertical
Initial Water Content, %:	3.5
Wet Unit Weight, pcf:	142.5
Dry Unit Weight, pcf:	137.7
Compaction, %:	N/A
Hydraulic Conductivity, cm/sec. @20 °C	2.8E-10

Remarks:	

(ASTM D5084 - 03) (Method F, Constant Volume Falling Head) PERMEABILITY TEST

MACTEC

Consolidation

 Project Number 6155-08-0031 DO 2
 Tested By HJ

 Project Name
 Saltstone Grout & Vault Concret
 Test Date 05/24/08

 Boring No.
 V2MI 80010-5
 Reviewed By JW

 Sample No.
 Core
 Review Date 10/15/08

 Sample Depth
 n/a
 Lab No. 8598
 Review Date 10/15/08 Lab No. 8598 Concrete Sample Description

	Data Consolidatio	1.30	T		_	90.98 Initial Burett Reading	3.5 Final Burett Reading	127.7	On o	506	0.018 Permeant used	10.03	285.31
Pinal Count	rmai Sample Data	Pan No	Wet Coilt Day	Dev Soil + Den	Des to the	ram weight, grams	Moisture Content, %	Dry Unit Weisht, nef	Saturation %	Diameter in	Commont, III.	Length, in.	Volume, in'
			5009	0009	6.030	0.030	6,018	10670.40	0.00	10312.82	0	9.0	
Initial Sample Data		Diameter, in	Location 1	Location 2	Location 3	Assessment	offerace	Wet Soil + Tare, grams	Ture Weight, grums	Dry Soil +Tare, grams	Moisture Content %	of full of the same of the sam	
Initial			10.049	10.002	10.038	010.01	arana a	285.31	2.41	10670.40	137.7	000	200.5
		Length, in	Location 1	Location 2	Location3	Average		volume, in	SG Measured	Soil Sample Wt., g	Dry UW, pef	Saturation %	as finesty to the

water

_		_	_	_	_	_	_	_	_	_		_	_
۵	cm/sec	at 20 °C	2	7.22E-10	2.49E-10	1 97E, 10	ALCOHOL:	1.77E-10	1 705 10	01.000.00	1.80E-10		
_	cm/sec		0 222 0	0.235-10	2.81E-10	2.20F-10	07 000	1.39E-10	2.09F-10	2000	Z.08E-10		
Final	Hydraulic	Gradient	110	11.0	4.17	11.3	0 ::	11.0	10.7	5	10.3		
Intial	Hydraulic	Gradient	10.01	0.00	12.0	12.0	0.03	12.0	12.0	000	17.0		
Тетр	(°C)		25.6	0 90	W.Cy	25.6	25.0	200	26.7	196	200.1		
ΔZp	(cm)		0.35	1 20	7,400	1.40	2.00		2.50	3.20			
qz	(cm)		25.65	24.80	0000	74.60	24.00	23.60	23.30	22.80			
28	(cm)		26.00	26.00	00 00	70.07	26.00	00 90	20.00	26.00			
°2	(cm)		1.70	1.70	1 30	7.70	1.70	1 20		1.70			
Elapsed Time	(3600)		6120	62700	03500	2000	149700	180720		236400			

Avg. k at 20 °C 2 8E-10 cm/cm	TOTAL CHINSES		
Avg. k at 20 °C		cm² . Remarks:	for 15° to 25°
Sample Orientation	Vertical	a _p = 0.031416 cm ² M ₁ = 0.03018 M ₂ = 1.04095	0.0003333
Compaction %	N/A	e, M =	$C = M_1S/(G_{18g}-1) = 0.0003333$ for 15° to 25°
Max. Density Compaction Sample (pcf) % Orientation	N/A		C=2
Sample Type	Core	, , , , , , , , , , , , , , , , , , ,	l/cm
No. of Trials	9		0.13880 I/cm
	_	8 A J	S=[./A=

Project No.: 6155-08-0031 DO 2

Lab No: 8598

Project Name: Saltstone Grout & Vault Concrete

Tested By: HJ

Date: 05/24/08

Boring No.: V2M1-800104-5

Depth: n/a

Sample ID: Core Age 28 Days (6x12)

Reviewed By: JW

Date: 10/14/08

II .	Total Sample Inside Height, inches of Cut			Moisture Content				
1	10.049			Tare No.	L-20			
2	10.002	Top	6.006	Tare Weight	0.00	grams		
3	10.038	Bottom	6.030	Wet Weight + Tare	10670.40	grams		
Average	10.03	Average	6.018	Dry Weight + Tare	10312.82	grams		
				Moisture Content	3.5	%		

Total Weight of Soil + Tube Section	10670.40	grams
Weight of Clean, Dry Tube Section	. 0.00	grams
Wet Weight of Soil	23.52	lbs
Volume of Sample	0.165	ft ³

RESULT SUMMARY

Moisture Content	3.5	%
Wet Density	142.5	pcf
Dry Density	137.7	pcf
Specific Gravity	2.4100761	
Porosity	0.08	

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013, Rev. 10 08-13-2007

Project No.

6155-08-0031 DO 2

Tested By HJ

Project Name

Saltstone Grout & Vault Concrete Test Date

5/24/2008

Boring No.

V2M1 80010-6

Reviewed By JW

Sample No.

Core

Review Date 10/15/2008

Sample Depth

n/a

Lab No.

8599

Sample Description Concrete

ASTM D5084 - Method F (CVFH)

Sample Type:	Core
Sample Orientation:	Vertical
Initial Water Content, %:	6.2
Wet Unit Weight, pcf:	143.1
Dry Unit Weight, pcf:	134.8
Compaction, %:	N/A
Hydraulic Conductivity, cm/sec. @20 °C	6.0E-11

Remarks:	

PERMEABILITY TEST (ASTM D5084 - 03) (Method F, Constant Volume Falling Head)

 Project Number 6155-08-0031 DO 2
 Tested By HJ

 Project Name
 Saltstone Grout & Vault Concret
 Test Date 05/24/08

 Boring No.
 V2M1 80010-6
 Reviewed By JW

 Sample No.
 Core
 Reviewed By JW

 Sample Depth
 n/a
 Lab No. 8599

 Sample Description
 Concrete

Consolidation

Chamber Pressure, psi

Confining Pressure, psi Initial Burett Reading Final Burett Reading Volume Change, co

Back Pressure, psi

Final Sample Data	Pan No.	6.015 Wet Soil+Pan, grams 5058.40	1	_	Moisture Content. %	2		4665.20 Diameter, in. 6.016		13
Initial Sample Data	Diameter, in	Location 1	Location 2	Location 3	Average	Wet Soil + Tare, grams 4	Tare Weight, grams	Dry Soil +Tare, grams 4	Moisture Content, %	
Initial	u	4.670	4.614	4.636	4.640	131.88	2.55	4954.80	134.8	87.4
	Length, in	Location 1	Location 2	Location3	Average	Volume, in ³	SG Measured	Soil Sample Wt., g.	Dry UW, pef	Saturation, %

Permeant used

	_	cm/sec	at 20 °C	5 00D 11	2,80E-11	6.07E-11	2 670 14	7.6/E-11	5.98E-11	5 3CD 11	3,305-11	4.66E-11		
	24	cm/sec		6 TOD 11	1			2.175-11		1			Ш	
	Finat	Hydraulic	Gradient	22.0	200	27.0	24.8	01.0	24.3	1 96	100	23.7		
	Intial	Hydraulic	Oradient	23.5	200	73.3	25.1		72.	25.1	1	25.1		
	Temp	(00)		26.7	26.3	70.07	26.7	0 70	707	26.0		20.0		
	\	(cm)		0.50	080	0000	0.20	02.0	0.70	0.90		02°T		
	ß	(cm)		23.20	22 90		25.00	03 70	2012	24.30	24.00	24.00		
	ZB	(cm)		23.70	23.70		25.20	25.20	-	25.20	25.20	NO.CO.		
	20	(cm)		1.70	1.70		0.70	1.70		1.70	1.70			
Planes d'Pr	punt posdara	(sec)		24480	84840	07071	14940	70380		101880	157200			

	6.0E-11 cm/sec				
	Avg. k at 20 °C		Remarks:		
Sample	Orientation	Vertical	0.031416 cm ²	0.03018	1.04095
Compaction	%	N/A	l de	M _i =	M ₂ =
Sample Max. Density Compaction	(bed)	N/A			
Sample	Type	Core	cm²	cm ²	CIII
No. of Trials		9	a, 0.76712 cm	A = 183.37 cm ²	L= 11.79 c

C = M₁S/(G_{Hg}-1)= 0.0001543 for 15° to 25°

S=L/A= 0.06427 1/cm

Project No.: 6155-08-0031 DO 2

Lab No: 8599

Project Name: Saltstone Grout & Vault Concrete

Tested By: HJ

Date: 05/24/08

Boring No.: V2M1-800104-6

Depth: n/a

Sample ID: Core Age 28 Days (6x12)

Reviewed By: JW

Date: 10/14/08

Total S Height,		Inside Di		Moist	ture Content	:
1	4.67			Tare No.	10	
2	4.614	Top_	6.021	Tare Weight	0.00	grams
3	4.636	Bottom	6.011	Wet Weight + Tare	4954.80	grams
Average	4.64	Average	6.016	Dry Weight + Tare	4665.20	grams
L				Moisture Content	6.2	%

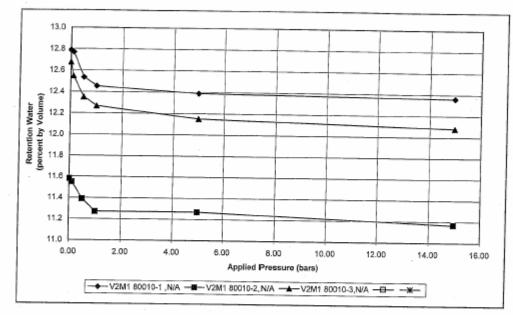
Total Weight of Soil + Tube Section	4954.80	grams
Weight of Clean, Dry Tube Section.	0.00	grams
Wet Weight of Soil	10.92	lbs
Volume of Sample	0.076	ft ³

RESULT SUMMARY

Moisture Content	6.2	%
Wet Density	143.1	pcf
Dry Density	134.7	pcf
Specific Gravity	2.5507326	
Porosity	0.15	_

Remarks:

Subcontract No. AC54317N


Specification No. K-SPC-G-0013, Rev. 10 08-13--2007

Project No Tested By Reviewed By 6155-08-0031 DO2 HJ/JW JW

Project Name Test Date Review Date

Saltstone Grout & Vault Concrete 5/21/08 10/14/08

Sample No.	Initial	Dry Unit				Appli	ed Pres	sure (bars)		-
& Depth (ft)	Moisture	Weight	0.00	0.10	0.5	1.0	5.0	15.0			
	% by Vol.	(pcf)			Ret	ained W	ater (pe	ercent by v	olume)		
V2M1 80010-1 ,N/A	12.8	135.7	12.8	12.8	12.5	12.5	12.4	12.4	7		
V2M1 80010-2,N/A	11.6	138.1	11.6	11.6	11.4	11.3	11.3	11.2	_		+-
V2M1 80010-3,N/A	12.7	136.4	12.7	12.5	12.3	12.3	12.2	12.1		-	_

Remarks:

Subcontract No. AC54317N

Specification No K-SPC-G-0013 Revision 10 08-13-2007

Project No 6155-08-0031 DO2
Tested By HJ/JW
Reviewed By JW

Project Name Test Date Review Date

Saltstone Grout & Vault Concrete 5/21/2008 10/14/2008

Sample No.	V2M1 80010-	2M1 80010-	2M1 80010	-3	
Depth (ft)	N/A	N/A	N/A	Ť	-
Lab No.	8594	8595	8596		_
Ring No.	N/A	N/A	N/A		-
Container Weight. (g)	0	0	0		-
Container Diameter (cm)	7.617	7.624	7.626		-
Container Height, (cm)	2.423	2.179	1.888		-
Container Volume (cm ³)	110.41	99.47	86.24	-	
Wt. of Wet Soil + Container (g)	254.28	231.61	199.46		
Wt. of Dry Soil + Container (g)	240.16	220.09	188.53		-
Moisture Content (%)	5.9	5.2	5.8		-
Dry Unit Weight (pcf)	135.73	138.08	136.42		-
Initial Wt.Wet Soil + Container (g)	254.28	231.61	199.46		-
nitial Wt. Container (g)	0.00	0.00	0.00		
nitia! Moisture, % by Volume	12.8	11.6	12.7		

Remarks: Subcontract No. AC54317N Specification No K-SPC-G-0013 Revision 10 08-13-2007 Delivery Order No 02

	Pressure psi	01	1.45	7.25	14.5	72.5	217.5			
No.	bars	0.0	0.10	0.5	1.0	5.0	15.0			
	Date / Read By	-		0.0	1.0	5.0	15.0			
8594	Weight of Soil + Ring	254.28	254.26	254	253.91	253.84	253,81			
	Weight of Ring	0	0	0	0	200.04	200.01			
	Retained Water (%)	12.8	12.8	12.5	12.5	12.4	12.4			
8595	Weight of Soil + Ring	231.61	231.58	231.42	231,3	231.3	231.2			-
	Weight of Ring	0	0	0	0	201.0	201.2			
	Retained Water (%)	11.6	11.6	11.4	11.3	11.3	11.2		_	+
	Weight of Soil + Ring	199,46	199.35	199.18	199.11	199.01	198.95			-
	Weight of Ring	0	0	0	0	0	0			
	Retained Water (%)	12.7	12.5	12.3	12.3	12.2	12.1			
Į							12.7			+
-										-
										-
- 1								1		-
										_
-										-

No. of Samples No. of Tests per Sample

Project No.

6155-08-0031 DO 2

Tested By

HJ

Project Name

Saltstone Grout & Vault Concrete Test Date

8/5/2008

Boring No.

V2M2-080028-4

Reviewed By JW

Sample No.

Core 28 days (6x12)

Review Date 10/14/2008

Lab No.

8940

Sample Depth n/a

Sample Description Concrete

ASTM D5084 - Method F (CVFH)

Sample Type:	Core
Sample Orientation:	Vertical
Initial Water Content, %:	6.3
Wet Unit Weight, pcf:	143.4
Dry Unit Weight, pcf:	134.9
Compaction, %:	N/A
Hydraulic Conductivity, cm/sec. @20 °C	5.0E-11

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013

Revision 10 08-13-2007

PERMEABILITY TEST (ASTM D5084 - 03) (Method F, Constant Volume Falling Head)

MACTEC

Consolidation

Chamber Pressure, psi

Back Pressure, psi

Confining Pressure, psi

Initial Burett Reading Final Burett Reading Volume Change, cc

 Project Number 6155-08-0031 DO 2
 Tested By HJ

 Project Name
 Saltstone Grout & Vault Concret
 Test Date 08/05/08

 Boring No.
 VZM2-080028-4
 Reviewed By JW

 Sample No.
 Core 28 days (6x12)
 Review Date 10/14/08

 Sample Depth
 n/a
 Lab No. 8940

 Sample Description
 Concrete

	Initial	Initial Sample Data		Final Sample Data	Data
Length, in		Diameter, in		Pan No.	
Location 1	4.885	Location 1	5.995	Wet Soil+Pan, grams	5205.00
Location 2	4.896	Location 2	6.005	Dry Soil + Pan, grams	4895.90
Location3	4.894	Location 3	6.000	Pan Weight, grams	
Average	4.892	Average	6.000	Moisture Content, %	6.3
Volume, in ³	13831	Wet Soil + Tare, grams	5204.50	Dry Unit Weight, pcf	134.9
SG Measured	2.50	Tare Weight, grams	0.00	Saturation, %	100.3
Soil Sample Wt., g	5204.50	Dry Soil +Tare, grams	4895.90	Diameter, in.	6.000
Dry UW, pcf	134.9	Moisture Content, %	6.3	Length, in.	4.892
Saturation, %	100.2			Volume, in ³	138.32

Permeant used

	Z ₀	EZ	zp	$\Delta Z_{\rm p}$	Temp	Intial	Final		24
(cm)	9		(cm)	(III)	(0,0)	Hydraulic	Hydraulic	cm/sec	cm/sec
						Gradient	Gradient		at 20 °C
25.70	25.70		25.60	01.0	23.2	24.3		7.14E-11	6.61E-11
25.70	25.70		24.00	1.70	22.5	24.3		3.80E-11	3.58E-11
25.30	25.30		25.20	0.10	23.2	23.9	23.8	6.62E-11	6.14E-11
25.30	25.30		25.10	0.20	23.2	23.9		5.02E-11	4.65E-11
25.30	25.30		24.80	0.50	23.2	23.9		4.37E-11	4.05E-11

	Avg. k at 20 °C 5.0E-11 cm/sec		Subcontract No. AC54317N	Specification No. K-SPC-G-0013	
	Avg. k at 20 °C		cm ² Remarks:		
Sample	Orientation	Vertical	0.031416 cm ²	0.03018	
Compaction	%	N/A	=de	$M_1 =$	
No. of Trials Sample Max. Density Compaction Sample	(bct)	N/A			
Sample	Type	Core	:mz	zm²	
No. of Trials		5	a _u = 0.76712 cm ²	A = 182.41 cm ²	

Revision 10 08-13-2007 Delivery Order No. 02

 $C = M_1 S/(G_{Hg} - 1) = -0.0001635 \ for \ 15^o \ to \ 25^o$

0.06811 1/cm

S=L/A=

12,42 cm

1.04095

Project No.: 6155-08-0031 DO 2

Lab No: 8940 Project Name: Saltstone Grout & Vault Concrete

Tested By: HJ

Date: 08/05/08

Boring No.: V2M2-080028-4

Depth: n/a

Sample ID: Core Age 28 Days (6x12)

Reviewed By: JW

Date: 10/14/08

Total S Height,		Inside Di of Cut Tub		Moist	ure Conten	l
1	4.885			Tare No.		
2	4.896	Тор	5.995	Tare Weight	0.00	grams
3	4.894	Bottom	6.005	Wet Weight + Tare	5204.50	grams
Average	4.89	Average	6.000	Dry Weight + Tare	4895.90	grams
				Moisture Content	6.3	%

Total Weight of Soil + Tube Section	5204.50	grams
Weight of Clean, Dry Tube Section	0.00	grams
Wet Weight of Soil	11.47	lbs
Volume of Sample	0.080	fì ³

RESULT SUMMARY

Moisture Content	6.3	%
Wet Density	143.4	pcf
Dry Density	134.9	pcf
Specific Gravity	2.501233	
Porosity	0.14	

Remarks: Subcontract No. AC54317N

Specification No. K-SPC-G-0013, Rev. 10 08-13--2007

Project No. 6155-08-0031 DO 2 Tested By HJ

Project Name Saltstone Grout & Vault Concrete Test Date 9/9/2008

Boring No. V2M2-080028-5 Reviewed By JW

Sample No. Core 28 days (6x12) Review Date 10/14/2008

Sample Depth n/a Lab No. 8941

Sample Description Concrete

ASTM D5084 - Method F (CVFH)

Sample Type:	Core
Sample Orientation:	Vertical
Initial Water Content, %:	3.9
Wet Unit Weight, pcf:	144.0
Dry Unit Weight, pcf:	138.5
Compaction, %:	N/A
Hydraulic Conductivity, cm/sec. @20 °C	5.0E-11

Remarks: Subcontract No. AC54317N

Specification No. K-SPC-G-0013 Revision 10 08-13-2007

(ASTM D5084 - 03) (Method F, Constant Volume Falling Head) PERMEABILITY TEST

Review Date 10/14/08 Lab No. 8941 Project Number 6155-08-0031 DO 2 Tested By HJ Project Name Saltstone Grout & Vault Concret Test Date 09/09/08 Reviewed By JW Project Number 6155-08-0031 DO 2 Core 28 days (6x12) Concrete V2M2-080028-5 Sample No. Core Sample Depth n/a Sample Description Boring No.

Consolidation

Confining Pressure, psi Chamber Pressure, psi

Back Pressure, psi

Initial Burett Reading Final Burett Reading Volume Change, cc

	Initial	Initial Sample Data		Final Sample Data	Jata
Length, in		Diameter, in		Pan No.	
Location 1	5.009	Location 1	6.015	Wet Soil+Pan, grams	\$326.60
Location 2	4.925	Location 2	6.007	Dry Soil + Pan, grams	5123.00
Location3	4.961	Location 3	6.011	Pan Weight, grams	0
Average	4.965	Average	6.011	Moisture Content, %	4.0
Volume, in ³	140.90	Wet Soil + Tare, grams	5324.60	Dry Unit Weight, pcf	138.5
SG Measured	2.43	Tare Weight, grams	0.00	Saturation, %	101.5
Soil Sample Wt., g	5324.60	Dry Soil +Tare, grams	5123.00	Diameter, in.	110.9
Dry UW, pcf	138.5	Moisture Content, %	3.9	Length, in.	4.965
Saturation, %	100.5			Volume, in3	140.90

Permeant used

e	5.63E-11	5.63E-11 6.10E-11	1.0
	Gradient 22.6	Gradient 22.6 21.9	Gradient 22.6 21.9 21.5
RIJUI			
lemp	23.2	23.2	23.2
$\Delta Z_{\rm p}$	0.10	0.10	0.10
ZP	24.40	24.40	23.65
73	24.50	24.50	24.50 23.70 23.70
Z ₀	1.70	1.70	1.70
Elapsed Time	13440	13440	13440 6420 60420
(cm) (cm) (cm) (°C) Hydraulic cm/sec Gradient Gradient		1,70 23,70 23.65 0.05 22.5 21.9 21.9 6.10E-11	1.70 23.70 23.36 0.05 22.5 21.9 21.9 6.10E-11 1.70 23.70 23.30 0.40 23.2 21.9 21.3 5.23E-11

Avg. k at 20 °C 5.0E-11 cm/sec				Subcontract No. AC54317N	Specification No. K-SPC-G-0013	Revision 10 08-13-2007	Delivery Order No. 02
Avg. k at 20 °C				cm² Remarks:			$C = M_1S/(G_{H_g}-1) = 0.0001654 \text{ for } 15^{\circ} \text{ to } 25^{\circ}$
Orientation	Vortical	, control		0.031416 cm²	0.03018	1.04095	0.0001654
%	N/A	12.54		3,00	$M_1=$	M_2	$M_1S/(G_{Hg}-1)=$
Type (net) % Orientation	N/A	17.00					C=1
Type	Com	COLO		cm2	cm ²	CEI	I/cm
10.01	4			a _a = 0.76712 cm ²	183.08 cm ²	12.61 cm	S-L/A- 0.06888 1/cm
			,	i d	= 4	L=	S-L/A-

Project No.: 6155-08-0031 DO 2

Lab No: 8941 Project Name: Saltstone Grout & Vault Concrete Tested By: HJ

Date: 08/05/08

Boring No.: V2M2-080028-5

Depth: n/a

Sample ID: Core Age 28 Days (6x12)

Reviewed By: JW

Date: 10/14/08

Total S Height,		Inside Di		Moist	ure Content	
1	5.009			Tare No.		
2	4.925	Тор_	6.015	Tare Weight	0.00	grams
3	4.961	Bottom	6.007	Wet Weight + Tare	5324.60	grams
Average	4.97	Average	6.011	Dry Weight + Tare	5123.00	grams
				Moisture Content	3.9	%

Total Weight of Soil + Tube Section	5324.60	grams
Weight of Clean, Dry Tube Section	0.00	grams
Wet Weight of Soil	11.74	lbs
Volume of Sample	0.082	ft 3

RESULT SUMMARY

Moisture Content	3.9	%
Wet Density	144.0	pcf
Dry Density	138.5	pcf
Specific Gravity	2.43103	
Porosity	0.09	

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013, Rev. 10 08-13--2007

Project No. $6155-08-0031\ DO\ 2$ Tested By HJ

Project Name Saltstone Grout & Vault Concrete Test Date 9/18/2008

Boring No. V2M2-080028-6 Reviewed By JW

Sample No. Core 28 days (6x12) Review Date 10/14/2008

Sample Depth n/a Lab No. 8942

Sample Description Concrete

ASTM D5084 - Method F (CVFH)

	CONTRACTOR OF THE PARTY OF THE
Sample Type:	Core
Sample Orientation:	Vertical
Initial Water Content, %:	4.7
Wet Unit Weight, pcf:	144.3
Dry Unit Weight, pcf:	137.8
Compaction, %:	N/A
Hydraulic Conductivity, cm/sec. @20 °C	3.2E-10

Remarks: Subcontract No. AC54317N

Specification No. K-SPC-G-0013

Revision 10 08-13-2007 Delivery Order No. 02

PERMEABILITY TEST (ASTM D5084 - 03) (Method F, Constant Volume Falling Head)

 Project Number 6155-08-0031 DO 2
 Tested By HJ

 Project Name
 Saltstone Grout & Vault Concret Test Date 09/18/08

 Boring No.
 V2M2-080028-6
 Reviewed By JW

 Sample No.
 Core 28 days (6x12)
 Review Date 10/14/08

 Sample Depth
 n/a
 Lab No. 8942

 Sample Description
 Concrete

\circ
ſΤÌ
CTE
čή
\subseteq
\forall
\leq
The second
2010
2 41 41
1 1

Consolidation

Chamber Pressure, psi

Back Pressure, psi

Confining Pressure, psi

Initial Burett Reading Final Burett Reading Volume Change, cc

e Data		5230.00	s 4995.00	0	4.7	f 137.8	89.0	6.025	4.842	138.05
Final Sample Data	Pan No.	Wet Soil+Pan, grams	Dry Soil + Pan, grams	Pan Weight, grams	Moisture Content, %	Dry Unit Weight, pcf	Saturation, %	Diameter, in.	Length, in.	Volume, in3
		6.027	6.019	6.029	6.025	5229.80	0.00	4995.00	4.7	
Initial Sample Data	Diameter, in	Location 1	Location 2	Location 3	Average	Wet Soil + Tare, grams	Tare Weight, grams	Dry Soil +Tare, grams	Moisture Content, %	
Initial		4.922	4.801	4.803	4.842	138.05	2.50	5229.80	137.8	6,88
	Length, in	Location 1	Location 2	Location3	Average	Volume, in ³	SG Measured	Soil Sample Wt., g	Dry UW, pef	Saturation, %

Permeant used

(cm) (em) (em) <th< th=""><th>(cm) (cm) (cm) (cm) (°C) Hydraulie Hydraulie cm/sec 3540 1.70 24.00 18.65 5.35 23.2 22.8 17.1 1.30E-10 8800 1.70 24.00 20.15 3.85 23.2 22.8 17.1 1.30E-10 9160 1.70 24.00 21.70 2.30 22.8 18.7 2.68E-10 8350 1.70 24.00 20.45 3.55 23.2 22.8 19.0 3.71E-10</th><th>Elapsed Time</th><th>Z₀</th><th>23</th><th>qz</th><th>$\Delta z_{\rm p}$</th><th>Temp</th><th>Intial</th><th>Final</th><th>×</th><th>-24</th></th<>	(cm) (cm) (cm) (cm) (°C) Hydraulie Hydraulie cm/sec 3540 1.70 24.00 18.65 5.35 23.2 22.8 17.1 1.30E-10 8800 1.70 24.00 20.15 3.85 23.2 22.8 17.1 1.30E-10 9160 1.70 24.00 21.70 2.30 22.8 18.7 2.68E-10 8350 1.70 24.00 20.45 3.55 23.2 22.8 19.0 3.71E-10	Elapsed Time	Z ₀	23	qz	$\Delta z_{\rm p}$	Temp	Intial	Final	×	-24
1.70 24.00 18.65 5.35 23.2 22.8 17.1 1.30E-10 1.70 24.00 20.15 3.85 23.2 22.8 17.1 1.30E-10 1.70 24.00 20.15 3.85 23.2 22.8 18.7 2.68E-10 1.70 24.00 21.70 2.30 23.2 22.8 20.3 6.25E-10 1.70 24.00 20.45 3.55 23.2 22.8 19.0 3.71E-10	1.70 24.00 18.65 5.35 23.2 22.8 17.1 1.30E-10 1.70 24.00 20.15 3.85 23.2 22.8 17.1 1.30E-10 1.70 24.00 20.15 3.85 23.2 22.8 18.7 2.68E-10 1.70 24.00 20.45 3.55 23.2 22.8 19.0 3.71E-10	(2000)	(шэ)	(cm)	(cm)	(cm)	(00)	Hydraulic	_	cm/sec	cm/sec
1.70 24.00 18.65 5.35 23.2 22.8 17.1 1.30E-10 1.70 24.00 20.15 3.85 23.2 22.8 18.7 2.68E-10 1.70 24.00 21.70 2.30 23.2 22.8 20.3 6.25E-10 1.70 24.00 20.45 3.55 23.2 22.8 19.0 3.71E-10	1.70 24.00 18.65 5.35 23.2 22.8 17.1 1.30E-10 1.70 24.00 20.15 3.85 23.2 22.8 18.7 2.68E-10 1.70 24.00 21.70 23.0 23.2 22.8 20.3 6.25E-10 1.70 24.00 20.45 3.55 23.2 22.8 19.0 3.71E-10							Gradient			at 20 °C
1.70 24.00 20.15 3.85 23.2 22.8 18.7 2.68E-10 1.70 24.00 21.70 2.30 23.2 22.8 20.3 6.25E-10 1.70 24.00 20.45 3.55 23.2 22.8 19.0 3.71E-10	1.70 24.00 20.15 3.85 23.2 22.8 18.7 2.68E-10 1.70 24.00 21.70 2.30 23.2 22.8 20.3 6.25E-10 1.70 24.00 20.45 3.55 23.2 22.8 19.0 3.71E-10	353640	1.70	24.00	18.65	5:35	23.2			1.30E-10	1.21E-10
1.70 24.00 21.70 2.30 23.2 22.8 20.3 6.25E-10 1.70 24.00 20.45 3.55 23.2 22.8 19.0 3.71E-10	1.70 24.00 21.70 2.36 23.2 22.8 20.3 6.25E-10 1.70 24.00 20.45 3.55 23.2 22.8 19.0 3.71E-10	118800	1.70	24.00	20.15	3,85	23.2			2.68E-10	2.48E-10
1,70 24.00 20.45 3.55 23.2 22.8 19.0 3.71E-10	1.70 24.00 20.45 3.55 23.2 22.8 19.0 3.71E-10	29160	1.70	24.00	21.70	2.30	23.2			6.25E-10	5.80E-10
		78360	1.70	24.00	20.45	3.55	23.2			3.71E-10	3.44E-10

	Avg. k at 20 °C 3.2E-10 cm/sec	
Sample	Orientation Avg.	Vertical
Compaction	%	N/A
Max. Density	(bct)	N/A
Sample	Type	Core
o. of Trials		4

0.06686 1/cm

S-L/A-

a₁ = 0.76712 cm² A = 183.94 cm² L = 12.30 cm

Project No.: 6155-08-0031 DO 2

Lab No: 8942

Project Name: Saltstone Grout & Vault Concrete

Tested By: HJ

Date: 09/18/08

Boring No.: V2M2-080028-6

Depth: n/a

Sample ID: Core Age 28 Days (6x12)

Reviewed By: JW

Date: 10/14/08

li .	Total Sample Inside Diameter Height, inches of Cut Tube, inches			Moisture Content				
1	4.922			Tare No.				
2	4.801	Тор	6.020	Tare Weight	0.00	grams		
3	4.803	Bottom	6.030	Wet Weight + Tare	5229.80	grams		
Average	4.84	Average	6.025	Dry Weight + Tare	4995.00	grams		
L				Moisture Content	4.7	%		

Total Weight of Soil + Tube Section	5229.80	grams
Weight of Clean, Dry Tube Section	0.00	grams
Wet Weight of Soil	11.53	lbs
Volume of Sample	0.080	fî ³

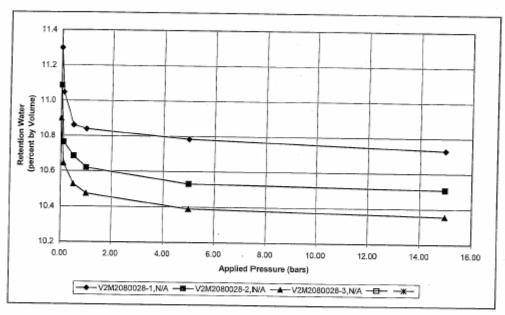
RESULT SUMMARY

Moisture Content	4.7	%
Wet Density	144.3	pcf
Dry Density	137.8	pcf
Specific Gravity	2.501233	
Porosity	0.12	

Remarks:

Subcontract No. AC54317N

Specification No. K-SPC-G-0013, Rev. 10 08-13--2007



Project No Tested By Reviewed By

6155-08-0031 DO2 HJ/JW JW

Project Name Test Date Review Date

Saltstone Grout & Vault Concrete 9/9/08 10/14/08

Initial	Dry Unit				Appli	ed Pres	sure (ba	rs)			
Moisture	Weight	0.00	0.10	0.5	1.0	5.0	15.0	,			7
% by Vol.	(pcf)			Ret	ained W	ater (pe	rcent by	volun	ne)		
11.3	140.9	11.3	11.0	10.9	10.8	10.B	10.7		,		\top
11.1	140.7	11.1	10.8	10.7	10.6	10.5	10.5			_	-
10.9	140.8	10.9	10.6	10.5	10.5	10.4	10.4	_			+-
10.8	140.0	10.8	10.0	10.5	10.5	10.4	10.4			+-	
	Moisture % by Vol. 11.3 11.1	Moisture Weight % by Vol. (pcf) 11.3 140.9 11.1 140.7	Moisture Weight 0.00 % by Vol. (pcf) 11.3 140.9 11.3 11.1 140.7 11.1	Moisture Weight 0.00 0.10 % by Vol. (pcf) 11.3 140.9 11.3 11.0 11.1 10.8	Moisture Weight (pcf) 0.00 0.10 0.5 % by Vol. (pcf) Ret 11.3 140.9 11.3 11.0 10.9 11.1 140.7 11.1 10.8 10.7	Moisture Weight (pcf) 0.00 0.10 0.5 1.0 % by Vol. (pcf) Retained W 11.3 140.9 11.3 11.0 10.9 10.8 11.1 140.7 11.1 10.8 10.7 10.6	Moisture Weight 0.00 0.10 0.5 1.0 5.0	Moisture Weight 0.00 0.10 0.5 1.0 5.0 15.0 % by Vol. (pcf) Retained Water (percent by 11.3 140.9 11.3 11.0 10.9 10.8 10.8 10.7 11.1 140.7 11.1 10.8 10.7 10.6 10.5 10.5	Moisture Weight 0.00 0.10 0.5 1.0 5.0 15.0	Moisture Weight 0.00 0.10 0.5 1.0 5.0 15.0	Moisture Weight 0.00 0.10 0.5 1.0 5.0 15.0

Remarks:

Subcontract No. AC54317N Specification No K-SPC-G-0013 Revision 10 08-13-2007

Water Retention Test (ASTM D3152)

Project No 6155-08-0031 DO2
Tested By HJ/JW
Reviewed By JW

Project Name Test Date Review Date

Saltstone Grout & Vault Concrete 9/9/2008 10/14/2008

Sample No.	V2942080028-1	V2M2080028-2	V3VD085825-3	7	
Depth (ft)	NW	N/A	NW.		
Lab No.	8937	8938	8939		-
Ring No.	N/A	N/A	N/A		
Container Weight. (g)	0	0	0		-
Container Diameter (cm)	7.631	7,620	7.620		_
Container Height, (cm)	1.997	1.97	2.058		-
Container Volume (cm3)	91.33	89.84	93.85		\dashv
Wt. of Wet Soil + Container (g)	216,54	212.54	222.02		_
Wt. of Dry Soil + Container (g)	206.22	202.58			-
Moisture Content (%)	5.0	4.9	4.8		-
Dry Unit Weight (pcf)	140.89	140.71	140.81		\neg
Initial Wt.Wet Soil + Container (g)	216,54	212.54	222.02		\neg
Initial Wt. Container (g)	0.00	0.00	0.00		-
Initial Moisture, % by Volume	11.3	11.1	10.9		\dashv

Remarks: Subcontract No. AC54317N
Specification No K-SPC-G-0013
Revision 10 08-13-2007
Delivery Order No 02

Lab	Pressure psi	D	1.45	7.25	14.5	72.51	217.5		
No.	bars	0.0	0.10	0.5	1.0	5.0	15.0	_	
	Date / Read By				- 110	0.0	10.0		
	Weight of Soil + Ring	216.54	216.31	216.14	216.12	216.07	216.02		-
	Weight of Ring	0	0	0	0	210.07	210.02		
	Retained Water (%)	11.3	11.0	10.9	10.8	10.8	10.7		
8938	Weight of Soil + Ring	212.54	212.25	212.18	212.12	212.04	212.02		
	Weight of Ring	0	0	0	0	0	212.02		-
	Retained Water (%)	11.1	10.8	10.7	10.6	10.5	10.5		+
8939	Weight of Sail + Ring	222.02	221,78	221.67	221.62	221.54	221.51		
	Weight of Ring	0	0	0.	0	0	221.01		
	Retained Water (%)	10.9	10.6	10.5	10.5	10.4	10.4		-
						10.7	10.4		
- 1									
- 1									
									-

No. of Samples No. of Tests per Sample

SRNI	LTZ.	.2008.	.00421	REV	VISION	· (
	-O I I.	-2000			, 1/31/3/1	•

APPENDIX E. CALCULATIONS TO CORRECT FOR SALT PRECIPITATION

The purpose of this appendix is to demonstrate the calculations that were used to correct the raw laboratory measurements of dry bulk density, porosity, and moisture retention for the saltstone grout samples. For each of these measurements, the sample is ultimately oven dried and it is necessary to correct for salt precipitation that occurs during this process. For each type of saltstone, the amount of salt added per 100 gram of wet grout was measured and this information was used to make the corrections. The corrections were made for each of the three types of saltstone (DDA, ARP/MCU, SWPF). The example calculations presented are for DDA saltstone. However, the calculations were the same for each saltstone type except for the simulant ratios and properties.

Dry bulk density was calculated based on the following equations.

$$M_{liquid} = M_{sat} - M_{dry} + S$$

$$\rho_{dry} = \frac{M_{sat} - M_{liquid}}{V_{total}}$$

$$\begin{split} &M_{liquid} = mass \ of \ interstitial \ liquid \ in \ sample \\ &M_{sat} = mass \ of \ saturated \ sample \\ &M_{dry} = mass \ of \ oven \ dried \ sample \\ &S = known \ salt \ content \ of \ grout \ (g \ salt/100g \ grout) \\ &V_{total} = total \ volume \ of \ sample \\ &\rho_{dry} = dry \ bulk \ density \end{split}$$

For sample DDA-TR430-1:

$$\begin{split} M_{sat} &= 542.84 \text{ g} \\ M_{dry} &= 381.3 \text{ g} \\ S &= 9.28 \text{ (grams of salt per 100 gram of grout)} \\ V_{total} &= 318.24 \text{ cm}^3 \end{split}$$

$$M_{liquid} = 542.84 g - 381.3 g + \frac{9.28 g \ salt}{100 \ g \ grout} * 542.84 g \ grout$$

$$M_{liquid} = 211.92 g$$

$$\rho_{dry} = \frac{542.84 \, g - 211.92 \, g}{318.24 \, cm^3}$$

$$\rho_{dry} = 1.04 \frac{g}{cm^3}$$

Porosity was calculated as:

$$V_{\textit{liquid}} = \frac{M_{\textit{liquid}}}{\rho_{\textit{liquid}}}$$

$$\phi = rac{V_{voids}}{V_{total}} = rac{V_{liquid}}{V_{total}}$$

$$\begin{split} &M_{liquid} = mass \ of interstitial \ liquid \ in \ sample \\ &V_{voids} = total \ volume \ of \ voids \\ &V_{liquid} = volume \ of \ interstitial \ liquid \ in \ sample \\ &V_{total} = total \ volume \ of \ sample \\ &\rho_{liquid} = density \ of \ interstitial \ liquid \\ &\varphi = corrected \ porosity \end{split}$$

For sample DDA-TR430-1:

$$M_{liquid} = 211.92 \text{ g}$$

 $\rho_{liquid} = 1.19 \text{ g/cm}^3$
 $V_{total} = 318.24 \text{ cm}^3$

$$V_{liquid} = rac{M_{liquid}}{
ho_{liquid}}$$

$$V_{liquid} = \frac{211.92 \, g}{1.19 \, \frac{g}{cm^3}}$$

$$V_{liquid} = 178.08 \, cm^3$$

$$\phi = \frac{178.08 \, cm^3}{318.24 \, cm^3}$$

$$\phi = 0.560$$

The following equations were used to determine the initial moisture content (i.e., porosity) of the moisture retention samples. It is important to note that only the mass of liquid removed by oven drying needs to be corrected for salt precipitation. The liquid removed by pressure extraction does not need to be corrected. Therefore, to determine the mass of liquid initially in the sample, the calculation is broken into two parts. The first part of the calculation determines the mass of liquid removed by pressure extraction and the second part determines the mass of liquid removed by the oven drying process at the end of the test (which is corrected for salt precipitation). The sum of these two values equals the total mass of liquid in the sample at saturation. Corrections to the moisture retention data were slightly different than for porosity and dry bulk density. For these measurements, the water to simulant ratio was used rather than the measured salt content. Although the difference is negligible, some salt is lost during pressure extraction so the salt content of the grout prior to oven-drying is actually unknown.

1) Determine the initial moisture content of the sample:

$$M_{liquid-pressure} = M_{sat} - M_{pressure-final}$$

$$M_{liquid-oven} = \frac{M_{pressure-final} - M_{dry}}{\chi_{wil}}$$

$$M_{liquid} = M_{liquid-pressure} + M_{liquid-oven}$$

$$V_{liquid} = rac{M_{liquid}}{
ho_{liquid}}$$

$$\phi = rac{V_{voids}}{V_{total}} = rac{V_{liquid}}{V_{total}}$$

 $M_{liquid\text{-pressure}}$ = mass of interstitial liquid removed by pressure extraction, g

M_{liquid-oven} = mass of interstitial liquid removed by oven drying, g

M_{pressure-final} = final mass of sample following pressure extraction, g

 M_{sat} = total mass of saturated sample, g

 M_{liquid} = mass of interstitial liquid in sample at saturation, g

 M_{dry} = mass of oven dried sample, g

 χ_{wil} = mass fraction of water in interstitial liquid, fraction

 V_{liquid} = volume of interstitial liquid in sample, cm³

 $V_{\text{voids}} = \text{total volume of voids, cm}^3$

 V_{total} = total volume of sample, cm³

 ϕ = porosity, fraction

ρ_{liquid}=density of interstitial liquid, g/cm³

For DDA-TR430-1:

$$\begin{split} &M_{sat} = 156.54 \text{ g} \\ &M_{pressure\text{-}final} = 156.08 \text{ g} \\ &M_{dry} = 109.81 \text{ g} \\ &\chi_{wil} = 0.7767 \\ &V_{total} = 90.09 \text{ cm}^3 \\ &\varphi = porosity, \text{ fraction} \\ &\rho_{liquid} = 1.19 \text{ g/cm}^3 \end{split}$$

$$M_{liquid-pressure} = 156.54 g - 156.08 g$$

$$M_{liquid-pressure} = 0.46 g$$

$$M_{liquid-oven} = \frac{156.08 \, g - 109.81 \, g}{0.7767}$$

$$M_{liquid-oven} = 59.57 g$$

$$M_{liquid} = 0.46 g + 59.57 g$$

$$M_{liquid} = 60.03 g$$

$$V_{liquid} = \frac{60.03 \, g}{1.19 \frac{g}{cm^3}}$$

$$V_{liquid} = 50.45 \, cm^3$$

$$\phi = \frac{50.45 \, cm^3}{90.09 \, cm^3}$$

$$\phi = 0.560$$

2) Determine the volumetric moisture content of the samples at each pressure increment. In this example, the volumetric liquid content at 15 bars is determined.

$$M_{solid} = M_{sat} - M_{liquid}$$

$$V_{liquid} = rac{M_{sample} - M_{solid}}{
ho_{liquid}}$$

$$\theta_{liquid} = \frac{V_{liquid}}{V_{total}}$$

 M_{sat} = total mass of saturated sample, g

 M_{sample} = mass of sample at each pressure increment, g

 M_{liquid} = mass of interstitial liquid in sample at saturation, g

M_{solid}= corrected final dry weight of sample, g

ρ_{liquid}=density of interstitial liquid, g/cm³

 V_{liquid} = volume of liquid in sample at each pressure increment, cm³

 $V_{total} = total volume of sample, cm³$

 $\theta_{\text{liquid}} = \text{volumetric}$ moisture content of sample at each pressure increment, fraction

SRNL-STI-2008-00421, REVISION 0

For DDA-TR430-1

$$\begin{split} &M_{sat} = 156.54~g\\ &M_{sample} = mass~of~sample~at~each~pressure~increment,~g\\ &M_{liquid} = \!\!60.03~g\\ &\rho_{liquid} = \!\!1.19~g/cm^3\\ &V_{total} = 90.09~cm^3 \end{split}$$

$$M_{solid} = 156.54 g - 60.03 g$$

$$M_{solid} = 96.51 g$$

$$V_{liquid} = \frac{156.08 \, g - 96.51 \, g}{1.19 \frac{g}{cm^3}}$$

$$V_{liquid} = 50.06 \, cm^3$$

$$\theta_{liquid} = \frac{50.06 \, cm^3}{90.09 \, cm^3}$$

$$\theta_{liquid} = 0.556$$

			SRNL-	STI-2008-00421	, REVISION 0
4 DDENDA	WE DECK				
APPENDI	X F. RECO	OMMENDEI) CHARACTI	ERISTIC CUI	RVE DATA
APPENDI	X F. RECO	OMMENDEI) CHARACTI	ERISTIC CUI	RVE DATA
APPENDI	X F. RECO	OMMENDEI) CHARACTI	ERISTIC CUI	RVE DATA
APPENDI	X F. RECO	OMMENDEI	O CHARACTI	ERISTIC CUI	RVE DATA
APPENDI	X F. RECO	OMMENDEI	O CHARACTI	ERISTIC CUI	RVE DATA
APPENDI	X F. RECO	OMMENDEI	O CHARACTI	ERISTIC CUI	RVE DATA
APPENDI	X F. RECO	OMMENDEI	O CHARACTI	ERISTIC CUI	RVE DATA
APPENDI	X F. RECO	OMMENDEI) CHARACTI	ERISTIC CUI	RVE DATA
APPENDI	X F. RECO	OMMENDEI	O CHARACTI	ERISTIC CUI	RVE DATA
APPENDI	XF. RECO	OMMENDEI	O CHARACTI	ERISTIC CUI	RVE DATA
APPENDI	XF. RECO	OMMENDEI	O CHARACTI	ERISTIC CUI	RVE DATA
APPENDI	X F. RECO	OMMENDEI	O CHARACTI	ERISTIC CUI	RVE DATA
APPENDI	XF. RECO	OMMENDEI	O CHARACTI	ERISTIC CUI	RVE DATA
APPENDI	X F. RECO	OMMENDEI	O CHARACTI	ERISTIC CUI	RVE DATA
APPENDI	XF. RECO	OMMENDEI	O CHARACTI	ERISTIC CUI	RVE DATA
APPENDI	XF. RECO	OMMENDEI	O CHARACTI	ERISTIC CUI	RVE DATA
APPENDI	XF. RECO	OMMENDEI	O CHARACTI	ERISTIC CUI	RVE DATA

Table F.1. Recommended Characteristic Curves for the DDA Saltstone (w/pm 0.6).

	Suction Head		Relative Permeability kr
Saturation	(cm)	Saturation	$(Ksat = 9.6 \times 10^{-11} \text{ cm/s})$
1.000000000000E+00	0.00E+00	1.000000000000E+00	1.000000E+00
9.9999010535498E-01	5.00E-02	9.9999010535498E-01	1.868055E-02
9.9997986436144E-01	1.00E-01	9.9997986436144E-01	1.409047E-02
9.9995916826836E-01	2.00E-01	9.9995916826836E-01	1.010657E-02
9.9989725297926E-01	5.00E-01	9.9989725297926E-01	5.857499E-03
9.9979724454104E-01	1.00E+00	9.9979724454104E-01	3.469996E-03
9.9961184597960E-01	2.00E+00	9.9961184597960E-01	1.807035E-03
9.9915465067191E-01	5.00E+00	9.9915465067191E-01	5.962337E-04
9.9860302333373E-01	1.00E+01	9.9860302333373E-01	2.111529E-04
9.9788067099630E-01	2.00E+01	9.9788067099630E-01	6.441829E-05
9.9674249020172E-01	5.00E+01	9.9674249020172E-01	1.144766E-05
9.9580897825690E-01	1.00E+02	9.9580897825690E-01	2.890764E-06
9.9485355143488E-01	2.00E+02	9.9485355143488E-01	7.080560E-07
9.9359026361135E-01	5.00E+02	9.9359026361135E-01	1.077786E-07
9.9264684578947E-01	1.00E+03	9.9264684578947E-01	2.573860E-08
9.9245840185135E-01	1.15E+03	9.9245840185135E-01	1.927454E-08
9.9227060867993E-01	1.32E+03	9.9227060867993E-01	1.443233E-08
9.9208348235218E-01	1.52E+03	9.9208348235218E-01	1.080560E-08
9.9189703632961E-01	1.75E+03	9.9189703632961E-01	8.089594E-09
9.9171128180992E-01	2.01E+03	9.9171128180992E-01	6.055838E-09
9.9152622803278E-01	2.31E+03	9.9152622803278E-01	4.533103E-09
9.9134188254552E-01	2.66E+03	9.9134188254552E-01	3.393081E-09
9.9115825143362E-01	3.06E+03	9.9115825143362E-01	2.539646E-09
9.9097533952056E-01	3.52E+03	9.9097533952056E-01	1.900795E-09
9.9079315054099E-01	4.05E+03	9.9079315054099E-01	1.422599E-09
9.9061168729063E-01	4.65E+03	9.9061168729063E-01	1.064675E-09
9.9043095175602E-01	5.35E+03	9.9043095175602E-01	7.967839E-10
9.9025094522666E-01	6.15E+03	9.9025094522666E-01	5.962858E-10
9.9007166839208E-01	7.08E+03	9.9007166839208E-01	4.462313E-10
9.8989312142561E-01	8.14E+03	9.8989312142561E-01	3.339323E-10
9.8971530405684E-01	9.36E+03	9.8971530405684E-01	2.498910E-10
9.8953821563413E-01	1.08E+04	9.8953821563413E-01	1.869982E-10
9.8936185517866E-01	1.24E+04	9.8936185517866E-01	1.399328E-10
9.8918622143100E-01	1.42E+04	9.8918622143100E-01	1.047123E-10
9.8901131289143E-01	1.64E+04	9.8901131289143E-01	7.835600E-11
9.8883712785458E-01	1.88E+04	9.8883712785458E-01	5.863323E-11
9.8866366443946E-01	2.16E+04	9.8866366443946E-01	4.387456E-11
9.8849092061527E-01	2.49E+04	9.8849092061527E-01	3.283065E-11
9.8831889422372E-01	2.86E+04	9.8831889422372E-01	2.456655E-11
9.8814758299825E-01	3.29E+04	9.8814758299825E-01	1.838261E-11
9.8797698458060E-01	3.79E+04	9.8797698458060E-01	1.375525E-11
9.8780709653512E-01	4.35E+04	9.8780709653512E-01	1.029269E-11
9.8763791636112E-01	5.01E+04	9.8763791636112E-01	7.701725E-12

Table F.1. Recommended Characteristic Curves for the DDA Saltstone (w/pm 0.6) continued.

	Suction Head		Relative Permeability kr
Saturation	(cm)	Saturation	$(Ksat = 9.6 \times 10^{-11} \text{ cm/s})$
9.8746944150343E-01	5.76E+04	9.8746944150343E-01	5.762967E-12
9.8730166936164E-01	6.62E+04	9.8730166936164E-01	4.312246E-12
9.8713459729793E-01	7.61E+04	9.8713459729793E-01	3.226711E-12
9.8696822264388E-01	8.76E+04	9.8696822264388E-01	2.414438E-12
9.8680254270634E-01	1.01E+05	9.8680254270634E-01	1.806640E-12
9.8663755477250E-01	1.16E+05	9.8663755477250E-01	1.351844E-12
9.8647325611416E-01	1.33E+05	9.8647325611416E-01	1.011536E-12
9.8630964399154E-01	1.53E+05	9.8630964399154E-01	7.568946E-13
9.8614671565646E-01	1.76E+05	9.8614671565646E-01	5.663558E-13
9.8598446835513E-01	2.03E+05	9.8598446835513E-01	4.237825E-13
9.8582289933051E-01	2.33E+05	9.8582289933051E-01	3.171002E-13
9.8566200582437E-01	2.68E+05	9.8566200582437E-01	2.372738E-13
9.8550178507903E-01	3.08E+05	9.8550178507903E-01	1.775427E-13
9.8534223433890E-01	3.54E+05	9.8534223433890E-01	1.328482E-13
9.8518335085174E-01	4.07E+05	9.8518335085174E-01	9.940508E-14
9.8502513186981E-01	4.68E+05	9.8502513186981E-01	7.438087E-14
9.8486757465076E-01	5.39E+05	9.8486757465076E-01	5.565624E-14
9.8471067645852E-01	6.20E+05	9.8471067645852E-01	4.164534E-14
9.8455443456393E-01	7.13E+05	9.8455443456393E-01	3.116153E-14
9.8439884624536E-01	8.19E+05	9.8439884624536E-01	2.331692E-14
9.8424390878922E-01	9.42E+05	9.8424390878922E-01	1.744711E-14
9.8408961949036E-01	1.08E+06	9.8408961949036E-01	1.305497E-14
9.8393597565248E-01	1.25E+06	9.8393597565248E-01	9.768504E-15
9.8378297458839E-01	1.43E+06	9.8378297458839E-01	7.309375E-15
9.8363061362029E-01	1.65E+06	9.8363061362029E-01	5.469309E-15
9.8347889007999E-01	1.90E+06	9.8347889007999E-01	4.092461E-15
9.8332780130910E-01	2.18E+06	9.8332780130910E-01	3.062222E-15
9.8317734465911E-01	2.51E+06	9.8317734465911E-01	2.291336E-15
9.8302751749163E-01	2.88E+06	9.8302751749163E-01	1.714514E-15
9.8287831717839E-01	3.31E+06	9.8287831717839E-01	1.282901E-15
9.8272974110135E-01	3.81E+06	9.8272974110135E-01	9.599421E-16
9.8258178665277E-01	4.38E+06	9.8258178665277E-01	7.182855E-16
9.8243445123528E-01	5.04E+06	9.8243445123528E-01	5.374637E-16
9.8228773226185E-01	5.80E+06	9.8228773226185E-01	4.021621E-16
9.8214162715588E-01	6.67E+06	9.8214162715588E-01	3.009215E-16
9.8199613335117E-01	7.67E+06	9.8199613335117E-01	2.251673E-16
9.8185124829195E-01	8.82E+06	9.8185124829195E-01	1.684835E-16
9.8170696943287E-01	1.01E+07	9.8170696943287E-01	1.260693E-16
9.8156329423902E-01	1.17E+07	9.8156329423902E-01	9.433249E-17
9.8142022018586E-01	1.34E+07	9.8142022018586E-01	7.058514E-17
9.8127774475925E-01	1.54E+07	9.8127774475925E-01	5.281597E-17
9.8113586545544E-01	1.77E+07	9.8113586545544E-01	3.952003E-17
9.8099457978099E-01	2.04E+07	9.8099457978099E-01	2.957122E-17

Table F.1. Recommended Characteristic Curves for the DDA Saltstone (w/pm 0.6) continued.

able 1.1. Recommended en	Suction		Relative Permeability
	Head		kr
Saturation	(cm)	Saturation	$(Ksat = 9.6 \times 10^{-11} \text{ cm/s})$
9.8085388525283E-01	2.35E+07	9.8085388525283E-01	2.212694E-17
9.8071377939814E-01	2.70E+07	9.8071377939814E-01	1.655668E-17
9.8057425975438E-01	3.10E+07	9.8057425975438E-01	1.238869E-17
9.8043532386925E-01	3.57E+07	9.8043532386925E-01	9.269947E-18
9.8029696930064E-01	4.10E+07	9.8029696930064E-01	6.936322E-18
9.8015919361661E-01	4.72E+07	9.8015919361661E-01	5.190166E-18
9.8002199439533E-01	5.43E+07	9.8002199439533E-01	3.883588E-18
9.7988536922510E-01	6.24E+07	9.7988536922510E-01	2.905930E-18
9.7974931570425E-01	7.18E+07	9.7974931570425E-01	2.174389E-18
9.7961383144113E-01	8.25E+07	9.7961383144113E-01	1.627006E-18
9.7947891405409E-01	9.49E+07	9.7947891405409E-01	1.217422E-18
9.7934456117141E-01	1.09E+08	9.7934456117141E-01	9.109470E-19
9.7921077043126E-01	1.25E+08	9.7921077043126E-01	6.816244E-19
9.7907753948171E-01	1.44E+08	9.7907753948171E-01	5.100316E-19
9.7894486598063E-01	1.66E+08	9.7894486598063E-01	3.816358E-19
9.7881274759569E-01	1.91E+08	9.7881274759569E-01	2.855625E-19
9.7868118200430E-01	2.19E+08	9.7868118200430E-01	2.136746E-19
9.7855016689358E-01	2.52E+08	9.7855016689358E-01	1.598840E-19
9.7841969996034E-01	2.90E+08	9.7841969996034E-01	1.196347E-19
9.7828977891098E-01	3.34E+08	9.7828977891098E-01	8.951770E-20
9.7816040146154E-01	3.84E+08	9.7816040146154E-01	6.698246E-20
9.7803156533756E-01	4.41E+08	9.7803156533756E-01	5.012022E-20
9.7790326827413E-01	5.08E+08	9.7790326827413E-01	3.750289E-20
9.7777550801580E-01	5.84E+08	9.7777550801580E-01	2.806188E-20
9.7764828231655E-01	6.71E+08	9.7764828231655E-01	2.099756E-20
9.7752158893977E-01	7.72E+08	9.7752158893977E-01	1.571162E-20
9.7739542565818E-01	8.88E+08	9.7739542565818E-01	1.175635E-20
9.7726979025383E-01	1.02E+09	9.7726979025383E-01	8.796800E-21

Table F.2. Recommended Characteristic Curves for the ARP/MCU Saltstone (w/pm 0.6).

able F.2. Recommended Ch	Suction Head		Relative Permeability kr
Saturation	(cm)	Saturation	(Ksat = $8.5 \times 10^{-10} \text{ cm/s}$)
1.000000000000E+00	0.00E+00	1.000000000000E+00	1.000000E+00
9.9999614841617E-01	5.00E-02	9.9999614841617E-01	4.563459E-01
9.9999098293979E-01	1.00E-01	9.9999098293979E-01	3.839188E-01
9.9997894439345E-01	2.00E-01	9.9997894439345E-01	3.073041E-01
9.9993605635663E-01	5.00E-01	9.9993605635663E-01	2.044476E-01
9.9985461139490E-01	1.00E+00	9.9985461139490E-01	1.318531E-01
9.9968139960062E-01	2.00E+00	9.9968139960062E-01	7.171879E-02
9.9919782556041E-01	5.00E+00	9.9919782556041E-01	2.216349E-02
9.9858987175287E-01	1.00E+01	9.9858987175287E-01	6.583447E-03
9.9783038201652E-01	2.00E+01	9.9783038201652E-01	1.531679E-03
9.9677727558239E-01	5.00E+01	9.9677727558239E-01	1.759306E-04
9.9604152427855E-01	1.00E+02	9.9604152427855E-01	3.130601E-05
9.9539044037874E-01	2.00E+02	9.9539044037874E-01	5.390587E-06
9.9466198490639E-01	5.00E+02	9.9466198490639E-01	5.159668E-07
9.9420117768092E-01	1.00E+03	9.9420117768092E-01	8.690415E-08
9.9411669350360E-01	1.15E+03	9.9411669350360E-01	6.066360E-08
9.9403485226565E-01	1.32E+03	9.9403485226565E-01	4.234350E-08
9.9395557581617E-01	1.52E+03	9.9395557581617E-01	2.955431E-08
9.9387878747403E-01	1.75E+03	9.9387878747403E-01	2.062691E-08
9.9380441216504E-01	2.01E+03	9.9380441216504E-01	1.439561E-08
9.9373237652116E-01	2.31E+03	9.9373237652116E-01	1.004642E-08
9.9366260894936E-01	2.66E+03	9.9366260894936E-01	7.011008E-09
9.9359503967569E-01	3.06E+03	9.9359503967569E-01	4.892592E-09
9.9352960076973E-01	3.52E+03	9.9352960076973E-01	3.414199E-09
9.9346622615315E-01	4.05E+03	9.9346622615315E-01	2.382491E-09
9.9340485159577E-01	4.65E+03	9.9340485159577E-01	1.662522E-09
9.9334541470167E-01	5.35E+03	9.9334541470167E-01	1.160108E-09
9.9328785488761E-01	6.15E+03	9.9328785488761E-01	8.095151E-10
9.9323211335534E-01	7.08E+03	9.9323211335534E-01	5.648691E-10
9.9317813305939E-01	8.14E+03	9.9317813305939E-01	3.941554E-10
9.9312585867140E-01	9.36E+03	9.9312585867140E-01	2.750329E-10
9.9307523654191E-01	1.08E+04	9.9307523654191E-01	1.919108E-10
9.9302621466044E-01	1.24E+04	9.9302621466044E-01	1.339098E-10
9.9297874261435E-01	1.42E+04	9.9297874261435E-01	9.343809E-11
9.9293277154706E-01	1.64E+04	9.9293277154706E-01	6.519797E-11
9.9288825411596E-01	1.88E+04	9.9288825411596E-01	4.549284E-11
9.9284514445034E-01	2.16E+04	9.9284514445034E-01	3.174323E-11
9.9280339810957E-01	2.49E+04	9.9280339810957E-01	2.214922E-11
9.9276297204176E-01	2.86E+04	9.9276297204176E-01	1.545486E-11
9.9272382454296E-01	3.29E+04	9.9272382454296E-01	1.078378E-11
9.9268591521710E-01	3.79E+04	9.9268591521710E-01	7.524482E-12
9.9264920493672E-01	4.35E+04	9.9264920493672E-01	5.250272E-12
9.9261365580457E-01	5.01E+04	9.9261365580457E-01	3.663420E-12

Table F.2. Recommended Characteristic Curves for the ARP/MCU Saltstone (w/pm 0.6) continued.

	Suction		Relative Permeability
	Head		kr
Saturation	(cm)	Saturation	(Ksat = $8.5 \times 10^{-10} \text{ cm/s}$)
9.9257923111605E-01	5.76E+04	9.9257923111605E-01	2.556179E-12
9.9254589532266E-01	6.62E+04	9.9254589532266E-01	1.783592E-12
9.9251361399633E-01	7.61E+04	9.9251361399633E-01	1.244514E-12
9.9248235379475E-01	8.76E+04	9.9248235379475E-01	8.683676E-13
9.9245208242764E-01	1.01E+05	9.9245208242764E-01	6.059091E-13
9.9242276862395E-01	1.16E+05	9.9242276862395E-01	4.227768E-13
9.9239438210007E-01	1.33E+05	9.9239438210007E-01	2.949951E-13
9.9236689352888E-01	1.53E+05	9.9236689352888E-01	2.058345E-13
9.9234027450981E-01	1.76E+05	9.9234027450981E-01	1.436222E-13
9.9231449753973E-01	2.03E+05	9.9231449753973E-01	1.002132E-13
9.9228953598472E-01	2.33E+05	9.9228953598472E-01	6.992434E-14
9.9226536405278E-01	2.68E+05	9.9226536405278E-01	4.879010E-14
9.9224195676726E-01	3.08E+05	9.9224195676726E-01	3.404356E-14
9.9221928994121E-01	3.54E+05	9.9221928994121E-01	2.375408E-14
9.9219734015242E-01	4.07E+05	9.9219734015242E-01	1.657454E-14
9.9217608471936E-01	4.68E+05	9.9217608471936E-01	1.156497E-14
9.9215550167778E-01	5.39E+05	9.9215550167778E-01	8.069520E-15
9.9213556975803E-01	6.20E+05	9.9213556975803E-01	5.630550E-15
9.9211626836316E-01	7.13E+05	9.9211626836316E-01	3.928746E-15
9.9209757754767E-01	8.19E+05	9.9209757754767E-01	2.741303E-15
9.9207947799691E-01	9.42E+05	9.9207947799691E-01	1.912759E-15
9.9206195100712E-01	1.08E+06	9.9206195100712E-01	1.334637E-15
9.9204497846618E-01	1.25E+06	9.9204497846618E-01	9.312502E-16
9.9202854283486E-01	1.43E+06	9.9202854283486E-01	6.497847E-16
9.9201262712871E-01	1.65E+06	9.9201262712871E-01	4.533907E-16
9.9199721490056E-01	1.90E+06	9.9199721490056E-01	3.163557E-16
9.9198229022347E-01	2.18E+06	9.9198229022347E-01	2.207388E-16
9.9196783767432E-01	2.51E+06	9.9196783767432E-01	1.540217E-16
9.9195384231787E-01	2.88E+06	9.9195384231787E-01	1.074694E-16
9.9194028969133E-01	3.31E+06	9.9194028969133E-01	7.498734E-17
9.9192716578939E-01	3.81E+06	9.9192716578939E-01	5.232280E-17
9.9191445704981E-01	4.38E+06	9.9191445704981E-01	3.650851E-17
9.9190215033933E-01	5.04E+06	9.9190215033933E-01	2.547400E-17
9.9189023294018E-01	5.80E+06	9.9189023294018E-01	1.777462E-17
9.9187869253687E-01	6.67E+06	9.9187869253687E-01	1.240233E-17
9.9186751720351E-01	7.67E+06	9.9186751720351E-01	8.653790E-18
9.9185669539146E-01	8.82E+06	9.9185669539146E-01	6.038227E-18
9.9184621591742E-01	1.01E+07	9.9184621591742E-01	4.213204E-18
9.9183606795184E-01	1.17E+07	9.9183606795184E-01	2.939785E-18
9.9182624100778E-01	1.34E+07	9.9182624100778E-01	2.051250E-18
9.9181672493003E-01	1.54E+07	9.9181672493003E-01	1.431270E-18
9.9180750988461E-01	1.77E+07	9.9180750988461E-01	9.986763E-19
9.9179858634865E-01	2.04E+07	9.9179858634865E-01	6.968315E-19

Table F.2. Recommended Characteristic Curves for the ARP/MCU Saltstone (w/pm 0.6) continued.

Table 1.2. Recommended chai			Relative
	Suction		Permeability
	Head		kr
Saturation	(cm)	Saturation	$(Ksat = 8.5 \times 10^{-10} \text{ cm/s})$
9.9178994510053E-01	2.35E+07	9.9178994510053E-01	4.862178E-19
9.9178157721032E-01	2.70E+07	9.9178157721032E-01	3.392610E-19
9.9177347403062E-01	3.10E+07	9.9177347403062E-01	2.367211E-19
9.9176562718754E-01	3.57E+07	9.9176562718754E-01	1.651734E-19
9.9175802857211E-01	4.10E+07	9.9175802857211E-01	1.152506E-19
9.9175067033189E-01	4.72E+07	9.9175067033189E-01	8.041669E-20
9.9174354486282E-01	5.43E+07	9.9174354486282E-01	5.611115E-20
9.9173664480141E-01	6.24E+07	9.9173664480141E-01	3.915184E-20
9.9172996301709E-01	7.18E+07	9.9172996301709E-01	2.731840E-20
9.9172349260487E-01	8.25E+07	9.9172349260487E-01	1.906156E-20
9.9171722687818E-01	9.49E+07	9.9171722687818E-01	1.330030E-20
9.9171115936199E-01	1.09E+08	9.9171115936199E-01	9.280355E-21
9.9170528378609E-01	1.25E+08	9.9170528378609E-01	6.475418E-21
9.9169959407864E-01	1.44E+08	9.9169959407864E-01	4.518252E-21
9.9169408435984E-01	1.66E+08	9.9169408435984E-01	3.152637E-21
9.9168874893592E-01	1.91E+08	9.9168874893592E-01	2.199769E-21
9.9168358229324E-01	2.19E+08	9.9168358229324E-01	1.534899E-21
9.9167857909254E-01	2.52E+08	9.9167857909254E-01	1.070983E-21
9.9167373416349E-01	2.90E+08	9.9167373416349E-01	7.472848E-22
9.9166904249932E-01	3.34E+08	9.9166904249932E-01	5.214209E-22
9.9166449925162E-01	3.84E+08	9.9166449925162E-01	3.638252E-22
9.9166009972539E-01	4.41E+08	9.9166009972539E-01	2.538604E-22
9.9165583937412E-01	5.08E+08	9.9165583937412E-01	1.771325E-22
9.9165171379515E-01	5.84E+08	9.9165171379515E-01	1.235952E-22
9.9164771872507E-01	6.71E+08	9.9164771872507E-01	8.623882E-23
9.9164385003536E-01	7.72E+08	9.9164385003536E-01	6.017355E-23
9.9164010372809E-01	8.88E+08	9.9164010372809E-01	4.198672E-23
9.9163647593180E-01	1.02E+09	9.9163647593180E-01	2.929657E-23

Table F.3. Characteristic Curves for MCU Saltstone as Determined by INL (Dixon and Phifer, 2007).

	Suction Head		Relative Permeability kr
Saturation	(cm)	Saturation	(Ksat = $8.5 \times 10^{-10} \text{ cm/s}$)
1.000000000000E+00	0.00E+00	1.000000000000E+00	1.000000E+00
9.9999976540962E-01	5.00E-02	9.9999976540962E-01	5.013543E-01
9.9999949012830E-01	1.00E-01	9.9999949012830E-01	4.661379E-01
9.9999889182528E-01	2.00E-01	9.9999889182528E-01	4.293214E-01
9.9999690770961E-01	5.00E-01	9.9999690770961E-01	3.784173E-01
9.9999327958840E-01	1.00E+00	9.9999327958840E-01	3.384701E-01
9.9998539616530E-01	2.00E+00	9.9998539616530E-01	2.975922E-01
9.9995927265626E-01	5.00E+00	9.9995927265626E-01	2.427984E-01
9.9991158215229E-01	1.00E+01	9.9991158215229E-01	2.014672E-01
9.9980830517116E-01	2.00E+01	9.9980830517116E-01	1.610389E-01
9.9946943274209E-01	5.00E+01	9.9946943274209E-01	1.106641E-01
9.9886370262499E-01	1.00E+02	9.9886370262499E-01	7.655804E-02
9.9760553368456E-01	2.00E+02	9.9760553368456E-01	4.768905E-02
9.9391355248690E-01	5.00E+02	9.9391355248690E-01	2.027161E-02
9.8853487285773E-01	1.00E+03	9.8853487285773E-01	8.443452E-03
9.8710980336367E-01	1.15E+03	9.8710980336367E-01	6.889821E-03
9.8556558070136E-01	1.32E+03	9.8556558070136E-01	5.571507E-03
9.8390345422771E-01	1.52E+03	9.8390345422771E-01	4.465546E-03
9.8212648862780E-01	1.75E+03	9.8212648862780E-01	3.548212E-03
9.8023949270192E-01	2.01E+03	9.8023949270192E-01	2.795807E-03
9.7824886091039E-01	2.31E+03	9.7824886091039E-01	2.185379E-03
9.7616234144880E-01	2.66E+03	9.7616234144880E-01	1.695324E-03
9.7398875142640E-01	3.06E+03	9.7398875142640E-01	1.305835E-03
9.7173766335656E-01	3.52E+03	9.7173766335656E-01	9.991959E-04
9.6941908735370E-01	4.05E+03	9.6941908735370E-01	7.599136E-04
9.6704317059299E-01	4.65E+03	9.6704317059299E-01	5.747188E-04
9.6461993065739E-01	5.35E+03	9.6461993065739E-01	4.324618E-04
9.6215903350220E-01	6.15E+03	9.6215903350220E-01	3.239348E-04
9.5966962095117E-01	7.08E+03	9.5966962095117E-01	2.416526E-04
9.5716018766385E-01	8.14E+03	9.5716018766385E-01	1.796153E-04
9.5463850379725E-01	9.36E+03	9.5463850379725E-01	1.330738E-04
9.5211157722331E-01	1.08E+04	9.5211157722331E-01	9.831164E-05
9.4958564802628E-01	1.24E+04	9.4958564802628E-01	7.244861E-05
9.4706620783297E-01	1.42E+04	9.4706620783297E-01	5.327253E-05
9.4455803702691E-01	1.64E+04	9.4455803702691E-01	3.909721E-05
9.4206525379006E-01	1.88E+04	9.4206525379006E-01	2.864607E-05
9.3959136998183E-01	2.16E+04	9.3959136998183E-01	2.095831E-05
9.3713934994577E-01	2.49E+04	9.3713934994577E-01	1.531453E-05
9.3471166933090E-01	2.86E+04	9.3471166933090E-01	1.117842E-05
9.3231037187351E-01	3.29E+04	9.3231037187351E-01	8.151749E-06
9.2993712278898E-01	3.79E+04	9.2993712278898E-01	5.939786E-06
9.2759325797390E-01	4.35E+04	9.2759325797390E-01	4.325028E-06
9.2527982863288E-01	5.01E+04	9.2527982863288E-01	3.147367E-06

Table F.3. Characteristic Curves for MCU Saltstone as Determined by INL continued (Dixon and Phifer, 2007).

Saturation	Suction Head (cm)	Saturation	Relative Permeability kr (Ksat = 8.5 x 10 ⁻¹⁰ cm/s
9.2299764124261E-01	5.76E+04	9.2299764124261E-01	2.289194E-06
9.2074729297073E-01	6.62E+04	9.2074729297073E-01	1.664279E-06
9.1852920279901E-01	7.61E+04	9.1852920279901E-01	1.209497E-06
9.1634363867811E-01	8.76E+04	9.1634363867811E-01	8.787039E-07
9.1419074107923E-01	1.01E+05	9.1419074107923E-01	6.382032E-07
9.1207054331820E-01	1.16E+05	9.1207054331820E-01	4.634166E-07
9.0998298901970E-01	1.33E+05	9.0998298901970E-01	3.364304E-07
9.0792794706904E-01	1.53E+05	9.0792794706904E-01	2.441983E-07
9.0590522437266E-01	1.76E+05	9.0590522437266E-01	1.772249E-07
9.0391457671848E-01	2.03E+05	9.0391457671848E-01	1.286030E-07
9.0195571799659E-01	2.33E+05	9.0195571799659E-01	9.331025E-08
9.0002832801077E-01	2.68E+05	9.0002832801077E-01	6.769659E-08
8.9813205908321E-01	3.08E+05	8.9813205908321E-01	4.910991E-08
8.9626654162840E-01	3.54E+05	8.9626654162840E-01	3.562390E-08
8.9443138884901E-01	4.07E+05	8.9443138884901E-01	2.583975E-08
8.9262620068522E-01	4.68E+05	8.9262620068522E-01	1.874187E-08
8.9085056713049E-01	5.39E+05	8.9085056713049E-01	1.359311E-08
8.8910407101055E-01	6.20E+05	8.8910407101055E-01	9.858455E-09
8.8738629030804E-01	7.13E+05	8.8738629030804E-01	7.149654E-09
8.8569680010327E-01	8.19E+05	8.8569680010327E-01	5.185008E-09
8.8403517419068E-01	9.42E+05	8.8403517419068E-01	3.760138E-09
8.8240098642187E-01	1.08E+06	8.8240098642187E-01	2.726776E-09
8.8079381181805E-01	1.25E+06	8.8079381181805E-01	1.977370E-09
8.7921322748836E-01	1.43E+06	8.7921322748836E-01	1.433904E-09
8.7765881338479E-01	1.65E+06	8.7765881338479E-01	1.039793E-09
8.7613015291968E-01	1.90E+06	8.7613015291968E-01	7.539957E-10
8.7462683346769E-01	2.18E+06	8.7462683346769E-01	5.467478E-10
8.7314844677091E-01	2.51E+06	8.7314844677091E-01	3.964623E-10
8.7169458926244E-01	2.88E+06	8.7169458926244E-01	2.874841E-10
8.7026486232183E-01	3.31E+06	8.7026486232183E-01	2.084603E-10
8.6885887247339E-01	3.81E+06	8.6885887247339E-01	1.511579E-10
8.6747623153657E-01	4.38E+06	8.6747623153657E-01	1.096065E-10
8.6611655673647E-01	5.04E+06	8.6611655673647E-01	7.947680E-11
8.6477947078092E-01	5.80E+06	8.6477947078092E-01	5.762927E-11
8.6346460190973E-01	6.67E+06	8.6346460190973E-01	4.178734E-11
8.6217158392090E-01	7.67E+06	8.6217158392090E-01	3.030019E-11
8.6090005617747E-01	8.82E+06	8.6090005617747E-01	2.197076E-11
8.5964966359855E-01 8.5842005663725E-01	1.01E+07 1.17E+07	8.5964966359855E-01 8.5842005663725E-01	1.593105E-11 1.155162E-11
8.5721089124767E-01	1.17E+07 1.34E+07	8.5721089124767E-01	8.376080E-12
8.5602182884320E-01	1.54E+07 1.54E+07	8.5602182884320E-01	6.073491E-12
8.5485253624744E-01	1.77E+07	8.5485253624744E-01	4.403881E-12
8.5370268563944E-01	2.04E+07	8.5370268563944E-01	3.193246E-12

Table F.3. Characteristic Curves for the MCU Saltstone as Determined by INL continued (Dixon and Phifer, 2007).

1 miei, 2007).	Suction		Relative Permeability
Saturation	Head (cm)	Saturation	kr (Ksat = 8.5 x 10^{-10} cm/s)
8.5257195449417E-01	2.35E+07	8.5257195449417E-01	2.315416E-12
8.5146002551930E-01	2.70E+07	8.5146002551930E-01	1.678902E-12
8.5036658658906E-01	3.10E+07	8.5036658658906E-01	1.217367E-12
8.4929133067594E-01	3.57E+07	8.4929133067594E-01	8.827089E-13
8.4823395578063E-01	4.10E+07	8.4823395578063E-01	6.400492E-13
8.4719416486084E-01	4.72E+07	8.4719416486084E-01	4.640973E-13
8.4617166575932E-01	5.43E+07	8.4617166575932E-01	3.365152E-13
8.4516617113141E-01	6.24E+07	8.4516617113141E-01	2.440058E-13
8.4417739837237E-01	7.18E+07	8.4417739837237E-01	1.769276E-13
8.4320506954476E-01	8.25E+07	8.4320506954476E-01	1.282895E-13
8.4224891130609E-01	9.49E+07	8.4224891130609E-01	9.302213E-14
8.4130865483672E-01	1.09E+08	8.4130865483672E-01	6.744993E-14
8.4038403576840E-01	1.25E+08	8.4038403576840E-01	4.890764E-14
8.3947479411331E-01	1.44E+08	8.3947479411331E-01	3.546271E-14
8.3858067419381E-01	1.66E+08	8.3858067419381E-01	2.571385E-14
8.3770142457299E-01	1.91E+08	8.3770142457299E-01	1.864499E-14
8.3683679798596E-01	2.19E+08	8.3683679798596E-01	1.351940E-14
8.3598655127203E-01	2.52E+08	8.3598655127203E-01	9.802850E-15
8.3515044530773E-01	2.90E+08	8.3515044530773E-01	7.108000E-15
8.3432824494081E-01	3.34E+08	8.3432824494081E-01	5.153977E-15
8.3351971892507E-01	3.84E+08	8.3351971892507E-01	3.737124E-15
8.3272463985620E-01	4.41E+08	8.3272463985620E-01	2.709771E-15
8.3194278410853E-01	5.08E+08	8.3194278410853E-01	1.964842E-15
8.3117393177274E-01	5.84E+08	8.3117393177274E-01	1.424697E-15
8.3041786659450E-01	6.71E+08	8.3041786659450E-01	1.033041E-15
8.2967437591408E-01	7.72E+08	8.2967437591408E-01	7.490531E-16
8.2894325060689E-01	8.88E+08	8.2894325060689E-01	5.431347E-16
8.2822428502496E-01	1.02E+09	8.2822428502496E-01	3.938244E-16

Table F.4. Recommended Characteristic Curves for the SWPF Saltstone (w/pm 0.6).

	Suction Head		Relative Permeability kr
Saturation	(cm)	Saturation	(Ksat = $6.0 \times 10^{-09} \text{ cm/s}$)
1.000000000000E+00	0.00E+00	1.000000000000E+00	1.000000E+00
9.9999450512237E-01	5.00E-02	9.9999450512237E-01	5.922781E-01
9.9998649099373E-01	1.00E-01	9.9998649099373E-01	5.132622E-01
9.9996686324043E-01	2.00E-01	9.9996686324043E-01	4.240580E-01
9.9989251698424E-01	5.00E-01	9.9989251698424E-01	2.946031E-01
9.9974303973976E-01	1.00E+00	9.9974303973976E-01	1.957579E-01
9.9940878616220E-01	2.00E+00	9.9940878616220E-01	1.085018E-01
9.9843030311622E-01	5.00E+00	9.9843030311622E-01	3.294675E-02
9.9718023345998E-01	1.00E+01	9.9718023345998E-01	9.194285E-03
9.9564723793658E-01	2.00E+01	9.9564723793658E-01	1.936657E-03
9.9362164284766E-01	5.00E+01	9.9362164284766E-01	1.899584E-04
9.9228702148395E-01	1.00E+02	9.9228702148395E-01	2.985589E-05
9.9116514834577E-01	2.00E+02	9.9116514834577E-01	4.542393E-06
9.8998069206494E-01	5.00E+02	9.8998069206494E-01	3.696632E-07
9.8927370123159E-01	1.00E+03	9.8927370123159E-01	5.511103E-08
9.8914793987243E-01	1.15E+03	9.8914793987243E-01	3.753732E-08
9.8902730907304E-01	1.32E+03	9.8902730907304E-01	2.556609E-08
9.8891160484811E-01	1.52E+03	9.8891160484811E-01	1.741186E-08
9.8880063025300E-01	1.75E+03	9.8880063025300E-01	1.185795E-08
9.8869419536088E-01	2.01E+03	9.8869419536088E-01	8.075328E-09
9.8859211718782E-01	2.31E+03	9.8859211718782E-01	5.499195E-09
9.8849421957863E-01	2.66E+03	9.8849421957863E-01	3.744799E-09
9.8840033306328E-01	3.06E+03	9.8840033306328E-01	2.550056E-09
9.8831029469194E-01	3.52E+03	9.8831029469194E-01	1.736458E-09
9.8822394785494E-01	4.05E+03	9.8822394785494E-01	1.182424E-09
9.8814114209264E-01	4.65E+03	9.8814114209264E-01	8.051517E-10
9.8806173289903E-01	5.35E+03	9.8806173289903E-01	5.482494E-10
9.8798558152219E-01	6.15E+03	9.8798558152219E-01	3.733149E-10
9.8791255476398E-01	7.08E+03	9.8791255476398E-01	2.541967E-10
9.8784252478074E-01	8.14E+03	9.8784252478074E-01	1.730861E-10
9.8777536888644E-01	9.36E+03	9.8777536888644E-01	1.178562E-10
9.8771096935928E-01	1.08E+04	9.8771096935928E-01	8.024931E-11
9.8764921325255E-01	1.24E+04	9.8764921325255E-01	5.464228E-11
9.8758999221036E-01	1.42E+04	9.8758999221036E-01	3.720619E-11
9.8753320228852E-01	1.64E+04	9.8753320228852E-01	2.533382E-11
9.8747874378094E-01	1.88E+04	9.8747874378094E-01	1.724986E-11
9.8742652105158E-01	2.16E+04	9.8742652105158E-01	1.174545E-11
9.8737644237219E-01	2.49E+04	9.8737644237219E-01	7.997480E-12
9.8732841976567E-01	2.86E+04	9.8732841976567E-01	5.445482E-12
9.8728236885513E-01	3.29E+04	9.8728236885513E-01	3.707824E-12
9.8723820871851E-01	3.79E+04	9.8723820871851E-01	2.524652E-12
9.8719586174870E-01	4.35E+04	9.8719586174870E-01	1.719031E-12
9.8715525351900E-01	5.01E+04	9.8715525351900E-01	1.170485E-12

Table F.4. Recommended Characteristic Curves for the SWPF Saltstone (w/pm 0.6) continued.

	Suction Head		Relative Permeability kr
Saturation	(cm)	Saturation	(Ksat = $6.0 \times 10^{-09} \text{ cm/s}$)
9.8711631265375E-01	5.76E+04	9.8711631265375E-01	7.969803E-13
9.8707897070411E-01	6.62E+04	9.8707897070411E-01	5.426619E-13
9.8704316202864E-01	7.61E+04	9.8704316202864E-01	3.694969E-13
9.8700882367868E-01	8.76E+04	9.8700882367868E-01	2.515894E-13
9.8697589528833E-01	1.01E+05	9.8697589528833E-01	1.713064E-13
9.8694431896873E-01	1.16E+05	9.8694431896873E-01	1.166420E-13
9.8691403920675E-01	1.33E+05	9.8691403920675E-01	7.942116E-14
9.8688500276768E-01	1.53E+05	9.8688500276768E-01	5.407760E-14
9.8685715860186E-01	1.76E+05	9.8685715860186E-01	3.682125E-14
9.8683045775517E-01	2.03E+05	9.8683045775517E-01	2.507146E-14
9.8680485328308E-01	2.33E+05	9.8680485328308E-01	1.707107E-14
9.8678030016826E-01	2.68E+05	9.8678030016826E-01	1.162363E-14
9.8675675524152E-01	3.08E+05	9.8675675524152E-01	7.914488E-15
9.8673417710599E-01	3.54E+05	9.8673417710599E-01	5.388946E-15
9.8671252606444E-01	4.07E+05	9.8671252606444E-01	3.669314E-15
9.8669176404947E-01	4.68E+05	9.8669176404947E-01	2.498422E-15
9.8667185455666E-01	5.39E+05	9.8667185455666E-01	1.701167E-15
9.8665276258043E-01	6.20E+05	9.8665276258043E-01	1.158318E-15
9.8663445455248E-01	7.13E+05	9.8663445455248E-01	7.886945E-16
9.86616898282E-01	8.19E+05	9.8661689828282E-01	5.370192E-16
9.8660006290317E-01	9.42E+05	9.8660006290317E-01	3.656543E-16
9.8658391881272E-01	1.08E+06	9.8658391881272E-01	2.489727E-16
9.8656843762609E-01	1.25E+06	9.8656843762609E-01	1.695246E-16
9.8655359212341E-01	1.43E+06	9.8655359212341E-01	1.154286E-16
9.8653935620248E-01	1.65E+06	9.8653935620248E-01	7.859493E-17
9.8652570483289E-01	1.90E+06	9.8652570483289E-01	5.351500E-17
9.8651261401202E-01	2.18E+06	9.8651261401202E-01	3.643816E-17
9.8650006072280E-01	2.51E+06	9.8650006072280E-01	2.481061E-17
9.8648802289329E-01	2.88E+06	9.8648802289329E-01	1.689345E-17
9.8647647935784E-01	3.31E+06	9.8647647935784E-01	1.150269E-17
9.8646540981992E-01	3.81E+06	9.8646540981992E-01	7.832136E-18
9.8645479481637E-01	4.38E+06	9.8645479481637E-01	5.332872E-18
9.8644461568325E-01	5.04E+06	9.8644461568325E-01	3.631133E-18
9.8643485452297E-01	5.80E+06	9.8643485452297E-01	2.472425E-18
9.8642549417284E-01	6.67E+06	9.8642549417284E-01	1.683465E-18
9.8641651817492E-01	7.67E+06	9.8641651817492E-01	1.146265E-18
9.8640791074704E-01	8.82E+06	9.8640791074704E-01	7.804874E-19
9.8639965675508E-01	1.01E+07	9.8639965675508E-01	5.314309E-19
9.8639174168635E-01	1.17E+07	9.8639174168635E-01	3.618493E-19
9.8638415162408E-01	1.34E+07	9.8638415162408E-01	2.463818E-19
9.8637687322294E-01	1.54E+07	9.8637687322294E-01	1.677605E-19
9.8636989368558E-01	1.77E+07	9.8636989368558E-01	1.142275E-19
9.8636320074015E-01	2.04E+07	9.8636320074015E-01	7.777706E-20

Table F.4. Recommended Characteristic Curves for the SWPF Saltstone (w/pm 0.6) continued.

rable 1:4. Recommended Cha		Relative	
	Suction		Permeability
	Head		kr
Saturation	(cm)	Saturation	$(Ksat = 6.0 \times 10^{-09} \text{ cm/s})$
9.8635678261868E-01	2.35E+07	9.8635678261868E-01	5.295811E-20
9.8635062803642E-01	2.70E+07	9.8635062803642E-01	3.605898E-20
9.8634472617200E-01	3.10E+07	9.8634472617200E-01	2.455242E-20
9.8633906664837E-01	3.57E+07	9.8633906664837E-01	1.671765E-20
9.8633363951462E-01	4.10E+07	9.8633363951462E-01	1.138299E-20
9.8632843522841E-01	4.72E+07	9.8632843522841E-01	7.750630E-21
9.8632344463922E-01	5.43E+07	9.8632344463922E-01	5.277378E-21
9.8631865897230E-01	6.24E+07	9.8631865897230E-01	3.593346E-21
9.8631406981317E-01	7.18E+07	9.8631406981317E-01	2.446696E-21
9.8630966909289E-01	8.25E+07	9.8630966909289E-01	1.665945E-21
9.8630544907382E-01	9.49E+07	9.8630544907382E-01	1.134336E-21
9.8630140233607E-01	1.09E+08	9.8630140233607E-01	7.723658E-22
9.8629752176440E-01	1.25E+08	9.8629752176440E-01	5.259000E-22
9.8629380053574E-01	1.44E+08	9.8629380053574E-01	3.580834E-22
9.8629023210720E-01	1.66E+08	9.8629023210720E-01	2.438176E-22
9.8628681020453E-01	1.91E+08	9.8628681020453E-01	1.660144E-22
9.8628352881113E-01	2.19E+08	9.8628352881113E-01	1.130389E-22
9.8628038215744E-01	2.52E+08	9.8628038215744E-01	7.696738E-23
9.8627736471082E-01	2.90E+08	9.8627736471082E-01	5.240686E-23
9.8627447116579E-01	3.34E+08	9.8627447116579E-01	3.568353E-23
9.8627169643476E-01	3.84E+08	9.8627169643476E-01	2.429693E-23
9.8626903563900E-01	4.41E+08	9.8626903563900E-01	1.654368E-23
9.8626648410013E-01	5.08E+08	9.8626648410013E-01	1.126452E-23
9.8626403733188E-01	5.84E+08	9.8626403733188E-01	7.669913E-24
9.8626169103219E-01	6.71E+08	9.8626169103219E-01	5.222514E-24
9.8625944107564E-01	7.72E+08	9.8625944107564E-01	3.555977E-24
9.8625728350621E-01	8.88E+08	9.8625728350621E-01	2.421226E-24
9.8625521453033E-01	1.02E+09	9.8625521453033E-01	1.648639E-24

Table F.5. Recommended Characteristic Curves for the Vault 1/4 Concrete.

Tuble 1.3. Recommended Cite	rable F.5. Recommended Characteristic Curves for the Vault 1/4 Concrete. Relative				
	Suction		Permeability		
Saturation	Head (cm)	Saturation	kr (Ksat = 3.1 x 10 ⁻¹⁰ cm/s)		
1.00000000000E+00	0.00E+00	1.000000000000E+00	1.000000E+00		
9.9999448279510E-01	5.00E-02	9.9999448279510E-01	6.282651E-01		
9.9998674147690E-01	1.00E-01	9.9998674147690E-01	5.635998E-01		
9.9996815915692E-01	2.00E-01	9.9996815915692E-01	4.905770E-01		
9.9989889329805E-01	5.00E-01	9.9989889329805E-01	3.822289E-01		
9.9975898521165E-01	1.00E+00	9.9975898521165E-01	2.939217E-01		
9.9943210243002E-01	2.00E+00	9.9943210243002E-01	2.050949E-01		
9.9831283231788E-01	5.00E+00	9.9831283231788E-01	1.008801E-01		
9.9642387568934E-01	1.00E+01	9.9642387568934E-01	4.524240E-02		
9.9320747134925E-01	2.00E+01	9.9320747134925E-01	1.509831E-02		
9.8721029833949E-01	5.00E+01	9.8721029833949E-01	2.283523E-03		
9.8224817413294E-01	1.00E+02	9.8224817413294E-01	4.348143E-04		
9.7759873675434E-01	2.00E+02	9.7759873675434E-01	7.473829E-05		
9.7233495472900E-01	5.00E+02	9.7233495472900E-01	6.798478E-06		
9.6904745807054E-01	1.00E+03	9.6904745807054E-01	1.085506E-06		
9.6845153924636E-01	1.15E+03	9.6845153924636E-01	7.490880E-07		
9.6787666760808E-01	1.32E+03	9.6787666760808E-01	5.168170E-07		
9.6732220374801E-01	1.52E+03	9.6732220374801E-01	3.565002E-07		
9.6678750732854E-01	1.75E+03	9.6678750732854E-01	2.458752E-07		
9.6627194167485E-01	2.01E+03	9.6627194167485E-01	1.695558E-07		
9.6577487735687E-01	2.31E+03	9.6577487735687E-01	1.169130E-07		
9.6529569494875E-01	2.66E+03	9.6529569494875E-01	8.060705E-08		
9.6483378712146E-01	3.06E+03	9.6483378712146E-01	5.557117E-08		
9.6438856019673E-01	3.52E+03	9.6438856019673E-01	3.830874E-08		
9.6395943526753E-01	4.05E+03	9.6395943526753E-01	2.640721E-08		
9.6354584897116E-01	4.65E+03	9.6354584897116E-01	1.820235E-08		
9.6314725398485E-01	5.35E+03	9.6314725398485E-01	1.254630E-08		
9.6276311930115E-01	6.15E+03	9.6276311930115E-01	8.647491E-09		
9.6239293032909E-01	7.08E+03	9.6239293032909E-01	5.960091E-09		
9.6203618885884E-01	8.14E+03	9.6203618885884E-01	4.107767E-09		
9.6169241291978E-01	9.36E+03	9.6169241291978E-01	2.831070E-09		
9.6136113655673E-01	1.08E+04	9.6136113655673E-01	1.951141E-09		
9.6104190954367E-01	1.24E+04	9.6104190954367E-01	1.344686E-09		
9.6073429705090E-01	1.42E+04	9.6073429705090E-01	9.267191E-10		
9.6043787927817E-01	1.64E+04	9.6043787927817E-01	6.386626E-10		
9.6015225106383E-01	1.88E+04	9.6015225106383E-01	4.401406E-10		
9.5987702147819E-01	2.16E+04	9.5987702147819E-01	3.033252E-10		
9.5961181340718E-01	2.49E+04	9.5961181340718E-01	2.090370E-10		
9.5935626313165E-01	2.86E+04	9.5935626313165E-01	1.440575E-10		
9.5911001990598E-01	3.29E+04	9.5911001990598E-01	9.927665E-11		
9.5887274553928E-01	3.79E+04	9.5887274553928E-01	6.841586E-11		
9.5864411398141E-01	4.35E+04	9.5864411398141E-01	4.714822E-11		
9.5842381091575E-01	5.01E+04	9.5842381091575E-01	3.249173E-11		

Table F.5. Recommended Characteristic Curves for the Vault 1/4 Concrete continued.

	Suction Head		Relative Permeability kr
Saturation	(cm)	Saturation	(Ksat = 3.1×10^{-10} cm/s)
9.5821153336004E-01	5.76E+04	9.5821153336004E-01	2.239131E-11
9.5800698927628E-01	6.62E+04	9.5800698927628E-01	1.543070E-11
9.5780989719043E-01	7.61E+04	9.5780989719043E-01	1.063386E-11
9.5761998582242E-01	8.76E+04	9.5761998582242E-01	7.328178E-12
9.5743699372676E-01	1.01E+05	9.5743699372676E-01	5.050107E-12
9.5726066894393E-01	1.16E+05	9.5726066894393E-01	3.480205E-12
9.5709076866254E-01	1.33E+05	9.5709076866254E-01	2.398329E-12
9.5692705889240E-01	1.53E+05	9.5692705889240E-01	1.652770E-12
9.5676931414816E-01	1.76E+05	9.5676931414816E-01	1.138980E-12
9.5661731714356E-01	2.03E+05	9.5661731714356E-01	7.849090E-13
9.5647085849601E-01	2.33E+05	9.5647085849601E-01	5.409069E-13
9.5632973644128E-01	2.68E+05	9.5632973644128E-01	3.727568E-13
9.5619375655809E-01	3.08E+05	9.5619375655809E-01	2.568790E-13
9.5606273150226E-01	3.54E+05	9.5606273150226E-01	1.770237E-13
9.5593648075030E-01	4.07E+05	9.5593648075030E-01	1.219928E-13
9.5581483035198E-01	4.68E+05	9.5581483035198E-01	8.406922E-14
9.5569761269174E-01	5.39E+05	9.5569761269174E-01	5.793483E-14
9.5558466625863E-01	6.20E+05	9.5558466625863E-01	3.992477E-14
9.5547583542444E-01	7.13E+05	9.5547583542444E-01	2.751345E-14
9.5537097022984E-01	8.19E+05	9.5537097022984E-01	1.896041E-14
9.5526992617821E-01	9.42E+05	9.5526992617821E-01	1.306623E-14
9.5517256403690E-01	1.08E+06	9.5517256403690E-01	9.004360E-15
9.5507874964566E-01	1.25E+06	9.5507874964566E-01	6.205195E-15
9.5498835373203E-01	1.43E+06	9.5498835373203E-01	4.276200E-15
9.5490125173339E-01	1.65E+06	9.5490125173339E-01	2.946867E-15
9.5481732362548E-01	1.90E+06	9.5481732362548E-01	2.030781E-15
9.5473645375716E-01	2.18E+06	9.5473645375716E-01	1.399476E-15
9.5465853069107E-01	2.51E+06	9.5465853069107E-01	9.644241E-16
9.5458344705026E-01	2.88E+06	9.5458344705026E-01	6.646156E-16
9.5451109937021E-01	3.31E+06	9.5451109937021E-01	4.580080E-16
9.5444138795633E-01	3.81E+06	9.5444138795633E-01	3.156280E-16
9.5437421674666E-01	4.38E+06	9.5437421674666E-01	2.175094E-16
9.5430949317948E-01	5.04E+06	9.5430949317948E-01	1.498927E-16
9.5424712806585E-01	5.80E+06	9.5424712806585E-01	1.032959E-16
9.5418703546665E-01	6.67E+06	9.5418703546665E-01	7.118451E-17
9.5412913257425E-01	7.67E+06	9.5412913257425E-01	4.905553E-17
9.5407333959838E-01	8.82E+06	9.5407333959838E-01	3.380574E-17
9.5401957965619E-01	1.01E+07	9.5401957965619E-01	2.329662E-17
9.5396777866632E-01	1.17E+07	9.5396777866632E-01	1.605445E-17
9.5391786524684E-01	1.34E+07	9.5391786524684E-01	1.106364E-17
9.5386977061685E-01	1.54E+07	9.5386977061685E-01	7.624306E-18
9.5382342850176E-01	1.77E+07	9.5382342850176E-01	5.254154E-18
9.5377877504191E-01	2.04E+07	9.5377877504191E-01	3.620806E-18

Table F.5. Recommended Characteristic Curves for the Vault 1/4 Concrete continued.

Table 1:5. Recommended Char			Relative
	Suction		Permeability
	Head		kr
Saturation	(cm)	Saturation	$(Ksat = 3.1 \times 10^{-10} \text{ cm/s})$
9.5373574870463E-01	2.35E+07	9.5373574870463E-01	2.495214E-18
9.5369429019941E-01	2.70E+07	9.5369429019941E-01	1.719532E-18
9.5365434239620E-01	3.10E+07	9.5365434239620E-01	1.184985E-18
9.5361585024673E-01	3.57E+07	9.5361585024673E-01	8.166109E-19
9.5357876070859E-01	4.10E+07	9.5357876070859E-01	5.627528E-19
9.5354302267221E-01	4.72E+07	9.5354302267221E-01	3.878110E-19
9.5350858689035E-01	5.43E+07	9.5350858689035E-01	2.672530E-19
9.5347540591032E-01	6.24E+07	9.5347540591032E-01	1.841726E-19
9.5344343400853E-01	7.18E+07	9.5344343400853E-01	1.269193E-19
9.5341262712751E-01	8.25E+07	9.5341262712751E-01	8.746414E-20
9.5338294281519E-01	9.49E+07	9.5338294281519E-01	6.027433E-20
9.5335434016642E-01	1.09E+08	9.5335434016642E-01	4.153697E-20
9.5332677976658E-01	1.25E+08	9.5332677976658E-01	2.862447E-20
9.5330022363727E-01	1.44E+08	9.5330022363727E-01	1.972604E-20
9.5327463518398E-01	1.66E+08	9.5327463518398E-01	1.359385E-20
9.5324997914566E-01	1.91E+08	9.5324997914566E-01	9.367959E-21
9.5322622154616E-01	2.19E+08	9.5322622154616E-01	6.455761E-21
9.5320332964734E-01	2.52E+08	9.5320332964734E-01	4.448871E-21
9.5318127190404E-01	2.90E+08	9.5318127190404E-01	3.065859E-21
9.5316001792055E-01	3.34E+08	9.5316001792055E-01	2.112783E-21
9.5313953840874E-01	3.84E+08	9.5313953840874E-01	1.455987E-21
9.5311980514773E-01	4.41E+08	9.5311980514773E-01	1.003367E-21
9.5310079094497E-01	5.08E+08	9.5310079094497E-01	6.914512E-22
9.5308246959876E-01	5.84E+08	9.5308246959876E-01	4.765017E-22
9.5306481586217E-01	6.71E+08	9.5306481586217E-01	3.283723E-22
9.5304780540826E-01	7.72E+08	9.5304780540826E-01	2.262917E-22
9.5303141479650E-01	8.88E+08	9.5303141479650E-01	1.559456E-22
9.5301562144054E-01	1.02E+09	9.5301562144054E-01	1.074670E-22

Table F.6. Recommended Characteristic Curves for Vault 2 Mix 1 Concrete.

Table F.O. Recommended Cha	Table F.6. Recommended Characteristic Curves for Vault 2 Mix 1 Concrete. Relative				
	Suction Head		Permeability kr		
Saturation	(cm)	Saturation	(Ksat = 1.1×10^{-10} cm/s)		
1.00000000000E+00	0.00E+00	1.000000000000E+00	1.000000E+00		
9.9999997794816E-01	5.00E-02	9.9999997794816E-01	9.902710E-01		
9.9999993064469E-01	1.00E-01	9.9999993064469E-01	9.847216E-01		
9.9999978187144E-01	2.00E-01	9.9999978187144E-01	9.760256E-01		
9.9999900794401E-01	5.00E-01	9.9999900794401E-01	9.565945E-01		
9.9999688017126E-01	1.00E+00	9.9999688017126E-01	9.321615E-01		
9.9999019071969E-01	2.00E+00	9.9999019071969E-01	8.943561E-01		
9.9995545449709E-01	5.00E+00	9.9995545449709E-01	8.120898E-01		
9.9986049204570E-01	1.00E+01	9.9986049204570E-01	7.133400E-01		
9.9956697754547E-01	2.00E+01	9.9956697754547E-01	5.723132E-01		
9.9815482322008E-01	5.00E+01	9.9815482322008E-01	3.246634E-01		
9.9503286740494E-01	1.00E+02	9.9503286740494E-01	1.416418E-01		
9.8903731339770E-01	2.00E+02	9.8903731339770E-01	3.586834E-02		
9.7896836554982E-01	5.00E+02	9.7896836554982E-01	2.572257E-03		
9.7268858661215E-01	1.00E+03	9.7268858661215E-01	2.460128E-04		
9.7165837511642E-01	1.15E+03	9.7165837511642E-01	1.506568E-04		
9.7070516687436E-01	1.32E+03	9.7070516687436E-01	9.194319E-05		
9.6982559165950E-01	1.52E+03	9.6982559165950E-01	5.595516E-05		
9.6901573228587E-01	1.75E+03	9.6901573228587E-01	3.397722E-05		
9.6827137113171E-01	2.01E+03	9.6827137113171E-01	2.059469E-05		
9.6758817348953E-01	2.31E+03	9.6758817348953E-01	1.246518E-05		
9.6696181961962E-01	2.66E+03	9.6696181961962E-01	7.536038E-06		
9.6638809653065E-01	3.06E+03	9.6638809653065E-01	4.551868E-06		
9.6586295898000E-01	3.52E+03	9.6586295898000E-01	2.747383E-06		
9.6538256748168E-01	4.05E+03	9.6538256748168E-01	1.657281E-06		
9.6494330949589E-01	4.65E+03	9.6494330949589E-01	9.992451E-07		
9.6454180857294E-01	5.35E+03	9.6454180857294E-01	6.022658E-07		
9.6417492506746E-01	6.15E+03	9.6417492506746E-01	3.628919E-07		
9.6383975111787E-01	7.08E+03	9.6383975111787E-01	2.186076E-07		
9.6353360187074E-01	8.14E+03	9.6353360187074E-01	1.316658E-07		
9.6325400438441E-01	9.36E+03	9.6325400438441E-01	7.928977E-08		
9.6299868523621E-01	1.08E+04	9.6299868523621E-01	4.774310E-08		
9.6276555755424E-01	1.24E+04	9.6276555755424E-01	2.874510E-08		
9.6255270797064E-01	1.42E+04	9.6255270797064E-01	1.730554E-08		
9.6235838383124E-01	1.64E+04	9.6235838383124E-01	1.041792E-08		
9.6218098087891E-01	1.88E+04	9.6218098087891E-01	6.271293E-09		
9.6201903154447E-01	2.16E+04	9.6201903154447E-01	3.775000E-09		
9.6187119391974E-01	2.49E+04	9.6187119391974E-01	2.272292E-09		
9.6173624144611E-01	2.86E+04	9.6173624144611E-01	1.367733E-09		
9.6161305332376E-01	3.29E+04	9.6161305332376E-01	8.232476E-10		
9.6150060562771E-01	3.79E+04	9.6150060562771E-01	4.955110E-10		
9.6139796310488E-01	4.35E+04	9.6139796310488E-01	2.982435E-10		
9.6130427161830E-01	5.01E+04	9.6130427161830E-01	1.795084E-10		

Table F.6. Recommended Characteristic Curves for Vault 2 Mix 1 Concrete (continued).

Table F.6. Recommended Cha			Relative
	Suction		Permeability
	Head	G 4 4	kr
Saturation	(cm)	Saturation	$(Ksat = 1.1 \times 10^{-10} \text{ cm/s})$
9.6121875120111E-01	5.76E+04	9.6121875120111E-01	1.080427E-10
9.6114068968056E-01	6.62E+04	9.6114068968056E-01	6.502847E-11
9.6106943683224E-01	7.61E+04	9.6106943683224E-01	3.913899E-11
9.6100439902545E-01	8.76E+04	9.6100439902545E-01	2.355668E-11
9.6094503432203E-01	1.01E+05	9.6094503432203E-01	1.417808E-11
9.6089084799285E-01	1.16E+05	9.6089084799285E-01	8.533351E-12
9.6084138841825E-01	1.33E+05	9.6084138841825E-01	5.135953E-12
9.6079624334096E-01	1.53E+05	9.6079624334096E-01	3.091163E-12
9.6075503644206E-01	1.76E+05	9.6075503644206E-01	1.860468E-12
9.6071742421306E-01	2.03E+05	9.6071742421306E-01	1.119753E-12
9.6068309309869E-01	2.33E+05	9.6068309309869E-01	6.739408E-13
9.6065175688768E-01	2.68E+05	9.6065175688768E-01	4.056216E-13
9.6062315433003E-01	3.08E+05	9.6062315433003E-01	2.441295E-13
9.6059704696144E-01	3.54E+05	9.6059704696144E-01	1.469330E-13
9.6057321711693E-01	4.07E+05	9.6057321711693E-01	8.843378E-14
9.6055146611741E-01	4.68E+05	9.6055146611741E-01	5.322516E-14
9.6053161261417E-01	5.39E+05	9.6053161261417E-01	3.203433E-14
9.6051349107752E-01	6.20E+05	9.6051349107752E-01	1.928032E-14
9.6049695041718E-01	7.13E+05	9.6049695041718E-01	1.160414E-14
9.6048185272292E-01	8.19E+05	9.6048185272292E-01	6.984116E-15
9.6046807211493E-01	9.42E+05	9.6046807211493E-01	4.203490E-15
9.6045549369452E-01	1.08E+06	9.6045549369452E-01	2.529930E-15
9.6044401258620E-01	1.25E+06	9.6044401258620E-01	1.522674E-15
9.6043353306339E-01	1.43E+06	9.6043353306339E-01	9.164429E-16
9.6042396775035E-01	1.65E+06	9.6042396775035E-01	5.515741E-16
9.6041523689368E-01	1.90E+06	9.6041523689368E-01	3.319727E-16
9.6040726769743E-01	2.18E+06	9.6040726769743E-01	1.998024E-16
9.6039999371616E-01	2.51E+06	9.6039999371616E-01	1.202539E-16
9.6039335430092E-01	2.88E+06	9.6039335430092E-01	7.237650E-17
9.6038729409363E-01	3.31E+06	9.6038729409363E-01	4.356082E-17
9.6038176256551E-01	3.81E+06	9.6038176256551E-01	2.621769E-17
9.6037671359578E-01	4.38E+06	9.6037671359578E-01	1.577949E-17
9.6037210508711E-01	5.04E+06	9.6037210508711E-01	9.497105E-18
9.6036789861468E-01	5.80E+06	9.6036789861468E-01	5.715966E-18
9.6036405910571E-01	6.67E+06	9.6036405910571E-01	3.440235E-18
9.6036055454714E-01	7.67E+06	9.6036055454714E-01	2.070554E-18
9.6035735571862E-01	8.82E+06	9.6035735571862E-01	1.246192E-18
9.6035443594893E-01	1.01E+07	9.6035443594893E-01	7.500380E-19
9.6035177089360E-01	1.17E+07	9.6035177089360E-01	4.514209E-19
9.6034933833190E-01	1.34E+07	9.6034933833190E-01	2.716940E-19
9.6034711798158E-01	1.54E+07	9.6034711798158E-01	1.635229E-19
9.6034509132980E-01	1.77E+07	9.6034509132980E-01	9.841854E-20
9.6034324147872E-01	2.04E+07	9.6034324147872E-01	5.923458E-20

Table F.6. Recommended Characteristic Curves for Vault 2 Mix 1 Concrete (continued).

	Relative		
	Suction		Permeability
	Head		kr
Saturation	(cm)	Saturation	$(Ksat = 1.1 \times 10^{-10} \text{ cm/s})$
9.6034155300462E-01	2.35E+07	9.6034155300462E-01	3.565116E-20
9.6034001182933E-01	2.70E+07	9.6034001182933E-01	2.145716E-20
9.6033860510282E-01	3.10E+07	9.6033860510282E-01	1.291429E-20
9.6033732109608E-01	3.57E+07	9.6033732109608E-01	7.772646E-21
9.6033614910329E-01	4.10E+07	9.6033614910329E-01	4.678076E-21
9.6033507935261E-01	4.72E+07	9.6033507935261E-01	2.815567E-21
9.6033410292466E-01	5.43E+07	9.6033410292466E-01	1.694588E-21
9.6033321167815E-01	6.24E+07	9.6033321167815E-01	1.019912E-21
9.6033239818206E-01	7.18E+07	9.6033239818206E-01	6.138484E-22
9.6033165565359E-01	8.25E+07	9.6033165565359E-01	3.694531E-22
9.6033097790170E-01	9.49E+07	9.6033097790170E-01	2.223606E-22
9.6033035927541E-01	1.09E+08	9.6033035927541E-01	1.338309E-22
9.6032979461673E-01	1.25E+08	9.6032979461673E-01	8.054789E-23
9.6032927921765E-01	1.44E+08	9.6032927921765E-01	4.847900E-23
9.6032880878086E-01	1.66E+08	9.6032880878086E-01	2.917775E-23
9.6032837938396E-01	1.91E+08	9.6032837938396E-01	1.756106E-23
9.6032798744671E-01	2.19E+08	9.6032798744671E-01	1.056931E-23
9.6032762970122E-01	2.52E+08	9.6032762970122E-01	6.361289E-24
9.6032730316466E-01	2.90E+08	9.6032730316466E-01	3.828655E-24
9.6032700511444E-01	3.34E+08	9.6032700511444E-01	2.304326E-24
9.6032673306548E-01	3.84E+08	9.6032673306548E-01	1.386885E-24
9.6032648474948E-01	4.41E+08	9.6032648474948E-01	8.347126E-25
9.6032625809602E-01	5.08E+08	9.6032625809602E-01	5.023939E-25
9.6032605121533E-01	5.84E+08	9.6032605121533E-01	3.023706E-25
9.6032586238245E-01	6.71E+08	9.6032586238245E-01	1.819837E-25
9.6032569002294E-01	7.72E+08	9.6032569002294E-01	1.095299E-25
9.6032553269970E-01	8.88E+08	9.6032553269970E-01	6.592439E-26
9.6032538910100E-01	1.02E+09	9.6032538910100E-01	3.967600E-26

Table F.7. Recommended Characteristic Curves for Vault 2 Mix 2 Concrete.

Table F./. Recommended Cha			Relative
	Suction Head		Permeability kr
Saturation	(cm)	Saturation	$(Ksat = 9.3 \times 10^{-11} \text{ cm/s})$
1.00000000000E+00	0.00E+00	1.000000000000E+00	1.000000E+00
9.9998800333577E-01	5.00E-02	9.9998800333577E-01	5.487652E-01
9.9997163686602E-01	1.00E-01	9.9997163686602E-01	4.807670E-01
9.9993301618303E-01	2.00E-01	9.9993301618303E-01	4.062577E-01
9.9979231640985E-01	5.00E-01	9.9979231640985E-01	3.002156E-01
9.9951532386600E-01	1.00E+00	9.9951532386600E-01	2.182504E-01
9.9888886201051E-01	2.00E+00	9.9888886201051E-01	1.409355E-01
9.9687748591834E-01	5.00E+00	9.9687748591834E-01	5.983137E-02
9.9379000673926E-01	1.00E+01	9.9379000673926E-01	2.330090E-02
9.8908372090643E-01	2.00E+01	9.8908372090643E-01	6.789228E-03
9.8128822875291E-01	5.00E+01	9.8128822875291E-01	9.207321E-04
9.7528138507094E-01	1.00E+02	9.7528138507094E-01	1.715413E-04
9.6977996900517E-01	2.00E+02	9.6977996900517E-01	2.981385E-05
9.6355647642560E-01	5.00E+02	9.6355647642560E-01	2.817478E-06
9.5962619706564E-01	1.00E+03	9.5962619706564E-01	4.663813E-07
9.5890799984945E-01	1.15E+03	9.5890799984945E-01	3.242999E-07
9.5821318832782E-01	1.32E+03	9.5821318832782E-01	2.254696E-07
9.5754108600444E-01	1.52E+03	9.5754108600444E-01	1.567381E-07
9.5689101982150E-01	1.75E+03	9.5689101982150E-01	1.089470E-07
9.5626232356661E-01	2.01E+03	9.5626232356661E-01	7.572121E-08
9.5565434052514E-01	2.31E+03	9.5565434052514E-01	5.262443E-08
9.5506642551724E-01	2.66E+03	9.5506642551724E-01	3.657042E-08
9.5449794643470E-01	3.06E+03	9.5449794643470E-01	2.541263E-08
9.5394828537268E-01	3.52E+03	9.5394828537268E-01	1.765835E-08
9.5341683943403E-01	4.05E+03	9.5341683943403E-01	1.226971E-08
9.5290302127021E-01	4.65E+03	9.5290302127021E-01	8.525205E-09
9.5240625941102E-01	5.35E+03	9.5240625941102E-01	5.923303E-09
9.5192599842567E-01	6.15E+03	9.5192599842567E-01	4.115413E-09
9.5146169895008E-01	7.08E+03	9.5146169895008E-01	2.859268E-09
9.5101283760855E-01	8.14E+03	9.5101283760855E-01	1.986504E-09
9.5057890685277E-01	9.36E+03	9.5057890685277E-01	1.380124E-09
9.5015941473677E-01	1.08E+04	9.5015941473677E-01	9.588315E-10
9.4975388464293E-01	1.24E+04	9.4975388464293E-01	6.661351E-10
9.4936185497104E-01	1.42E+04	9.4936185497104E-01	4.627846E-10
9.4898287880042E-01	1.64E+04	9.4898287880042E-01	3.215086E-10
9.4861652353287E-01	1.88E+04	9.4861652353287E-01	2.233593E-10
9.4826237052273E-01	2.16E+04	9.4826237052273E-01	1.551720E-10
9.4792001469919E-01	2.49E+04	9.4792001469919E-01	1.078005E-10
9.4758906418484E-01	2.86E+04	9.4758906418484E-01	7.489056E-11
9.4726913991365E-01	3.29E+04	9.4726913991365E-01	5.202740E-11
9.4695987525081E-01	3.79E+04	9.4695987525081E-01	3.614399E-11
9.4666091561655E-01	4.35E+04	9.4666091561655E-01	2.510957E-11
9.4637191811530E-01	5.01E+04	9.4637191811530E-01	1.744382E-11

Table F.7. Recommended Characteristic Curves for Vault 2 Mix 2 Concrete continued.

	Suction Head		Relative Permeability kr
Saturation	(cm)	Saturation	(Ksat = 9.3×10^{-11} cm/s)
9.4609255117138E-01	5.76E+04	9.4609255117138E-01	1.211835E-11
9.4582249417221E-01	6.62E+04	9.4582249417221E-01	8.418695E-12
9.4556143711947E-01	7.61E+04	9.4556143711947E-01	5.848516E-12
9.4530908028889E-01	8.76E+04	9.4530908028889E-01	4.062994E-12
9.4506513389869E-01	1.01E+05	9.4506513389869E-01	2.822581E-12
9.4482931778722E-01	1.16E+05	9.4482931778722E-01	1.960859E-12
9.4460136109945E-01	1.33E+05	9.4460136109945E-01	1.362217E-12
9.4438100198274E-01	1.53E+05	9.4438100198274E-01	9.463370E-13
9.4416798729153E-01	1.76E+05	9.4416798729153E-01	6.574236E-13
9.4396207230101E-01	2.03E+05	9.4396207230101E-01	4.567143E-13
9.4376302042965E-01	2.33E+05	9.4376302042965E-01	3.172808E-13
9.4357060297027E-01	2.68E+05	9.4357060297027E-01	2.204159E-13
9.4338459882974E-01	3.08E+05	9.4338459882974E-01	1.531236E-13
9.4320479427685E-01	3.54E+05	9.4320479427685E-01	1.063754E-13
9.4303098269832E-01	4.07E+05	9.4303098269832E-01	7.389924E-14
9.4286296436265E-01	4.68E+05	9.4286296436265E-01	5.133799E-14
9.4270054619169E-01	5.39E+05	9.4270054619169E-01	3.566463E-14
9.4254354153959E-01	6.20E+05	9.4254354153959E-01	2.477631E-14
9.4239176997900E-01	7.13E+05	9.4239176997900E-01	1.721216E-14
9.4224505709432E-01	8.19E+05	9.4224505709432E-01	1.195733E-14
9.4210323428167E-01	9.42E+05	9.4210323428167E-01	8.306784E-15
9.4196613855556E-01	1.08E+06	9.4196613855556E-01	5.770742E-15
9.4183361236182E-01	1.25E+06	9.4183361236182E-01	4.008948E-15
9.4170550339684E-01	1.43E+06	9.4170550339684E-01	2.785025E-15
9.4158166443270E-01	1.65E+06	9.4158166443270E-01	1.934763E-15
9.4146195314814E-01	1.90E+06	9.4146195314814E-01	1.344084E-15
9.4134623196513E-01	2.18E+06	9.4134623196513E-01	9.337385E-16
9.4123436789087E-01	2.51E+06	9.4123436789087E-01	6.486702E-16
9.4112623236505E-01	2.88E+06	9.4112623236505E-01	4.506326E-16
9.4102170111211E-01	3.31E+06	9.4102170111211E-01	3.130555E-16
9.4092065399857E-01	3.81E+06	9.4092065399857E-01	2.174803E-16
9.4082297489491E-01	4.38E+06	9.4082297489491E-01	1.510841E-16
9.4072855154223E-01	5.04E+06	9.4072855154223E-01	1.049584E-16
9.4063727542321E-01	5.80E+06	9.4063727542321E-01	7.291486E-17
9.4054904163744E-01	6.67E+06	9.4054904163744E-01	5.065411E-17
9.4046374878088E-01	7.67E+06	9.4046374878088E-01	3.518952E-17
9.4038129882936E-01	8.82E+06	9.4038129882936E-01	2.444624E-17
9.4030159702589E-01	1.01E+07	9.4030159702589E-01	1.698286E-17
9.4022455177180E-01	1.17E+07	9.4022455177180E-01	1.179803E-17
9.4015007452147E-01	1.34E+07	9.4015007452147E-01	8.196116E-18
9.4007807968060E-01	1.54E+07	9.4007807968060E-01	5.693859E-18
9.4000848450779E-01	1.77E+07	9.4000848450779E-01	3.955537E-18
9.3994120901951E-01	2.04E+07	9.3994120901951E-01	2.747920E-18

Table F.7. Recommended Characteristic Curves for Vault 2 Mix 2 Concrete continued.

		S for vault 2 lyrix 2 Cone	Relative
	Suction		Permeability
	Head		kr
Saturation	(cm)	Saturation	$(Ksat = 9.3 \times 10^{-11} \text{ cm/s})$
9.3987617589814E-01	2.35E+07	9.3987617589814E-01	1.908986E-18
9.3981331040313E-01	2.70E+07	9.3981331040313E-01	1.326177E-18
9.3975254028513E-01	3.10E+07	9.3975254028513E-01	9.212979E-19
9.3969379570291E-01	3.57E+07	9.3969379570291E-01	6.400277E-19
9.3963700914312E-01	4.10E+07	9.3963700914312E-01	4.446287E-19
9.3958211534271E-01	4.72E+07	9.3958211534271E-01	3.088845E-19
9.3952905121392E-01	5.43E+07	9.3952905121392E-01	2.145827E-19
9.3947775577177E-01	6.24E+07	9.3947775577177E-01	1.490711E-19
9.3942817006395E-01	7.18E+07	9.3942817006395E-01	1.035600E-19
9.3938023710313E-01	8.25E+07	9.3938023710313E-01	7.194338E-20
9.3933390180141E-01	9.49E+07	9.3933390180141E-01	4.997921E-20
9.3928911090704E-01	1.09E+08	9.3928911090704E-01	3.472066E-20
9.3924581294319E-01	1.25E+08	9.3924581294319E-01	2.412053E-20
9.3920395814883E-01	1.44E+08	9.3920395814883E-01	1.675658E-20
9.3916349842152E-01	1.66E+08	9.3916349842152E-01	1.164084E-20
9.3912438726210E-01	1.91E+08	9.3912438726210E-01	8.086915E-21
9.3908657972131E-01	2.19E+08	9.3908657972131E-01	5.617995E-21
9.3905003234809E-01	2.52E+08	9.3905003234809E-01	3.902834E-21
9.3901470313964E-01	2.90E+08	9.3901470313964E-01	2.711306E-21
9.3898055149317E-01	3.34E+08	9.3898055149317E-01	1.883552E-21
9.3894753815923E-01	3.84E+08	9.3894753815923E-01	1.308508E-21
9.3891562519659E-01	4.41E+08	9.3891562519659E-01	9.090225E-22
9.3888477592864E-01	5.08E+08	9.3888477592864E-01	6.315004E-22
9.3885495490126E-01	5.84E+08	9.3885495490126E-01	4.387043E-22
9.3882612784203E-01	6.71E+08	9.3882612784203E-01	3.047686E-22
9.3879826162089E-01	7.72E+08	9.3879826162089E-01	2.117235E-22
9.3877132421204E-01	8.88E+08	9.3877132421204E-01	1.470851E-22
9.3874528465711E-01	1.02E+09	9.3874528465711E-01	1.021800E-22

SRNI.	-STI-2008-00	1421 R	EVISION (ì
171111	-17 1-4000-01	/ +		ч

APPENDIX G. DESIGN CHECK DOCUMENTATION

W02 Jones/SRNL/Srs 11/10/2008 09:39 AM To Kenneth Dixon/SRNL/Srs@srs

00

Subject Re: Design Check - SRNS-STI-2008-00042

Ken.

Just to note that the review comments for the referenced report that I returned last Thursday, November 6, included the review outlined below, with verifications and checks including approximately 10 percent of the data. As I mentioned, this report's succinct writing style made for easy reading - well done.

Bill

Kenneth Dixon/SRNL/Srs

Kenneth Dixon/SRNL/Srs 10/24/2008 04:09 PM

To W02 Jones/SRNL/Srs@Srs

oc Mark Phifer/SRNL/Srs@Srs, John Mayer/SRNL/Srs@Srs

Subject Design Check - SRNS-STI-2008-00042

Bill,

Please perform a design check on the document SRNS-STI-2008-00042 which is titled "HYDRAULIC AND PHYSICAL PROPERTIES OF SALTSTONE GROUTS AND VAULT CONCRETES". Elements of this design check should include but are not limited to:

- verify that data from the laboratory reports have been accurately entered into the spreadsheets and report tables
- · verify the correction for salt content on the saltstone samples in the spreadsheets
- · check the calculations in the spreadsheets for accuracy
- verify that the logic in determining the van Genuchten transport parameters is sound for both the saltstone and concrete materials
- verify that the assumptions, interpretations, and conclusions of the report are reasonable

Files associated with the design check may be found at the following path:

\\wq02\KLD\Salt08 DesignCheck

We can meet to discuss the file structure for the spreadsheets to speed the design check process. I will also provide hard copies of the lab sheets and strength reports. The charge code for your time is WCZPAREV2.

Thanks,

Ken

Distribution

- T. C. Robinson, Jr., 766-H
- J. L. Newman, 766-H
- J. J. Mayer, 773-42A
- R. S. Aylward, 773-42A
- D. A. Crowley, 773-43A
- B. T. Butcher, 773-43A
- J. R. Harbour, 999-W
- J. C. Griffin, 773-A
- K. L. Dixon, 773-42A
- M. A. Phifer, 773-42A
- W. E. Jones, 773-42A
- E. L. Wilhite, 773-43A
- C. A. Langton, 773-43A
- C. L. Crawford, 773-42A
- H. H. Burns, 999-W
- E&CPT Files 773-43A, Rm. 213