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Abstract—Exponential data growth is a reality for most
enterprise and scientific data centers. Improvements in
price/performance and storage densities of disks have
made it both easy and affordable to maintain most of
the data in large disk storage farms. The provisioning
of disk storage farms however, is at the expense of high
energy consumption due to the large number of spinning
disks. The power for spinning the disks and the associated
cooling costs is a significant fraction of the total power
consumption of a typical data center. Given the trend of
rising global fuel and energy prices and the high rate of
data growth, the challenge is to implement appropriate
configurations of large scale disk storage systems that
meet performance requirements for information retrieval
across data centers. We present part of the solution to this
challenge with an energy efficient file allocation strategy
on a large scale disk storage system. Given performance
characteristics of the disks, and a profile of the workload
in terms of frequencies of file requests and their sizes, the
basic idea is to allocate files to disks such that the disks can
be configured into two sets of active (constantly spinning),
and passive (capable of being spun up or down) disk pools.
The goal is to minimize the number of active disks subject
to I/O performance constraints. We present an algorithm
for solving this problem with guaranteed bounds from the
optimal solution. Our algorithm runs in O(n) time where
n is the number of files allocated. It uses a mapping of
our file allocation problem to a generalization of the bin
packing problem known as 2-dimensional vector packing.
Detailed simulation results are also provided.

Keywords and Index Terms: Disk Storage Sys-
tem, Performance, Energy conservation model-
ing, file allocation strategy.

I. I NTRODUCTION

Enterprises, research institutions and governmental
agencies now provide on-line or near-line access to

massively large data resources. The declining cost of
commodity disk storage has now made such data re-
sources very affordable for large data centers. However,
maintaining these data resources over hundreds and
thousands of spinning disks comes at a considerable
expense of power usage. About 26% of the energy
consumption [1] at data centers is attributed to disk
storage systems. This percentage of disk storage power
consumption will continue to increase, as faster and
higher capacity disks are deployed with increasing en-
ergy costs and also as data intensive applications demand
reliable on-line access to data resources. It has become
necessary to employ strategies to make disk system more
energy efficient. The problem is equally significant in
high performance scientific computing centers, such as
NERSC [2], that manage large scale scientific observa-
tional and experimental data, that are accessed by collab-
orating scientists around the world. Not only is long term
retention of vital information essential, but meeting I/O
response time requirements both in reading and writing
long running simulation results require support of large
arrays of disk storage as a staging storage for the short
term. Subsequently, data may be offloaded onto tape
storage for long term archiving. Figure 2, which we
discuss in some detail later, illustrates a typical multi-
tier storage hierarchy of a data center. Currently most
typical data centers maintain all the disks of their disk
storage systems continuously spinning.

The large number of spinning drives has created an
emerging and growing energy usage concern at data
centers. The problem posed then is what is an appro-
priate configuration of mass storage system, comprised
of multi-tier storage systems of disks and tapes, that
is not only energy efficient, but meets the data access
response time requirements of applications. Since tape-
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storage uses only a minuscule fraction of the total energy,
the focus is on techniques to minimize the energy usage
of the disk storage. The solution is being addressed at
two levels: physical deviceand systemslevel. At the
physical device level, disk manufacturers are developing
new energy efficient disks [3] and hybrid disks (i.e., disks
with integrated flash memory caches) [4]. At the system
level, a number of of integrated storage solutions such
as MAID [5], PARAID [6], Pergamum [7] and SEA [8]
have emerged all of which are based on the general
principle of spinning down and spinning up disks. Disks
configured either as RAID sets or as independent disks,
are configured with idle time-out periods after which
they automatically spin down into a standby mode. When
a read or write I/O is targeted to it, the disk spins-up
again to service the I/O but at the expense of a longer
response time. A spun up disk stays spun up until it
becomes idle again for a duration of the time-out period
(see Figure 4). The different strategies proposed vary
primarily in the details of:

• which disks should be allowed to spin-down or spin-
up and which should be continuously spinning.

• how file access workloads are characterized and
used to direct data distributions and file placements
over the array of disk storage.

• the media storage for data caching to support data
accesses to the disks and whether it is distributed
over the disks or centralized.

• whether the method or heuristic for reconfiguring
disk into partitions of different tiers is done dy-
namically as on-line or an off-line optimization
algorithm.

Our experience with the workload ofread accesses
to the data resources at one of the national high perfor-
mance computing centers, NERSC [2], shows that there
is some skewness to file access frequencies that follows
Zipf-like distributions. That is at periodic intervals there
a large number of file access requests that are directed
to a small number of files. Similar access patterns have
also been reported from Web server workloads [9].

We present a new system level solution for energy
savings in the use of large scale disk storage systems
at data centers. The basic ideas involve utilizing the
concepts of a massive array of idle disks (MAID) [5]
and popular data concentration (PDC) [10]. The array
of disks is partitioned into two groups of anactive-
tier andpassive-tier. The active-tier consists of a group
of continuously spinning disks while the passive-tier
consists of disks that are spun-down after some period

of inactivity and spun-up when accessed but at a cost of
a longer latency. By using the active-tier as an on-line
disk storage and stirring frequently accessed data to be
concentrated on the active-tier, accesses to the passive
disks are minimized. The objective of our approach is
to realize considerable cost savings by keeping the vast
majority of the disks spun down while still providing
reasonable response time for file requests.

A. Proposed Approach

The core of this work is how to exploit file allocation
to improve energy efficiency. The rich literature on file
allocation strategies for disk systems has primarily fo-
cused on minimizing response time by utilizing all disks.
When power consumption is not a concern, it makes
sense to use all resources for gains in performance.
Power efficiency on the other hand, requires avoiding
overprovisioning of resources, and carefully choosing the
minimum set of resources necessary to meet a specified
performance goal.

The main source of power dissipation in a disk system
is spinning of the disks. One way to improve power
efficiency would be to spin down disks if we knew
they would not be accessed in the near future, thus it is
important to be able to predict the file access patterns. It
has been shown that using the access pattern of the most
recent time slot to predict the access pattern of the next
time slot, can grant significant power savings. Our goal
in this work is to increase these savings by clever file
allocation. Consider a case, where the file accesses are
uniformly distributed among all the disks. There will be
very little of power saving in this case, since there would
be very little time between two accesses on the same
disk. Now, consider another case, where the disks are
split into two groups, with great majority of the accesses
being to the first group and with infrequent accesses to
the second group, creating an opportunity to shut down
these disks for power saving. The more disks we have
in the second group, the more power we can save. The
trade-off however, is the frequent accesses to the disks
in the first group, which may result in longer response
times. Thus, we have to load these disks maximally, but
not go beyond an upper bound to guarantee acceptable
response times.

One key observation behind our approach is that
most of the accesses target only a small group of files.
Moreover, we know that the access frequency of a file is
inversely proportional to its size. That is smaller files
are accessed more frequently. We propose to exploit



these observations for energy efficiency, using a strategy
to transform these file access patterns to disk access
patterns through a clever file allocation.

We face the following combinatorial problem: how do
we allocate files to disks so that the number of inactive
disks are maximized, and the average response time for
the active disks is below a specified threshold? We attack
this problem in two phases. First we truncate the list of
files so that files with very low access frequencies are
placed on the inactive disks. The infrequent accesses to
these files allows spinning down these disks for power
efficiency. Then we try to pack the remaining files
onto as few disks as possible while respecting the disk
capacity and response time constraints (see Figure 1.
To define this problem formally, we first introduce our
notation.

We start with a set ofn files, where letsi andpi denote,
respectively, the size of theith file and the fraction of
accesses to this file to all accesses in a unit time. We
define the load of a file asl i = pisiR, where R is the
file access for the system. With this definition, the load
corresponds to how much the disk will spend accessing
only this file in a specified period. We useS to denote the
total storage capacity of a disk that we are allowed to use,
andL to denote the load capacity of a disk. We assume
the response time constraint is satisfied, if the cumulative
loads of files on a disk is belowL. In our experiments, we
defineL as a percentage of the maximum disk transfer
rate. Formally, we define our problem as follows.

Given a list of tuples(s1, l1),(s2, l2), . . . ,(sn, ln), and
bounds S and L. Find a minimum number sets
D1,D2, . . . ,Dk, so that each tuple is assigned to a set
Di , and

∑
(si ,l i)∈Di

si ≤ S and ∑
(si ,l i)∈Di

l i ≤ L for i = 1, . . .k

This problem has been studied in the literature as
the 2-dimensional vector packing problem(2DVPP). In
Section III, we will discuss this problem in more de-
tail, and describe a linear-time approximation algorithm.
Our algorithm improves on the algorithm in [11], by
describing an efficient data structure that cuts down the
complexity toO(n), as opposed to theO(n2) complexity
of the original algorithm.

After applying our file allocation algorithm, we have
three groups of disks. In addition to the active and
passive disks, we will have empty disks, as a sign of
success of our packing algorithm, as illustrated in Fig. 1.
We assume the empty disks will be used for writing new
files by the applications.
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Fig. 1. File Allocation Strategy

B. Main Contributions

The main contributions of this paper are:

• We demonstrated that file allocation strategies can
help to significantly reduce energy consumption
of disk dystems. These strategies can be used in
conjuction with other techniques on the physical
device level introduced in the literature.

• We mapped the problem of file allocation on disks
with maximal power conservation and response
time constraints to a generalized bin packing prob-
lem calledtwo-dimensional vector packing problem
(2DVPP). This mapping allowed us to use algo-
rithms that solve 2DVPP with provable bounds from
the optimum.

• We improved the running time of a 2DVPP algo-
rithm with best known bounds from optimality such
that it now runs inO(n) rather thanO(n2) time [11]
wheren is the number of files.

• We developed techniques for quantifying and con-
trolling the tradeoffs involved in energy conserva-
tion vs. response time of disk based file systems.
This is done by varying the allowable utilization of
each disk (also calledload) in terms of the fraction
of its maximal transfer rate.

• Using extensive simulations with realistic work-
loads and accurate disk characteristics, we cal-
culated the energy savings and response times
achieved by using our file allocation techniques as
compared with random file allocation. We demon-
strated that our techniques achieve significant en-
ergy savings over a wide range of workload parame-



ters values with minimal response time degradation.
Although we characterize our solution as an off-line
solution, it can be applied in a semi-dynamic manner by
accumulating access statistics for periodic reorganization
of the file allocations. Another use of the solution
presented is for computing the percentage of disks that
must be maintained on-line to meet data access response
time given a limited budget constraint.

C. Organization of the Paper

The remainder of the paper is organized as follows.
In the next section we present a background and re-
lated work on energy saving approaches in large scale
disk-storage based data centers. We give our heuristic
algorithm in Section III and provide an analysis of the
runtime and the quality performance of the proposed
algorithm. A discussion of the our simulation environ-
ment is given in Section IV. Section V presents our
experimental results and we conclude in Section VI
where we also discuss directions for future work.

II. SYSTEM ENVIRONMENT AND RELATED WORK

A. System Architecture and Motivation

Tape storage has long been the standard for mid-to-
long-term archival of enterprise’s data. Its slow I/O rates
and lengthy access times, coupled with the revolving cost
of transferring data to new tape media, have prompted
the need for research into alternative approaches for
mass storage systems. The need for on-line and near-
line accesses to ever increasing growth of an institution’s
data resources has further motivated the demand for an
alternative approach. One solution proposed is that of a
disk-based mass storage system either as a stand-alone
system or complementary to a robotic-tape system. The
ideas on implementing disk-based mass storage systems
are discussed in some details in [5], [7]. The problem is
that disk-based mass storage systems involve massively
large number of disks that expend a considerable amount
of energy for spinning and cooling.

High performance scientific computing centers, run by
government laboratories, generate and manage massively
large datasets that are retained on mass storage systems.
These centers, like their data center counterpart in private
industries, are projected to be predominately disk-based
and may continue to include robotic tapes for long term
archives. The motivation for this work is the need to
reduce the energy consumption of large data center with
particular focus on mass storage support for scientific
data. Figure 2 illustrates a typical storage configuration
of a data center that motivated this work.

The disk-storage is used to augment long term archival
tape library storage. The group of passive disks can
be perceived as a second level tier termed thepassive-
tier and sits between a first tier termed theactive-tier
and a third tier of a tape system. The disk arrays are
configured into units of RAID5-sets calledstorage units,
and are spun up or down in such units. A storage unit
is designated as a member of either the active-tier or
the passive-tier. The active-tier serves effectively as the
on-line disk storage. The passive-tier forms a long term
storage, but may also be used as a disk cache if a
tape-based library is rather used for long term storage.
Unit of data accesses is a file. Each file is allocated in
its entirety to one RAID set. We do not consider file
partitioning or replication. The use of a RAID set is to
ensure reliability. To simplify subsequent discussions, we
consider each RAID set as a single disk. This does not
restrict the generality of the configuration. We consider
homogeneous disk storage system with each disk having
the same performance characteristics

The services of the multi-tier storage is as follows.
For read requests, the file is serviced from the active-tier
if a copy of the file already resides there. It is serviced
from the passive disk if the file resides on a disk in
the passive-tier. In this case the storage unit needs to
be powered up at the cost of additional latency before
servicing the request. Otherwise it is serviced from tape
storage by first caching the file directly onto an active
disk before being transferred to the user. Files to be
written are first directed written to reserved disks in
the passive-tier that are spun-up and stay active until
all writes are completed. The rationale is that most
scientific applications write massive amounts of data
from simulation and then conduct analysis on the data
after a number of days. File in the passive-tier would
be subsequently migrated to tape after a sufficiently
long period of inactivity. By storing frequently accessed
files on active storage and infrequently accessed ones on
passive storage, we expect considerable energy savings.

B. Related Work

The general techniques being advocated in this work
are based on some energy conservation techniques used
in computing. In particular, we employ three principles:
massive array of idle disks (MAID) [5], popular data
concentration [10] and energy-aware caching [12]. Sim-
ilar to the work in [10], our approach is to concentrate
short term and frequent data accesses on a fraction of
the disk arrays, while the rest are, for most times, set
in standby mode due to their long periods of inactivity.
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Modern disks provide multiple power modes: active,
idle, and standby modes and most operating system can
be configured for the power management of these disks.

Portable computers, have for some time now, imple-
mented power reduction techniques to achieve longer
battery lives. e.g., spinning down the disk during long
periods of inactivity. This idea has only been recently
explored in different contexts for conserving energy in
large scale computing [10], [13], [14]. Colarelli and
Grunwald [5] proposedMAID for near-line access to
data in a massively large disk storage environment. They
show, using simulation studies, that a MAID system is
a viable alternative and capable of considerable energy
savings over constantly spinning disks. A related sys-
tem was implemented and commercialized by COPAN
systems [13], [15]. This system, which is intended for a
general data center, is not focused on scientific appli-
cations and is not adaptively reconfigurable based on
workloads. Further, the disks are remotely accessible
via NFS mounts. Our approach uses iSCSI protocol for
remote accesses which provides a better I/O bandwidth
than NFS [14]. Other energy conservation techniques
proposed are addressed in [7], [10], [16], [17], [17]–[19].

III. O PTIMAL FILE ALLOCATION ON ALGORITHM

In this section we present an algorithm calledPack Disks
which is an improved version of the algorithm given
in [11]. As a result of these improvements, our algo-
rithm runs inO(n) time as opposed to theO(n2) time
requirements of the algorithm presented in [11]. The
input to the algorithm is a collectionF of n elements
corresponding to the files to be allocated., each element
(si , l i) corresponds to a filefi with sizesi and loadl i . For
simplicity, we will normalize the constraints on the disk
capacitySand loadL so they are both equal to 1 and the
si ’s and l i ’s represent fractions ofS and L respectively,
so they are all within the range [0,1], i.e.,

si =
size of filefi

S

l i =
load of file fi

L
.

We also assume that allsi ’s and l i ’s are bounded by
some small constant 0< ρ < 1. We will later prove
that the number of disks loaded by the algorithm is

within a factor of
1

1−ρ
of the optimum. Since for most

applicationsρ is much smaller than 0.5, the algorithm of
[11] is more attractive for our purposes than the generic
one given in [20] which guarantees a factor of 2 from
optimal for any value ofρ but runs inO(nlogn) time.

Before running the algorithm we will construct two
lists ~S and~L. The lists~S and~L are constructed fromF
as follows. LetST(F) contain all elements fromF where
si ≥ l i (also called size-intensive elements) andLD(F) all
the other elements (also called load-intensive elements),
i.e., ST(F) = {(si , l i) : si ≥ l i} andLD(F) = {(si , l i) : l i >
si}. For each element inST(F) we will compute the
value~si = si − l i and construct a list~S from the values
~si . Similarly we will compute the value~l i = l i − si for
each element ofLD(F) and construct a list~L from the
values~l i . We will keep with every element of each list its
original index in the setF . The algorithm given below
will partition the elements of~S and~L into subsetsDi .
This in turn induces an allocation of the files represented
by F to disks where the original indices of the elements
allocated to a subsetDi corresponds to the files allocated
to the ith disk. For that reason we will use the terms
subset or diskDi interchangeably. For a setX where
X ⊆ F we denote byS(X) the total storage required by



X and byL(X) the total load ofX, i.e.,

S(X) = ∑
(si ,l i)∈X

si

and
L(X) = ∑

(si ,l i)∈X

l i .

A subsetDi is s-completeif

1≥ S(Di)≥ 1−ρ

and it is l-complete)if

1≥ L(Di)≥ 1−ρ.

It is called complete if it is both s-completeand l-
complete.

The next few lemmas and theorem prove that the
algorithm terminates withinO(n) steps with the number
of subsetsDi created bounded from the optimum. The
main improvement we made to the algorithm of [11] is
to better organize the items added to a setDi in order to
avoid searching for an element that needs to be removed
from it and placed back in the lists~S or~L . This is done
by separating the items added to a subsetDi into two
lists, namely,s-list[i] and l-list[i] , based on its origin.
As proven below, this allows us to find an appropriate
element to be removed fromDi in O(1) time rather than
O(n) time required by the algorithm presented in [11].
We only include here proofs of the lemmas that show
that the algorithm terminates inO(n) time and packs the
disks correctly after our modifications.

Lemma 1. If S(Di) ≥ L(Di) and S(Di) + sj > 1 (lines
5 and 7 of the algorithm) , then the last element~sk in
s-list[i] satisfies the condition S(Di)−L(Di) ≤~sk (line
8).

Proof. Let m be the number of elements currently as-
signed toDi . Clearlym> 0 and itss-list[i] is not empty.
If m=1, the only element inDi must be in itss-list[i]
and it trivially satisfies the above condition, so it can be
chosen as~sk(line 8).

If m >1, consider the last element~sk added to the
s-list[i] of Di , and letsk and lk be its correspondings-
valueandl-value, i.e.,~sk = sk− lk. Let D′i represent those
elements assigned toDi just before the element~sk was
added andD̄i the elements added toDi after~sk . By the
nature of the algorithmL(D′i)> S(D′i) (~sk was added from
~S , line 13) and since all elements of̄Di were added from
~L (they are in the listl-list[i] ) we haveL(D̄i) > S(D̄i).

Algorithm 1 : Algorithm Pack Disks
Input : A set of n elements

F = {(s1, l1),(s1, l2), . . . ,(sn, ln)}, two
lists ~S and~L

Output : Partition ofF into subsets
D1,D2, . . . ,Dq

begin1

/* start loading first disk */
i← 1; Di ← /0 ;2

s-list[i] ← /0; l-list[i] ← /0 ;3

while ((S(Di)≥ L(Di) and~L 6= /0) or4

(S(Di) < L(Di)and~S 6= /0)) do
if (S(Di)≥ L(Di)) then5

remove an element~l j from the list~L;6

if S(Di)+sj > 1 then7

let the element,~sk, be the last8

element added to thes-list[i] ;
/* we will prove that

(S(Di)−L(Di)≤~sk) */
add~sk back to the list~S ;9

remove~sk from s-list[i] ;10

insert~l j at the end ofl-list[i] ;11

else12

remove an element~sj from the list~S;13

if L(Di)+ l j > 1 then14

let the element,~lk, be the last15

element added to thel-list[i] ;
/* we will prove that

(L(Di)−S(Di)≤~lk) */

add~lk back to the list~L ;16

remove~lk from l-list[i] ;17

insert~sj at the end ofs-list[i] ;18

if Di is completethen19

/* start new disk */
i← i +1; Di ← /0 ;20

s-list[i] ← /0; l-list[i] ← /0 ;21

if (~S 6= /0) then Pack RemainingS ;22

if (~L 6= /0) then Pack RemainingL ;23

end24



From the fact thatDi = D′i ∪~sk∪ D̄i we have

S(Di) = S(D′i)+sk +S(D̄i)

and
L(Di) = L(D′i)+ lk +L(D̄i),

and

S(Di)−L(Di)= (S(D̄i)+S(D′i))−(L(D̄i)+L(D′i))+(sk− lk).

Since

(S(D̄i)+S(D′i))− (L(D̄i)+L(D′i)) < 0

it follows that S(Di)−L(Di)≤ sk− lk as claimed.

Lemma 2. If L(Di)≥S(Di) and L(Di)+ l j > 1 (lines 12
and 14 of the algorithm) , then the last element~lk in
l-list[i] satisfies the condition L(Di)−S(Di) ≤~lk (line
15).

Proof. Omitted, uses the same arguments as Lemma 1.

Lemma 3. After removing~sk and adding~l j to Di (lines
10 and 11), the disk Di is complete.

Proof. Proved in [11]

Lemma 4. After removing~lk and adding~sj to Di (lines
17 and 18), the disk Di is complete.

Proof. Omitted, uses the same arguments as Lemma 2.

Lemma 5. After exiting the while loop (line 22) all disks
except the last one are complete, and at most one of the
lists ~S or~L are non-empty

Proof. Proved in [11]

Lemma 6. After performing PackRemainingS (or
Pack RemainingL ) all disks except possibly the last
one are s-complete (or l-complete).

Proof. Proved in [11]

Lemma 7. Given a set F of n elements, Algorithm
Pack Disks requires O(n) steps.

Proof. The algorithm packs each element ofF exactly
once into a disk, except under the condition of line
7 or line 14 where an element is removed from the
currently packed disk and placed back in the lists~S or~L
respectively. However by Lemmas 3 and 4, whenever this
event happens, the current disk becomes complete and
the packing of a new disk is started. Since the algorithm
never uses more thann disks, the total number of element
removals is at mostn and thus the running time of the
algorithm isO(n) as claimed.

For completeness we include a proof of the bound on
the number of packed disks used by the algorithm, it is
similar to the one found in [11].

Theorem 1. Let the minimum number of disks needed
to pack F by any algorithm be denoted by C∗ and let the
number of disks used by Algorithm PackDisks be CPD

then
CPD≤

C∗

1−ρ
+1

Proof. Clearly C∗ ≥ max{ ∑
(si ,l i)∈F

si , ∑
(si ,l i)∈F

l i}. On the

other hand, by Lemmas 5 and 6, the algorithm
Pack Diskspacks all subsetsDi (except possibly for the
last one) such that exactly one of the following 3 cases
occurs:

1) all subsetsDi ’s arecomplete
2) all subsetsDi ’s ares-complete,one or more are not

l-complete
3) all subsetsDi ’s arel-complete, one or more are not

s-complete

Under case 1), the theorem follows directly. Under
case 2),

CPD≤ 1+
1

1−ρ ∑
(si ,l i)∈F

si ≤ 1+
1

1−ρ
C∗.

An analogous argument also works under case 3) thus
proving our bound.

Function Pack_Remaining_S

begin1

while ~S 6= /0 do2

remove next element~sj from list ~S ;3

if S(Di)+sj > 1 then4

/* start loading a new
disk */

i← i +1; Di ← /0 ;5

s-list[i] ← /0; l-list[i] ← /06

insert~sj at the end of thes-list[i]7

end8



Function Pack_Remaining_L

begin1

while ~L 6= /0 do2

remove next element~l j from list~L ;3

if (L(Di)+ l j > 1) then /* start4

loading new disk */
i← i +1; Di ← /0 ;5

s-list[i] ← /0; l-list[i] ← /0 ;6

insert~l j at the end of thel-list[i]7

end8

IV. T HE SIMULATION

We developed a simulation model to examine the
tradeoffs between power saving and request response
time. Our simulation environment, developed using
SimPy [21], is shown in Figure 3. The environment
consists of a workload generator, a file dispatcher, and
a group of hard disks. The workload generator produces
file requests based on the configuration parameters given
in Table I. We followed the request patterns used in [8]
for generating file sizes and access frequencies using a
Zipf-like distributions [22]. A file has an inverse relation
between its access frequencypi and its sizesi [9], [23],
i.e., the access frequencies of the files follow a Zipf-like
distribution while the distribution of their sizes follow
inverse Zipf-like distribution. Assuming the arrival rate
of requests follows a Poisson distribution with expected
value R, the access rater i for the file fi is pi*R.
Assuming that a file request always asks for the whole
file, then the disk load contributed by the filefi is l i
where l i = r i ∗si .

File 
Request 

Generator

D0

File 
Dispatcher

D1

DN-2

DN-1

File-to-Disk 
Mapping Table

Fig. 3. The Components of the simulation

Once a request is generated, the file dispatcher for-
wards it to the corresponding disk based on the file-to-
disk mapping table, which is built usingPack Disks, our

file allocation algorithm. In addition, for the purpose of
comparison of power consumption and response time,
we also generated a mapping table that randomly maps
files among all disks. The mapping time in the dispatcher
is ignored since it is negligible when compared with the
access time of the big files.

Table II shows the characteristics of hard disk used in
the simulation. Using the specifications in [24] and [3]
we built our own hard disk simulation modules, instead
of revising DiskSim [25], to simulate the performance
and the energy cost of disks, because the latest version
of DiskSim, released at May, 2008, still provides only
old and small disk models, e.g. 1998’s 8GBytes disks.
Also, although DiskSim is a discrete-time simulator, the
number of events needed to handle a file request is highly
correlated with its size. Thus, DiskSim was found to be
too slow for realistic data center environments on the
scale we are interested in, i.e.∼ 500GBytes per disk
with tens of thousands of files and multiple terabytes
of total data storage. Finally, to save energy, the hard
disk would be spun down and go into standby mode
(Figure 4) after it has been idle for a fixed period which
is called idleness threshold[10], [26]. Similar to [10],
[26], we set theidleness thresholdto be equal to the time
that the disk has to be in the standby mode in order to
save the same amount of power that will be consumed
by spinning it down to standby mode and subsequently
spinning it up to the active mode.
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Fig. 4. Power consumption of the different disk modes and transition
times

V. EXPERIMENTAL RESULTS

In the following discussion, we examine the behavior
of our algorithm under varying levels of disk load
constraints,L. The value ofL is expressed as a fraction
of the maximum transfer rate of the disk (72MB/s).



TABLE I
CONFIGURATIONS OF THESYSTEM PARAMETERS

Parameter Value
n =Number of files n = 40000
R= Expected request rate of files Poisson arrival rate expected value,R per second (1∼ 12)
pi = Access frequency of a file Zipf-like distribution.

pi = c/rank1−θ
i , wherec = 1−H1−θ

n ,
θ = log0.6/ log0.4, and
H1−θ

n = Σn
k=1

1
k1−θ

r i = Access rate of a file r i = pi ∗R
si = File size Inverse Zipf-like distribution

Minimum: 188MB, Maximum: 20 GB
l i = Disk load contributed by a file l i = r i ∗si

Number of disks 100
Simulated Time 4000 sec
Space requirement for all files 12.86 TB

TABLE II
THE CHARACTERISTICS OFTHE HARD DISK

Description Value
Disk model Seagate ST3500630AS
Standard interface SATA
Rotational speed 7200 rpm
Avg. seek time 8.5 msecs
Avg. rotation time 4.16 msecs
Disk size 500GB
Disk load (Transfer rate) 72 MBytes/sec
Idle power 9.3 Watts
Standby power 0.8 Watts
Active power 13 Watts
Seek power 12.6 Watts
Spin up power 24 Watts
Spin down power 9.3 Watts
Spin up time 15 secs
Spin down time 10 secs
Idleness threshold 53.3 secs

As shown in Figure 5 , when the expected arrival rate
of file requests,R, is less than 4, over 60% of power
consumption can be saved by using the PackDisks
algorithm, compared to random placement of files. Fig-
ures 6 and 7 further show the plots of their exact power
consumption whenL = 80 and 60 respectively. However,
the ratio of power saving, as shown in Figure 5, may
decrease along with increasingR, since more active disks
are necessary to support the increasing load contributed
by these files accesses. These are plotted in Figures 8

and Figure 9. In these figures we plot how many of
our 100 disks have files loaded into them (active-disks)
by the algorithm. These active disks can further be
classified based on whether they arecomplete(achieving
both size and load constraints),l-complete (achieving
only load constraint), ors-complete(achieving only size
constraint). As expected, with increasing rate of arrival,
R, the number of active disks increases, the number
of s-completedecreases and the number ofl-complete
increases.
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Fig. 5. The ratio of power saving v.s. the arrival rate of file access

However, as shown in Figure 10, although power
consumption is saved by using our algorithm, the ex-
pected response time of a file access becomes longer
as compared with random allocation. WhenR< 4, the
response time of our algorithm increases since the total
number of active disks does not increase with the arrival
rate (shown in Figure 8). WhenR >4, the number of
active disks increases and files are distributed among
more disks. We found that few small files with larger i’ s
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algorithm and the random allocation whenL=80%
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Fig. 9. Active disks and their space/load usage status whenL=60%

are allocated along with huge files on the same disk, and
thus the response time decreases. For example, we found
that the smallest 118 files are placed on the first disk
along with the biggest 97 files whenR=4, but the number
of the small files decreases to 1 when theR= 8. However,
whenR>8, all files are classified into the load-intensive
type, which changes the trend on the ratio of the size-
intensive files to the load-intensive ones for each disk.
The smallest files are again put with the biggest files in
the first several disks. Similar patterns were observed in
Figure 11, whereL= 60%. Finally, Figure 12 shows the
response-time ratio of the PackDisks algorithm to the
random allocation for differentL’s. The response time in
Pack Disks is 1.5∼2.5 times of that under the random
allocation.

Figure 13 shows the tradeoffs between power cost and
access response time for our algorithm while varyingL,
the constraint on the disk load and settingR at 6. As
expected, increasingL can allow us to store files in fewer
disks and therefore save more power. This is done at the
expense of longer request queues for each of the active
disks resulting in longer response times.

VI. CONCLUSION AND FUTURE WORK

In this paper we demonstrated the importance of smart
file allocation strategies for power conservation on disk
systems. We showed that careful packing of the files
on disks results in a smaller number of spinning disks
leading to energy savings of up to a factor of 4 with
modest increases in response time. The results of this
paper can also be used as a tool for obtaining reliable
estimates on the size of a disk farm needed to support a
given workload of requests while satisfying constraints
on I/O response times. The simulation showed that power
saving decreases with arrival rates and increases with
higher allowable constraints on disk loads.

Our current work is a first step in this important
and challenging field of energy-efficient disk systems.
In the future we plan to work on improvement of the
file allocation algorithm as well as improved modeling
of the system in terms of additional workloads as well
as more detailed modeling of the disk storage system.
More details about planned future work is given below.

A. Algorithmic improvements

As a result of our extensive simulation we discovered
that further improvements to the response time can be
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made by restricting the types of files that are allocated
to the same disk. For example, we noted that large files
that introduce long response time delays, residing on
the same disk with small and frequently accessed files
lead to the formation of long queues of requests for the
latter files waiting for completion of servicing the large
file. Additional work also needs to be done to make
dynamic decisions about migrating files between disks
if it is discovered that the frequency of retrieval of a file
deviates significantly from the initial estimates used as
an input to the file allocation algorithm.

The algorithmPack Disks can be viewed as a tem-
plate for many heuristics that use different policies for
selecting items to be placed in a disk (lines 6 and 13)
or re-allocated (line 8 and 15) . Such heuristics need
to be analyzed and may lead to improved bounds from
optimality or tailor the disk packing to satisfy some
additional constraints.

B. System modeling

We also plan to investigate our techniques with more
real life workloads that include various mixes of read and
write requests. In addition, we will include a cache as
we believe that cache size and replacement policies may

also affect the trade-off between power consumption and
response time.
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