View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by UNT Digital Library

Bin-Hash Indexing: A Parallel Method For Fast
Query Processing

Luke J. Gosinkt, Kesheng Wy, E. Wes Bethét, John D. Owers Kenneth |. Joy

#Institute for Data Analysis and Visualization (IDAV)
One Shields Avenue, University of California, Davis, CAM58562, U.S.A.
1Correspondi ng aut hor: |jgosi nk@ecdavi s. edu

*Scientific Data Management Group, Lawrence Berkeley Natibaboratory,
1 Cyclotron Road, Berkeley, CA 94720, U.S.A.

%Visualization Group, Lawrence Berkeley National Laborgfo
1 Cyclotron Road, Berkeley, CA 94720, U.S.A.

Abstract— This paper presents a new parallel indexing data typified by shared-nothing systems [5]-[10]. Recently, & ne
structure for answering queries. The index, called Bin-Hash, parallel computing trend has emerged. These type of phralle
offers extremely high levels of concurrency, and is therefore well- machines consist of multiple tightly-coupled processings)
suited for the emerging commodity of parallel processors, such .
as multi-cores, cell processors, and general purpose graphicsSUCh as multi-core CPUs, cell processors, and general gerrpo
processing units (GPU). The Bin-Hash approach first bins the GPUs. They support a large number of concurrent threads
base data, and then partitions and separately stores the values working from a shared memory. For example, NVIDIA's 8800

in each bin as a perfect spatial hash table. To answer a query, GTX Ultra GPU has 16 multiprocessors that can support 768
we first determine whether or not a record satisfies the query threads each. To take full advantage of such a system, the

conditions based on the bin boundaries. For the bins with records L.
that can not be resolved, we examine the spatial hash tab|es.appllcat|on needs more than 12,000 concurrent threads. Ful

The procedures for examining the bin numbers and the spatial Utilizing such a massively parallel shared memory system

hash tables offer the maximum possible level of concurrency; all requires a different set of query processing algorithms tha

records are able to be evaluated by our procedure independently on shared-nothing systems.

in parallel. Additionally, our Bln-_Hash procedures access much A number of researchers have explored the option of using

smaller amounts of data than similar parallel methods, such as .

the projection index. This smaller data footprint is critical for GPUs .for database operathns [11]_[14]' Among the database

certain parallel processors, like GPUs, where memory resources Operations, one of the basic tasks is to select a number of

are limited. records based on a set of user specified conditions, e.g.,
To demonstrate the effectiveness of Bin-Hash, we implement it “SELECT: records FROM: combustiogsimulation WHERE:

on a GPU using the data-parallel programming language CUDA. hressure~ 100" Most GPU-based works that process such

The concurrency offered by the Bin-Hash index allows us to . . S .
fully utilize the GPU’s massive parallelism in our work; over queries, do so with a projection of the base data. Following

12,000 records can be simultaneously evaluated at any one time.the terminology in literature, we use the teprojection index
We show that our new query processing method is an order to describe this method of scanning the projection to answer

of magnitude faster than current state-of-the-art CPU-basé query [15]. On CPUs, there are a number of indexing methods
indexing technologies. Additionally, we compare our performance that can answer queries faster than the projection indejx-[16
to existing GPU-based projection index strategies. [18], but most of these indexing methods do not offer high
enough levels of concurrency to take full advantage of a
GPU. The Bin-Hash index fully utilizes the GPU’s parallatis
Growth in dataset size significantly outpaces the growth ehch thread on the GPU is used to independently access
CPU speed and disk throughput. As a result, the efficiency afid evaluate an individual record during the answering of a
existing query processing techniques is greatly challéfgle- query. This one-to-one mapping of threads-to-recordsrdsdfo
[3]. The need for accelerated performance forces many the maximum level of concurrency available on the GPU, and
searchers to seek alternative techniques for query ei@uat allows the Bin-Hash index to evaluate over 12,000 records
One general trend is to develop highly parallel methodsHer tsimultaneously at any one time in parallel.
emerging parallel processors, such as multi-core procgsso Though GPUs offer tremendous parallelism, their utility
cell processor, and the general-purpose graphics processor database tasks is limited by a small store of resident
units (GPU) [4]. In this paper, we propose a new parallehemory. For example, the largest amount of memory available
indexing data structure called Bin-Hash, and demonstraia NVIDIAs Quadro GPUs is currently .2 GB, which is
that its available concurrency can be fully exploited on much too small to hold projections of all columns from a
commodity GPU. dataset of interest [1]-[3]. Existing GPU-based works that
The majority of existing parallel database systems workilize the projection index to answer a query are thus sig-
focuses on making use of multiple loosely coupled clustensificantly limited by GPU memory resources. Our Bin-Hash

I. INTRODUCTION

https://core.ac.uk/display/71321696?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

index presents one method for ameliorating the challenges
imposed by limited GPU memory. The Bin-Hash index uses a
form of compression, implemented through a multi-resoluti
representation of the base data information. This comjaness
strategy allows us to query dataset sizes that would otlerwi
not fit into the memory footprint of a GPU were we to use a
traditional projection index strategy.

In the Bin-Hash approach, we bin the base data for each
column and generate a spatial hash of column values in each
bin. To resolve a query condition on a column, we first access
the bin numbers. For range conditions such as “pressure
100" we determine which bins satisfy the condition and whickig. 1: This QDV image, generated from a combustion analysis
ones don't, based on the boundaries of the bins. There is ofAftaset, depicts the regions that correspond to both low values of
one exception, the bin containing the value 100. We call sufdnperature and high concentrations of methaneethane> 0.3)

. : . D (temperature< 4) [20]. The image is generated by rendering
a bin a boundary bin. We need to examine the column val ch record that meets the query’s constraints for temperature and

for the records in the boundary bin to determine whether th@ysthane as a hexahedral cube; coloring of the cubes is based upon
actually satisfy the query condition. We call the records ifonnected component labeling.
the boundary bin the candidates and the process of examining
the candidate values the candidate check [19]. Altogetber,
answer a guery, we access the bin numbers and the base bgtéhe user. The definition for scientifically relevant is pro
values of the records in boundary bins. The data containeéided through user defined Boolean range queries: “SELECT:
in the summed total of both these data structures is murdtords FROM: flame WHERE: (temperature 300) AND
smaller than the column projections used by other stradegignethaneconcentration> 1e-6)”, see Figure 1 for an example.
that employ the GPU to answer a query. Additionally, the Most scientific datasets contain a high number of variables
procedure of examining the bin numbers and the procemsd numerous time steps; each variable is represented as a
of performing the candidate checks offers the same level sifhgle column within a database table, and each time step is
concurrency as the projection index, and achieves exdellenpartition within that column. In a typical QDV exercise,
performance as we demonstrate later. several variables are selected for exploratory analysishik

The main contributions of our work are the following. exploration process, queries are repeatedly and increthent

« We introduce the Bin-Hash data structure for acceleratif§lusted by the end-user in order to better understand the
selection queries using GPUs; existing work on procesr |lationship between pairs or groups of the selected agab

ing such queries only uses the projection index which As an example, assume an end-user is analyzing a dataset

requires the utilization of much more (GPU) memory thaWat simulates methane combustion. Further suppose that th
the Bin-Hash [11]. end-user is interested in determining how concentratidns o

. In our performance tests, our approach is shown fgethane are distributed spatially throughout a fixed rarfge o
outperform the fastest indexing strategy used for our k&essure (5000< pressure< 10000) from this combustion
application, Query Driven Visualization (discussed in th@t@. To assist in this analysis, QDV methods support the
next section); earlier works lack such a direct comparisofil€ry and visualization process with an interactive GUI tha

. We demonstrate the utility of the perfect spatial hash ad&{S the end-user specify constraints on columns (i.eabés)
parallel data structure; in our tests, thousands of threa\ﬁgh pairs of .sl|d_er widgets. Thus the end—usgr in our exampl
concurrently and efficiently access partitioned base d#Quld steadily increment the range constraints for methane
on a parallel processor. Additionally, we show how thi§oncentration (while keeping the constraints for pressure
spatial hashing data structure is essential for our BinaHalx€d), and observe the records rendered in the visualizatio
index to reduce the amount of data needed on the gpu The software responsible for providing interactive explo-

and to utilize the GPU’s parallel processing capability. ra’tlo_n is not re_sp0n3|ble for the generation of the data or
the indices. This software can treat base data as read-only.

Furthermore, it can take advantage of repeated queries on

identical variables to cache critical data needed for angge
Our work on the Bin-Hash index is motivated by argueries. In our software implementation, we use the GPU

approach to visual data analysis called Query-Driven Visbased Bin-Hash indices to identify records satisfying thery

alization (QDV). The goal of QDV is to provide scientistsconditions, but use the CPU to retrieve the selected values.

with resource-efficient and visually interactive methods f

exploring large multidimensional data. The basic straiegp I1l. RELATED WORK

restrict computation and cognitive workloads, by eitherith Query-Driven Visualization (QDV) is an important and

ing or prioritizing processing, visualization, and intexation, effective way to combine database and visualization telchno

to records that have been defined to be scientifically retevagies. As far back as 1994, the VisDB system was proposed to

Il. QUERY-DRIVEN VISUALIZATION

guide query-formulations with a relevance-based visatbn
and presentation paradigm [21]. This system ranked datsster) N Encoded Data Tables
according to their relevance to a query, and the top quatile Stage 1: g

the most relevant results were then input into a visuabirati
and rendering pipeline. This approach has a complexity of 0,0 covvveeeeerrr: oN
O(n), wheren is the number of data items in the dataset. Later
systems improved this performance significantly by making
use of more efficient database indexing technologies. For
example, the work by Stockinger et al. [20] used a compressed
bitmap index from FastBit to enable the identification of

Data Preprocessing [M lﬂ; by

e lwérvsws l@:@s]»@;mv@s

Y Y Y Y
N spatial hash distributions

256 Hash Tables

regions of interest in time complexity dd(k), wherek is - .. .
L MO oo MN
the number of records that match the search criteria. M-rows X Nocolumns
o i i ffset Tables
The most efficient strategy for answering ad hoc queries 256 O

on high-dimensional read-only data is the bitmap index.[22] Database Table . ' .
Givenn records withc bin boundaries, the basic binned bitmap

index generates bitmaps withn bits each [19], [23], [24].

Each bit in a given bitmap indicates if the attribute in the

record is within the specific range corresponding to thergive 2tade 2:

(a) Bin-Hash Preprocessing Stage

bin's boundaries. Queries over bitmap indices are prodesse Data Preloading Ve N
with bitwise logical operations: AND, OR, NOT, etc.
Storage concerns for bitmap indexing strategies are ame- N Encoded Data Tables L)

liorated through specialized compression strategies lb#t EEE E
reduce the size of the data, and facilitate the efficient&iac T 5 3 3
of bitwise Boolean operations [25]. Antoshenkov et. al [26]

. ; N spatial hash distributions
[27] present a compression strategy for bitmaps called the illl

Byte-aligned Bitmap Code (BBC) and show that it possess
GPU

excellent overall performance characteristics with respe

compression and query performance. Wu et. al [28] introduce CPU

a new compression method for bitmaps called Word-Aligned

Hybrid (WAH) and show that the time to answer a range

guery using this bitmap compression strategy is optimad; th

worse case response time is proportional to the number ®f hit

returned by the query. Stage 3: _
The basic attributes of the binned bitmap index (indexing, QUery Processin

guery-processing, etc.) are able to be implemented in dyhigh N spatial hash distributions

parallel environment. For this reason, our new Bin-Hasleind .. .

follows the general structure of a binned bitmap index. Wnfo

(b) Bin-Hash Preloading Stage

P Encoded
Data Tables

|
Low-Resolution

tunately the compression strategies for bitmaps do noft offe n Query
enough concurrency to take advantage of the GPU’s massive T~ e —
. . . . S~ Full-Resolution
parallelism. Thus one of the first objectives of our approach) Query
is to develop compression strategies, based upon the kinnin T TS
strategies of the binned bitmap index, that simultane ooy Hash Tables JRI |} [Bitvector Solutions]
high levels of concurrency, and reduce the amount of data
. Offset Tables

required to answer a query. _

GPUs have been used to help support and accelerate : Predsi'cr;%'eeB%i’:%‘zries cP——
number of database functions [11]-[14], [29], [30], as well _
as numerous general purpose tasks [31], [32]. The Scout [30] (c) Bin-Hash Query Stage

software syistem prowde; the ability to perform eXpr?SS'Oﬁig. 2: In (a), we show the the Bin-Hash preprocessing stage that
based queries using a simple data-parallel programming 1 performed on the CPU. This preprocess step is only performed
guage along with visualization, where both queries andalisuonce on each full-resolution column in a table. In (b), we show the
ization are executed entirely on a GPU. Unfortunately, $coBin-Hash preloading stage. Here user-selected data is loaded from
was limited by then-current hardware that imposed memo CPU onto the GPU. This step is performed once per interactive
. . . . session. In (c), we show the actual Bin-Hash query process. Here
constraints, as well as functlo'nal cpnstralnts. at the ti@reUs hash and offset table tuples are streamed to the GPU to assist in
only supported gather functionality, and GPU kernels wefgsolving full-resolution queries.
constrained by restrictive APIs.

Sun et al. [33] presented a method for utilizing graphics

Single-Dimensional
Query Processing

N spatial hash distributions

Query Processing
N spatial hash distributions

EL
oY

1
2 "Boundary"
Hash Tables . .

i ziz'z -+ p]1 iii:]p

P Encoded Data Tables N Multi-Dimensional ([P Encoded Data Tables]\

(Low- Resolutlon Query]]

=

Full-Resolution Query]]

1\o|1\o|1u1\ 1

Low-Resolution Query
(Bl =i, 58117)

e
F’W

(1.6 =iy <17.2)

[]
1
| [=1] ﬁﬁ
1
1
L \
h (Full Resolution Query }
N —

2 "Boundary’ —
Hash Tables . .

b "Boundary” ﬁLogicaIIy Combine Queries||
Offset Tables| I

2 "Boundary"
Offset Tables
Single Range Single Range 1|1|{0|[1|{0|0]|1}||O
Predicate Boundaries GPU Predica?e Boun%aries GPU‘[| | | | | | ‘ ‘ y

(@) (b)
Fig. 3: lllustration of single (a) and multidimensional (b) predicate evaluation. Siihgle-dimensional predicate illustration shows a detailed
view of the low and full-resolution query process. For the low-resolutizeryg the predicate oves is bound byB; andB;17. Bins interior to
the boundary bins write “1” (pass) to the bit-vector solution, where aséitesior to the boundary bins write “0” (fail). The multidimensional
predicate evaluation depicts the logical combining of single-dimensioediqate solutions (in this case logically AND-ing all solutions) to
form the final bit-vector solution—this is discussed in Section IV-C.2.

hardware to facilitate spatial selections and intersesti@heir the GPU. Our approach in solving this problem concentrates
approach relies on the GPU’'s hardware-accelerated cotor implementing an indexing method that reduces both the
blending facilities to test for the intersection betweerp twamount of bandwidth and memory required to evaluate a query.
polygons in screen space. We achieve this goal by integrating two key strategies: data
Working within the constraints of the graphics API for fragbinning to reduce the memory footprint on the GPU, and the
ment shaders, Govindaraju et al. [11] presented a collectioombined use of data partitioning with perfect spatial ragh
of powerful algorithms on commodity graphics processors fto ensure the candidate checks only access the base data of
performing the fast computation of several common database boundary bins.
operations: conjunctive selections, aggregations, amdi-se The Bin-Hash approach utilizes a strategy similar to the
linear queries. This work also contains a demonstration binned bitmap index [19], [23], [24]. It builds one index for
utilizing the projection index to answer a selection query. each column of a dataset and each index consists of an encoded
More recent work on utilizing GPUs for database operatiomta table (which contains the bin numbers), and a set of
makes use of the data parallel programming language CUBAatial hash tables, one for each bin. An illustration o§ thi
[13], [14]. This type of approach is more likely to be appbta data structure is shown in Figure 2(a). We represent the bin
to other parallel processors. These recent works also ssldreumbers as binary integers. Because computers can operate
additional database operations, such as join [14] and inden 8-bit, 16-bit and 32-bit integers much faster than other
ing [13]. In particular, Fang et al. [13] implemented the €SSarbitrarily sized binary integers, the choices for the nanf
Tree in the software GPUQP, however, there is no performartzies are effectively limited to % 26 and 22. Because GPU
data published about the implementation. Because of threemory is limited, we limit ourselves to only consider using
inherent lack of concurrency in tree-based indexing stmest, 2% (256) bins in this work. In later discussions, we also refer
a completely new approach is needed to take full advantagethe bin numbers as the low-resolution data and the spatial
of the massive parallelism in a commodity GPU. Additionallyhash tables as full-resolution data.
existing GPU works that evaluate queries with a projection To minimize data skew in our binning strategy, the bin
index don't address the significant limitations imposed bgoundaries are selected such that each bin contains approx-
limited GPU memory. imately the same number of records. In cases where the
frequency of a single value exceeds the alloted record size
for a given bin, a single bin is used to contain all records
A. Overview corresponding to this one value. This strategy minimizes
An indexing data structure that effectively utilizes a GPWhe worst case behavior during query processing: all gsierie
must support a high level of concurrency when answerirgfould take approximately the same amount of time to answer
a query and must fit in the relatively small memory of théegardless of the placement of the query’s boundary bins.
GPU. One can use the CPU’'s main memory as the cacheis kind of predictable behavior is also very important
for the GPU, however, due to the relatively low bandwidth , , _ _
NVIDIA's 8800 GTX Ultra possesses 104 GB/s of on chip bandtuidn

bet_ween the main memory and the GPU, 't_ is crucial %mparison,the bandwidth over 16X PCI Express bus that ctsitiee main
limit the amount of data transferred from main memory tememory and the GPU is 4 GB/s one way (or 8 GB/s for bidirectioradfit).

IV. THE BIN-HASH METHOD

Offset Table ®

in visualization and real-time applications where the ayst
needs predictable performance from all components in order P ‘ SEbAT
L1

to respond interactively to the user’s requests. olq]
At the start of an exploratory QDV session, we preload low-
resolution data into GPU memory as shown in Figure 2(b); ho(p)
this preloading is only performed once per interactive QDV
session. From this low-resolution information, each datard pescu
can be processed by an initial low-resolution query as-illus .
trated in Figure 3(a)—we differentiate between queries that gSkI)\-lferéﬁ)r?s
access low-resolution versus full-resolution data by rrefg Hash Table H| Y
to the former as low-resolution queries, and the latter #s fu]

resolution q_ue”es' To evaluate this onv-resolutlon query Fig. 4: lllustration of the Lefebvre and Hoppe hash function definition
scan the bin numbers and characterize records as: pass#pgexture compression. In this illustration the element p is a pixel—
the query (i.e., in an interior bin), failing the query (j.e.in our work we extend this concept to efficiently index records
in an exterior bin), or needing a candidate check (i.e., inf@m partitioned database columns. In our method, the element “p”
boundary bin). Single range predicates, having at most tfggi"ésPonds to the row-id of a given record in a boundary bin from a
constraints, have a maximum of two boundary bins. Thql%yv-resolutlon colum_n, and_s is the full-resolution value associated
- ' ith the record at this row-id.
only 2%6 of the records require candidate checks, whereas the
rest can be successfully processed with the low-resold@zda those hash functions that have no collisions) are excebding
alone. Note that each record can be examined independentlse. They further noted that the definition ofrénimal perfect
to provide the maximum level of concurrency. hash (i.e. a perfect hash function whose hash table contains
Performing candidate checks requires access to fulle unused entries) must require the storage of additiortal da
resolution data. We retrieve the full-resolution inforinat in the form of an auxiliary look-up table. They proposed the
from main memory (CPU) in the form of spatial hash tablef®llowing multidimensional hash function:
(if they are not resident in the GPUs memory). Only the
spatial hash tables corresponding to the boundary bins are h(p) =ho(p) + @ (Mu(p)) (1)
uploaded to the GPU; this strategy minimizes the amount Hiere Equation 1 combines two imperfect hash functidg§)
data transferred from CPU main memory. In the Bin-Hasind h;(), with an offset tabled to form a minimally perfect
method, the CPU serves only to supply the GPU with spatigpatial hash functionh(). This perfect hash functior()
hash table data; the CPU performs no processing. retrieves the record value for an elemept, from a hash
The records that fall into a given boundary bin can corrgéable, 7#. The offset table® contains collision resolution
spond to arbitrary row numbers. The candidate check prodeformation that guarantees minimal perfect hashingz
dure needs access to full-resolution base data. Perfetialspd&Remarkably,hy and h; are defined by Lefebvre and Hoppe
hashing is a way to associate the row numbers with their base simple modulo operations with respect to the dimensions
data in a compact data structure. To better match the GPdfsthe hash table’” and the offset tableb. This process is
typical notion of texture addressing (e.g., 2B ¥) address of illustrated graphically in Figure 4.
pixels on a screen), we map database row numbers to a 2[0) Utilizing Perfect Spatial HashingWe utilize the perfect
virtual array. We present an overview of the spatial hash [3dpatial hashing technique in order to create a new indexing
in Section IV-B. method for each full and low-resolution column pair. Specifi
The processing of low-resolution data and full-resolutiocally, this indexing method provides access to the raw data
data can proceed independently; a query’s final results drem the full-resolution column of all records in the low-
written to a bit vector where ones indicate records thasgati resolution column corresponding to a given bin value (e.g.
the query condition and zeroes otherwise. If multiple quegy boundary bin). We integrate this spatial hashing indexing
conditions are involved, each can be answered with a differénto our Bin-Hash strategy by constructing a hash and offset
index and the output bitmap can be joined together withble tuple for all bins in a low resolution column (256
the same operators that connect the query conditions. Thiples for each low-resolution columrs 54, ®g >, ... <
approach, consistent with many indexing technologies. (e &%ss, @255 >). This is shown graphically in Figure 2(a).
FastBit), is illustrated logically in Figure 3(b), as welsa We leave the details of hash and offset table construction to

discussed in detail in Section IV-C.2. the work presented by Lefebvre and Hoppe [34] as they are
_ _ beyond the scope of our work to address. Instead we assume
B. Perfect Spatial Hashing the existence of#” and® in order to proceed with explaining

The concept of perfect spatial hashing for 2D and 3Bow the hashing functionh(p), is utilized in our new Bin-
“spatially sparse” data was first proposed by Lefebvre amthsh indexing strategy.
Hoppe [34], who extended the general work of Sager etWhen evaluating a low-resolution query, records are charac-
al. [35], [36]. Lefebvre and Hoppe observed that in thterized as passing, failing or requiring candidate checleet
universe of possible function space, perfect hash funstipe. upon whether the low-resolution column’s values are ioteri

exterior or equal to the boundary bins. For values that analegAlgorithm 1 Kernel for logical OR with one constraint (e.g.

to the boundary bins, we utilize the hash and offset tabletupX > 12)

associated with these boundary bins as follows. Requi_re: The variable boundaryBIN has been passed to the kernel
The modulo hash functions described by Lefebvre and ‘k':”th a valu.e.peltlwegn 0f25|5 Additionally, all elementsSol

Hoppe, hg(p) and h;(p), each modulate two degrees of ave been initialized to *fai’.

addressing freedom. Specifically, as their original worlswa . int position < thread ID

implemented for the spatial hashing of textures, each pixel: ubyte encode< BinNum positior]

element ‘p” has itsx addressing component modulated, and its

y addressing component modulatedHgy) andh; (). We map 3 i (egc;ﬁiiggﬁ?grzﬁlemthen

the record-ID of a given record in a column to the constructs; g|se if (eFr)mode == boundaryBINthen

used by the Lefebvre and Hoppe spatial hash function, by int pos, <« position>> 12

calculating (in the CUDA kernel) a virtual 2D address for the7: int pos, « position & Oxfff

record-ID based upon theei | () of the square root of the _

row count in the column. For illustrative purposes, assume g

int offset < pos, % sizeOffset
int offset, < pos, % sizeOffset

row count of 20. Thecei | () of the square root of this row 1 int offsetVal[2] < ®[offset][offsek]
count is 5. Based upoax,y> pixel positioning, the resulting _

2D virtual addresses for select increasing record-IDs pet 11 int temp, <= pos, + offsetval[0]
record 0 =<0,0>, record 5 =<1,0>, record 20 =<4,0>. tint temp, <= pos; + offsetval[l]

Using these 2D virtual address, the evaluation of the funé3: hasl « temp, ;VO sizeHash
tion h(p) in our new Bin-Hash indexing strategy then proceed¥" ﬂoat'gi?uj\;:llnf yé)[t?azser;ﬁ;hsm
as follows. Recall again thatis a record-ID that corresponds, ‘
in the low-resolution column, to a record whose value is equzs: if actualVal> lowestBoundarythen

to one of the boundary bins of the query. 17: g $0|[p05iti0n] <« true
18: enal
« We first usep’s virtual 2D components to locate offsetig: end if

values in the offset tabl®. The location of these values
in @ is calculated by performing a simple modulo opera-

tion on each virtual component @f with ®'s respective 1) OR Kernel ExampleThe pseudo code in Algorithm 1
xandy dlmepsmns. Note that this is effectively the INN&frasents the kernel for a logical “OR” operation (the pratéic
half of Equation 1.®(hy(p)). has 1 constraint). The algorithm demonstrates the apjglicat
« Next, p's virtual 2D components are used to locate ags sections IV-A and IV-B, explicitly depicting the procefss
initial position in.2Z. The location of this initial position evaluating both low-resolution (lines 2-4), and full-region
is calculated by performing a simple modulo operation Offines 5-19) queries.
each virtual component gb with H's respective x and ~ |, yhis code,BinNum represents the bin numbers from one
y dimensions. Note that this position is not the actugl, resolution column: from a technical perspective, itais
location of the raw full-resolution data associated Wit gimensional array of length equal to the number of rows
this record-ID. To this modulated address is added e yhe column, As a precondition, all bin data is assumed
offset values provided b from the step above. This—, a6 heen loaded onto the GPU. Line 6 calculates virtual
now offset—location in” is where the unique full- 55 components (Section IV-B) based upon a given record's
resolution data value g resides. This step is the total.,,; nosition, and a (illustrative) two-dimensional tesxtunf
of the work expressed in Equation 1. dimensions 4096 X 4096.
Figure 4 portrays both of these steps graphically. 2 and® are the respective hash and offset table tuple for
Note that the spatial hash procedures used to access tti& boundary bin determined by the user’s constraint. From
base data values in a boundary bin’s spatial hash table artéechnical view, these are two-dimensional arrays whege th
inherently parallel. Thus altogether, to answer a quergheaarray dimensionsg andy, are equal. In a perfect spatial hash,
record is evaluated by a single thread that performs arainitthe dimensions of the hash table (“sizeHash” in Algorithm 1)
low-resolution query and, if necessary, a full-resolutiprery. are equivalent to the square of the number of rows divided by
256; that is, for the 2D hash tablesmultiplied by y should
equal the number of records in a single bin. The offset table
dimensions (“sizeOffset” in Algorithm 1) are smaller than
Sections IV-A and IV-B introduced the Bin-Hash method'this due to the compacting benefits associated with caflisio
binning strategy, and spatial hashing implementation. Vwesolution information [34].
now illustrate these combined strategies with a pseudo codélhe solution of the query—a bit-vector—is written 8ol
example, and discuss the supportive role the CPU playsda a series of Boolean values indicating which records have
supporting the QDV application through the implementatiopassed the query. Th&®lis a one-dimensional array of length
of a dual cache. equal to the number of rows in the column.

C. Bin-Hash Implementation Details

Through CUDA, each thread in the GPU has a unique ID offset tables from system space to user space, and then

that can be utilized to coordinate highly parallel taskghsas from user space to the GPU.
query evaluation. For clarity we refrain from utilizing ClA3 2) CPU cache: The GPU's cache fails, but the CPU’s cache
thread-based constructs and assume that the variableitpdsi hits oneveryquery; the CPU supplies the necessary hash

has been initialized with a thread ID. In our implementation and offset tables to the GPU from its main memory.
this thread ID corresponds to the index of the record theathre 3) Full cache: The GPU’s cache hits widveryquery; all
will be accessing iBinNum, and the index inSol where the necessary hash and offset tables are found on the GPU.
solution to the thread’s answered query will be written.
2) Multi-Dimensional Kernels:Tr?e cg)lde in Algorithm 1 V. PERFORMANCE ANDANALYSIS
is presented as a kernel for evaluating single-dimensiorfal Test Setup and Performance Metrics
predicates; this kernel can additionally evaluate muttigh- We have implemented and tested our Bin-Hash index on
sional predicates. This is done by having sequential kernéhe machine configuration described below (Section V-A.2).
write to the same bit-vector solution space in the GPUIs$ is important to state at the outset of this section, that ou
memory. For example, to determine the multidimensionalork concentrates on assessing the performance of block-
predicate solution resulting from the logical OR-ing of twdevel operations—the internal structure used by such bitmap
single-dimensional predicates, two sequential kernelgh-bandexing software as ORACLE and FastBit.
utilizing Algorithm 1—are run. In the process, each kernel We select this performance metric based on the performance
will indicate the records that have passed their respectimeeds of our target application, Query-Driven Visualizati
predicate’s constraints by utilizing the same bit-vectduson (QDV). In QDV, the common case query is one that evaluates
space (line 4 and 19 in Algorithm 1). As the original bitmemory-resident or cached data; the infrequent query is a
vector solution was initialized to have every record fagds query that must access data from disk. Specifically, in QDV,
“Require:” in Algorithm 1), only the records having passedisers spend the majority of their time querying a set group of
one or both of the queries will be indicated as passing in thariables (i.e. columns) in order to establish relatiopskind
final bit-vector solution for the multidimensional prediea trends between these variables (see Section II). After the fi
In the case of a logical AND-ing between two singlequery, the data for these variables will be loaded into mgmor
dimensional predicates, the first single-dimensional ipegd and cached in the OS—the performance of all subsequent
is evaluated by the kernel shown in Algorithm 1. The secorglieries over these columns will benefit from the cached state
single-dimensional predicate, however, uses a slightlglimo of the data.
fied kernel. This new kernel will differ in two ways from the Favoring the frequent query over the infrequent query, we
code shown in Algorithm 1: records failing the query will nondetermine the best indexing method for QDV by selecting the
write out “0”, and any record that passes the query will writsndexing method that provides the best query performanee ov
out a “1” if and only if the previous kernel also wrote a “1” fordata that has been loaded into memory (GPU or CPU depend-
this position (i.e. line 4 and 19 in Algorithm 1 will be charte ing on the indexing method) and cached by the OS. Though
to read ‘Solposition] = Sol[position]” in the modified kernel). this performance metric is somewhat unusual, it is consiste
From these two cases, it is possible to extend this logigth the needs of the motivational application. Additidgal
to more complicated multidimensional queries. In such €asié is consistent with previous literature that has reporoed
the CPU will break down the query to its basic operatiorthe direct comparative performance of GPU and CPU based
and queue the appropriate kernels and necessary hash iaddxing methods for answering selection queries [11].
offset tables on the GPU. The final result, as with the single-As part of assessing this block-level performance, our
dimensional predicates, will be a bit-vector solution. performance results dwot reflect disk access times or the time
3) CPU support for the Bin-Hash: Caching Candidateo preload data. In our test suites, we begin our timings for
Checks: The CPU serves only to supply the GPU with spatidhe Bin-Hash querieafter the initial loading of low-resolution
hash and offset tables, it performs no processing. As digcliscolumn data into GPU memory (see Section 1V). The Bin-
in Section I, QDV applications benefit from caching full-Hash timingsdo however reflect the cost of candidate checks
resolution bin data. We optimize our Bin-Hash implemenptati (see Section IV-C.3). Additionally, FastBit and CPU-based
for QDV applications by supporting our candidate check$iwitprojection scan results reflect OS-File cache performamcie,
a simple two-level cache strategy, one for the CPU and odisk access time. Finally, GPU-based projection scan gsin
for the GPU, with each cache level operating under a separate takenafter the preloading of required data into GPU
LRU replacement policy. The GPU and CPU cache hold ttmemory.
hash and offset tables of more frequently queried boundaryl) Indexing SchemesFor our testing, we chose the fol-
bins. The results of our new Bin-Hash strategy (Section ¥) alowing indexing methods as they are all established indgxin
presented to reflect the three possible cache-state comglitistrategies that are efficient for QDV.
that might be encountered when answering a candidate check: CPU-based projection scarEach full-resolution column
1) System-cache: GPU and CPU caches faieeryquery; is read into CPU memory space. We evaluate the query
the OS file-cache, however, has the necessary files. The by simply performing comparisons on the array without
cost reflected here is the cost to transfer the hash and any additional data structure. For many visualization

applications, this approach is the basic strategy of quemymber of rows: 33, 67, 100, 134, 167 and 201 million rows. In
processing. In our tests, this indexing method providestlais suite of tests, we examine the effect that increasiranqu
baseline for performance. selectivity has on performance. Specifically, we evaluhte t

« FastBit: A high-performing, CPU-based approach foperformance of queries that select 40%, 20%, 10%, 5%, and
query processing that utilizes compressed bitmap indicd$6 of the records from each respective table.
FastBit is currently the state-of-the-art indexing stygte In general, we expect for FastBit to display excellent

utilized for QDV purposes [20], [37]. performance for queries that possess high selectivitytBras
« Bin-Hash Index:The indexing method described in thisaccesses fewer bitmaps with highly selective queries [18])
paper. The rest of the implemented methods, all utilizif@(n)

« GPU-based projection scafEquivalent to the CPU-basedstrategies to evaluate a query (i.e. all values must be sedes
projection scan, with the exception that the full-resalnti during query evaluation), should display constant perforoe
column is read int&PU memory space (thus the problenregardless of query selectivity.
size is directly limited by GPU memory size). Addition- There are two principal questions we seek to answer in this
ally, all indexed values in the column are simultaneoushuite of tests. First, how does the performance of our new Bin
evaluated in parallel by the query. This approach Hdash indexing method compare to the state-of-the-art Ipitma
identical (in logic) to the work presented by Govindarajindexing performance of FastBit? Second, compared to the
et al. [11]. Where their implementation utilized nativeGPU-based projection scan, our new Bin-Hash index strategy
GPU hardware buffers (depth, stencil buffers etc.), weetter utilizes GPU-memory resources and bandwidth—thus
utilized CUDA kernels on the GPU to perform the samenabling query evaluation over larger data—at the expense of
query processing operations. additional GPU computation during candidate checks. Given

Tree-based indexing strategies exhibit exponential dgrowiis computation for memory trade-off, we expect for the
in storage requirements with increasing dimensionaliig],[3 GPU-based projection scan to outperform our new Bin-Hash
[39]. Given that QDV applications typically analyze highindexing method. The question is, exactly how much perfor-
dimensional scientific data, tree-based indexing strasegie mMance does our new Bin-Hash method sacrifice in this trade-
not typically used in QDV applications, and are thus ndff, and how much better memory utilization are we gaining
represented in our test suites. in return?

2) Machine Configuration:A” tests were performed on a AnalySiS: The performance results of our tests are shown
desktop machine running the Windows XP operating systdf Figure 5(a) and Figure 5(b). For presentational clarity,
with SP2. All GPU kernels were run utilizing NVIDIAs We group the performance results based upon those indexing
CUDA software: drivers version 1.6.2, SDK version 1.1 anfhethods that showed no performance change with respect to
toolkit version 1.1. query selectivity (Figure 5(a), which shows the perforneanc

. Motherboard EVGA 680i - 1066MHz ESB: 16X pcl- of both CPU and GPU projection scans, and the Bin-Hash
Express ’ index), and those indexing methods that showed performance

Processor Intel QX6700 - 2.66GHz; 2 x 128KB L1: 2 x improvements with increasing query selectivity (Figuré®)5(
AMB L2 which shows FastBit's performance results). Additionally
. Memory Corsair - 4GB 1066 DDR2 notable performance trends are labeled in Figure 5(a) and

. Co-processarNVIDIA 8800GTX - 768MB GDDR3 ~ Figure 5(b), and are discussed below.

. HardDisk WD CAVRE?2 - SATA 3Gb/sec: 500GB: 7200 The expected performance trends discussed in the begin-
RPM: 16MB cache: 8.7 ms seek ' ’ ning of this section are confirmed: FastBit displays excelle

performance for queries that possess high selectivity, and
o the performance of the other implemented index methods
B. Test 1: Query Selectivity vs. Row Count display no dependency on query selectivity (the resultsvsho

Many indexing methods utilized for query processing (e.@n Figure 5(a) represent the timings observed for all query
FastBit) exhibit performance that is influenced by quergsel selectivities: 1% - 40%).
tivity; in these methods queries that select fewer records a Throughout Figure 5(b) the Bin-Hash index performance
answered faster than queries that select a comparativelgria out-performs FastBit—even when FastBit evaluates highly se
number of records. QDV indexing strategies must efficientlgctive queries (with the exception being the range hiditég
support both highlyand broadly selective queries. Specificallyjn label 3). The key observation to make is that our new Bin-
in the exploratory approach taken by QDV, user understandiklash index provides this level of high performance &b
and insight typically begins at a coarse level where quequeries, regardless of selectivity. Thus from these peréoice
selectivities will be broad; only through iterative refinem results, the Bin-Hash index appears well-suited for megetie
will the selectivity of the records increase. needs of QDV applications.

This suite of tests explores the selectivity-performaree r Labels 1 (Figure 5(a)) and 3 (Figure 5(b)) highlight a sharp
lationship on a series of single column tables, each of whitbss in performance for the Bin-Hash indexing approach and
models a stage of hydrogen combustion. Each sequential table GPU-based projection scan. This performance loss is due
in these tests, while having only one column, has an inangasto a GPU-based implementation detail associated with hew th

512
//II
/
L
ST e e s e R S A .
-------- R Tt S
/ s
128 “Memory resources o o
— exhausted for the GPUr—<_
K - préjection scan _”\\\.
§ 64 o o e
z X
E 1: Performance lossiin
5 2 GPU projéction scan
IS due to strorage variable
= : change inithe GPU
--- see Section V-B
16 "
,/ CPU: projection scan —+—
LT CPU: Fastbit 5% selectivity ---s---
8 Jn GPU Bin-Hash: OS System cache E
P GPU Bin-Hash: CPU-cache
GPU Bin-Hash: GPU-cache
GPU-based projection scan - --e- -
4 'l 'l 'l 'l Il |
40 60 80 100 120 140 160 180 200
Number of rows in the single-column table (-in millions-)
(@
512

3: Performance lossii
Bin-Hash |ndex

due to strorage varia
256 change inithe GPU
--- see Section V-B

128

64

- ., L / -

CPU: FastBit 1% selectivity —+—

16 CPU: FastBit 5% selectivity ---%---
Pz CPU: FastBit 10% selectivity

CPU: FastBit 20% selectivity &

CPU: FastBit 40% selectivity --m--
GPU Bin-Hash: Full-Cache
Il Il Il

Time (-milliseconds-)

8 4 i
40 60 80 100 120 140 160 180 200

Number of rows in the single-column table (-in millions-)

(b)

Fig. 5: These charts depict the complete results for the tests piarmed in Section V-B. For clarity the FastBit performance results
are depicted in (b), while all other results are shown in (a)

(a): This figure shows the timing results of 3 different querying strasedgibe x-axis depicts the number of rows contained in each single-
column table queried. Each table is queried with 5 separate queries selEijrisfo, 10%, 20%, and 40% of the database records as hits.
The projection scan and the Bin-Hash methods displayed no differerizgiimgs with respect to increasing query selectivity. This is due to

the fact that all of these strategies have a working complexit@(@f). For comparison, the FastBit results for queries returning 5% of the
records as hits are shown in both this table, and in Figure 5(b). For clgmityperformance lines for the three cache levels of the Bin-Hash
index are intentionally colored the same to reflect thiege of performance of the Bin-Hash index.

(b): This figure shows the timing results of FastBit, shown here when utilize8 separate queries, respectively selecting 1%, 5%, 10%,
20%, and 40% of the records as hits. We observe that FastBit shovificgigntiming differences with respect to the selectivity of the query.
For comparative purposes with Figure 5(a), the Full-Cache resultthéoBin-Hash method are shown. It can be seen that with queries
selecting 1% of the records as hits, FastBit performs remarkably weletpdhallel approach—equaling or even besting the best case of the
Bin Hash strategy when querying some of the largest tables examinedog@hkisf performance for the Bin-Hash index is due to a specific
GPU implementation issue, which is discussed in Section V-B).

. Records Indexed Bin-Hash Projection Scan| Ratio
bit-vector solution is written _for .tables containing ineess of _ “in millions- -in milliseconds- | -in milliseconds-
66 (for the GPU-based projection scan) or 133 (for the Bin- 75 6.0 5.0 1.19
Hash index) million rows . Specifically, for tables whose row 50 10.76 8.18 131
numbers exceed these values, the projection scan (whish us /5 15.8 11.45 1.38
. . ; .) 100 20.9 14.67 1.42
32-bit raw data) and the Bin-Hash index (Wh|Ch uses 8-bidat 125 26.21 17.93 1.46
corresponding to bin numbers) can no longer store the bit- 150 30.97 21.41 1.44

vector solution with a 32-bit variable type (the GPU memor¥ABLE I: Raw performance values (in milliseconds) for the Bin-

resources are exhausted); instead an 8-bit variable typenigh GPU-cache, and GPU-based projection scan indexing methods
utilized to conserve space. Writing data as an 8-bit “ubyteValues taken from Figure 6). Additionally, this table shows the

to the GPU’s global memory incurs significant performang@lculated performance ratio between these two indexing strategies.

enalties as the large timing increase highliahted by el The average value for the performance ratios is 1.37, indicating that
gnd 3 show 9 9 gniig y the Bin-Hash method spends, on average, an additional 37% more

) . time in computation (than the projection scan) in exchange for being
The high performance of GPU-based query strategies die to store and query four times as many columns from this test
inevitably limited by the constraints of GPU-memory (highsuite (see “Analysis” in Section V-C).

lighted performance of labels 1 and 3). Our new Bin-Hash
method is designed to trade a portion of the GPU’s computstrategies (Bin-Hash and projection scan) when they psecks
tional performance (due to the computational cost assatiatjueries over tables containing a certain row count. We now
with the Bin-Hash’s candidate checks) for a better utilmat seek to characterize the performance of these two strategie
of GPU memory and bandwidth. As a result of this strateglsy querying tables of a smaller, fixed row count. This smaller
“computation for memory and bandwidth” trade-off, the adaumber of rows results in a smaller bit-vector solution;sthu
vantages provided by our new Bin-Hash method (comparedttis Section’s test suite consistently uses a 32-bit viigipe
the GPU-based projection scan) are that: for the bit-vector solution andot the 8-bit variable type which
« significantly larger tables are able to be queried, and resulted in performance loss for both methods in Section V-B
« queries processed over these larger tables are answerefinalysis: The performance results of our tests are shown in
with consistently higher levels of performance (for tableEigure 6. With moderate query selectivity (cumulativelyd 2
in excess of 85 million rows). per column queried), FastBit is outperformed by the GPU-

Specifically, label 2 in Figure 5(a) shows the point (tab|ekgased indexing strategies. Label 2 in Figure 6 highlights th
containing in-excess of 133 million rows) where the GPU®gion where the total number of indexed values processed
based projection scan has exhausted GPU-memory resourb¥sthe query span from 125 to 175 million—this range is
the equivalent point for our new Bin-Hash indexing stratisgy approximately identical to the span of indexed values high-
approximately 360 million rows. Thus, in comparison to thighted by label 3 in Figure 5(b) (which is 135 to 167 million)
GPU-based projection scan, our new Bin-Hash method is afféough the number of values processed for querying in these
to evaluate queries over tables containing 2.7 times as mda{des is approximately the same, GPU-based performance

rows. through these ranges is radically different. The acceddrat
o .) performance depicted in Figure 6 is a result of the constaaht a
C. Test 2: Multi-Dimensional Queries smaller table size which allows the bit-vector solution fiist

It is critical in QDV to efficiently evaluate multidimensiah test suite to use a higher performing 32-bit variable typee—th
gueries over high-dimensional data (see Sections Il and Whit-vector solution in Section V-B uses an 8-bit variablpdy
A.1). In this suite of tests we aim to determine what impdct, fo conserve memory resources.
any, a query’s dimensionality has on performance. The datas The GPU-based projection scan still exhausts (label 1 in
used—a subset of the Hurricane Isabel Model—consists oFgure 6) GPU memory resources, despite a smaller, constant
single table containing 48 columns and 25 million rows. Weumber of rows for this test suite’s table. The advantage
begin with a single-dimensional predicate querying just omprovided by our new Bin-Hash method is that four times as
column from this table. In each subsequent test, an additiomany columns (Figure 6 only shows data for 8 columns but
column is added to the query (through a logical OR operatio®} are able to be loaded and utilized) are able to be stored
until a total of 8 columns are queried. The selectivity ofsthe and queried on the GPU before exhausting GPU memory
queries is increased linearly throughout these tests uath tresources.
each new column added to the query selects—disjointly—anFigure 6 and Table | show that our new Bin-Hash method
additional 12% of the rows from the table. scales linearly with respect to increasing query workloads

This test suite’s motivations are twofold. First, we seekhis demonstrates the efficiency of the multivariate kernel
to demonstrate the implementation of the multi-dimendionstrategy (Section 1V-C.2). Additionally, from the data pre
kernel approach from Section IV-C.2 and assess its perfeented in Table I, observe that the span of the performance
mance. Second, we seek to complete the characterizatibe offatio (constructed from the Bin-Hash GPU-cache and GPU-
Bin-Hash index’s “computation for memory and bandwidthbased projection scan) is approximately 1.3 - 1.45. In com-
trade-off (see Section V-B). Specifically, Section V-B highparison to the projection scan, this indicates that our new
lighted performance limitations for both GPU-based indgxi Bin-Hash method spends an additional 30 to 45 percent more

Dataset Index Size (GB)| Raw Data Ratio . L . .
Hurricane: Projection 08 10 This smaller_memory footprint is critical for certain pdeal_
Hurricane: FastBit 1.37 1.71 processors, like the GPU, where memory resources are timite
Hurricane: Bin-Hash 1.54 192 The underlying strategy of the Bin-Hash index is to reduce
Hydrogen: Projection 0.805 1.0 memory and bandwidth requirements, at the expense of addi-
Hydrogen: FastBit 0.49 0.62 . y . q o . p A
Hydrogen: Bin-Hash 1.16 1.44 tional GPU computation. Through this strategic “compuatati
TABLE II: This table depicts the size of the index generated fc];(r)r memory and bandwidth” trade-off, we have effectively

the various query processing strategies utilized in Section V-C aHHlized the GPU for qugry processing: 9“r performanceltesu

Section V-B. show that our new Bin-Hash index is able to outperform
FastBit by up to an order of magnitude, and (for large

time in computation in exchange for being able to utilize GPYatabases) outperform the more computationally favored-GP

memory with significantly more efficiency (i.e. four times a®ased projection scan.

many columns are able to be loaded and queried). We have also demonstrated the utility of perfect spatial

hashing as a parallel data structure. The critical funetibn

provided by this data structure allows the Bin-Hash index

tlcs) utilize a binning strategy to evaluate the vast majority o

records, and efficiently access the base data of records for a

important in assessing the performance of an indexing etho o' boundary bin when p_erformmg a ca_md|date Chec_k'

. S We are currently developing mestedbinning strategy (i.e.,

is the index size. In the previous two test suites, the digtion . . : o ! _

inning the records contained in bins) that will enable tire B

of data in the respective datasets varies significantly. T sh strateqy to brovide even further performance bendfis
dataset used in Section V-C, the Hurricane dataset, cantain gytop P)

; S S gnticipate that this approach will make an out-of-coretsi
data that is notably skewed. Such behavior in data is dlfflCLﬁ ueip bp g9
. efficient for use on the GPU.
to compress. Comparatively, the Hydrogen dataset used in
. . D ACKNOWLEDGMENTS

Section V-B contains data distributions that are constolgra 4

. . . The authors thank John Bell and Marc Day of the Center for Caational
less skewed, i.e. more smooth or uniform. Such data is oftgflence and Engineering, Lawrence Berkeley National Latboy for provid-
much easier to compress. ing the hydrogen flame dataset. Additionally, the authorakHill Kuo, Wei

; ng, Cindy Bruyere, Tim Scheitlin, and Don Middleton of tHeS. National
Table 1l shows the results of the total overhead requ”%fnter for Atmospheric Research (NCAR), and the U.S. NatiGuence

for each dataset given the three different storage appesachoundation (NSF) for providing the Weather Research anddesting (WRF)
used in Sections V-C and V-B: raw data (for projectiofyiodel simulation data of Hurricane Isabel. This work was sug by

: rence Berkeley National Laboratories, and by the Offit&Sadence of
Scan)’ Compressed data (for FaStBlt)’ and encoded data tl@lu.s. Departmgnt of Energy under Contract Klo. DE-AC02H561231

the Bin-Hash method). Here we observe, in the three t@pough the Scientific Discovery through Advanced ComputiSgiDAC)
rows in Table I, the pena|ty incurred by Compressing anogram’s Visualization and Analytics Center for Enablingcfinologies
; _ ; ot /ACET) and Scientific Data Management Center. We would lixethtank
encod.mg near random_ data. Both the compre_ssmn Ut”wed olleagues in the Institute for Data Analysis and Visudiara (IDAV) at UC
FastBit, and the encoding performed by the Bin-Hash methashyis for their support during the course of this work. Lasgpecial thanks
approach double the size of the raw data. In Comparison, wes to Jim Gray whose insight helped to inspire this worlsinitial stages.
Hydrogen dataset, displayed in the three bottom rows, show REFERENCES
the more “typical”, or expected storage gains achieved fromi] J. Becla and K.-T. Lim, “Report from the workshop on extréyniarge
FastBit's compression strategy. databases,” 2007. [Online]. Available: http://www-catéc.stanford.
. .. . edu/xldb07/xldb0Zeport.pdf
FaTSFBIt uses a binning strategy .that W|.” answer any queryp) j. pean and S. Ghemawat, “MapReduce: simplified data psiggsn
conditions involving query boundaries of five significangits large clusters,Commun. ACMvol. 51, no. 1, pp. 107-113, 2008.
or less. Due to the need to find precise query boundaridd J- Gray, D. T. Liu, M. Nieto-Santisteban, A. Szalay, D. W,
g . . and G. Heber, “Scientific data management in the coming decade,
to ensure that the ;pecn‘led_ f_rac_tlon of records are re_'nll,eve CTWatch Quarterly, 2005. [Online]. Available: http://wvetwatch.org/
the number of significant digits in the query boundaries are quarterly/articles/2005/02/scientific-data-management
relatively high in this case. This increases the number $ bi 4!
and therefore the overall index size (as reflected in Table Il

D. Index Size

Query response time (analyzed in Sections V-B and V-C)
an important factor in analyzing these various strategiés

K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. thtumsls,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. Wl\fns,

and K. A. Yelick, “The landscape of parallel computing resbarA

view from berkeley,” Electrical Engineering and ComputelieBces,
University of California at Berkeley, Tech. Rep. UCB/EEC&06-183,
2006.

D. DeWitt and J. Gray, “Parallel database systems: tharéubf high

performance database systenGgmmun. ACMvol. 35, no. 6, pp. 85—
98, 1992.

R. Raman and U. Vishkin, “Parallel algorithms for databaperations
and a database operation for parallel algorithmspPiac. International

VI. CONCLUSIONS

Our work in this paper provides the ability to take advantagé!
of platforms that support extreme multithreading in order t

accelerate index/query operations. This type of capghbiit [6]

a crucial underpinning of interactive visual data analy$is

this paper, we have presented the Bin-Hash indexing strategy)
for the answering of selection queries. The Bin-Hash inugxi
strategy offers the same high levels of concurrency poedess[s]
by other parallel methods (e.g. the projection scan), tad al
affords the utilization of significantly less memory resmes. [9]

Parallel Processing Symposium (IPR3P95.

W. Litwin, M.-A. Neimat, and D. A. Schneider, “LH*—a scabée,
distributed data structureACM Trans. Database Systol. 21, no. 4,
pp. 480-525, 1996.

M. G. Norman, T. Zurek, and P. Thanisch, “Much ado aboutretta
nothing,” SIGMOD Reg.vol. 25, no. 3, pp. 16-21, 1996.

M. Bamha and G. Hainsfrequency-adaptive join for shared nothing
machines Nova Science Publishers, Inc., 2001, pp. 227-241.

1024

///
L e i S e
/ __________ se-mm T
256 (O e L CPU: projection scan —+—
P e CPU: Fastbit ------
N GPU Bin-Hash: OS System cache
S 128 o g GPU Bin-Hash: CPU-cache b
& GPU Bin-Hash: GPU-cache
o GPU-based projection scan - -e- -
2 6a K. é: No performlance Igiss
= - ue ta'internal variable
E change on the GPU t\\\
© --- seé Figure 5 and Section VN
o e e =
|_
... L: Memory:iresources
e exhausted ifor the
16 g GPU projection scan
.9
8 @
4
1 2 3 4 5 6 7 8

Number of columns constrained by the query (25 million records per column)
Fig. 6: This figure shows the results of 3 different querying strategies ovebla t@ntaining 48 columns and 25 million rows. The X-axis
of this table (1, 2 ...8) lists the total number of columns constrained in tHaédimensional query. The selectivity of these queries grows
at constant rate: each column added to the query selects an additi@eabfithe rows from the table being queried. Notable trends are

discussed in Section V-C.

[20]

(11]

[12]

(23]

[14]

[15]
[16]
[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

J. W. Rahayu and D. Taniar, “Parallel selection querpcpssing
involving index in parallel database systems,” IBPAN'02 2002, p.
0309.

N. K. Govindaraju, B. Lloyd, W. Wang, M. C. Lin, and D. Macha,
“Fast computation of database operations using graphiacepsors,” in
Proc. of SIGMOD June 2004, pp. 215-226.

N. Govindaraju, J. Gray, R. Kumar, and D. Manocha, “GPtdBert:
high performance graphics co-processor sorting for largabdse man-
agement,” inProc. of SIGMOD June 2006, pp. 325-336.

R. Fang, B. He, M. Lu, K. Yang, N. K. Govindaraju, Q. LumdP. V.
Sander, “GPUQP: query co-processing using graphics psoces in
Proc. of SIGMOD 2007, pp. 1061-1063.

B. He, K. Yang, R. Fang, M. Lu, N. K. Govindaraju, Q. LumdP. V.
Sander, “Relational joins on graphics processorsPiioc. of SIGMOD
2008.

P. E. O'Neil and D. Quass, “Improved query performancenwiriant
indexes,” inProc. of SIGMOD May 1997, pp. 38—49.

D. Comer, “The ubiquitous B-treeComputing Surveys/ol. 11, no. 2,
pp. 121-137, 1979.

V. Gaede and O. nther, “Multidimension access method#\CM
Computing Surveywol. 30, no. 2, pp. 170-231, 1998.

K. Wu, E. J. Otoo, and A. Shoshani, “Optimizing bitmap el with
efficient compression ACM Trans. on Database Systemnasl. 31, no. 1,
pp. 1-38, Mar. 2006.

K. Stockinger, K. Wu, and A. Shoshani, “Evaluation stgies for
bitmap indices with binning,” inDEXA 2004, Zaragoza, Spairsept.
2004.

K. Stockinger, J. Shalf, K. Wu, and E. W. Bethel, “Qualgven
visualization of large data sets,” iRroc. of IEEE VisualizationOct.
2005, pp. 167-174.

D. Keim and H.-P. Kriegel, “VisDB: Database exploratiasing multi-
dimensional visualization[EEE Computer Graphics and Applicatigns
vol. 14, no. 4, pp. 40-49, 1994.

P. E. O'Neil, “Model 204 architecture and performance” Second
International Workshop in High Performance Transactiorst8yns ser.
Lecture Notes in Computer Science, vol. 359, 1987, pp. 40-59.
A. Shoshani, L. Bernardo, H. Nordberg, D. Rotem, and AmSi
“Multidimensional indexing and query coordination for tary storage
management,” ifProc. of SSDBMJuly 1999, pp. 214-225.

N. Koudas, “Space efficient bitmap indexing,” Broc. of Conference
on Information and Knowledge Manageme®®00, pp. 194-201.

(25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

S. Amer-Yahia and T. Johnson, “Optimizing queries on caagped
bitmaps,” inProc. of the Conference on Very Large Data Basz®00,
pp. 329-338.

G. Antoshenkov, “Byte-aligned bitmap compression,”Rroc. of the
Conference on Data Compressjatf95, p. 476.

G. Antoshenkov and M. Ziauddin, “Query processing aptimization
in ORACLE RDB,” in Proc. of the Conference on Very Large Data
Bases 1996, pp. 229-237.

K. Wu, E. Otoo, and A. Shoshani, “On the performance ahhip indices
for high cardinality attributes,” ifProc. of VLDB Aug. 2004, pp. 24-35.
M. Glatter, J. Huang, J. Gao, and C. Mollenhour, “Schlatata servers
for large multivariate volume visualizationTrans. on Visualization and
Computer Graphicsvol. 12, no. 5, pp. 1291-1298, 2006.

P. McCormick, J. Inman, J. Ahrens, C. Hansen, and G. R@hoptit: A
hardware-accelerated system for quantitatively driverualization and
analysis,” inProc. of IEEE VisualizationOct. 2004, pp. 171-178.

B. He, N. K. Govindaraju, Q. Luo, and B. Smith, “Efficienatiper and
scatter operations on graphics processorsS3uper Computing2007.
J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, Juger, A. E.
Lefohn, and T. Purcell, “A survey of general-purpose comgiaaon
graphics hardware Computer Graphics Forumvol. 26, no. 1, pp. 80—
113, Mar. 2007.

C. Sun, D. Agrawal, and A. E. Abbadi, “Hardware acceliera for
spatial selections and joins,” iroc. of SIGMOD June 2003, pp. 455—
466.

S. Lefebvre and H. Hoppe, “Perfect spatial hashil@CM Trans. on
Graphics vol. 25, no. 3, pp. 579-588, 2006.

T. J. Sager, “A polynomial time generator for minimal petfé@sh
functions,” Communications of the ACMol. 28, no. 5, pp. 523-532,
1985.

E. A. Fox, L. S. Heath, Q. F. Chen, and A. M. Daoud, “Preaitiminimal
perfect hash functions for large databas€xnimmunications of the ACM
vol. 35, no. 1, pp. 105-121, 1992.

E. W. Bethel, S. Campbell, E. Dart, K. Stockinger, and Ku,W
“Accelerating network traffic analysis using query-drivasualization,”
in Proc. of the Symposium on Visual Analytics Science and Séady)
Oct. 2006, pp. 115-122.

J. Bentley, “Multidimensional binary search trees u$edassociative
search,"Communications of the ACMol. 18, no. 9, pp. 509-516, 1975.
R. Bellman, Adaptive Control Processes: A Guided TourPrinceton
University Press, 1961.

