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ABSTRACT

A measurelTIent of the spatial resolution of a liquid-argon filled

chalTIber was performed with lTIinimulTI ionizing particles. Two lTIulti-

strip chalTIbers with 20-fJ.m strip spacing operating in the ionization

lTIode were used in the experilTIent. They perform in accordance with a

silTIple lTIodel based on electron diffusion. An esti'mate of the alTIount of

electron diffusion in liquid argon is given and the tilTIe jitter distribu-

tion has a FWHM of 200 ns. Under best conditions, the spatial resolu-

tion is better than 20 fJ.lTI rlTIS with an efficiency of nearly 1000/0.

':'Work performed under the auspices of the U. S. Atornic Energy
COlTIlTIission.
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1. Introduction

In particle physics, many experiments require electronic detectors

with high spatial resolution, especially at the highest energies. In

response to this need, gas filled chambers have been improved and are

now reaching accuracies of the order of 60 to 100 flm rms, using vari-

ous techniques. These techniques include the measurement of electron

drift tiITle 1 ), the determination of the geometrical center of gravity of

the induced pulse at the cathode
2

), and increases in gas density by high

3 4
pressures) or low temperatures ).

An alternative approach, which leads to even higher spatial reso­

lution, is the use of liquid filled chambers
5

). The advantage of the

liquid arises from the - 800-fold increase in density over that of the gas,

permitting the use of a much smaller thickness, larger ionization sta-

tistics, and reduced effect of electron diffusion. Also, the limitation

in resolution due to the range of delta rays produced by the incident

track is significantly reduced. Unfortunately, the available signal is

small because it has so far not been possible to make use of electron

multiplication in the proportional or Geiger mode in the liquid for ge­

ometries compatible with high resolution6 ). Sparking in a triggered

mode has been tried with limited success 7) and its use still requires

the solution of a few problems 8 ). In spite of the small signal the ioni-

zation mode can be used to explore the potentialities of liquid filled

chambers.

We report here on an experiment designed to measure the spatial

resolution of Equid-argon filled chambers, and to identify the physical

processes that limit their accuracy, such as electron diffusion, ampli-

fier noise, and delta rays. The experiment was performed with mini-

mum ionizing particles using two multi- strip liquid argon filled
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chambers, with 20-flm strip spacing (Section 2).

The spatial resolution was determined by measuring the probabil-

ity of the strips to detect the saITle particle in each chamber as a func-

tion of their relative position (Section 3). Under the best conditions,

the spatial resolution for a single strip was measured to be better than

20 flm rITlS with an efficiency of nearly 1000/0. The chaITlbers were

found to perform in accordance with a simple model based on electron

diffusion and amplifier noise (Sections 4,5).

2. Description of the chambers

2.1 LIQUID USED

Liquid argon was chosen in preference to liquid xenon, largely

because it is less susceptable to contamination by electronegative im-

purities. Liquid krypton was not used because of contamination by the

d " " . t 85Kra 10achve 1S0 ope r.

Special purification of the argon is required since even a 1 ppm

contamination of 02 in liquid argon will reduce the pulse height by a

factor of 2 under the conditions of our experiment (a 2.2-mm thick

chamber at 2.7 kV /cm) 9 ). A schematic diagram of our recirculating

purifier is shown in fig. 1. The active elements were the molecular

sieve trap (-77°C) and the calcium chips (600°C). Before operation,

- 5the chambers were evacuated to a pressure < 10 nlm Hg and were

maintained at a temperature of 60°C for about 15 hours. The chambers

were then filled with argon gas supplied from the purifier. The gas was

liquified inside the chambers by immersing them in a bath of unpurified

liquid argon.

2.2 ANODES

The anode pattern, shown in fig. 2, was a series of 24 strips,

each 3 mm long and 15 flm wide with a 20-llm center-to-center spacing.



- 3-

On either side, two larger strips at the same potential as the central

strips were used to make the field more nearly uniform in the sens­

itive region. The pattern was drawn with a digital plotting machine 10)

and reduced 20 fold onto a high-resolution photographic plate to pro­

duce a mask. From this mc..sk the final metallic pattern could be

contact printed onto metal coated substrates, using standard integrated

circuit techniques 11). The sapphire substrates were coated with

approximately O. 1 /-lm of chromium and 1 /-lm of gold, the chromium

providing bonding between the sapphire and the gold.

Sapphire (crystalline A1 20
3

) rather than glass was chosen as the

substrate so that epoxy could be used to attach the anode to the chamber

body. Glass was found to crack under such conditions when cooled to

-186 ·C, the temperature of liquid argon. Ceramic (fused A1
2

0
3

)

was found to provide insufficient bonding to the metallic anode pattern,

possibly due to surface irregularities. Wires were also tried
12

) in­

stead of etched strips but this technique was abandoned because of

technical difficulties, such as breakage and loss of tension.

2.3 CHAMBER ASSEMBLY

The cathode was a flat glass surface 8 mm in diameter coated with

silver, separated from the anode plane by a distance of 2.2 mm. Nega­

tive high voltage was supplied to the cathode via a 1 Mr.l resistor

attached to a kovar wire passing through the glass (fig. 3). The anode

strips were each connected to ground through a large resistance. The

typical operating voltage was 600 V, corresponding to a field of 2.7

kV /cm. The whole assembly was placed in an enclosure composed of

two stainless steel flanges sealed by a copper gasket. Feed-through

connectors carried the signals from the anode strips to the outside of

the enclosure.
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2.4 READOUT

The readout electronics are shown in fig. 4. The strips were con-

nected to low noise charge amplifiers placed within a few inches of the

chambers to minimize capacitive load and rf pickup. Total capacitive

load was about 30 pF. After being processed by an integrating and dif-

ferentiating circuit, the signals were sent to a discriminator which

produced a standard pulse. The usual time constants of the circuit

were 0.2 jJ.s for integration and 2 jJ.s for differentiation. The c1iscrim­

inator level was variable and generally set to select pulses due to a few

tenths of a fC (1 fC = 10- 15 Coulomb) input to the charge sensitive am­

plifier. The nois e level of the electronic s was about 0.1 IC rms,

equivalent to about 3 jJ.V rms while signals were of the order of 1 fC.

2.5 MONITORING

A strip of 241 Am-coated platinum foil was attached to the cathode

with conductive epoxy. The puIs e height induced by the a particles

from that radioactive source provided a monitor of liquid purity inde-

pendent of beam tracks. The pulse height varied by less than 100/0 over

the time period of a week. We found that within errors, the a pulse

height observed on the field flatteners was the same as that observed

on the central eight strips connected in parallel. This indicated that

the regions of bare substrate between the anodes had little or no effect

on the amount of charge collected.

3. Test set-up and procedure

3.1 BEAM

The beam used was a 1.7 GeV /c 'l1'- beam from the Bevatron having

an intensity of 10
4

to 10 5 particles/burst. The burst duration was

roughly half a second. At the location of the chamber, the beam image

was about 2 cm in diameter. Fig. 5 shows the layout of the scintillators

,,<~
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51, 52, and 53, and the two chambers, denoted X1 and X2. With only

S 1 and S2 in coincidence, the horizontal beam divergence at the cham-

bers was ±5mrad rms including the effect of multiple scattering. If

in addition S3 was required to be in coincidence, the divergence was

reduced to ±3 mrad.

3.2 CHAMBER SET- UP

The chambers were 'fnounted on a stage that held them in an argon

bath in a thermally insulated and electrically grounded box. The low

noise charge amplifiers were located in this box just above the argon

bath. Chambers, stage, argon bath, charge amplifiers, and Scintilla-

tor S2 were mounted inside a Faraday cage for additional protection

against radio frequency noise.

The chambers were mounted with the plane of the strips normal to

the beam and the strips vertical, so as to measure the horizontal po-

sition of beam particles. The upstream chamber (X1) was held fixed,

while the downstream cha'mber (X2) could be moved horizontally and

vertically across the beam and could be rotated about the bea'm direc-

tion. The relative position of the chambers could be set repeatedly

within 10 fJ-m. The two chambers were mounted with anode sides facing

each other and placed as close as possible compatible with the free mo-

tion of X2. The distance between the centers of their sensitive volumes

was 3.7 mm along the beam direction. The material between the two

chambers constituted about 0.05 radiation length.

3.3 ALIGNMENT

Initial alignment of the two chambers was achieved by visual ob-

servation of fiducial marks scribed on the chamber flanges before

as s embly. Final alignment was made by maximizing the coincidence

rate between single strips in each chamber as a function of the position

- 6-

and orientation of X2.

3,4 RESOLUTION CURVES

In order to study the spatial resolution of the chambers, the parti-

cles were counted only if they triggered the coincidence of S1 S2 and a

discriminator connected to one strip of X1, thus defining a very narrow

beam of particles. The chamber X2 was moved horizontally across

that beam and the ratio r(y) of the rate of coincidences 51 52 X1 X2 to

the rate of S1 S2 X1 coincidences was recorded for each displacement y

of the chamber X2. Different curves of this type (called resolution

curves) were drawn, corresponding to different values of the relevant

parameters, i.e., different numbers of strips of X2 connected to-

gether, and the discriminator level on X1 or X2. Sometimes S3 was

added to the coincidence to define a bealTI having smaller angular di-

vergence .

4. Results and Analysis of the Resolution Curves

4.1 GENERAL FEATURES OF THE DATA

Fig. 6 gives examples of two resolution curves lTIeasured as a func-

tion of the horizontal position. All the resolution curves are of a bell-

shape, reasonably well represented by a Gaussian function. Therefore,

we summarize the information contained in each r(y) by two parameters

only, the height h and the full width at half maximum wand the shape is

assumed to be Gaussian.

T he best resolution at high efficiency was achieved with the dis-

crilTIinator levels set at 0.5 fC for each chamber. With a bea'm di-

vergence of 5 mrad we obtained a width w of 80 fJ-m, corresponding to

an rms value of 32 fJ-m; we conclude that each chamber had a resolution

better than this. The chamber efficiency and the subtraction of the con
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tribution of ITlUltiple scattering and beam divergence from the resolution

are discussed at the end of this section.

When the discriminator level on Chamber X2 was lowered, the

-8-

From eq. (2), we see that L does not depend on the beam distribu-

tion b(x) and can be measured from the resolution curve r(y) alone.

Since r(y) is assumed to be Gaussian, we obtain:

height h approached unity, and the width w increased. This is under-

standable since a lower discriminator level allows a larger fraction of

the particles to be counted at all distances and, due to the effects of

L = i/2)1.:2 hw = 1.06 hw.

4.3 COMPARISON OF L WITH A MODEL

(3)

electron diffusion, far away particles that would not be counted at a

higher discriminator level are included. Whenever the beam definition

was made narrower, either by requiring a signal from S3 in the coin-

cidence or by raising the discriminator level on X1, the height h in-

creased and the width w decreased as expected.

4.2 THE EFFECTIVE WIDTH

In order to interpret the data in terms of the para'meters of the

single Chamber X2 we introduce a simple analysis based on a new pa-

rameter L, the effective width of a strip in X2, which is just the integral

of the measured resolution curve r(y). We show here that L depends on

the parameters of X2 but is independent of the distribution of beam

particles defined by counters in coincidence with Chamber X1. Let x

be the horizontal position of a particle traversing Chamber X2 and

p(x) its probability of triggering the discriminator connected to a strip

centered at x = O. Let b(x) be the distribution of such particles defined

by the S1 S2 X1 coincidence. b(x) is normalized to 1. When a strip in

Chamber X2 is set off-center by a distance x = y, the ratio of S1 S2 Xi

X2 coincidences to S1 S2 Xi coincidences is

Our values of L are plotted on fig. 7, as a function of the discrim-

inator level of X2 expressed in terms of input charge in fC. The data

concern single strips in X2, except one point that was taken with two

adjacent strips connected together to simulate a wider strip.

The solid curve in fig. 7 represents values of L predicted by a

simple model. In this model, the particle deposits a string of ions along

its trajectory, the electrons drift along the electric field with a certain

amount of diffusion, and land on one or several strips. A discriminator

is triggered if and only if the charge deposited on the corresponding

strip exceeds a given threshold. There are two constants in the model,

a diffusion factor 13 and the amount of charge q deposited by the particle

that escapes recombination and capture by impurities. This diffusion

factor 13 is defined by a = is.JZ where a is the rms of the electron
x x

diffusion distribution orthogonal to the electric field, and Z is the elec­

tron drift distance parallel to the electric field 13 ). The model fits the

data well with D = 28 flm per rnm1/2 and q = 2.0 fC, as can be seen

from fig. 7.

4.4 THE AVERAGE RESOLUTION

r(y) = f b(x) p(x-y) dx.

The effective width of a strip is defined by

L = f r(y)dy =f p(x) dx.

(1)

(2)

The values of L found experimentally could result from different

probability functions p(x). In our crude model, p(x) is a square function

of unit height for Ix 1< L/2 and zero for Ix I > L /2. In reality, p(x) is

undoubtedly rounded to a certain extent due to amplifier noise, and this
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will increase the rms spatial resolutions s1 and s2 of Chambers Xi and

X2, but will not greatly affect the effective width L. Therefore, al-

though our model may not correctly describe our data in every respect,

-10-

4.5 COMPARISON OF s2 WITH THE MODEL

s1 and s2 are expected to depend on the discriminator levels of Xi

and X2 respectively. We have obtained s 2 from the resolution curves

it does predict the dependence of L on discriminator level rather well

(fig. 7).

and eq. (5) for various values of these parameters (fig. 8). Eq. (7)

does not fit these data. However, if a constant term of 270 IJ-m
2

is

We further define the average resolution of both chambers as added to the right hand side of eq. (7), the fit to the data is fairly good.

':"'$

/If- 2
s 1 + s 2

s = 2 (4)

An experimental value of s2 can be derived from the resolution curve

r(y) and a knowledge of the pion beam properties. Let 6y be the rms

width of a resolution curve r(y). 6y
2

is the sum of a term 6h
2

due to

4.6 BEST RESOLUTION AT HIGH EFFICIENCY

We can now use eq. (5) to find the average resolution for the case

mentioned in the second paragraph of Section 4. The beam divergence

was ±5mrad, implying that a~ was 340 flm
2

Both discriminators

were at the same level of 0.5 fC, and therefore both chambers are ex-
'II.!'"";

" ..,......

beam divergence and (including multiple scattering) between the chambers

and the two other terms s~ and s~. Hence s2 is measured by

pected to have the same resolution, equal to the average resolution s.

2 2
s was measured to be (330 ± 60) flm , so each chamber had a resolu-

"~."

,.>",...)

2
s

6 y
2 _ 6h 2

2
(5)

tion better than 20 flm. This result is independent of any model for the

diffusion, since the only requirement is the hypothesis of equal resolu-

The measured resolution 6y depends on the joint contribution of both

chambers. For the purpos e of comparing the measured values of s2

tion in the two chambers for equal discriminator levels.

For this situation, we have also measured the overall detection

with the effective width L, we introduce the average effective width

where Land L
1

are the effective widths of chambers X2 and Xi re­

spectively. L is determined from eq. (3), while L
1

is obtained from

fig. 7, knowing the discriminator level on Xi. In the model with p(x)

a square distribution of unit height, the relationship between s and of:

efficiency. Under the as sumption that two different strips cannot count

similar effective width for two adjacent strips in coincidence to detect

(8)E= L-L'-d-

where E is the overall efficiency for a particle to be counted on any

unless all strips located in between count also, it is possible to dem­

14
onstrate ) that

strip of the chamber, L is the effective width defined by Eq. (2), L' is a

(6)2

L
2

+ L~
.1--2

-;( as

".",..'~

".""i

o

is given by
the same particle, and d is the distance between the centers of two

2
s ;;[2/12 (7)

adj acent strips. L was found to be 31 ± 2 flm, L' = 1.3 ± 2 flm and d

was 20 flm. Tllerefore, the average efficiency E was 0.90 ± 0.15,

compatible with 1000/0.
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4.7 RESOLUTION FOR TWO STRIPS IN PARA'~LEL of events at high pulse heights. Approximately 150/0 of the events are

Measurements with one strip were dependent on which particular in this tail, entirely consistent with the ionization distribution expected

charge amplifier was used, and most measurements reported above are from the Landau tail. A 'mean energy loss was used in the simple model

averages over several runs. With two strips, the data were much more and does not account for this tail.

reproducible. This was probably related to the fact that the amplifier

noise then contributed a smaller fraction of the value of s2.

For two strips and the discriminator set at 0.33 fC on X2, one

The electron diffusion has been measured in gaseous argon as a

function of electric field by Warren and Parker
16

). This data, when

extrapolated to the liquid
17

), is in reasonable agreement with our

5.2 CHARGE COLLECTION EFFICIENCY

The number of ion pairs produced in liquid argon per unit of energy

loss has been measured consistently around 1 ion pair /25 eV under dif-

measured value of is.

Using this value and an energy loss of 2.25f d ·· 18)er ent con 1hons .

strip and the discriminator level at 0.42 fC on Xi, and the beam di-

2 2
vergence at ±3mrad, the value of s was found to be (600 ± 100) fJ.m .

Using figs. 7 and 8, one estimates that s; was about 350 fJ.m
2

, and

therefore s1 was about 30 fJ.m.

5. Addi tional te s ts and information

5.1 PULSE HEIGHT SPECTRA MeV /cm for a minimum ionizing particle, we expect that a charge of

Pulse height data supply additional information about electron dif- about 3.2 fC of each sign is liberated in our 2.2 mm gap. Our analysis

fusion in liquid argon independent of the chamber spatial resolution. In shows that the amount of electron charge escaping recombination and

order to check the constants is and q of Section 4, pulse height spectra capture was about 2.0 fC at an electric field of 2.7 kV /cm. We do not

were recorded for the pulses collected by different numbers of strips know how much of the difference between these two numbers to ascribe

of X2 connected together. For this study, the time constants of the

readout circuit were changed to 1 f.ls integration and 5 fJ.s differentiation,

and the signals were sent to a pulse height analyzer gated by the co-

to (a) uncertainties in the liberated charge, (b) errors in our charge

measurements, (c) recombination with Ar+ ions 19 ), and (d) capture by

residual electronegative impurities 9).

incidence of S1, S2 and X2. Some typical pulse shapes for the time con- 5.3 MEASURED TIME SPREAD

stants us ed in this experiment are shown in fig. 9. In order to measure the system time resolution, a time-to-a'mpli-

Pulse height spectra are shown in figs. 10(a) and (b) for one strip tude converter (TAC) was started by a coincidence of Scintillators S1

and eight adjacent strips respectively. The solid curves superimposed and S2, and stopped by the first pair of four pairs of strips whose out-

on the data are predictions from the simple diffusion model described put crossed a discriminator setting of 0.33 fC. The output pulses from

in Section 4. In both cases the data are well represented by a diffusion

factor D= 28 fJ.m per mm 1 / 2 and an initial charge after recombination of

q " 2.0 fC (ref. 1:;). For eight adjacent strips there is a noticeable tail

the TAC were recorded on a pulse height analyzer. See fig. 11 for the

time jitter distribution. Although the time jitter distribution has a

FWHM of 200 ns, a 500-ns time gate is necessary to include all the
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These measurements are consistent with the simple diffusion model

and a drift velocity of 3.3 mm/fJ-s as reported in ref. 20. However, the

electronics of the system were not capable of a direct measurement of

the drift velocity in this experiment.

6. Conclusions

We have shown that liquid argon filled chambers are capable of de-

tectingminimum ionizing particles with a spatial resolution better than

20 fJ-m rms at an efficiency of nearly 1000/0. The multi- strip chambers

were operated in the ionization mode with expensive low noise ampli-

fiers on each strip, and we consider this the largest single disadvantage

7'0 to the practical utilization of such chambers.
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at 2.7 kV/cm (ref. 20).

defined by <Tx = V2DT where T

- -1/2D = 30 flm permm corre-

drift velocity is 3.3 X10 5 ern s-1 19)
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S. Konno, T. Hamada, S. Kubota, H. Shibamura, and T. Doke,

Phys. Rev. AJ.. (1974) 1438] .

The measurements for recombination of ion pairs in liquid argon

by J. H. Marshall, Rev. Sci. Instr. ~ (1954) 232, for O.b-MeV
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14) S. Derenzo and P. Eberhard, Efficiency analysis for liquid-filled

high- resolution multi- strip ionization-mode chambers, Lawrence

Berkeley Laboratory, Group A Physics Note. No. 785 (1974)

(unpublished) .

15) These data have been corrected for the retention of electron charge

by the Ar+ ions. See ref. 17 for a description and calculation of

this effect. When the anode spacing d is very small compared to

the anode·-cathode spacing .c,., the fraction of electron charge f

retained by the Ar+ ions is very small. On the other hand, when

d ».c,., then f = 0.5. For a single strip (d/.c,. = 0.0091), f = 0.115.

For eight strips in parallel (d/.c,. = 0.109), f = 0.115. (Note that in

ref. 12, f was erroneously assumed equal to 0.5 in all cases.)

16) R. W. Warren and J. H. Parker, Phys. Rev. 128 (1962) 2661.

17) S. Derenzo, Electron diffusion and positive ion charge retention in

electrons, and by M. Miyajima et aI., see ref. 18(4) for 1.0-MeV

electrons, lead to contradictory estimates for the recombination

loss at 2.7 kV/cm. (29"70 and 12"70 respectively.)

20) L. S. Miller, S. Howe, and W. E. Spear, Phys. Rev. 166 (1968)

871 .

liquid-filled high-resolution multi- strip ionization-mode chambers,

::.; Lawrence Berkeley Laboratory, Group A Physics Note No. 786

o (1974) (unpublished).

18) T he following mea sur ements have be en made in liquid argon:

(1) 1 pair /26.0 eV for 5-MeV 0' particles (heavily ionizing) [D. W.

Swan, Proc. Phys. Soc. ~ (1965) 1297]. (2) 1 pair/25.7 ± 3 eV

for x-rays [H. A. Ullmaier, Phys. Med. BioI. 11 (1966) 95J.

(3) 1 pair/22. 5 ± 3 eV for 1.5 MeV x-rays [N. V. Klassen and

W. F. Schmidt, Can. J. Chern. 47(1969)4286]. (4) 1pair/23.6

+ .5 eV for 1-MeV electrons [M. Miyajima, T. Takahashi,
- .3
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FIGURE CAPTIONS

Fig. 1. Schematic diagram of recirculating purifier.

Fig. 2. Gold anode pattern (light) on sapphire substrate (dark).
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Fig. 9. Pulses obtained from 8 adjacent strips in chamber X2

attached to one amplifier. Oscilloscope was triggered by a

coincidence between scintillators Sl S2 S3 and one strip in

chamber XL Integration/differentiation time constants

(a) Overview showing fanout to circular ring of bonding pads

(18 mm diam. ). (a)

were:

0.2 f.!s/2 f.!s and (b) 1 f.!s/5 f.!s.

(b) Enlargement of central region showing 24 strips between

two broad electrodes used to make the field more uniform.

(c) Further enlargement showing 15 f.!m wide strips on 20 f.!m

centers.

Fig. 3. Schematic of chamber construction.

(a) Cutaway of chamber showing feedthroughs, fill pipe, demount­

able seal using copper gasket,and cathode.

(b) Enlargement of anode region, showing stainless steel beam

window, sapphire disk, copper guard electrode, cathode,

and Q' source.

Fig. 4. Readout electronics used in experiment.

Fig. 5. Plan view showing beam, scintillator and chamber layout.

Liquid argon chambers are labeled X1 and X2. Horizontal

dimensions of scintillators Sl, S2, S3 transverse to the

beam were 25 mm, 1. 6 mm, and 6.4 mm, respectively.

Fig. 6. Measured values of r for single strips in Xl and X2 vs the

horizontal position of chamber X2 relative to X1. r is the

ratio of Sl S2 S3 X1 X2 coincidences to Sl S2 S3 Xl co­

incidences. Xl threshold ::::0. 4 fC.

Fig. 7. Effective width L vs discriminator setting. Curves are pre­

dictions based on the simple model and parameters dis ­

cussed in section 4.3. Dashed curve, two strips in parallel.

Solid curve, single strip.

Fig. 8. Square of the average resolution s2 vs the square of the

effective width -Z2. Solid line is s2 '" .i...2/12. Dashed line

is s2 '" ;;(2/ 12 + 270 fJ.m
2

.

Fig. 10. Amplitude distribution of pulses in chamber X2 in coincidence

with scintillators Sl 5253 and chamber X1.

(a) One strip in Xl and one strip in X2.

(b) Eight strips in Xl and eight strips in X2. Curves are pre­

dictions based on the simple model and parameters dis­

cus sed in se ction 4. 3.

Fig. 11. Time lapse distribution betwe en coincidence of scintillator s

5152 and the first pair of strips from X2, as explained in

section 5.3.
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Fig. 3
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