Ernest O. Lawrence Radiation Laboratory

```
"stuyy of resomances in the are gysten"
```

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

TECHNICAL INFORMATION DIVISION

Lawrence Radiation Laboratory

Berkeley

Assigned to _NEORMATON DNYBIO.

Route to	Noted

Please return this document to the Information Division. Do not send it to the next person on the list.

Please do not remove this page.

UNIVERSITY OF CALIFORNIA
 Lawrence Radiation Laboratory Berkeley, California

Contract No. W-7405-eng-48

STUDY OF RESONANCES IN THE $\Sigma-\pi$ SYSTEM
on, Luis W. Alvar'ez, Massimiliano Ferro-Lízzi, Margaret F. Alston, Luis W. Alvarez, Massimiliano Ferro-Luzz
Arthur H. Rosenfeld, Harold K. Ticho, and Stanley G. Wojcicki

STUDY OF RESONANCES IN THE $\Sigma-\pi$ SYSTEM
Margaret H. Alston, Luis W. Alvarez, Massimiliano Ferro-Luzzi, ${ }^{\dagger}$ Arthur H. Rosenfeld, Harold K. Ticho, $\dagger \dagger$ and Stanley G. Wojcicki

Lawrence Radiation Laboratory and Department of Physics University of California, Berkeley, California

June 12, 1962
(To be presented by A. H. Rosenfeld)

INTRODUCTION

In order to study resonances in the $\Sigma-\pi$ system, we have analyzed reactions in which a Σ hyperon and two or three pions are produced in $K^{-}-\mathrm{p}$ interactions at 1.22 ± 0.040 and $1.51 \pm 0.050 \mathrm{GeV} / \mathrm{c}$ incident K^{-}momentum (i.e., 1895 and 2025 MeV center-of-mass energy), using the Lawrence Radiation Laboratory's 72-in. hydrogen bubble chamber.

Before the current experiment, the following resonances had been observed in the $\Sigma-\pi$ system:
a. The $Y_{0}^{*}(1520 \mathrm{MeV})$ with a width $\Gamma=25 \mathrm{MeV}$, found by FerroLuzzi, Tripp and Watson. ${ }^{l}$ This resonance was observed by a study of the total cross sections and angular distributions of several interaction channels at K^{-}incident momenta between 300 and $513 \mathrm{MeV} / \mathrm{c}$, using the Lawrence Radiation Laboratory 15-in. liquid-hydrogen bubble chamber. A resonance effect was observed at an incident K^{-}momentum of $395 \mathrm{MeV} / \mathrm{c}$. 1520 MeV in the center-of-mass system). The data show that this resonance has isotopic spin zero and is in a $D 3 / 2$ state.

[^0]b. The $\mathrm{Y}_{0}^{*}(1405 \mathrm{M} \in \mathrm{V})$ observed in $\mathrm{K}^{-} \mathrm{p}$ experiments at I150, 850, and $760 \mathrm{MeV} / \mathrm{c}$ incident K^{-}momentum in the Lawrence Radiation Laboratory 15-in. liquid-hydrogen bubble chamber. 2,3 The number of events was smail, but the resonance appeared to have an isotopic spin $T=0 .{ }^{2}$ However, this resonance was only prominent in the final state in which $\Sigma+3 \pi$ was observed but was not copiously produced in the $\Sigma 2 \pi$ final state either in the $1.15 \mathrm{GeV} / \mathrm{c}$ or in the lower-momentum experiments. Hence it could notbe considered well-established.
c. The $Y_{1}^{*}(1385 \mathrm{MeV})$, which could decay into $\Sigma \pi$ but actualiy decays mainly into $\Lambda \pi$. In references(2) and (3) very little indication of any peaking for $Y_{l}^{*}(1385 \mathrm{MeV})$ was observed in the $\Sigma \pi$ system, so it was concluded that the Σ / Λ branching fraction for the Y_{1}^{*} was about 2% for the decay mode $\mathrm{Y}_{1}{ }^{*+} \rightarrow \Sigma^{ \pm}+\pi^{0}$.
d. Indications of a Y_{2}^{*} predicted by global symmetry at about 1540 MeV has been reported. ${ }^{7}$

PRESENT EXPERIMENT

The reactions that we have studied in the present experiment are shown in Table I.
a. Three-body final states. In the first reaction we have a threebody final state that can be represented by a Dalitz plot in $M^{2}(\Sigma \pi)$ charged and $M^{2}(\Sigma \pi)$ neutral This plot shouid be uniformly populated within the limits allowed by the available energy, if there are no interactions in the final state.

Figure I shows the Dalitz plot for 473 events of reaction (1) at 1.22 $\mathrm{GeV} / \mathrm{c} \mathrm{K}^{-}$incident momentum, together with histograms of the data projected onto the neutral and charged axes. On the neutral projection there are strong
indications of both a $Y^{i^{\prime \prime}}(1405 \mathrm{MeV})$ with a width $\Gamma=50 \mathrm{MeV}$, and a $Y^{* / 0}(1520$ MeV) with width $\Gamma=20 \mathrm{MeV}$. There is, however, little evidence of charged resonances; broad peaks can be seen in the charged histogram, but these are merely the 1405-and 1520-MeV neutral resonances projected onto the charged axis. In particular, there is no indication of peaking around 1405 MeV in the charged state as might be expected if the $Y^{* *}(1405 \mathrm{MeV})$ had isotopic spin 1 or 2. Also there are very few events that can be attributed to the $Y_{1}^{\dot{*}}$ at 1385 MeV ; if phase space is estimated and subtracted, the Σ / Λ branching ratio for the Y_{l}^{*} is about 1%. A more conservative approach in which all events between 1340 and 1440 MeV (85 events) are assumed to be produced by a Y_{1}^{*} gives a maximum value of 7% for the branching ratio.

Figure 2 shows the Dalitz plot and (mass) ${ }^{2}$ histograms for an incident K^{-}momentum of $1.51 \mathrm{GeV} / \mathrm{c}$. Again the neutral $\mathrm{Y}_{0}^{*}(1405 \mathrm{MeV})$ and $Y_{0}^{*}(1520 \mathrm{MeV})$ are produced. In this case we also notice a clustering of events in the lower right-hand corner which could be due to constructive interference between the few-percent Σ decay mode of a $Y_{1}^{*}(1385 \mathrm{MeV})^{5}$ and a possible $\mathrm{Y}^{*}(1680 \mathrm{MeV})^{6}$ However, interpretation of excesses in this region of the plot is complicated because it lies near the 135 deg line representing a $\pi \pi$ mass of 750 MeV , where the ρ-meson may play a role (see Fig. 2).
b. Four-body final states. An investigation of reaction (2) showed that the $\Sigma-\pi$ mass distributions for the Σ^{+}and Σ^{-}events are very similar; hence they are shown added together in Fig. 3. A strong peaking at 1405 MeV is observed in the neutral state, but none at 1520 MeV . No doubly charged peak is observed. The solid curves show phase space, and the dotted curves the distributions expected for a $\Sigma \pi$ resonance at 1405 MeV with width $\Gamma=50$ MeV in each event. Since the latter hypothesis fits the data quite well, we
assume that reaction (2) proceeds predominantly via the production of a 1405-MeV resonance and a pair of pions. In these events, the mass distributions for two pions showed nothing remarkable.

To see if the $T=0$ assignment for the $1405-\mathrm{MeV}$ resonance is consistent with other available data, we looked at the reaction (3). Now we liave, for $T=0$,

$$
N\left(\Sigma^{+} \pi^{-}\right)=N\left(\Sigma^{-} \pi^{+}\right)=N\left(\Sigma^{0} \pi^{0}\right)
$$

for $T=1$,

$$
\mathrm{N}\left(\Sigma^{+} \pi^{-}\right)=\mathrm{N}\left(\Sigma^{-} \pi^{+}\right) ; \quad \mathrm{N}\left(\Sigma^{0} \pi^{0}\right)=0
$$

and for $T=2$,

$$
N\left(\Sigma^{+} \pi^{-}\right)=N\left(\Sigma^{-} \pi^{+}\right) ; \quad N\left(\Sigma^{0} \pi^{0}\right)=4\left(N \Sigma^{-} \pi^{+}\right)
$$

To look for a $\Sigma^{0} \pi^{0}$ mass peak in reaction (3) of Table I, we calculate for each event $M^{2}($ neutral $)=(\Delta W)^{2}+(\Delta \underline{p})^{2}$, where $W=W_{K}+W_{\text {target }}-$ $\left(W_{\pi^{+}}+W_{\pi^{-}}\right)$is the unbalance in energy, and similarly $\Delta \underline{p}$ is the unbalance in momentum. Note that in this calculation the Λ is ignored. However, if we plot the spectrum of all V-two prong reactions that could be type (3), we get a spurious background of M (neutral) $\approx M_{\Sigma^{0}}$ from,

$$
\begin{equation*}
\Sigma^{0} \pi^{+} \pi^{-} \tag{a}
\end{equation*}
$$

and further background from

$$
\begin{equation*}
\Lambda \pi^{0} \pi^{+} \pi^{-} \tag{b}
\end{equation*}
$$

and

$$
\begin{equation*}
\Lambda 2 \pi^{0} \pi^{+} \pi^{-} \text {and } \Sigma^{0} 2 \pi^{0} \pi^{+} \pi^{-} \tag{c}
\end{equation*}
$$

We eliminate most of (a) and (b) by selecting only events that fail to fit these hypotheses with χ^{2} greater than 20.0 and 2.0 , respectively. We seiect further on the basis of missing mass, ${ }^{4}(\mathrm{MM})$ requiring that $150 \mathrm{MeV}<\mathrm{MM}<270 \mathrm{MeV}$.

Three-hundred events fit hypothesis (b) with $\chi^{2} \leqslant 2.0$, and we calculate that 60 more have $\chi^{2}>2.0$, but then only 30 of these should have $\mathrm{MM}>150 \mathrm{MeV}$. Similarly, reactions (c) have missing masses starting at $2 \mathrm{~m}_{\pi^{0}}$ and should be mainly eliminated by the upper MM selection limit.

Figure 4 shows the distribution for 159 events remaining after ali selections. There is some peaking at around 1390 MeV . This is lower than the expected value of 1405 MeV ; however, the resolution in this reaction is poor $(\Gamma$ (resol) $\approx 22 \mathrm{MeV}$), and thus the difference is not significant.

In Fig. 4 there are 83 events between 1330 and 1440 MeV . As we have discussed above, we estimate that only about 30 are background, leaving about 50 which we attribute to the $Y_{0}^{*}(1405 \mathrm{MeV})$ decaying via $\Sigma^{0} \pi^{0}$. Since the expected number for a $T=0$ resonance is 53 , the data are consistent with $\mathrm{T}=0$.

To see if we could observe both the $\mathrm{Y}_{0}^{*}(1520 \mathrm{MeV})$ and the predicted $\mathrm{Y}_{2}^{*}(\sim 1540 \mathrm{MeV})$, which could appear doubly charged, we analyzed the $\Sigma^{ \pm} 3 \pi$ events at $1.53-\mathrm{BeV} / \mathrm{c}$ incident K^{-}momentum. Figure 5 shows the results for the Σ^{+}and Σ^{-}events added together. At this incident momentum, the $Y_{0}^{*}(1520 \mathrm{MeV})$ is produced. The phase-space curve is again shown. The dashed curves show the effect of assuming that each event has one resonant neutral $\Sigma \pi$ pair and that the 1405 - and $1520-\mathrm{MeV}(\Gamma=50 \mathrm{MeV}$ and $\Gamma=20 \mathrm{MeV}$, respectively) resonances are produced in the ratio 3:1.

The doubly charged data is in reasonable agreement with the distcrted phase-space curve expected. However the histogram shows some enhancement at about 1540 MeV , which might be attributed to the Y_{2}^{*} resonance predicted by global symmetry。

We wish to thank many members of the Alvarez group whose help máde this work possible.

FOOTNOTES

1. M. Ferro-Luzzi, R. D. Tripp, and M. B. Watson, Phys. Rev. Letters 8, 28 (1962).
2. M. H. Alston, L. W. Alvarez, P. Eberhard, M. L. Good, W. Graziano, H. K. Ticho, and S. G. Wojcicki, Phys. Rev. Letters 6, 698 (1961).
3. P. Bastien, M. Ferro-Luzzi, and A. H. Rosenfeld, Phys. Rev. Letters 6, 702 (1961).
4. MM^{2} is analogous to M^{2} (neutral) except that all "seen" tracks including the Λ are included in ΔW and $\Delta \underline{p}$.
5. A Σ / Λ branching ratio of 2% corresponds to six events.
6. Private communication from P. Bastien and from G. Alexander, G. R. Kalbfleish, D. H. Miller, and G. A. Smith, Lawrence Radiation Laboratory.
7. J. D. Dowell, B. Leontic, A. Lundby, R. Meunier, G. Petmezas,
J. P. Stroat, and M. Szeptycka, CERN Internal Report 61-9, August 1961.

Table I. Cross sections for $\mathrm{K}^{-}+\mathrm{p} \rightarrow \Sigma+$ pions.

Reaction	Number of events analyzed		Cross section (mb)	
	$\begin{aligned} & 1.22 \\ & (\mathrm{GeV} / \mathrm{c}) \\ & \hline \end{aligned}$	$\begin{gathered} 1.51 \\ (\mathrm{GeV} / \mathrm{c}) \\ \hline \end{gathered}$	$\begin{gathered} 1.22 \\ (\mathrm{GeV} / \mathrm{C}) \\ \hline \end{gathered}$	$\begin{gathered} 1.51 \\ (\mathrm{GeV} / \mathrm{c}) \\ \hline \end{gathered}$
la. $\mathrm{K}^{-}+\mathrm{p} \rightarrow \Sigma^{+}+\pi^{-}+\pi^{0}$	249	198	0.50 ± 0.04	0.93 ± 0.07
ib. $\quad \Sigma^{+}+\pi^{-}+\pi^{0}$	224	214	0.45 ± 0.04	0.93 ± 0.07
2a. $\mathrm{K}^{-}+\mathrm{p} \rightarrow \Sigma^{+}+\pi^{-}+\pi^{+}+\pi^{-}$	81	281	0.11 ± 0.2	0.25 ± 0.01
2b. $\quad \Sigma^{-}+\pi^{+}+\pi^{+}+\pi^{-}$	78	251	0.08 ± 0.1	0.25 ± 0.01
3. $\mathrm{K}^{-}+\mathrm{p} \rightarrow \Sigma^{0}+\pi^{0}+\pi^{+}+\pi^{-}$	159	---	0.08 ± 0.03	-

FIGURE LEGENDS

Fig. 1. Dalitz plot and histograms in (Mass) ${ }^{2} \Sigma \pi$ for the reactions

$$
\mathrm{K}^{-}+\mathrm{p} \rightarrow \Sigma^{ \pm}+\pi^{\mp}+\pi^{0}
$$

at $P_{K^{-}}=1.22 \mathrm{GeV} / \mathrm{c}\left(\mathrm{E}^{*}=1.895 \mathrm{GeV}\right)$.
Fig. 2. Dalitz plot and histograms in (Mass) ${ }^{2} \Sigma \pi$ for the reactions $\mathrm{K}^{-}+\mathrm{P} \rightarrow \Sigma^{ \pm}+\pi^{\mp}+\pi^{0}$ at $\mathrm{P}_{\mathrm{K}^{-}}=1.51 \mathrm{GeV} / \mathrm{c}\left(\mathrm{E}^{*}=2.025 \mathrm{GeV}\right)$.
Fig. 3. Mass histograms for the $\Sigma \pi$ systems in the reactions
$\mathrm{K}^{-}+\mathrm{p} \rightarrow \Sigma^{*}+\pi^{\mp}+\pi^{+}+\pi^{-}$at $\mathrm{P}_{\mathrm{K}^{-}}=1.22 \mathrm{GeV} / \mathrm{C}\left(\mathrm{E}^{*}=1.895 \mathrm{GeV}\right)$. Each event gives two entries on the "unlike-charge" histogram.
Fig. 4. Mass histograms for $\Sigma^{0} \pi^{0}$ in the reaction $K^{-}+p \rightarrow \Sigma^{0}+\pi^{0}+\pi^{+}+\pi^{-}$
at $1.22 \mathrm{GeV} / \mathrm{c}$ incident K^{-}momentum ($\mathrm{E}^{*}=1.895 \mathrm{GeV}$).
Fig. 5. Mass histograms for the $\Sigma \pi$ systems in the reaction $\mathrm{K}^{-}+\mathrm{p} \rightarrow \Sigma^{ \pm}+\pi^{\mp}+\pi^{+}+\pi^{-}$at $\mathrm{P}_{\mathrm{K}^{-}}=1.51 \mathrm{GeV} / \mathrm{c}\left(\mathrm{E}^{*}=2.025 \mathrm{GeV}\right)$ 。

SUR 1HE

Fig. 1

$$
\left\{\begin{array}{c}
K^{-}+p-\Sigma^{+} \pi^{-} \pi^{0} \\
\quad \text { and } \\
K^{-}+p \rightarrow \Sigma^{-} \pi^{+} \pi^{0}
\end{array}\right.
$$

$$
P_{\mathrm{K}^{-}}=1.51 \mathrm{BeV} / \mathrm{c}
$$

$$
E^{*}=2.025 \mathrm{BeV}
$$

332 events
ㅁ levent

MuB-1149

Fig. 2

Fig. 3

MU. 26615

Fig. 4

MUB-1054

Fig. 5

[^0]: *Work done under the auspices of the U. S. Atomic Energy Commission. \dagger National Academy of Sciences Fellow.
 \dagger Presently at the University of California at Los Angeles, Los Angeles, Los Angeles, California.

