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Abstract

A review of the theories of electron paramagnetic resonance in

biology is presented, including a discussion of the nature of the

physical observation, followed by examples of materials of biological

interest. Iq discussing these examples, information is presented in

terms of the nature of the starting material under observation rather

than the nature of the magnetic entities observed. The examples pro-

ceed from the simpler molecules of biological interest (metabolites,

vitamins, cofactors) into the more complex materials (polymers, pro­

teins, nucleic acids) toward cellular organelles (mitochondria, chloro-

plasts) and, finally, to whole cells, organisms and organs.

The observation of photoinduced unpaired electrons in photosyn-

thetic material is described and the various parameters controlling it

are discussed. The basic observation is interpreted in terms of a pri-

mary photophysical act of quantum conversion.

* Presented at First International Biophysics Congress, Stockholm,
Sweden, July 31-Aug. 5, 1961.

** The preparation of this paper was sponsored by the U.S. Atomic
Energy Commission.
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I. INTRODUCTION.

The material of Vlhich living organisms are roode is largely organic. Even

the inorganic constituents, aside from the sodium chloride, are most often found

very closely associated with, if not a component part of, organic substances in

liVing organisms. The structure and change of structure of such materials, that

is, organic substances in general, is determined by the electronic configuration

of the atoms of' which they are made, and by changes in these electronic

configurations. Therefore, any method of observation which permits us to look

closely into the nature of the electronic configurations and the changes of these

electronic configurations is likely to become a major tool in biological studies.

One such method of observation which has recently (that is, in the last decade

or so) risen to prominence, particularly in the study of the electronic structure

of inorcanic materialS, is now becoming of importance in the exaluination both of the

statics and dynamics of organic and biological materials. This method depends upon

the fact that a spinning electron is n~gnetic as are, in fact, a good lnany nuclei

as well. Therefore, such an electron, when placed in an external magnetic field,
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will interact vrith thali.h,Ll in a eharQcteri:.>tic way vlhich can be determined by

suitable '.~ordic;uration Ol the maGnet and electromac;netic radiation, which we will

discuss later.

Now not all the elcct:cons present in cheraical substances can be studied by such

magnetic resonance methods. Only those substances which contain in them magnetic

entities which can respond to an external magnetic field in an observable vlay are

li}~ely to yield information. Certain nuclei of' considerable interest to us do have

such properties, and. i-1e will mention them later.

Most of the electrons in organic materials, however, although they individually

do have a spin and a magnetic moment, exist in the organic material in pairs in

which the magnetic moments are oppositely directed and are closely coupled so that

the individual electrons cannot interact in an as yet observable fashion with an

external magnetic field. We are therefore limited in our biological exploitation

of this method to such materials that contain electrons not so paired. Since

many important chemical transformations which occur in biological materials involve

at some stage of' their occurence the uncoupling of these paired electrons in some way

or another, it seelns likely that this method of observation will find a broad

application in the study of biological structures and their changes.

Materials which contain electrons in any of the following conditions might be

susceptible to studY by electron paramagentic resonance methods, and many of them

have already been observed in biological materials:

(a) Free electrons: Such electrons as are found as conduction electrons in a

metal are indeed free, and under certain special conditions their sp~n lifetimes

are sufficiently long so that they may be observed by these methods.

(b) Not-quite-free electrons: Such electrons as are found in the narrow

conduction bands in semiconductors are also susceptible to observation. These

electrons are produced by being raised from bound, or coupled, states into their

conduction, or free,. states, usually by temperature or light.
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(c) Trapped II free ll electrons: These are electrons '1hieh are not paired but

which are physically trapped in a solid lattice (either ionic, atomic or

molecular) and are definitely readily observable by this method.

(d) Unpaired electrons from paired electrons: These unpaired electrons,

created by the fission of a paired electron bond which generally involves the

separation of atoms as well, are also clearly observable by these methods.

Such (ordered) molecules may appear as chemical reaction intermediates or as

broken bonds created by high energy radiation.

(e) Unpaired electrons in even molecules: These are unpaired electrons

from molecules containing an even number of electrons in which two or more

have been uncoupled to form what is called a ste.te of higher multiplicity.

(When only one electron pair is uncoupled to give two electrons with parallel

spin moments, it is called a triplet state.)

(f) Unpaired electrons from transition metal ions: These electrons in the

transition metal ions such as iron, cobalt, nickel and copper are generally

observable by the method of electron spin resonance. It is clear that these

unpaired electrons, existing as they do in the d-orbitals of transition elements,

are quite common in biological systems. Unfortunately, they are not always

observed, at least under the conditions which are currently known to us.

However, much important information is beginning to appear in studies of this

sort.

The course of our examination will be divided into two distinct parts,

the first of which is the nature of the physical observation itself. We will

describe all of the parameters associated with the observation of unpaired

electrons, that can be determined. Some of these are already in comn~n use,

and others have not yet achieved usefulness in the biological sphere and we

will try to indicate those.
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Finally, a collection 01' examples of the exmnillution of :Iluterials of biological

interest will be provided. Such a wide literature already exists that it will

be beyond our capacity to catalog tbem all. H01"ever, we will try to provide

examples of all the types of observations that have been rr~de and indicate

those which are still possible but which have not yet been achieved.

The pattern followed in the presentation of biological examples has been

difficult to formulate, largely because the unifying principle here is a technique

of observation rather than a biological principle. However, the general pattern

has been the use of the physical tool as it becan~ available directly on very

complex biological material to demonstrate that there were indeed such

magnetic entities as unpaired electrons present in biological materials under

suitable conditions. The next step, however, of identifying and characterizing

those entities has proved to be much more difficult and it has required a

retrenchment toward the simpler systems in order to learn more of the nature

of the observation itself.

We will, therefore, present the exwnples in terms of the nature of the

starting material under observation rather than the nature of the magnetic

entities observed, since we do not really know the latter in most cases. We will

proceed from the simpler molecules of biological interest such as metabolites,

vitamins, cofactors, etc. -- into the more complex materials such as

polymers, proteins, nucleic acids -- toward cellular organelles -- mitochondria,

chloroplasts and the like -- and, finally, to whole cells, organisms, and

organs. This will be the exposition, in spite of the fact that historically

observations have been made in somewhat the reverse order.
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II. PHYSICS \HTH EXAlJIPLES.

A. Zcen~n Energy Levels.

If an atomic or molecular system with spin angular momentum of magnitude

11 .,js(S + 1)' is placed in a lIlagnetic field, H, the component of anc,'Ular

momentum along the direction of the field may assume only the values

sti,(s - 1)11", ••.•..•••..•...•. , -s1l.

Each of these 2S + 1 orientations will have a different energy. The energy of

these states, the Zeeman energy, may be written

11 = g~ 'H.g = g~ Hzms

if H is in z direction and ms = 8, 8-1, •.•..•••.•...., -6.. According to the

basic quantum mechanical principle, transitions between these magnetic states

can be induced by providing a quantum of energy hV , of the appropriate size.

Except under special circumstances, transitions may be induced only between

adjacent levels: i.e. 6m = ± 1, Thus, the condition for inducing the transitionss

(the resonance condition) is h y = g(3 Hz· In this expression ~ = :c is the

Bohr magneton, and g represents the effective size of the magnetic mornent

being acted upon by the magnetic field. It is equivalent to the spectroscopic

splitting factor,

g = 1 + J(J + 1) + 8(8 + 1) - L(L + 1)
2 JeJ + 1)

of the free atom. (1) When H is 3300 gauss and g = 2.00, Yis 9.5 Kmc/s.

(;>.. ..-...J 3.2 em.)

B. Resonant Energy Absorption.

When the resonance condition is satisfied, transitions from m to m + 1s s

and from ms + 1 to ms are induced with equal probability by the high frequency

(microwave) magnetic field. This in itself leads to no energy absorption. A

net energy absorption arises from two facts: 1) The spin system, in thermal
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equilibrium, has a few more spins in the state m than in the state m + Ls s

The slightly greater number of' spins in the states of lower energy means that

slightly more transitions up than down will be induced by the microwave

field. 2) There are alternate routes by which spins excited to the state ms + 1

can be returned to In ; the routes through which thermal equilibrium would bes

re-established should the microwave field be suddenly removed~ These processes

are called thermal relaxation processes.

The margin of operation for observation of the net energy absorbed is small. In

Table I we have listed values for the Boltzman factor determining the population

distribution, and the fractional spin unbalance for an S ~ 1/2 system at three

odifferent temperatures. It is seen that even at 4.2 K, of 100 spins there are

only 5 more in the ground than in the excited state. The first person to observe

these small energy absorptions was zavoisky, in the USSR, in 1946. (2) He used

solutions containing transition metal ions. In the United States, Cummerow and

Halliday (3) made the first observations of this type in 1947. The field has been

developing rapidly ever since.

We would now like to answer the following two questions: What are the measurable

parameters associated with this resonance absorption? And, which of these, if any,

might be useful in the solution of problems concerning biology?

C. Area under curve

The reaction of a system of free electrons to an applied magnetic field is

depicted in Fig. lao In a resonance experiment (holding Yconstant) each

electron would absorb energy at exactly the same value of H (H and Hare
o 0 z

used interchangeably to identify the large applied field.) When unpaired

electrons exist inside an actual sample the resonance condition is not

satisfied at one unique applied field, but over a range of values. This is

because a range of local magnetic fields ts contributed by the sample itself.
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n+ - nt

nt + nt

-47.4 x 10

-1
1.05 x 10

-25.0 x 10

Table I.

-20g =2.00; ~ =0.927 x 10 erg/gauss; H = 3300 gauss
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electrons in an external [tiagnetL' field.
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These add vcctoriolly to h to produce the effective resonance :L'ield at a parti­
o

cular electron (see belo·v). In the simplest cases the net effect is to produce

a resonance curve as sho\Tn in Fig. lb.

As the resonance condition is traversed energy is absorbed from the microwave

field, causing an electrical unbalance in the spectrometer. This unbalance is

proportional to the amplitud.e of the absorption curve (Fig. lb) for a particular

value of H • Recording the unbalance of' the spectrometer as a function H will
o 0

thus yield the absorption curve.

The sensitivity of' the spectrometer can be considerably enhanced by causing

the resonance absorption to unbalance the spectrometer sinusoidally at a

frequency .y . One then 1001<::s specifically at the spectrometer unbalance occuring
m

at frequency ~ , any other frequency variation in unbalance being ignored.
In

This scheme is accomplished, usually, by modulating H at frequency 11 as Ho m 0

is also being slowly swept through the resonance condition (Fig. lb). The

unbalance that is recorded using this scheme is not proportional to the height

of the absorption curve at the mean value of H at a given point, but is proportional
o

to the difference in height of' the absorption curve between the extremes of' the

modulation envelope. The resultant sinusoidal unbalance is designated II signal"

in Fig. lb. This, then, is the signal leaving the d.etector (Fig. 2). Its

magnitude is proportional to the first derivative of the absorption curve.

In Fig. 2 the lock-in amplifier analyzes the detected and amplified signal for

only those components varying at frequency Y . The magnitude of' these components
m

is recorded, and yields the first derivative of' the absorption curve. This is

the curve co~nonly observed in published work.

The integrated area under the absorption curve (the second integral of the

derivative curve) is proportional to the number ofmac;netic species absorbing

micrm-lave power. For a voltage sensitive microvave detector and Lorentzian line

shape function
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Modulation

Fig. lb. Field modulation applied to a resonance absorption, showing the origin of

the derivative signal.
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Frequency-
AudioStabilized • • ; Detector :0• •

Arnolifier
Klystron ...Modulation coils

/ " Audio• IMaonet Generator
Supply

Record:.
Lock-in

Amplifier

Fig. 2. Transmission spectrometer employing field modulation and phase

sensitive detection. The microwave magnetic field, HI' in the cavity is

perpendicular to H , the applied magnetic field.o



-12-

Area oc. Hl ~~

(1 + 1/412 H 2T T )1/2
112

where H
l

is the magnitude of the microwave roognetic f~eld at the site of the

san~le, ~ is the quality factor for the microwave cavity in place in the

spectrometer, ~ =~/H , Tl is the spin lattice relaxation time (discussedo z

below), and, for our purposes, T2 defines the width of the absorption line.

l ~2 S(S + 1)

Here N is the number of spins per unit volume and T is the absolute temperature.
o

The constant of proportionality between area and N may be evaluated in terms
o

of the gains, power, time constant, etc., of the spectrometer. It is easier and

more accurate, however, to relate the area under the curve of an unknown to the

area under the curve of a sample with a known number of spins.

In view of the form of the above factor, relating area to N , several facts
o

should be observed. 1) The same microwave power level should be applied to both

samples, and this power level should be such that both spin populations remain

in thermal equilibrium with the lattice (1/412H12T1T2~"1). 2) The two samples

should effect the electrical properties of the microwave cavity in the same way

(giving the same ~). 3) Most microwave spectrometers obtain the necessary sensitivity

by modulating H and employing a phase sensitive detection system (Fig. 2).z

This modulation scheme broadens the absorption line. This must be taken into

account, especially if' a narrow line is compared with a wide one and the same

modulation amplitude is used on both.

A double cavity, first used by KBhnlein and M~ler (4), automatically

takes points (1) and (2) into consideration. This cavity (Fig. 3) allows the

simultaneous placement of both samples on equivalent nodal planes of the stationary

microwave pattern of the cavity. Overlapping resonance lines are separated by

using steel shims or Helmholz coils to provide an auxiliary field at one sample site.
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Scm

FIG. 1. Double cavity. (1) ?\Iodulation coils, (2) mild steel disks with shims,
(3) sample holes.

Fig. 3. Double cavity. (1) Modulation coils, (2) mild steel disks with shims,

(3) sample holes. (After 4).
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He have used this type of cavity to advantage ,,,ith samples whose dielectric loss

properties vary greatly.

In some situations one wants to know the spin concentration only as a function

of time or as a function of some other external variable. Then it is necessary

only to follow some resonance parameter which is proportional to the area under

the curve. Assuming the line shape and width do not change, the amplitude of the

resonance is such a parameter.

D. Line Shapes.

A second measurable parameter is the structure of the resonant absorption.

This is capable of prOViding quite detailed information about the environment of

the observed magnetic species. Obviously, this is the sort of thing an experimenter

using biological systems would delight in. Unfortunately, it is seldom observed

in such samples.

The principal interaction which will produce structure in a resonance

absorption is called the hyperfine or "contactll interaction. The name results

from the fact that the electronic wave function must be in "contact" with the

nucleus or the interaction is zero. The energy of this interaction may be written....
-I~ =A r·s = Am m
~i I s

where A is a constant representing the strength of the interaction and rand S

are the spi~ quantum numbers of the nuclear and electronic systems, respectively.

The last form of the equation results from the fact that both spin moments are

quantized along the same axis, (mr = I, 1-1, •••••••• , -(1-1), -I). This interaction

is isotropic in space. Its effect is to split each electronic energy level into

21 + 1 levels. Hence, the resonance absorption is split into 2I + 1 equally spaced,

equally intense lines.

Several cases may be distinguished.
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(1) The electronic wave function is confined to one atom and is interacting

i'lith the nucleus of that atom. An example of this case appears in Fig. 4. The

state of the 3d electrons contains some 5 character so that the Mn55 nucleus is

seen. 1Mn55 = 5/2 so that a 6-line spectrum results.

(2) The electronic wave function is delocalized so that the interaction is

equally distributed among several nucleii. In this case It =!i i Ii and

2It + 1 equally spaced lines result. However, now a statistical effect enters.

A given value of (mI)t may possibly be achieved with several different nuclear

configurations. For example, the states with (mI)t = ± It can be achieved in

only one way (all nuclear spins parallel), while the states with (mI)t~ 0 can

be made in several ways. The probability of these states (and thus the line

intensities) follows the binomial coefficients. This type of behavior is shown

for a series of halogenates semiquinones in Fig. 5.

(3) The electron is coupled primarily to one nucleus, but is delocalized enough

to interact with neighboring nucleii -- a combination of (1) and (2). An example

is shown in Fig. 6 for copper etioporphyrin-II. The example is not as ideal as

++one Tllght like, but apparently the eu electrons are coupled primarily to

eu63 (I = 3/2), and equally coupled to the four neighboring ~4. I~4 = 1, so

It = 4, and one expects 9 lines on each of the 4 lines resulting from the eu63

coupling. Second order effects cause the eu63 lines to vary in intensity. On the

most intense line, 10f the 9 lines expected are visible.

There are three nuclei of wide biological occurrence that have no nuclear

moments and will thus not produce this type of structure. These are listed in

Table II with several other nuclei from which splitting might be expected.

As mentioned above, resonance lines with well resolved structures are seldom

seen in samples of biological materials. We shall next inquire as to why structures

are sometimes unresolved, and what other parameters characteristic of such

lines can be measured.
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Fig. 4. The epr spectrum of Mn++ (at 200 molar ppm) in MBO.
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Fig. 5. The epr spectra of a series of' chlorine-substituted semiquinones.

(After 5).



, I

I '

-'---

I . ,
I i I

I -, I I, I I

! i I I

• I

-lb-

Cu
, I

, I ,

8

, I

, I

I ••

I •

: III : ' I

,,! .. t Irl-
.. I I!

I I , ,
.\ . I

I I • !
I. I i f..

.... ! ! ...
•. 1'1 -]':1-

ESR
Cu Etlo II In Benzene

Fig. 6. The epr spectrum of CuEtio II in benzene. Inset, CuEtio II. (After 6).
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STROCTURE PRODUCING NUCLEII WITHOUT
NOCLEII MAGNETIC MOMENTS

Isotope Spin ~ Abundance Isotope Spin oj; Abundance

H1 1/2 99·9 C12 0 98.9

N14
1 99.6 016 0 99.8

p31 1/2 100 8 32 0 95.1

C135 3/2 75.4

Mn55 5/2 100

Cu63 3/2 69.1

Table II.
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There are several mechanisms which might operate singly or in combinations to

obliterate structures. In extreme cases, the entire line might become unobservable.

Dipole-Dipole BroadeninG' This effect could be electron-electron (between neighboring

molecules) or electron-nuclear (with nucleii on the same molecule). It results from

the fact that the electrons and nucleii involved have roognetic moments associated

with them. The field of a magnetic moment is anisotropic in space and can be

averaged out by the tumbling action of' a molecule in solution. In amorphous or

multi crystalline solids a broadening results. The order of magnitude of the effect is

approxin~ted by the expression ~ /r3~ h, where h is the local field produced

a t distance 'r from a spin vIith loognetic momcntjA • For an electron h""" 80 gauss when

'r = 5~. If this type of broadening is a problem, magnetic dilution of the sample

(increasing the mean unpaired spin separation) is an obvious solution.

rrhe line shape resulting from this type of broadening is approximately Gaussian.

The resonance may be further classified as honlogeneOusj that is, every magnetic

species being observed is equivalent. A spin found resonating in the low field wing

of the resonance line may at a slightly later time be found resonating in the high

field wing due to a change in its local environment.

Inhomogeneous Broadening. In distinction to the definition just given for a

homogeneous line, a spin found resonating in the low field wing of an inhomogeneous

line will always be found in that wing because its local envirorunent will never

change sufficiently (in the time of the experiment) to move it to any other section

or the resonance. This type of broadening can be brought about, of course, by

putting the sample in an inhomogeneous external magnetic field. In the more

interesting cases the conditions inside the sample are such that the observed

resonance is only the envelope of a large number oj.' overlapping narrOl.,rer lines.

This is depicted on the left side of Fig. 12. 'l'he classie case of this kind. if;
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F centers in ionic crystals. Here, there is a Gaussian distribution of types of

magnetic sites. In the other extreme, an unresolved 5 or 7 line structure displays

some of the characteristics of an inhomogeneous system.

Fig. 7 shows the idealized behavior of homogeneous and inhomogeneous systcrns as

a function of microwave power. At very low levels, the increase in signal amplitude

is approximately linear with power. As the microwave power is further increased the

r.f. induced transitions begin to catch up with the therrr~l relaxation processes.

Saturation begins to set in as the spin system departs from thermal equilibriwnj

the energy levels are becoming more and more equally populated. The saturation

behavior of the homogeneous and inhornogeneous systems is distinctly different.

In addition, the line width of the inhomogeneous system remains constant as the

microwave power is increased, whereas the homogeneous system broadens. For example,

the width of an homogeneous Lorentzian line (between points of maximum slope)

increases as

T -1 (1 + 1/4 -I2H 2T T )1/2
2 '1 112 •

Now, although each narrO'Vl line making up the envelope follows homogeneous

behavior, the envelope as a whole does not; the broadening of anyone component

line is small compared to the width of the envelope; each individual component

saturates in approximately the .same way so the shape of the envelope does not change.

Exchange Narrowing. This may be thought of as resulting from the actual physical

exchange of unpaired electrons among different magnetic envirorunents in the sample.

As the exchange becomes rapid, the electron will see an effective magnetic field

which is some average of the local fields of the various sites. Because of the

averaging effect resolved structure will collapse, with a single narrowed line

resulting from SUfficiently rapid exchange. The single line tends toward

Lorentzian in shape.

Two cases will be mentioned. 1) The unpaired electron is exchanging with other
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unpaired electrons. lu'tei' each c)~cllnnge a particular electron is still unpaired.

The different local environments then result frou different nuclear coni'icurations

(the nuclear configuration is I1constantl1 as compared with electron relaJcation

times). 2) A particular unpaired electron becomes paired after an exchange. This

case is well illustrated in Fig. 8. In the top picture each fluoranil has reacted

-4 )to becoule a senriquinone radical (at 10 ~ concentration, in the middle picture

only 1 in 20 fluoranils has become a radical, while at the bottorn only 1 in 180

has reacted to become a semiquinone radical. The effect of exchange between the

fluoranil semiquinone radical and the unracted fluoranil is clear.

g-Value Anisotropy. As noted above, the factor g appearing in the reson~nce

equation represents the effective size of the magnetic moment being acted upon by

the magnetic field. In crystal atructm'es of less than cubic synwetry, the value of

g can vary as the direction of the magnetic field is varied with respect to the

crystal. "lhy this is so will be mentioned briefly below. 'Ele point we wish to make

here is that in amorphous or polycrystalline materials an anisotropic g-value can

produce quite broad as~mnetric absorptions.

As an example of such an effect we can take the resonance of the copper in the

protein complex ceruloplasmin (Fig. 9). The extremes in g-value are probably

associated with the asymmetry of the molecular field around the copper. In a

polycrystalline material there will be contributions from all g-values between

extremes. Assuming tetragonal s~nmetry (8), the probability of H being parallel to

the s~runetry plane is twice that of its being perpendicular to this plane.

The parallel configurations will therefore contribute more to the resonance

absorption, and it becomes asymmetric. The spectrum resembles that of a frozen

solution the copper-histidine cor~lex.

This broadening mechanism differs from the others discussed in that its effect

is directly proportional to the applied field. Working in two different applied

fields will distinguish this type of as~r@etry from other possibilities.
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-4Fig. 8. The effect of electron exchange on the cpr spectrum of 10 molar fluoranil

semiquinone in 9CJfo tetrahydrofuran -lC~/u acetonitrile. 'l'he upcctra WC1'e

produced by reacting 0.005 molar Nal ,lith 0.00:; (topL 0.100 (middle) and.

0.900 (bottom) molar fluoranil at -'(5°C. The Beale IIIHcnltude of one gauss

is indicated. (7)
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Cu++· Frozen,
Solution of
Ceruloplasmin

[Malmstrom and
Vonngard]

..
Fig • ++ . 09. The epr spectrum of Cu in frozen solid ceruloplasnlln. T = 77 K.

Magnetic field increases from left to right. (After 8)
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Lifetime BroadeninG (Relaxation BroadeninG). As thE:: lifetime, T
l

, of a spin state

becomes very short, the enerc;y of that state should, according to the uncertainty

principle, become correspondingly uncertain. In the extreme of very short T1's

(
-11 ) .

I"oJ 10 sec the resonance may go unobserved because of its width. '11he reulcdy

in this situation is to lengthen T
l

, usually by lowering the temperature. Althou~l

this effect can be important for conduction electrons, and for transition metal

ions under certain circumstances, it is not generally important for free radicals.

E. g-Values.

Whether or not structure is resolved one can measure the g-value for the resonance.

EA~erimentally this requires measuring, sinmltaneously, the strength of the

magnetic field at .Thieh resonance occurs and the frequency of the microwave source.

The value of g differs from the "free spin" value (2.0023) because the electroni('

state has some degree of orbital angular rnomentum associated with it. The electron,

as a magnetic moment, interacts with the 111agnetic i'ield produced by the electron,

as an electric charge, moving in an orbit. This interaction is called the spin-

orbit interaction, and it is characterized by the relation

f( .... -= A. L·Sso

where L is the orbital-angular momentum quantum number, and A. is the spin-orbit

coupling constant. This perturbation mixes states of higher energy and perhaps diff-

erent symmetry properties with the ground state. When the Zeenlan energy levels

are calculated using the new (admixed) wave functions it is found that their

separation has been altered by the perturbation. AlSO, their separation may be

anisotropic with respect to the magnetic field direction because the perturbation

has mixed in states of different symmetry. The effect, from the point of view of

the resonance experiment, is to shift the g-value. The magnitude of the shift in

g-value (from 2.0023) may be roughly approximated as I~€d'"~ where ~ is the

energy separation between the ground and the i'irBt excited state.



methode, has l>_ ~J1 (lull.: to l:staiJlish SOLll.' correlation bc:t,\-lcc:Q G-valuc and uolccular

structure or chemical Gubstitucnts on a c;iven stru2tu:cC. Some of his results are

shown in Fie. 10•.Most laboratories are not equipped Cor such refined 11leasurcllK:nts.

Values of 16g\ as high as 2 or il_ have been observed in transition lnetal ions.

(10, 11, 12) For a particular ion /6gl will depend very strongly on the strength

of the molecular or crystal fields, and on the syrnmetry of the site.

g-¥J.lues as aids to identification can be useful if they are supported with

independent data. This data could be in the form of spectrophotometric observation~>,

chemical analyses, etc.

F. Thermal Relaxation.

The concept of thermal relaxation processes has been mentioned several times.

Any process which changes magnetic to thermal lattice energy is such a process.

A time characteristic of such a process can be defined in the following way. A

spin system with a lmique temperature Ts is not in thermal equilibrium with the

lattice at temperature T
L

«( T
s
)' At a certain time the perturbation keeping the

spin system at T is removed. The spin system then returns to thermal equilibrium
s

(i.e., to the lattice temperature) according to the expression exp (-t/Tl )· Tl

is the spin-lattice relaxation time. This time is characteristic of the environment

of the spin system, and will limit its rate of absorption of microwave power.

Tl rnay be measured by continuous or transient methods. The amplitude of the

resonance signal as a function of applied microwave power can be determined. As

noted in Fig. 7, the shape of this curve is dependent upon whether the spin system

is homogeneous or inhomogeneous. But given the type of system, the shape of the

2curve is determined by the n~gnitude of the product H
l

TI T2 . Tl can thus be

determined ii' T
2

and Hl are known. (13) The transient method n~kes more direct

use of the above definition of Tl • In this method the spectrometer is adjusted
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Fig. 10. g-Value as a :functLDn of the mUilbcr of' aromatic rinGS for GOHle

substituted bc;l1zoscraiquinones. (After 9)
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so that the amplitude of the resonance line is continuously observed. A short,

intense burst of micl'ol1avc pO\ler drives the system from equilibrium. The return to

equilibrilun is followed. Sec Fig. 11. (14)

G. Miscellaneous Measurements.

Even though a resonance line displays no resolved structure, there is one

technique available for deciding which nucleii are coupled to the resonating

electrons. The line must be inhomogeneously broadened in the sense that it is

made up of unresolved components, and the relaxation times must be long. The

technique, called "electron-nuclear double resonance" (ENDOH), is due to

Feher (15) and is depicted in Fig. 12 for S = 1/2, I = 1/2.

As in the transient determination of T
l

, the spectrometer is adjusted so that

the electron spin resonance amplitude is continuously observed. This resonance

is partially saturated. Then, while observing the amplitude of the electron

resonance a second high frequency magnetic field is applied to the sample. This

frequency is in the range of nuclear transitions (0 -+ 100 mc/s). Assume that while

this frequency is being swept, one passes through the resonance of a nucleus
.......

coupled to the electron via the contact interaction, A I·S. Inducing the nuclear

transitions changes the population of the correspondinG electronic levels. The

latter change is reflected in the resonance amplitude being dbserved. ENDOR effects

will be observed when

The ± sign comes frorn the fact that the top and bottom electronic levels are

not split quite equally by the nucleii. ThUS, one is able to solve for both A

and rlI . "Ir identifies the nucleus since in the absence of the unpaired electron

the nucleus would resonate at frequency h YI = rlrHz ·

An exmnple of the ENDOR technique is shown in Fig. 13 for phosphorus impurities

in silicon. ,)I for p3
1

at about 3000 gauss is N6 mc/s. Approximately twice this

frequency is indeed the separation of the resonance peaks in Fig. 13a.
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1 T1 for Ce 3+

T= 1.75°K

[Liefson and Jeffries]

II

X

~ 5 milliseconds

Fig. 11. Determinaticm ot' T1 using transient methods. Oscilloscope trace of re­

+++
covery of Ce absorption line follOioring a saturating pulse of microvrave

power. (After 14)
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Inhomogeneous
Broadening

[Feher]

Fig. 12. Characteristics of an inhorllogcneously broadened line. At left: the observed

electron spin resonance line shape. One obser-.es the envelope of many

narrow resonance lines, each wit.h slightly different resonant frequency, W ..
"

At right: the energy level syr~te!fl 'Hhich produces the observed resonance.

Double resonance I'f~:cts are observc'l in the clCt~ l:.ron re"onance (!\IllS';:; L\rll
j

.;:; ± 1) when Lht.; ilucl,-~ar tl'Hnsi tiOdr; (!\I'lr c:: .1. 1) al"'~ induc(;d. (After IE)
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p31

Near 51 29

Distant
51 29

Fig. 13. Variation of the amplitude of the epr of phosphorus impurities in

silicon as a function of the frequency of the "nuclear-transition" rf

field. (After 15)
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LonG-liveci triplet states have beell obscrvl:d usinG epr t,(.::chniqu~;s. 'l'he;c;,.::

states were first observed (17) using magnetically dilutc, sincle crystals of

naphthalene in durene. The transitions observed in the single crystal are

depicted by the dashed lines in Fig. 14. Recently, van del' Waals and de Groot

(18,19) have discovered that the 6ms := ± 2 triplet transitions can be observed.

in glasses containing the excited molecules. This may make this technique

applicable to biological samples in certain instances, although it shoua be noted

that the probability of this transition is an order of n~gnitude less than.6m :=s

± 1. The.6m := ± 2 transitions observed in naphthalene-durene crystals are also
s

shown in Fig. 14, as well as the f!.nisotropy of the energy level system as H is

varied with respect to the naphthalene molecule. The ~a := ± 2, g := 4 resonancess

observed in naphthalene containing glasses are s,hown in Fig. 15. The.6m := ± 2s

transitions are allowed for Hl both parallel anJ perpendicular to Hz.

H. Control of External E'actors.

Most of the parameters mentioned can also be determined as functions of the

physico-chemical and "biological" environments of the sample. In fact, it is

from such functional dependences that most can be learned. r~ny variables

irmnediately come to mind. Temperature, wavelength of' light (in photo stUdies),

ambient atmosphere, etc., would fall under the first category. Working with such

things as mutants, selective extractions and simplified systems, selective

inhibitors, etc., would fall in the second.

III. BIOLOGICAL APPLICATIONS •

We have listed the parameters characteristic of a resonating electron system.

We now ask to what degree these measurements have been applied to biological systems,

and where applied, to what extent they have helped to resolve problems. It will

become irmnediately obvious that at this stage of their application to biological

systems these measurements of resonance parameters, in and of themselves} are

relatively impotent in solving major biolOGical problems. They do} indeed, supply
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Fig. 14. Relative energies of the conwonents of the lowest triplet state of

naphthalene as a function of magnetic field. Heavy lines: magnetic field

along x axis. Thin lines: Magnetic field along z axis. The dashed tran-

sitions indicate those observed by Hutchinson and Mangunl (17). Solid

transitions observed by van der Waals and de Groot (18). (After 18)
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Fig. 15. The epr spectra of 6ms = ± 2 transitions of naphthalene in a rigid

glass. (a) Hl parallel to Hz· (b) Hl perpendicular to Hz. T =77°K.

(After 19)
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much new and unique data, but these must be supported by many kinds of phyc;ico-

chemical-biological information before they can be made meaningful in bioloGical

terms. This situation will change. As specific radical sites are identified, and

specific reaction mechanisms are proposed, the strictly physical parameters ai' the

resonance will become more unportant in deciding between possibilities. Thus, while

the first reported applications of epr techniques to biological systems dealt with

essentially whole systems (20,21,22), the emphasis of late has been toward the

simpler, better defined systems. Our review of applications will start with these and

proceed to the more complex or whole systems.

A. Simplified Systems.

Many molecules of basic biological interest have been investigated using epr

techniques •.Some of these have already been mentioned in Section II as examples
. +t-

of what one observes. The spectrum of Mn ion (Fig. 4) is observed in some biological

systems (see below). The metallo-derivatives of the widely distributed porphyrin

(and the related phthalocyanine) type structure are being studied (Fig. 6) (6, 10).

A large number of the simpler sernd-quinone type radicals have been observed

as intermediates in oxidation-reduction equilibria (5, 23). Blois et ale (9) have

recorded the g-values of many of these. One example was given in Section II for

halogen substituted para-benzoquinones (Fig~ 5). Another is given in Fig. 16, for the

semiquinone of coenzYmeQ. The distribution of the unpaired electron on the

molecule is uniquely determined by the resolved structure of the resonance. The

resonance of Fig. 16 is, of course, for coenzyme Q semiquinone radical in solution.

The resonance of the same radical in a solid would lose much of its detail.

An example of what one usually encounters, a radical situated in a solid structure,

is given in Fig. 17, (25), the bottom curve. The solid here is multi-crystalline

choline chloride, a compound of great biological interest. Radicals were introduced

into the solid by irradiation with 4.5 -mev electrons, and a peculiar solid state
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The •.•• r .•pectrum and line a••ignment for
the .•eJD1quiaone tree :radical of Coenzyme Q10

Fig. 16. The epr spectrwll and line assignment of the semiquinone free radical

of coenzyme Q10' (Arter 24)



...

-}s-

ESR SPECTRA OF IRRADIATED CHOLINE CHLORIDE

AND ITS DEUTERATED ANALOGS

Fig. 17. The epr spectra of irradiated choline chloride and its deuterated

analogs. Polycrystalline material: !~.5 mev electron irradiation. (After 25)
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radical reaction \"a''; observed. \1i th incomplete resolution of the resonance

structure identification of the radical environment becomes considerably more

difficult. 'l'he cpr technique must be supplemented.. On the basis of' the results

obtainedL'rom selective deuteration of the solid (top three curves of Fig. 17),

it was concluded that the radical was associated with the structure: CH,_, .CH20H.
c

Wertz et al. (26) have also used deuteriwn substitutions to aid in identification

of the radical intermediates of the auto-oxidation of' 3,4-dihydroxyphenylalanine.

B. Intermediate Systems.

Nucleic Acids. Broad, intense resonance absorptions have been observed in

nucleic acid-albumin systems (27, 28, 29). Under the correct conditions of' pH,

ionic strength, and protein content, energy absorption occurs at all fields

between zero and 6000 gauss (with g = 2 at /IV 3300 g), Fig. 18. Recently,

essentially the same type of epr spectra have been obtained using 1"e3+ treated

resins (Fig. 19) (30). From estimates of' the area under these absorption curves

the spin concentration is estimated to be 10
2°-. 10

21
spins/gram. In arriving at

this nwnber it was assumed that the energy is absorbed by a system of uncoupled

electrons (S = 1/2). Bliwninfel1d et al. (29) have reported that for the nucleic

acids, the resonance absorption suddenly and completely disappears when the

temperature is reduced below 80 to 1000K. Blois (31) could not bring this effect about

by lowering the temperature of' a sample of DNA to 77°K. Such a temperature dependence,

if' it really exists, is common to materials known as anti-ferromagnetics. The

presence df coupled spin systems in such materials would have several implications

(32). The estimate of the spin concentration could be one or more orders of

magnitude too high. This results from the fact that the distribution of the spin

population among the various roognetic levels is no longer set by the Boltzmann

factor (as was assumed in deriving the expression relating area under absorption

curve to spin concentration), but by the enerls')' of the magnetic interaction, as in
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ferrO!llugnetics. The elements of the coupled system are probably transition

metal ions (as impurities or normal constituent elements), as these are

involved in all known cases of coupled systems. Their concentration is sufficient

to explain the results in all cases if a coupled spin system is allowed (32).

Introducing the idea of coupled spin systems may explain the high spin concen-

trations reported, but it opens another question: i.e., what properties do the

nucleic acids have that promotes the coupling of the transition metal ions at

such extreme dilutions?

Ionizing Radiations. A great deal of work is being done on the effects of

ionizing radiation on biological materials. These studies have been made on the

trapped radicals produced, so solid or highly viscuous sample materials are

generally used. This in turn n~kes identification of the radical site difficult.

The complexity of' the problem was realized early in these studies, so much of the

work that has been reported has been of a "cataloging" nature. This consists,

for example, of' studying the epr spectrum obtained from irradiation of each of

the constituent bases of the nucleic acids in preparation for studying the

irradiation of the whole molecule. An example of this approach, taken from the

extensive radiation damage studies of Gordy (33), is shown in Figs. 20, 21 and 22.

The sugar and base constituents of RNA and DNA, obtainable from the acids by

hydrolysis, are irradiated as evacuated dry pm-lders at room temperature. After

6
giving each constituent a radiation dose of approximately 5 x 10 Y' from a

k· '1 . C 60 _/ it d d 0.~ ocur~e 0 'J -ray source, s epr spectra were recor e . Fig. 2 shows the

results obtained from the pyrimidine base constituents, while Fig. 21 shows the

results obtained from the constituent sugars. rrhymine (5-methyl-uracil) and

5 methyl-cytosine exhibit markedly different spectra. The two rnolecules differ

only in the 4 position where thymine has an OH group while 5-methyl-cytosine has an

NH2 group. \>Then the cpr spectra of the ~- molecult.;~_; of Fig. ~~o are compared, it is



THYMINE

1- 68 9auss-l H~

[Shields and GOrdy]

Fig. 20. The epr spectra 1'or firradiated pyrimidine bases. The curves are

second derivatives of' the absorption curve. The bars represent

theoretically possible patterns for the fine structure. Irradiated at
6

room temperature as dry powders under vacuum. Dose = 5 x 10 Y' from a

kilocurie Co60 i-ray source. Epr ran on dry powders at room temperature.

(After 33)
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[Shields and Gordy]

Fig. 21. The epr spectra of oIirradiated d-2-deoxyribose and d-ribose.

Conditions as in Fig. 20. (After 33)



-45-

Ig=2.0036
DNA

c 68

H :>
[Shields and Gard y ]

'.
Fig. 22. The epr spectra of -!irradiated ENA and DNA. Conditions as in Fig. 20.

(After 33)
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11+seen that the presence.: of the methyl protons and the N on the 4 position of'

cytosine have marked effects on the results. In the sugar constituents (Fie;. 21)

the epr coupling seems to be predominately to a spin 2 system in one case and to 8

spin 1/2 system in the other. In none of these cases could a definite assignment

of' the radical site be made. After recording the epr spectra of the remaining

constituent bases, DNA and RNA are finally irradiated and their epr spectra

recorded. The resulting spectra (Fig. 22) can be identified with that of none

of the constituents. In shape they resemble cytosine most. Here, ho.,ever, there

is a discrepancy in g-value. ThUS, it is seldom, even in relatively simple

systems, that one identifies the molecular group upon .Thich the radical resides,

let alone its detailed environment in the group.

There is a quest running through the work involving ionizing radiation for

chemicals which will mitigate the biological effects of the radiation. As is

known, several such chemicals have been found, notably compounds containing

sulphur and some arnines (e. g. cystine, cysteamine). In an cpr experiment

the possibility for such protection is evidenced in two ways. 1) By the appearance

for example, of only the resonance of' irradiated cystine in the epr spectra

of complex structures containing cystine as only one of many possible radical

sites. 2) By the partial prevention of radical formation (Le. a decrease in

epr amplitude in cases where the protective agent has been added). Apparently,

the sulphur group is able to absorb the energy of the ionizing radiation,

leaving the biological function of the protein or other pol~ner uniD~aired.

It has generally been concluded that the energy of the incident radiation

is chemically transferred (involving the making and breaking of bonds) to the

S group. (34, 35) The protective effect of cysteamine on bovine serwn albumin

exposed to 'lrays at liquid nitrogen temperature (Fig. 23) (34) seems to indicate

that the energy alone is transferred. In this systcm lh,', SH groups are not

reacting in an ordinary chclnical manner, i. e. by nuclear migration., because of

the low temperature.
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" Fig. 23. The cpr spectra of {irradiated "protected" and "unprotected" bovine

serum albumin. Dose ::;; 5 1-1 rads at 750 Kro.ds/hr. (After 3lt)
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Visible RacUut:i.cm. Visible light quanta arc sufficiently energetic to produce

unpaired electrons in SCllllC systems. He refer, of course, to systems related to

photosynthesis. Several studies have been Hade on relatively simple systems,

involving pigwent Llolecules active in photosynthesis.

Terenin and Holmogorov, in a recent study on llcrystallinell chlorophyll (a + b)

in vacuo (36) have observed two overlapping resonance curves (Fig. 24). One

(g -- 2.0035, half width = 11 g) (110.
11 in Fig. 24), is ahmys present. The second

(g = 2.0030, half 1-1idth = 7 g) is li311t induced in the presence of an electron

acceptor. Hater vapor (at 18 rnm Hg pressure) and p-benzoquinone molecules

(at 2 x 10-
2 mm Hg) are both effective as acceptors, although the rise and

decay kinetics of the quinanc induced photo signal are much the slower of the

hlO cases.

A dependence of' epr signal on the presence of H
2

0 has been observed by

Anderson (37) in an acetone extract of spinach chloroplasts. The extract was

evaporated to dryness and tested (in ~) for the presence of a photo induced

epr signaL No signal ( either in the d.ark or light) was observed. However,

v,hen water vapor vTaS adlflitted to the system narrov' (I"V 4 gauss wide) photo

induced signals were observed, whose rise and decay times were much shorter than

those reported by Terenin. These short times seem to be dependent upon the

presence of as yet unkno....m components. The amplitude 01' the signal induced as

a function of the amount ot water present (Fig. 25). If these observations

survive more detailed investigation, and do indeed correspond to a photo-electron

transfer between water and chlorophyll, they TIlay point the way to an understanding

of the more complex systems we will discuss later.

Krasnovskii, ct a1. (38) have thoroughly studied the photo oxidation of

ascorbic acid in pyridine solution, using chlorophyll as a sensitizer. The cpr

observation is on a free radical form of o~:idized ascorbic acid. This radical
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Crysta II ine Chlorophyl' (a +b)
H20 pressure = 18 mm Hg

[HoI mogorov and Terenin]

Fi,~. 2 J+. Light induced cpr in lcrystallJ.ne" chlorophyll (8 + b) in~

in the prcfJence 01' "later vapor. (8.) dark, (b) response to lir)1t,

(c) superililposed d.ar!\. and light signals. (After 36)
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produced a resonance which is a doublet with separation 1.8 gauss at g = 2.004.

(This resonance will be discussed further in connection with photo induced epr

signals in whole photosynthetic systems).

Enzymatic Oxidation-Reduction. Enzymatic oxidation-reduction reactions have

been followed in relatively simple systems. System simplicity is an important

factor in identifying radical species. Free radical intermediates specifically

identified with the substrate as well as the participation of transition metal

ions in these reactions have been reported.

Yamazaki, Mason and Piette (39) have identified the free radical intermediates

observed in a peroxidase system, as being the radical form of the substrate

itself (ascorbic acid). This they did by independently forming the substrate

radical. The kinetics of radical formation and decay were followed, using a stop-

(
-2 -2flow system which mixed their reacting substances 10 M ascorbic acid, 10 M

H202 , and 2 x 10-7 M peroxidase), and ~mmediately injected them into the epr

cavity. The spectrometer had been previously adjusted to observe the amplitUde

of the radical resonance as it formed and decayed. Thus, a continuous record of

radical concentration is made. SOlne of their results are reproduced in Fig. 26.

The radical concentration in the cavity rises in less than 0.010 sec. to "J10-
6

Mil, then decays, apparently in two steps.

A simplified dehydrogenase system has been ernployed by King, Howard and l~son

(40). This consisted of a soluble succinic dehydrogenase in combination with various

substrate concentrations. Their reaction components were combined at room temp-

erature, and their epr spectra were taken at 77°K (Fig. 27). By observing the peak

an~litude ratios as eA~erimental conditions were varied, they were able to show

that the signals observed at g = 2.01 and g = 1.94 were due to one magnetic

species, while the resonance observed at g = 2.00 was due to another. The

resonance structure shown in Fig. 27 is quite 5J.milar to one observed by Beinert and
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Decay of Ascorbic Acid Free Radical

[Yamazaki t Mason, and Piette]

Fig. 26. Decay kinetics of ascorbic acid free radical. The ascorbic acid, H202,

peroxidase mixture is injected into the cavity at the sharp drop in the

curve on the left. Time progresses toward the right. (After 39)
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SOLUBLE SOH, 77°K

(King, Howard and Mason)

Fig. 27. The epr spectruul of soluble succinic dehydrogenase at 77°K. Conditions:

2.6 mg protein in 0.1 M phosphate buffer pH = 7.8: 5.8 x 10-2 M

succinate: sample volume = 0.2 rnl. (After 40)
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Lee in a more complicated system (sec be10\" ). Bcinert and Lee attribute the

t 1 -J 0 0"1 t I' ++resonance a- g = ."::)~, c':. , ole .

Hcsonance absorption from transition metal ions has been reported in several

enzyrlJatic redo~( reactions; Beinert and Sands (41, )+2) and Beinert and Lee (43)

report Fe++ at g = 1.94, F'e+++ at g = 4.3, and Cu++ at g = 2.04 in theil'

dehydrogenase systems (see below). Vanngard et al. (~-4) give g = 1.971 for M03+

or M0 5+ in an xanthine oxidase system. This resonance is relatively symmetric

and 25 g wide, while that reported for Cu++ is very asyrmnetric and several hundred

gauss wide (see Figs. 9 and 28). The identification of these transition metal

ions as reactants in enzYI1Jatic redox reactions is not really on firm ground.

Analogies have been drawn from spectrophotometric studies of the same systems,

known resonance g-values in related cODwounds, or merely the known concentrations

of transition metals present. As remarked in Section II, the g-values and g-value

asymmetries will be strongly dependent on the particular local environment

for a particular oxidation state of an ion. Iron in acidic ferrimyoglobin

resonates at g = 6 when the external magnetic field is in the plane of the heme

(11) .

C. Biological Systems.

Enzymatic Oxidation Heduction. Beinert and Sands (41, 42) and Beinert and Lee

(43) have investigated the enzymatic redox reactions associated with the

mitochondrial electron transport system. Their systems have involved homogenates,

mitochondrial, and submitochondrial preparations of beef heart. These studies

have shown that changes of oxidation level of transition metal ions, as well as

free radical intermediates, are involved. An example of their results is given

in Fig. 28. To a snwll amount of submitochondrial particles from beef heart

they added micromolar amounts of DPN}{ or succinate (A and B, respectively, in Fig.

28). These were allowed to reduce substrate at OOC. for the periods of time

indicated in the figure. At that point, chemical reactivity was stopped by
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B

[Beinert and LeeJ

-100 gauss

-H

-100 gauss

3'

A

Flg. i.?8. The epr spectra of submitoehondrial particles of beef heart as a

function of the time enzYUlatic reduction by DPNH (A) and succinate (B)

is allowed to c:ontinue at aOe. Spectra ta1i"(~n at -178°e. (After 43)
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Fig. ;?8 ,.,ere then l'(;coro.Cd.. The kinetics of the various ccmcentratiol1s 0,.' liJacnetic

. . "t' 1 . A C ++ d' t'" 1 " 1specles lS qUl e UiVO veu. u reSonance lsappcars as a . ree rau.lca ~nbna

appears and disappears while, finally an Fe++ resonance grows in. The bottoliJ curve

in either case is similar to the spectrum obtained by King, Hmmrd and Mason

(Fig. 27) in a siuwler system.

Ionizing Radiation. In the epr observations of the effects of ionizing radiation

on essentially complete biological systems, there are few regularities. One

regularity is the frequent appearance of the epr spectrwu of irradiated cystine

as the total epr spectra of' irradiated naturally occurring proteinaceous materials

(45, 46). As discussed above, cystine is a compound which "protects" biological

materials against ionizing radiation. The observed resonance is about 140 gauss

wide, quite asyn@etric, and appears near g = 2.00. Another regularity which

occurs in the epr irradiation studies is the frequent appearance, as the total

observed spectrum, of' a symmetric doublet ,dth splitting of' 12 gauss and

essentially the free electron g-value (1~5). This is attributed to an unpaired

electron on an oxygen atom interacting with a hydrOGen bonding proton on the

adjacent polypeptide chain. The interaction is dipole-dipole. Thus oxygen can

also act to accept ionization energy.

Visible Radiation (Photosynthesis). The ionization studies might be said to

be suffering from too much detail - every system gives different un-interpretable

results. On the other lland, the application of epr to photosynthetic systems

could be said to be suffering from dearth of detaiL Almost every system invest-

igated yields a niggardly, rather narrow, single absorption line. (More recently

two overlapping resonances have been observed in some systems. Others yield,

still, the single line.) ThUS, all conceivable tricl~s are being used to elucidate

the nature of' the radicals obs(~rved in photosynthetic systems.
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Resolved fine struc:turc has only seldolil been reported in photosynthetic

materials. Krasllovskii et a1. (38) report a photo induced electron spin resonance

doublet in photosynthetic material. Their results are reproduced in Fig. 29.

The g-value for the resonance is 2.004 and the line splitting .is 1.8 gauss.

Using model photochemical reactions as a basis for reasoning, this group has

attributed the photo induced. doublet in the photosynthetic system to an oxidized

form of ascorbic acid (see above). Commoner et al. (21, 47) have also reported

a partially resolved structure in chloroplasts and Chlorella. This resonance is

photo induced but decays away very slowly. It has a g-value of 2.005 and consists

of 5 lines each separated by 6 gauss.

Another resonance with easily resolved structure which is observed in

chloroplasts, some green algae and bacterial spores, is that of Mn++. This

resonance does not appear to be photosensitive. As shown in Fig. 4, the

++structure consists of 6 lines. The Mn concentration in these samples is as

-6 -5high as 10 to 10 molar.

Many people have resolved structure in photosynthetic systems in the sense

that two distinct overlapping resonance lines have been resolved. (48, 49)

One of these has already been mentioned, namely, the slow decaying signal with

sorne structure, observed at g = 2.005. The second resonance (also photo induced

with fast rise and decay times) is narrow (~ 10 gauss wide) and has a g-value of

2.002. To resolve these signals small modulation amplitudes and high instrun~nt

sensitivity are required. Under conditions in which the two resonances are

easily resolved in green algae, there is still only one narrow line resolved

in the photosynthetic red bacteria RhodospirillwQ rubrwn.

The derivative of this single line is shown in Fig. 30. This resonance

may be classified as inhomogeneous. Its width does not change as a function

of' microvT8ve power incident on the sample. It saturates approximately as does
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10 oersteds
t ,

I) Triticum vulgare

2) Hordeum vulgare
Room Temperature

[Krasnovskii, et all

Fig. 29. 'I'he epr spectra of illuminated cereal leaves. rrhcse signals are

presumed by the authors (38) to be due to ascorbic acid free radical.
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RHODOSPIRILLUM RUBRUM- AQUEOUS SUSPENSION

LINE WIDTH (P-P) = 11.2 9 I MOD. AMP. = 0.6 9

•
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0--- LORENTZ IAN
H
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ASSYMMETRY

L/H = 0.90

-

Fig. 30. Line shape analysis of' the epr spectrum of Rhodospirillurn rubrum
'.

in aqueous suspension at room temperature.
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the signal in Hhodopseudomonas spheroi-des (upper curve in Fig. 33). From the

latter figm'c we see that its saturation characteristics are not ideally

inhomogeneous (see Fig. 7). In F'ig. 30 vle see that its shape is more nearly

Gaussian than Lorentzian (disregarding the slight asyrnmetry that is observed).

When these facts are taken in conjunction with the ternperature dependence of the

an~litude, and decay time (Fig. 31), it must be concluded that the observed

resonance is still an envelope containing several narrower lines arising frorn

quite different electrons.

Recently we have been working with chromatophores from the red photosynthetic

bacteria Rhodospirillum rubrwn. These are small spherical particles approximately

200 Rin diameter, and containing all of the light absorbing pigments of the

whole bacteria. These particles will perfornl cyclic photophosphorylation reactions.

The sample of chromatophores is suspended in an appropriately buffered aqueous

medium (50, 51). Photo induced resonance absorptions are observed. In g-value,

width, and shape these signals seem to be the same as observed in the w1101e bacteria

(see Fig. 30). The rise and decay times of the signal are somewhat altered as

might be expected when the terminations of the energy transfer system have been

ren~ved. In particular, at room temperature the decay scheme contains a fast and

a slow component, whereas the whole cell in aqeuous suspension has only a single

fast component.

Where the spin concentration is photo induced it is of some interest to

determine the action spectrum of the equilibrium spin concentration as a function

of the wavelength of the incident light. In previous attempts to obtain such a

spectrwn (52) the sample has been infinitely thick compared to the distance the

active light penetrates into the sample. Self-absorption effects were pronolIDced,

shifting the maximrun of the action spectrum to the long wavelength side of the

chlorophyll absorption maximwn. The chromatophore sample used here was only

slightly colored to the eye (the O.D. recorded in Fig. 32 represents a sample of
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Fig. 31. Shape, amplitude, and rise and decay kinetics of the epr signal in Rhodospirillurn rubrwn as a function of
terr~erature. Dried film.
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Fig. 32. Action spectrum of Rhodosp1tillum rubrmn chrorootophores.
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POWER SATURATION OF RHOOOPSEUOOMONAS SPHERalJES
(DRIED FILMS)

• WILD
(i)....

~Z 5-:::>
S
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w
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E O.....--~--...,I.....---~--~~--~~.6 .8 1.0 Po
FRACTIONAL MICROWAVE POWER

Fig. 33· Power saturation of the epr in the wild and a mutant type of

Rhodopseudomonas spheroides. Dried films at room temperature.
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the same thickness) but a factor of 3.3 greater in concentration than those

used in the spin determination). As is seen in }'i[;;. 32) the action spectrnffi

now peaks at the absorption maximum of the bacterial-chlorophyll. This spectrum

probably still suffers somewhat from self-absorption effects, but is nearer

the true situation. It is evident that bacterial chlorophyll is the principle

pigment responsible for spin production.

No accurate absolute T
l

measurements have as yet been made on radicals

appearing in biological systems. In photosynthetic systems they appear to be on

-6the order of 10 seconds at room temperature. Some relative T
l

measurements

have been made. Allen, et ~. (48) report that, of the two overlapping photo

induced resonances observed in chloroplasts and green algae, the narrow

(fast rising and decaying)' one saturates more easily.

In our laboratory we have studied the red. bacteria Rhodopseudomonas spheroides

and a blue green mutant of this bacteria which lacked the carotenoid pigments.

(53) One difference in behavior which was noted was the way in which the two

resonances saturated. This is shown in Fig. 33. The wild type seems to

saturate more like an inhomogeneously broadened system than does the mutant,

and to have a somewhat shorter relaxation time. Tbe physical parameters of the

two resonances were otherwise the same. This would suggest that the mutant

has fewer varieties of unpaired electrons participating in the productiop of

this signal.

Deuteration has been used in one experiment involving photosynthetic

systems. Commoner (47) reports epr observations on Chlorella cultured in

99.9% D20 growth medium by Katz. (54) Both resonances observed in Chlorella

were significantly narrowed by the substitution of D for H.

Mutants occasionally supply unique opportunities for insight into the

mechanisms of radical formation in photosynthetic systems. Allen .::! al. (4[\)
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have observed two overlapping resonance lines in several green algae. Some of

their results for ~~loi:clla are reproduced in Fig. 34. 'Jlhe dependence of' the

relative signal ahwlitude on the wavelength of the light incident on the sample

made it probable that the two resonance lines were resulting from the absorption

of light by two different pigment systems. The pigment system absorbing the light

which was producing the broader resonance was implicated with chlorophyll b

by using a Chlorella mutant in which this pigment was absent. In this latter

case the broad resonance failed to appear.

In what has been said concerning the formation of unpaired electrons in

photosynthetic systems, the question of their role in quantum conversion has

not been raised. No one has yet shovn that they play any significant role in

natural photosynthesis. It has been shown -(20) that etiolated leaves fail

to show photo induced spins. We have atternpted to inquire further into the

possible role of the radical in photosynthesis using a yellow (chlorophyll-less)

*mutant of Chlamydomonas •

* Supplied by Dr. Ruth Sager.

In this experiment 6 flasks of cell cultures were grown anaerobically in the

dark until the total cell volume per flask was sufficient for the needs of the

experiment. When this condition was fulfilled all 6 flasks ~ere exposed to

uniform illumination. At this time the total chlorophyll content of the cells

was very low. On being exposed to light, though, the cells start to revert,

regaining their total chlorophyll compliment in 15 hours. One flask of cells was

harvested irmnediately after exposure to light. The others were harvested at

intervals of 3 hours thereafter. The uniform illumination in which the cell

cultures were reverting ('V 700 foot candles) was approximately 5 to 10 times

smaller than the illumination to which they were exposed in thE: later parts of
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CHLORELLA PYRENO/OOSA

(Allen, Piette and Murchiol

Fig. 34. Light induced epr signals in Chlorella pyrenoidosa at two different

wavelengths of illillnination. (After 48)
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the expe:cl.1IK:nt. 'I'1112 lntel' l'arts consist,cd of' several independ.E:dt i,k.:asun::'i,cntu,

as follows. On each cell [-;ample, a chlorophyll content, an 02 evolution rate,

a CO
2

fixation rate, and an equilibrium cpr signal amplitude (using vlhHe Hurt

in each case) ,,,ere d.etermined. The 02 evolution and CO2 fixation experiments

were performed on very dilute suspensions so that variation in observed. rates can

be attributed to physiological changes in the cell, and not to the shielding

effects of an optically dense suspension. The epr experiments were performed on

very dense aqueous suspensions so that, excepting possibly the first one or two

measurements at zero time and at 3 hours, all of the light is absorbed by the

sample. All of these measurements were normalized to the same volume of wet

packed cells.

results are plotted in Fig. 35. The equilibrium epr amplitude,

fixation, and the rate of 0 evolution are all normalized so
2

that the maximum value observed in each variable is equal to onl;. These are

plotted against chlorophyll (a + b) content, also normalized to one at maximum

value. The chlorophyll (a + b) concentration as a function of time is given in 'rable

III.

Table III

---_.._....._-_.-.__._...... ----_._..._--_._...__ .._-_....-._-_.-

Time (hours)

Relative chlorophyll
(a + b) concentration

o

0.05

3

a.oB

6

0.20

9

0.80

12

0.84

15

*1.00

* Corresponds to 2.7 lIlg chlorophyll (a -I- b)/rnl wet packed cells.

.. There are several clear results: 1) An epr signal grows in as the chlorophyll

content increases. 2) Tbe relationship between chlorophyll content and epr

amplitude is not linear, the larger part of the sienal amplitude growine with
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REVERSION OF CHLAMYOOMONAS MUTANT

10

-RELATIVE ESR SIGNAL
AMPLITUDE

/
~RELATIVE C~ FIXATION

/

•
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EVOLUTION _, , ,.

0',,,
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Fig. 35. The epr amplitude, 02 evolution rate, c14
02 fixation rate as a function

of chlorophyll (a + b) content during the reversion to wild type of a

yellow mutant of Chlarr~domonas reinhardi. The esr amplitude recorded

is the composite of two overlapping lines. These lines have been resolved

in older cultures, but instrument sensitivity has prevented our resolving

them during the reversion peridd. The observed line shape and the concen-

'.
tration ratio of chlorophyll a/chlorophyll b remain constant durinc;

the reversion.



the ls.st 20')" of the chlorophyll. synthesizeJ. 3) The rate Df 1'11fxto;;;/ir'Gh_E'.i,o) 0;'

measured by the rate of 00 evolutL)i1) and the rate of tunlOver of' the CUl'lJ'.)(l
"-

ll}
cycle, as lilcasured. by the rate of C 02 fixation) arc ina~:ilJjal long beforc thc

cpr amplitude starts its steepest rise:. These SUc;::::;cut that as the concentration of

light absorbing piGments passes a certain levt.~l) the cnerl.!,J' aOGorbin:.:; ability of tIle

pigwents is no loncer the lir;liting factor in the over-all reaction; SOlilC other

process becomes limiting. This may be represerrted schcIYlc'1tically as 1'01101'15:

h V -+ pigment --.~ A
system

'.

As the energy absorbing ability of the pifJuent system increases step A ......... B

(say) becomes limiting. rl.'his allows pools of A) e:tc.) and e~::::itcd pi31uent

molecules to build up. In this view the radicals would then be in any or all

of these pools.

The steepest rise of signal amplitude as the last chlorollhyll is synth(;sized

sUGgests also that the highest efficiency for spin production is dependent upon

the completion of some structural element containing chlorophyll.

Some of these unpaired electrons are formed in the li!Ylt and disappear in

the dark at rates which are only very slightly, if at all, dependent on the

temperature (Fig. 31). (55) We would suggest that these are the electrons

resulting frOln the initial quanttun conversion act. The unpairing and separation of

a pair of electrons into two separate sites in a process which is nearly

temperature independent constitutes the initial conversion into physical and chemical

potential energy. One of these unpaired electrons would reside in the pigment

system itself' (chlorophylls), the other ",auld be associated. ",ith one or another

of the several concomitant molecules (cytochrome, lnanganesc porphyrin) quinone,

disulfide} flaVin) in the photosynthetic apparatus. rrhc other pertinent evidence
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for this basic idea has been reviewed elsewhere (56) and includes direct

observation of such photo induced electron transfer from cytochrome as well as

photo induced electron transfer in donor-acceptor model systems (57).
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