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On the Initiation of High Explosives by Laser Radiation

A. M. Rubenchik

University of California
Lawrence Livermore National Laboratory

Livermore, CA 94551

The problem of laser initiation of high explosives in munitions is considered. In this 
situation, the laser illuminates a small spot on the casing, and lateral thermal transport 
affects the initiation temperature. We use a variational method to calculate the critical 
temperature for explosive initiation as a function the laser spot size, for common high 
explosives. The effect of the dwelling time of the irradiation is then evaluated. We 
demonstrate that in typical situations the critical temperature is determined by the 
dwelling time rather than by the laser spot size.
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1. Introduction

When a laser beam heats a munition, the high temperature produced by the laser 

can ignite the high explosive (HE) and destroy the munition, even before the beam 

penetrates the metal casing. Below we will estimate the temperature required to initiate 

the ignition.

When the explosive is heated, the internal temperature T is described by the heat 

conduction equation with a source term produced by the chemical reactions [1-5]:
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Here κ is the thermal conductivity of the HE, ρ the density, C the heat capacity, Q the 

heat of decomposition, E the activation energy, and Z the pre-exponential factor. For the 

common high explosives RDX and TNT, the values for these parameters are listed in 

Table 1.
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ρ, g/cm3 C, J/(g K) κ, W/(K cm) Q, kJ/g Z, 1/s E, eV
RDX 1.8 2.1 0.003 2.1 1018.5 2.07
TNT 1.6 2.1 0.00215 2.1 1012.2 1.89

Table 1. Parameters for RDX and TNT, from [3].

The initiation of HE surrounded by walls with fixed temperature T is a well-

known problem [1-3]. Below some critical temperature Tc, the volume heat production is 

compensated by the thermal flux through the walls. When the temperature becomes 

sufficiently high, thermal transport is unable to compensate for the energy production by 

chemical reactions, and a thermal explosion takes place. The critical temperature can be 

found as a maximal boundary temperature for which a stationary solution exists [1-3]. It 

is given by the solution of the equation
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Here a is the radius of the HE volume and δ is a geometrical factor. The latter parameter 

is 3.32 for a sphere, 2.0 for an infinite cylinder, and 0.88 for an infinite slab.

In typical cases, we have E>>Tc. Then with logarithmic accuracy, we can solve 

Eq. (1.2) explicitly for the critical temperature, obtaining
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Naturally, the critical temperature is minimal for a spherical volume and maximal for a 

slab, but the numerical difference is not large due to the weak dependence on the 

geometrical factor. Figure1 shows the critical temperatures of two types of HE, as 

calculated with Eq. (1.3) in cylindrical geometry.
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Fig. 1. Critical temperatures for cylindrical samples of RDX and TNT.

In the case of a laser-initiated explosion we have a different boundary condition, 

namely a hot spot with radius a on the boundary. The critical temperature will be 

determined as the temperature at which the steady state solution of (1.1) with proper 

boundary conditions exists. 

2. Critical Temperature for Laser Initiation

We must solve the steady state version of Eq. (1.1):

02 =+∇
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ρ .            (2.1)

The boundary condition on the metal/HE interface (z = 0) is

)/exp()()0,( 22
00 arTrTzrT −=≡= .                                  (2.2)
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We assume for simplicity a Gaussian temperature distribution on the spot. Since the 

thermal conductivity of the metal is very high in comparison with that of HE, within the 

metal we can ignore temperature gradients. From the conservation of thermal flux we 

have another boundary condition for Eq. (2.1):

0=
∂
∂

z
T ,                   (2.3)

at z=0. We can eliminate Eq. (2.3) by considering instead a semi-space solution in all 

space, symmetric with respect to the plane z = 0.

Following Frank-Kamenetskii [1], we will approximate the Arrhenius exponential 

function as a power law via

mT
E

cTe ≈
−

.

This approximation is sufficiently good over a given portion of the temperature interval. 

The constants c and m are found from the condition that both the functions and their 

derivatives are equal at T = T0. We have
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The equation for the dimensionless temperature 0/TTu = has the form

02 =+∇ mBuu ,                                                    (2.4)
where
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Equation (2.4) can be derived from a variational principle, in that it realizes the extrema 

of the functional
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The variational principle opens up the possibility of finding an approximate 

solution of (2.1). The accuracy of the method is difficult to estimate. In studies of 

nonlinear self-focusing, however, the method gives results of high accuracy [6,7].

Consider the trial function
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Using this trial function and integrating Eq. (2.5) over r we obtain
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The equation for the function g that realizes the extrema of H is given by
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We are looking for the even solution of this equation subject to the condition 1=g at 

0=z . Equation (2.8) is similar to the equation describing the motion of a particle in a 

potential well, with the potential
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We are looking for a localized solution, which in terms the “potential well” description 

corresponds to zero energy. The solution has a soliton-like shape with maximum at z = 0. 

The maximum of the solution is determined by the condition 0)( =gU . On the other 

hand, at this point we have g=1. Therefore the criterion for a solution to exist is
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which determines the critical temperature for ignition. Returning to the natural variables 

and using 1/ >>= cTEm , we have
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One can see that the ignition temperature we thereby obtain is higher than that of (1.2), 

for which the HE is completely surrounded by a heated wall. This result is expected due 

to the larger role of thermal conduction in the present case.

In Fig.2 we show the ignition temperatures for RDX and TNT as a function of the 

laser spot diameter. The ignition temperatures for laser initiation are noticeably higher 

than for thermal initiation. 

3. Nonstationary effects

In practice, a laser heats the target for only a short time. As a result, the required 

initiation temperature increases relative to the quasi-stationary situation treated above. In 

this situation, the ignition time can be much longer than the laser dwelling time. To ignite 

the reaction one must not only spend energy to heat the HE up to the ignition temperature 

but also overcome the heat transport problem. To take the heat capacity into account, we 

will use a crude approximation as employed, for example, in the theory of gas discharges. 

We will replace the time derivative in Eq. (1.1) by a term of the form T/τ. This model is 

reasonable because in typical situations we deal with a monotonic temperature increase 

characterized by a single temporal scaleτ . Instead of (1.1) we then have
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Fig. 2. Ignition temperature for RDX and TNT samples heated by a laser spot with 
diameter D.

where Ca ρτκτ /2 = .

This equation must be solved with the boundary conditions (2.2) and (2.3). As we 

found with Eq. (2.1), the Eq. (3.1) can be derived from a variational principle, which in 

this case realizes the extrema of the function
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Using the same trial functions as in the previous section, we obtain instead of (2.7):
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The subsequent calculations are similar to those presented above. We see that the 

nonstationary effects can be described by the formula (2.11), provided that the spot radius 

a is replaced by the effective spot radius aeff, defined by

ττ Daaaaeff 2
11

2
111

2222 +=+= ,   (3.4)

where CD ρκ /= is the thermal diffusivity of the HE.

One can see that nonstationary effects effectively decrease the spot size and 

increase the ignition temperature. For situations when the laser heats a metal casing 

which shields the HE, the time τ is determined by the heat transfer through the metal and 

can be estimated as follows [8]:
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Here h is the casing thickness and the thermal parameters pertain to the casing material. 

Also A is the absorption coefficient and I is the average laser intensity. For steel, the 

absorptivity is about 0.5, and the critical temperature is about 650 C. The thermal 

diffusion time becomes 

27.06.6 h
I

h
+≈τ ,

where h is the case thickness in cm and I is the average intensity in units of kW/cm2.

If the actual dwelling time is greater than (3.5), then it must be used in (3.4) as τ.

In typical situations, the thermal diffusion scale in a metal casing is comparable to 

the spot size. The diffusivity of HE is about two orders of magnitude smaller the 

diffusivity of the metal, so that 2/1)2(~ τDaeff . The critical temperature in this situation 

is determined by the expression
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Fig. 3. Ignition temperature for RDX and TNT samples heated by a laser spot with 
temperature rise time τ.
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The calculated values of Tc for TNT and RDX are shown in Fig.3.

In Ref. [8] the initiation of mortars by laser irradiation was modeled. The 

radiation was absorbed on the case surface, the thermal flux was transported through the 

iron case, and the explosive was described by Eq. (1.1). The results are consistent with 

the results of this paper. For an initiation time of a few seconds, the initiation temperature 
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of TNT was about 630 C and was insensitive to the spot size. This temperature is close to 

Tc ~ 600 C, as predicted by our approximate calculations (Fig.3). 
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