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ON SOME VERSIONS OF THE ELEMENT AGGLOMERATION

AMGE METHOD

ILYA LASHUK AND PANAYOT S. VASSILEVSKI

Abstract. The present paper deals with element-based AMG methods that target
linear systems of equations coming from finite element discretizations of elliptic
PDEs. The individual element information (element matrices and element topology)
is the main input to construct the AMG hierarchy. We study a number of variants of
the spectral agglomerate element based AMG method. The core of the algorithms
relies on element agglomeration utilizing the element topology (built recursively
from fine to coarse levels). The actual selection of the coarse degrees of freedom
(dofs) is based on solving large number of local eigenvalue problems. Additionally,
we investigate strategies for adaptive AMG as well as multigrid cycles that are
more expensive than the V–cycle utilizing simple interpolation matrices and nested
conjugate gradient (CG) based recursive calls between the levels. The presented
algorithms are illustrated with an extensive set of experiments based on a matlab
implementation of the methods.

1. Introduction

Multigrid (MG) (e.g., [14]) is one of the most efficient and natural methods for
solving linear systems of equations coming from partial differential equations (PDEs)
discretized on a sequence of grids. In algebraic multigrid (AMG) [2, 3, 12, 13] the
necessary MG components (coarse grids, coarse-grid operators, interpolation opera-
tors) are built by the solver algorithm opposite to geometric multigrid where these
components are naturally given by the discretization. An extreme case of an alge-
braic multigrid approach would lead to a black box solver, i.e., an algorithm which
would only use the linear system matrix as input data. In practice, all AMG methods
utilize (often assumed) some additional information about the class of problems they
are applied to. In the present paper, we deal with class of problems that come from
finite element discretization of elliptic PDEs. More specifically, we focus on variants
of the element–based AMG (or AMGe) methods developed in [4, 9, 8, 6, 7].

We have implemented several algorithms in matlab in the framework of the element
agglomeration spectral AMGe ([7]) and illustrate their performance. Our matlab im-
plementation allows for further extensions and offers potential for illustrating other
element based AMG algorithms. More specifically, the paper is structured as follows.
Section 2 describes the main building tools of the implemented algorithms. In partic-
ular, in Section 2.1 we describe the required input, Section 2.2 reviews some details
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on element agglomeration, and in § 2.3 the so–called “minimal intersection sets” are
introduced. These sets are later used, in Section 2.4, to define the coarse degrees of
freedom by solving local eigenvalue problems (associated with each minimal intersec-
tion set). The recursive nature of the algorithm is summarized in § 2.5. The spectral
way of selecting coarse degrees of freedom naturally leads to the construction of ten-
tative prolongators. In § 2.6 the need to improve on the stability of the tentative
prolongator is outlined.

Another direction of extending the presented method that we pursue utilizes more
sophisticated multigrid cycles that are based on inner (between the levels) precon-
ditioned conjugate gradient (CG) iterations. Such idea goes back to the non–linear
AMLI methods in [1]. This respective method, referred to as “nested-CG” (AMLI)
cycle is described in Section 2.7.

Section 3 contains description of a specific implementation of the adaptive AMG
method (cf., [5]) in the present AMGe setting. We consider also an option which
does not utilize the actual element matrices (but does use the element topology rela-
tions). This results in a new AMGe algorithm which we view as a main algorithmic
contribution of the present paper.

The V–cycle and “nested-CG” cycle are illustrated in Sections 4 and 5, whereas
the results utilizing AMG adaptivity are found in the last section 6.

The main result of the present work is that it describes some performance results of
a number of AMGe algorithms; some are simple variations of previously implemented
ones, in addition to some newly developed ones, such as the “nested-CG” AMLI
cycles, as well as the adaptive element agglomerate AMGe.

2. Basic building tools

2.1. Input data. We assume finite element setting of the problem in the framework
of relation tables as described in detail in [16].

More specifically, our matlab software requires the following input data:

• The “element dof” relation. It can be defined by treating each element as list
of degrees of freedom (dofs). If the dofs and elements are respectively num-
bered as 1, . . . , ND and 1, . . . , NE, then the incidence relation “element dof”
can be represented as the boolean sparse matrix M of size NE ×ND with en-
tries

Mij =

{

1, if element i contains dof j,

0, otherwise.

• The “element face” relation. This relation describes the incidence “element
i” has a ”face j”. For triangular elements, element faces are the triangles
sides. This relation can be used to define neighboring elements; namely, we
say that two elements are neighbors if they share a common face. This defines
the relation table “element element”. Again, the relations “element face” and
“element element” can be implemented as boolean sparse matrices.

• List of boundary dofs. This is a list of dofs which are on the boundary where
essential boundary conditions are to be imposed..
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• We also need access to the individual element matrices. We assume that all
these matrices are symmetric positive semi-definite (or SPSD for short). The
actual matrix of the linear system of our main interest is built in 2 steps:

– First, we assemble a global (in general, singular, SPSD) matrix from
the individual element matrices in the usual way, i.e., according to the
formula

wT Av =
∑

τ

wT
τ Aτvτ

where Aτ denotes the local matrix corresponding to element τ . For a
given v and a set of dofs τ , vτ stands for the restriction of v to the subset
of indices (dofs) corresponding to τ .

– Second, we impose the essential boundary conditions on the global as-
sembled matrix A. That is, for any dof d on “essential boundary” we
set to zero all off-diagonal entries in the d-th row and the d-th column
of A. For the class of problems we consider, imposing essential boundary
conditions in this way produces SPD (symmetric positive definite), hence
non-singular matrices.

We refer to the initial set of elements and respective dofs fine-grid elements (or fine
elements) and fine-grid dofs (or fine dofs).

We note that the right–hand side vector (required input in the solution phase) is
not needed as input in the construction of the actual AMGe solver.

2.2. Agglomerating elements. Agglomeration refers to a partition of the set of
all (fine) elements into non-intersecting subsets, called agglomerates or agglomerated
elements (AEs). More specifically, we treat the set of elements as vertices of the
undirected graph where two vertices (elements) are linked with an edge if and only
if they are neighbors, i.e., share a face. This graph defines (as described before)
the relation “element element”. If the relations “element face” and “face element”
are implemented as (boolean) sparse matrices, then “element element” equals the
product “element face” × “face element”.

We use the graph partitioner METIS ([10]) to partition the “element element”
relation into a desired number of components (a user specified parameter referred to
as coarsening factor or “Crs. f.”). We make sure that the produced components are
connected. Each (connected) component defines an agglomerate. Figure 1 gives an
illustration of this process. We also view each agglomerated element as a list of fine
degrees of freedom (the union of the degrees of freedom that come with the fine–grid
elements forming the agglomerate).

2.3. Building minimal intersection sets. Having created agglomerated elements,
we can split the set of all (fine) degrees of freedom into non-overlapping partitions,
referred to as minimal intersection sets (as in [17]). These partitions represent equiv-
alence classes with respect to the equivalence relation that two dofs belong to a same
minimal intersection set if and only if they belong to exactly the same set of ag-
glomerated elements. For example, all interior dofs of an AE constitute a minimal
intersection set. A boundary (its interior only) between two AEs constitutes a mini-
mal intersection set, etc. Figure 2 illustrates this process.
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Figure 1. Agglomerated elements
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Figure 2. Minimal intersection sets

2.4. Forming Schur complements, computing eigenvalues and building ten-

tative prolongators. For each minimal intersection set I, we define its neighbor-
hood N(I) to be all (fine) elements that intersect I (i.e., having a common dof with
I). We assemble the local matrix AN(I) from the element matrices corresponding to
the elements in N(I) and then compute its Schur complement SI by eliminating all
dofs outside I. Note that both AN(I) and SI are SPSD.

Next, we calculate all the eigenpairs (λI,k, qI,k), k = 1, . . . , |I|, of SI . Here, |I|
stands for the cardinality of the set I. Let QI be the matrix whose columns are the
(orthogonal and normalized) eigenvectors qI,k of SI .

Due to our assumptions, we have that all eigenvalues λI,k of SI are non-negative.
Based on a user specified tolerance τ ∈ [0, 1] (referred to as the spectral tolerance),

we partition QI into two submatrices. The first one, QI,c, has columns that are the
eigenvectors qI,k corresponding to the lower part of the spectrum of SI , i.e., all qI,k for
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k such that λk ≤ τ ‖AN(I)‖, where ‖.‖ stands for the `∞-norm of the neighborhood
matrix AN(I) (or the diagonal of AN(I)). The second block QI,f contains all remaining
columns of QI (i.e., eigenvectors corresponding to the upper part of the spectrum,
λI, k > τ ‖AN(I)‖).

The tentative prolongator Qc is then formed from the blocks QI,c (extended by zero
outside the set I), i.e., Qc = [ . . . , QI,c, . . . ]. Since all matrices QI,c are orthogonal
and the sets I do not overlap, Qc is also an orthogonal matrix.

2.5. Proceeding by recursion. So far, we have constructed the components nec-
essary for a 2-level method. More specifically, we assume a standard smoother M
such as (block) Gauss-Seidel. The coarse-grid matrix Ac is obtained by standard
(Galerkin) procedure; namely, with P = Qc (or some improved version of Qc), we set
Ac = P T AP . A symmetric two–grid iteration for solving Ax = b, for a given current
iterate x0, takes the form:

Algorithm 2.1 (Symmetric two–grid algorithm).

• pre–smooth, i.e., compute

y = x0 + M−1(b − Ax0).

• compute coarse–grid correction

xc = (Ac)−1 P T (b − Ay).

• interpolate and update the result

z = y + Pxc.

• post–smooth, i.e., compute

x = z + M−T (b − Az).

The mapping b 7→ x = B−1
TGb resulting from Algorithm 2.1 (with x0 = 0) defines a

two–grid preconditioner BTG. It is well-known (and readily checked) that its inverse
admits the following explicit form

(1) B−1
TG = (I − M−T A)P (Ac)−1 P T (I − AM−1) + M

−1
,

where M = M(M + MT − A)−1MT is the so-called symmetrized smoother. For
example, if M = D + L (D-diagonal, L-strictly lower triangular) represents the
forward Gauss–Seidel method coming from A = D + L + LT , then M = (D +
L)D−1(D + LT ) gives rise exactly to the symmetric Gauss–Seidel method.

To define a MG algorithm the exact solve with Ac is replaced with a corresponding
B−1

c defined by recursion. At the coarsest level Bc typically equals the matrix at that
level.

In our setting, to exploit recursion, we need to construct coarse elements (the
needed topology relations), coarse dofs and coarse element matrices.

The topology of the agglomerated elements (which serve as coarse elements) is
constructed based on the algorithms described in [16]. This part of the setup is
independent of the selection of the coarse dofs. The required input here is only the
fine–grid “element face” topological relation.
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The coarse dofs at a given level can be identified with the columns of the tentative
prolongator Qc that we construct based on the lower part of the spectrum of the
Schur complements SI associated with each minimal intersection set I.

To build coarse elements (as lists of coarse degrees of freedom), we use the agglom-
erated elements. Each agglomerated element (as a set of fine dofs) can be split into
several minimal intersection sets and each minimal intersection set has one or sev-
eral coarse dofs (eigenmodes) associated with its respective Schur complement. For
each agglomerated element T , the list of coarse degrees of freedom associated with
all minimal intersection sets that form T defines the relation “AE coarse dof”. This
relation is the coarse counterpart of the (fine-grid) relation “element dof”.

To construct coarse element matrices, we proceed as follows. For each agglomerated
element T , we first assemble the local matrix AT from the (fine–grid) element matrices
Aτ , τ ⊂ T . Also, based on T , we form the submatrix QT,c of the tentative prolongator
Qc that corresponds to the coarse dofs in T . In what follows, we refer to QT,c as the
“local tentative prolongators”. Finally, we construct the coarse element matrix Ac

T

based on the local Galerkin relation Ac
T = QT

T,cAT QT,c.

2.6. On the theoretical justification of the spectral AMGe approach. Con-
sider the orthogonal (in the euclidean inner product) splitting Rn = Vc ⊕ Vf where
Vc = Range(Qc) and Vf = Range⊥(Qc). Let PVf

denote the orthogonal projection
onto Vf . It can be proved (see [7]) that the restriction Aff = PVf

A|Vf
of A to the sub-

space Vf is well-conditioned if we choose sufficiently large portion of the eigenmodes
(in the lower part of the spectrum) of each Schur complement SI to form the columns
of the tentative prolongator Qc. That is, larger the spectral tolerance τ ∈ (0, 1) better
the condition number of the resulting Aff .

We note that the fact that Aff is well-conditioned by itself is not sufficient to
conclude that a two–grid method has good convergence factor; we also need some
stability property of the interpolation matrix. Since our tentative prolongator is
“block–diagonal” its stability properties in A–norm are not very good. That is, the
tentative prolongator needs to be improved in general. For example, we can “smooth”
it out as in the smoothed aggregation AMG ([15]). This is a feasible option that can
lead to better two–grid convergence rates. In our setting though, some of the minimal
intersection sets are “thin” aggregates, which led to higher operator complexities.
That is why, we did not pursue this option in the present paper. Operator complexity
(C) reflects the cost (in terms of arithmetic operations) of one V–cycle. It is defined
based on the number of non-zero entries Nl of the l-th level matrix Al (l = 0 is finest
level, l = L is the coarsest level) by the formula

(2) C =

∑L

l=0 Nl

N0

.

One option that we chose to stabilize the tentative prolongator is based on harmonic
extension defined as follows. For each agglomerated element T , we construct Qc only
for minimal intersection sets I that are on the boundary of T (i.e., shared also by other
agglomerated elements). Then Qc defined only on the boundary of T is extended into
the interior of T by inverting the block of the matrix A corresponding to the interior
of T . More specifically, if A restricted to T has rows [AT,i, AT,b] corresponding
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to the interior of T , then the actual interpolation mapping P has the block form

P =

[

−A−1
T,iAT,b Qc

Qc

]

.

Another possible approach in the multilevel case is to keep the “unstable” tentative
prolongators but compensate for that with more expensive cycles (like W-cycles, for
example). In the present paper, we chose to use recursive calls to coarse levels based
on preconditioned CG (conjugate gradient) iterations with a preconditioner (defined
by recursion) that is a (mildly) nonlinear mapping. This is described in more detail
in the next subsection.

2.7. The nonlinear “nested-CG” AMLI-type multigrid cycles. The alterna-
tive to compensate for a unstable tentative prolongator that we chose is to use more
expensive multigrid cycles based on CG (conjugate gradient) inner (between levels)
iterations goes back to the nonlinear AMLI–cycle hierarchical basis methods proposed
in [1]. Recent analysis of this type of cycles used in MG setting is found in [11].

We implemented an algorithm to be referred to as a “nested-CG” (AMLI) cycle.
It consists of CG-acceleration on each level of the currently defined (by recursion
from coarse to fine–levels) (nonlinear) preconditioner. More specifically, we run CG
iterations for the linear system Ax = b (where A is the finest level matrix) with a
preconditioner that is a non-linear mapping. To compute y = B−1(b), we use the
following recursive algorithm:

• For a given smoother M , apply a pre-smoothing step using y = 0 as initial
guess, i.e., compute y := M−1b

• Restrict the residual: rc := P T (b − Ay)
• At the coarsest level solve directly, i.e., compute yc:=(Ac)−1 rc; otherwise apply

several CG iterations to the linear system Acyc = rc, using yc = 0 as initial
guess and a preconditioner whose inverse actions B−1

c are defined recursively
(by the present algorithm); that is, compute yc as an approximate solution to
(Ac)−1 rc.

• Correct y based on yc as y := y + Pyc.
• Based on MT perform a post-smoothing step, i.e., compute y := y+M−T (b − Ay).

Note that the above algorithm defines an inverse of a preconditioner, B−1, that is
a nonlinear mapping.

In the implementation, we limit the number of inner CG iterations per level so
that the complexity of the resulting cycle is kept under control. More specifically, the
number of CG iterations at level l is chosen based on the coarsening factor defined as
the ratio Nl/Nl+1.

3. Adaptivity in the element agglomeration AMGe framework

In the present section we first describe the main steps of the adaptive AMG method
from [5]. The method based on its performance improves itself by augmenting its
current hierarchy (if any) so that the refined coarse spaces contain more “algebraically
smooth” vectors. These vectors represent approximations to the minimal eigenmode
of the generalized eigenvalue problem Ax = λBx, where B−1 stands for the matrix
representation of the V –cycle corresponding to the most current AMG hierarchy. If
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no hierarchy is available then B stands for the current level symmetrized smoother
M . The choice of the smoothers is fixed, for example Gauss–Seidel.

We may assume that an initial AMG hierarchy has been built as described in the
preceding section. That is, based on an AMGe algorithm, we have created sequence of
interpolation matrices, respective (Galerkin) coarse-grid matrices and the associated
with them smoothing matrices M (that choice we assume fixed). In the adaptive
AMG we begin with performing several “dry runs” based on the current method
to measure its performance. If inefficiency is detected then we try to improve the
method by adapting the AMG hierarchy. Some preliminary results of an adaptive
AMG method (in AMGe framework) were reported in [17]. We describe, in what
follows, the particular version of the approach that we have implemented.

For simplicity, we start with a two-level method. In our setting, it comes with a
tentative prolongator Qc, an “improved” interpolation mapping P , the coarse-grid
matrix Ac = P T AP and a smoother M associated with A. These components define
a two-level preconditioner B (as in Algorithm 2.1 or formula (1)). Note that the case
Qc = 0 and B = M is treated similarly (with obvious modification). This case is
refereed to as adaptive AMG starting “from scratch”.

Then we perform several stationary iterations to solve Ax = 0 with a random initial
guess x, i.e.,

x :=
(

I − B−1A
)

x,

where I is the identity matrix. At every iteration step we monitor the convergence
rate, i.e., we compute

ρ2 =
xT Ax

xT
oldAxold

.

If after few (for example, five) iterations ρ is greater than a desired convergence
factor, we stop the iteration. Our current (two–level) solver B cannot efficiently
handle this vector, i.e., x is rich in eigenmode components in the lower part of the
spectrum of B−1A. We refer to x as an “algebraically smooth” vector. Note that
x is “algebraically smooth” with respect to the current (two-grid) preconditioner
B (which initially may be simply the smoother M). The iteration process above
can be interpreted as calculating approximations to the highest eigenmode of the A-
symmetric two–level iteration matrix E = I − B−1A. Since we consider symmetric
MG cycles and A-convergent smoothers (like Gauss–Seidel), this implies that AE is
symmetric positive semi–definite.

The next step in the adaptive AMG, is to incorporate the “algebraically smooth”
vector x in the two-level hierarchy by changing the tentative prolongator Qc and
afterwards, the respective “improved” interpolation matrix P . After a new P has
been computed we re-compute the coarse-grid matrix Ac = P T AP .

The following algorithm implements the above steps:

Algorithm 3.1 (Augmenting coarse spaces based on additional vectors).

• We compute the interpolation error e = x − QcQ
T
c x. Since Qc has mutually

orthogonal columns, e is the projection of x onto the orthogonal complement
of the span of the columns of Qc.
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• For each minimal intersection set I, consider eI (the restriction of e to I).
Then, if ‖eI‖/‖x‖ is greater than some given threshold, we add eI (extended
by zeros outside I) as an extra column to the tentative prolongator Qc. If
‖eI‖/‖x‖ is less than the threshold, we discard eI .

• At the end, compute P , the improved interpolation matrix from Qc using har-
monic extension as described in section 2.6. Using this updated P , we re-
compute Ac = P T AP .

In the multilevel case, we have to perform few additional steps at any given level.
Note that below the current coarse level, we may already have a hierarchy of coarse
spaces. Since we have augmented Qc with more columns and built a new P , we have
generally changed the dimension of the coarse space at the given level. Hence, to
relate the next level coarse space with the current level coarse space based on the
previously available interpolation matrix Pnext is not possible because the dimensions
do not match. To fix this problem, we need to add some additional rows to Pnext to
match the dimensions. The new rows are simply set to zero. Thus the second coarse
matrix does not have to be recomputed. This is seen as follows. Let Qold

c be the
current level tentative prolongator. We add few new columns to Qold

c based on the
vector e computed in Algorithm 3.1. That is, we have Qc = [Qnew

c , Qold
c ]. Similarly,

the old interpolation matrix P old gets updated with the same number of columns; i.e.,
we have P = [P new, P old]. The new coarse matrix is Ac = P T AP . The second coarse
level interpolation matrix P old

next gets modified with some extra zero rows. It becomes

Pnext =

[

0
P old

next

]

. Therefore, the next coarse level matrix equals

Ac
next = P T

nextA
cPnext =

[

0
P old

next

]T

[P new, P old]T A[P new, P old]

[

0
P old

next

]

= (P old
next)

T (P old)T AP oldP old
next,

which is the expression defining the next level old coarse matrix.
A second problem that needs to be fixed is to augment the minimal intersection sets

at the given coarse level since we have added some new coarse dofs there. To accom-
plish this task, during the setup phase of the algorithm (more specifically, when we
agglomerate elements, build the minimal intersection sets, etc.) we keep a hierarchy
structure of the minimal intersection sets. We say that a level l minimal intersection
set Il is associated with a coarser level l+1 minimal intersection set Il+1 if there exists
a coarse dof dl+1 from Il+1 associated with Il. Recall that (initially) every coarse dof
corresponds to an eigenvector of a local matrix associated with a minimal intersection
set. It is easily seen that for each Il there exists a unique coarse minimal intersection
set Il+1 that is associated with Il. Based on the hierarchy of the minimal intersection
sets, we distribute the newly created coarse dofs among the coarser minimal intersec-
tion sets. Then we proceed by recursion. The previously current coarse level becomes
fine and we apply the method starting from that level. The initial vector x is now
not random; it equals QT x where x was the vector computed at the previous (fine)
level and Q is the augmented tentative prolongator at that level. The same scheme
applies to all subsequent levels till we end up with two levels only. Then, we apply
the two-level scheme described above.
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The following “monotonicity” result demonstrates the fact that augmenting a cur-
rent coarse space (in the sense described above) leads to a better two-grid method.

Proposition 3.1. Let A, M , P old and Ac
old =

(

P old
)T

A
(

P old
)

define a current
two–grid preconditioner Bold (as in (1)). Augment the coarse space so that P =
[

P new, P old
]

is the new interpolation matrix and Ac = P T AP is the new coarse
matrix. Then A, M , P and Ac define the new two–grid preconditioner B (also as in
(1)). Then the following inequalities hold:

vT A−1v ≥ vT B−1v ≥ vT B−1
oldv.

That is, B−1 provides a more accurate approximate inverse to A than the old two–grid
preconditioner B−1

old.

Proof. Let (u, v)A = vT Au denote the A–inner product (note that A is s.p.d.). It is
equivalent to show that for all u

(3) 0 ≤
((

I − B−1A
)

u, u
)

A
≤

((

I − B−1
oldA

)

u, u
)

A
.

The symmetric two-level cycle leads to an error propagation matrix that admits the
following product form

I − B−1A =
(

I − M−T A
) (

I − P (Ac)−1 P T A
) (

I − M−1A
)

and similarly

I − B−1
oldA =

(

I − M−T A
)

(

I − P old (Ac
old)

−1 (P old
)T

A
)

(

I − M−1A
)

.

We also note that (I − M−T A) is A-adjoint to (I − M−1A). Thus (3) with v =
(I − M−1A)u reduces to

0 ≤
((

I − P (Ac)−1 P T A
)

v, v
)

A

≤
((

I − P old (Ac
old)

−1 (P old
)T

A
)

v, v
)

A
.

These inequalities are readily seen from the fact that both
(

I − P (Ac)−1 P T A
)

and
(

I − P old (Ac
old)

−1 (P old
)T

A
)

are A-projectors providing the best approximation in

the A–norm from two nested spaces Range
[

P new, P old
]

and Range (P old). ¤

4. Numerical results for spectral agglomerate AMGe

In this and subsequent sections we illustrate the performance of the methods dis-
cussed in the paper. The problems we consider come from finite element (f.e.) dis-
cretization of 2D anisotropic diffusion as well as 2D (indefinite) Helmholtz equation
rewritten as a first order (mixed) system casted in a least-squares form (the so-called
FOSLS formulation). The latter problem gives rise to three degrees of freedom per
node.

The specific PDEs, posed in Ω = (0, 1)2, read:

• “anisotropic” diffusion:

−div (εI + bbT )∇p = f, p = 0 on ∂Ω,
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where ε is either 1 (which corresponds to no anisotropy, i.e. the operator is
Laplacian if b = 0) or 0.001 and b is a given constant vector in R

2. Here we
use f.e. discretization based on standard piecewise linear f.e. space Sh over a
given triangular mesh Th of Ω.

• Helmholtz equation −∆p− k2p = f , p = 0 on ∂Ω for a given k2. The FOSLS
formulation reads: Compute

‖curl uh‖
2 + ‖uh −∇p‖2 + ‖f + div uh + k2ph‖

2 7→ min,

over uh ∈ (Sh)
2 and ph ∈ Sh, where Sh is a finite element space of piecewise

linear functions over a given triangular mesh Th on Ω. Here ‖.‖ stands for the
L2(Ω) norm. ph and the tangential component of uh are set to zero on ∂Ω.
The additional vector unknown uh approximates ∇p.

In our tests, we varied the spectral tolerance τ ∈ [0, 1) (see Section 2.4) as well as
the smoothers used: Gauss–Seidel (“GS”) and its block–version. We used (overlap-
ping) blocks referring to the agglomerated elements (viewed as sets of fine–grid dofs).
This block smoother is denoted in the tables by “AE-BlockGS”. We used two types
of multigrid cycles: the standard symmetric V (1, 1)–cycle (forward (block) Gauss–
Seidel in fine-to-coarse direction and backward (block) Gauss–Seidel in coarse-to-fine
direction) and the “nested CG” cycle described in Section 2.7. For each method and
problem, we compare its two–level and multilevel versions. To reduce the complexity
of the methods we use different coarsening factors (“Crs. f.”), one at the initial level
(equal to sixteen or eight) and another one (equal to four) at all remaining coarse
levels. The number of levels used is denoted by Nlev. We also list % that is an estimate
of the convergence factor. In most of the tables the resulting multigrid cycle is used
as a preconditioner in the CG (conjugate gradient) method. In addition, the conver-
gence history of the methods is illustrated graphically. Finally, some typical graphs of
the coarsest level basis functions illustrating the kind of interpolation matrices (their
columns viewed on the finest grid) that result from a particular algorithm are shown.
The tables also contain the operator complexity C defined in (2) as well as a related
quantity CA+P defined as:

CA+P = C +

∑L−1
l=0 nnz (Pl)

nnz(A0)
.

That is, to the commonly used operator complexity C we add the total number of
non-zero entries of all interpolation matrices Pl divided by the number of non-zeros
of the finest level matrix.

In our numerical experiments, we use 2 types of meshes: a structured “square”
mesh and unstructured triangular meshes. A given uniform “square” mesh produces
the actual structured mesh by subdividing each square cell using its diagonal into two
triangles. In the case of structured grid, we choose the anisotropy vector b aligned
with the grid. All unstructured meshes we consider are obtained by refinement of the
mesh shown in Figs. 1-2.

In this particular section, we use V-cycle iterations based on the so–called (fully)
harmonic interpolation matrices. These interpolation matrices are obtained by first
selecting coarse dofs based on a portion of the lower part of the spectrum of the Schur
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Crs. f. τ CA CA+P Nlev Smoother ρ
8 4 0 1.4 1.7 2 GS 0.22
8 4 0 1.5 2.0 5 GS 0.23

Table 1. 2d Laplacian on square grid. 2048 elements, 1089 dofs. “Har-
monic“ prolongator is used inside V-cycle. No CG acceleration is used.

Crs. f. τ CA CA+P Nlev Smoother ρ
8 4 0 1.3 1.7 2 GS 0.24
8 4 0 1.4 1.9 7 GS 0.24

Table 2. 2d Laplacian on square grid. 32768 elements, 16641 dofs.
“Harmonic“ prolongator is used inside V-cycle. No CG acceleration is
used.

Crs. f. τ CA CA+P Nlev Smoother ρ Fig/Run
16 4 0 1.5 1.9 2 GS 0.15 4/1
16 4 0 1.6 2.2 6 GS 0.18 4/2

Table 3. 2d Laplacian on unstructured grid, 6400 elements, 3321 dofs.
“Harmonic“ prolongator is used inside V-cycle. Conjugate gradient
acceleration is used.

Crs. f. τ CA CA+P Nlev Smoother ρ Fig/Run
16 4 0 1.6 2.2 7 GS 0.21 4/3
16 4 0 1.5 1.9 2 GS 0.18 4/4

Table 4. 2d Laplacian on unstructured grid, 25600 elements, 13041
dofs. “Harmonic“ prolongator is used inside V-cycle. Conjugate gradi-
ent acceleration is used.

complements SI associated with each minimal intersection set I (as described previ-
ously) leading to an orthogonal matrix Qc, Based on the remaining part of the spec-
trum we can also construct the complementary (also orthogonal) matrix Qf . Then,
we first perform a change of variables that leads to a matrix [Qf , Qc]

T A[Qf , Qc] =
[

Aff Afc

Acf Acc

]

. Note that similar structure is obtained for all neighborhood matrices

AN(I) (discussed in Section 2.4). Having the 2 × 2 block form of the transformed
matrix with the coarse dofs identified (denoted by “c” index) the actual interpolation
matrix is constructed as described in [9]. The resulting interpolation matrix P can
be viewed as a locally “harmonic” extension of the tentative prolongator Qc. This
was the construction used also in [7].

Numerical results for this section are found in tables 1, 2, 3, 4, 5, 6, 7, 8. Figures
4, 7, 8 contain convergence plots for runs in the tables listed above. Figures 3, 5, 6,
9 contain graphs of some coarsest basis functions.
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Figure 3. One of coarsest-grid basis functions. Laplacian on square
grid, 2048 elements, 1089 dofs. “Fully-harmonic” prolongator is used.
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Figure 4. Residual decrease history for some runs in tables 3, 4.
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Figure 5. One of coarsest-grid basis functions. Laplacian on unstruc-
tured grid, 6400 elements, 3321 dofs. “Fully-harmonic” prolongator is
used. Coarsest grid contains 8 elements.

Crs. f. τ CA CA+P Nlev Smoother ρ
8 4 0.05 2.0 2.4 2 GS 0.27
8 4 0.05 3.9 6.0 5 GS 0.55
8 4 0.05 2.0 2.4 2 AE-BlockGS 0.11
8 4 0.05 3.9 6.0 5 AE-BlockGS 0.11

Table 5. 2d anisotropic diffusion on square grid. Anisotropy is grid-
aligned. 2048 elements, 1089 dofs. “Harmonic“ prolongator is used
inside V-cycle. No CG acceleration is used.

Crs. f. τ CA CA+P Nlev Smoother ρ
8 4 0.05 1.9 2.3 2 GS 0.27
8 4 0.05 4.3 6.8 7 GS 0.74
8 4 0.05 1.9 2.3 2 AE-BlockGS 0.11
8 4 0.05 4.3 6.8 7 AE-BlockGS 0.11

Table 6. 2d anisotropic diffusion on square grid. Anisotropy is grid-
aligned. 32768 elements, 16641 dofs. “Harmonic“ prolongator is used
inside V-cycle. No CG acceleration is used.
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Figure 6. One of coarsest-grid basis functions. Anisotropic diffusion
on square grid, 2048 elements, 1089 dofs. “Fully-harmonic” prolongator
is used. Note that this is one function, not sum of two functions.

Crs. f. τ CA CA+P Nlev Smoother ρ Fig/Run
16 4 0.15 2.0 2.5 2 AE-BlockGS 0.13 7/1
16 4 0.15 4.0 5.9 7 AE-BlockGS 0.16 7/2
16 4 0 1.5 1.9 2 AE-BlockGS 0.61 8/1
16 4 0 1.6 2.2 7 AE-BlockGS 0.62 8/2

Table 7. 2d anisotropic diffusion on unstructured grid, 25600 ele-
ments, 13041 dofs. “Harmonic“ prolongator is used inside V-cycle.
Conjugate gradient acceleration is used.

Crs. f. τ CA CA+P Nlev Smoother ρ Fig/Run
16 4 0.15 2.0 2.5 2 AE-BlockGS 0.12 7/3
16 4 0.15 3.5 5.2 6 AE-BlockGS 0.14 7/4
16 4 0 1.5 1.9 2 AE-BlockGS 0.44 8/3
16 4 0 1.6 2.2 6 AE-BlockGS 0.44 8/4

Table 8. 2d anisotropic diffusion on unstructured grid, 6400 elements,
3321 dofs. “Harmonic“ prolongator is used inside V-cycle. Conjugate
gradient acceleration is used.
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Figure 7. Residual decrease history for some runs in tables 8, 7. In
these runs, additional spectral coarse dofs were used (τ = 0.15).
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Figure 8. Residual decrease history for some runs in tables 8, 7. In
these runs, additional spectral coarse dofs were NOT used (τ = 0).
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Figure 9. One of coarsest-grid basis functions. Anisotropic diffusion
on unstructured grid, 6400 elements, 3321 dofs. “Fully-harmonic” pro-
longator is used. Coarsest grid contains 2 elements. This function
corresponds to additional “spectral” coarse dofs.
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Crs. f. τ CA CA+P Nlev Smoother ρ Fig/Run
32 4 0 1.2 1.4 2 GS 0.21 10/1
32 4 0 1.3 1.5 4 GS 0.21 10/2

Table 9. 2d Laplacian on square grid, 2048 elements, 1089 dofs. “Ten-
tative“ prolongator is used inside “nested CG cycle“. Conjugate gradi-
ent acceleration is used.

Crs. f. τ CA CA+P Nlev Smoother ρ Fig/Run
32 4 0 1.2 1.4 2 GS 0.22 10/3
32 4 0 1.3 1.5 6 GS 0.22 10/4

Table 10. 2d Laplacian on square grid, 32768 elements, 16641 dofs.
“Tentative“ prolongator is used inside “nested CG cycle“. Conjugate
gradient acceleration is used.
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Figure 10. Residual decrease history for some runs in tables 9, 10.

5. Tests with tentative prolongators within nested CG cycles

In this section we illustrate the performance of the method when tentative (i.e.
block-diagonal and orthogonal) prolongators (Qc) are used. In order to compensate
for prolongator instability, we use “nested CG” cycles described in Section 2.7. We
report in this section test results for Laplacian and anisotropic diffusion. We use
(pointwise) Gauss-Seidel as a smoother here, since our cycle is now more robust (and
expensive). Numerical results for this section are found in tables 9, 10, 11, 12, 13,
14. Figures 10, 12, 14 contain convergence plots for runs in the tables listed above.
Figures 11, 13, 15 show graphs of some of the resulting coarsest basis functions.
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Figure 11. One of coarsest-grid basis functions. 2d Laplacian on
square grid, 2048 elements, 1089 dofs. “Tentative“ prolongator is used.
Coarsest grid contains 4 elements.

Crs. f. τ CA CA+P Nlev Smoother ρ Fig/Run
32 4 0 1.4 1.5 2 GS 0.31 12/1
32 4 0 1.5 1.7 5 GS 0.32 12/2

Table 11. 2d Laplacian on unstructured grid, 6400 elements, 3321
dofs. “Tentative“ prolongator is used inside “nested CG cycle“. Con-
jugate gradient acceleration is used.

Crs. f. τ CA CA+P Nlev Smoother ρ Fig/Run
32 4 0 1.4 1.5 2 GS 0.37 12/3
32 4 0 1.5 1.7 6 GS 0.42 12/4

Table 12. 2d Laplacian on unstructured grid, 25600 elements, 13041
dofs. “Tentative“ prolongator is used inside “nested CG cycle“. Con-
jugate gradient acceleration is used.

6. Adaptive AMG tests

Here we present numerical results for adaptive AMG discussed in Section 3. We
apply this method to the Helmholtz problem described in Section 4, with k2 varying
from 0 (which is just Laplace operator) to 200. In our tests, we use the partially
harmonic extension of the tentative prolongators (as explained in Section 2.6) to
define the actual interpolation matrices Pl used within the adaptive V -cycle AMG.
We also employ nested–CG cycles (described in Section 2.7).
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Figure 12. Residual decrease history for some runs in tables 11, 12.
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Figure 13. One of coarsest-grid basis functions. 2d Laplacian on
unstructured grid, 6400 elements, 3321 dofs. “Tentative“ prolongator
is used. Coarsest grid contains 4 elements.

Crs. f. τ CA CA+P Nlev Smoother ρ Fig/Run
32 4 0.05 2.0 2.2 2 GS 0.40 14/1
32 4 0.05 2.7 3.5 5 GS 0.44 14/2

Table 13. 2d anisotropic diffusion on unstructured grid, 6400 ele-
ments, 3321 dofs. “Tentative“ prolongator is used inside “nested CG
cycle“. Conjugate gradient acceleration is used.
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Crs. f. τ CA CA+P Nlev Smoother ρ Fig/Run
32 4 0.05 2.1 2.4 2 GS 0.43 14/3
32 4 0.05 3.3 4.4 6 GS 0.46 14/4

Table 14. 2d anisotropic diffusion on unstructured grid, 25600 ele-
ments, 13041 dofs. “Tentative“ prolongator is used inside “nested CG
cycle“. Conjugate gradient acceleration is used.
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Figure 14. Residual decrease history for some runs in tables 13, 14.
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Figure 15. One of coarsest-grid basis functions. 2d anisotropic dif-
fusion on unstructured grid, 25600 elements, 13041 dofs. “Tentative“
prolongator is used. Coarsest grid contains 4 elements.
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Crs. f. CA CA+P Nlev Smoother Nvec ρ Fig/Run
32 4 2.2 3.1 2 SymGS 6 0.10 16/1
32 4 2.7 4.1 5 SymGS 6 0.11 16/2

Table 15. Adaptivity: FOSLS Helmholtz, k2 = 0, curl penalty=1,
6400 elements, 9963 dofs. “Partially-harmonic“ prolongator is used
inside “nested CG cycle“. Conjugate gradient acceleration is used.

Crs. f. CA CA+P Nlev Smoother Nvec ρ Fig/Run
32 4 2.4 3.3 2 SymGS 7 0.11 16/3
32 4 3.2 4.8 6 SymGS 7 0.10 16/4

Table 16. Adaptivity: FOSLS Helmholtz, k2 = 0, curl penalty=1,
25600 elements, 39123 dofs. “Partially-harmonic“ prolongator is used
inside “nested CG cycle“. Conjugate gradient acceleration is used.

Crs. f. CA CA+P Nlev Smoother Nvec ρ Fig/Run
32 4 2.6 3.7 2 SymGS 10 0.11 17/1
32 4 3.6 5.5 5 SymGS 10 0.11 17/2

Table 17. Adaptivity: FOSLS Helmholtz, k2 = 100, curl penalty=1,
6400 elements, 9963 dofs. “Partially-harmonic“ prolongator is used
inside “nested CG cycle“. Conjugate gradient acceleration is used.

Crs. f. CA CA+P Nlev Smoother Nvec ρ Fig/Run
32 4 2.6 3.7 2 SymGS 10 0.10 17/3
32 4 4.0 6.1 6 SymGS 11 0.13 17/4

Table 18. Adaptivity: FOSLS Helmholtz, k2 = 100, curl penalty=1,
25600 elements, 39123 dofs. “Partially-harmonic“ prolongator is used
inside “nested CG cycle“. Conjugate gradient acceleration is used.

Everywhere adaptivity is done from scratch (i.e., no initial hierarchy is assumed,
hence adaptivity is based initially on the symmetrized Gauss-Seidel smoother). While
obtaining “smooth vectors” for adaptivity, we do not use CG at the finest level, i.e.,
we run the “nested-CG” cycle as a stationary iteration. However, we do use CG in
the final test runs. The number of “smooth vectors” used to build the final AMG
hierarchy is shown in the column “Nvec” of each table.

Numerical results for this section are found in tables 15, 16, 17, 18, 19, 20 . Figures
16, 17, 18 contain convergence plots for runs shown in the above tables. Figures
19, 20, 21 show graphs of some of the resulting coarsest basis functions. Finally, in
Figure 22, we show how the complexity and convergence rate vary with the number
of incorporated “algebraically smooth” vectors.
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Figure 16. Residual decrease history for some runs in tables 15, 16.
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Figure 17. Residual decrease history for some runs in tables 17, 18.

Crs. f. CA CA+P Nlev Smoother Nvec ρ Fig/Run
32 4 2.5 3.6 2 SymGS 9 0.13 18/1
32 4 3.6 5.5 5 SymGS 10 0.18 18/2

Table 19. Adaptivity: FOSLS Helmholtz, k2 = 200, curl penalty=1,
6400 elements, 9963 dofs. “Partially-harmonic“ prolongator is used
inside “nested CG cycle“. Conjugate gradient acceleration is used.
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Crs. f. CA CA+P Nlev Smoother Nvec ρ Fig/Run
32 4 2.7 3.7 2 SymGS 10 0.10 18/3
32 4 4.1 6.2 6 SymGS 11 0.25 18/4

Table 20. Adaptivity: FOSLS Helmholtz, k2 = 200, curl penalty=1,
25600 elements, 39123 dofs. “Partially-harmonic“ prolongator is used
inside “nested CG cycle“. Conjugate gradient acceleration is used.

0 5 10 15 20
10

−20

10
−15

10
−10

10
−5

10
0

10
5

Iteration count

R
es

id
ua

l n
or

m

 

 

Run 1

Run 2

Run 3

Run 4

Figure 18. Residual decrease history for some runs in tables 19, 20.
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Figure 19. One of coarsest-grid basis functions, ux component.
Adaptive AMG for FOSLS Helmholtz, k2 = 200, 25600 elements, 39123
dofs. “Partially-harmonic“ prolongator is used.
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Figure 20. One of coarsest-grid basis functions, uy component.
Adaptive AMG for FOSLS Helmholtz, k2 = 200, 25600 elements, 39123
dofs. “Partially-harmonic“ prolongator is used.
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Figure 21. One of coarsest-grid basis functions, p component. Adap-
tive AMG for FOSLS Helmholtz, k2 = 200, 25600 elements, 39123 dofs.
“Partially-harmonic“ prolongator is used.

Conclusions

We have implemented a version of the spectral agglomerate AMGe method that
leads in a natural way to (orthogonal) tentative prolongation matrices. These ten-
tative prolongators can then be used to construct more stable interpolation matrices
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Figure 22. Adaptivity: FOSLS Helmholtz, k2 = 200, 6400 elements,
9963 dofs. “Partially-harmonic“ prolongator is used inside “nested CG
cycle“. Complexity and convergence rate depending on the number of
incorporated vectors. The convergence rate is for the stationary
method.

by harmonic extension (in the interior of the agglomerated elements) that results in
better convergence properties of standard V-cycle MG. The spectral choice of coarse
dofs by itself defines a scale of AMG methods that can get more powerful (with the
expense of increasingly higher operator complexity). Another alternative that we ex-
plored was to keep the tentative prolongators in the computation and compensate for
their poor stability by using more expensive MG cycles; we considered the “nested
CG cycle” that gives rise to (mildly) non-linear MG mappings. Finally, we note that
a low tolerance spectral agglomerate AMGe can be used to initiate an adaptive AMG
cycle. Once the initial AMG hierarchy has been constructed the individual element
matrices are no longer needed for the adaptive AMG we constructed. We chose, in
the numerical tests, to construct the initial AMG hierarchy “from scratch” which
version completely eliminated the need for the fine–grid element matrices. This par-
ticular method though did utilize the fine-grid element topology relations needed to
construct the multilevel agglomerates and respective minimal intersection sets. All
approaches offer potential to generate better (in convergence properties) AMG meth-
ods. The approach based on tentative prolongators (and more expensive MG cycles)
has the fastest setup among all, however one cycle is more expensive (in setup and/or
in cost per cycle). In general, all approaches can get fairly expensive if we want to get
too small convergence factors. We have tried to demonstrate their performance on
a variety of test problems including scalar anisotropic diffusion as well as Helmholtz
problem in a SPD (FOSLS) formulation.
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