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We report a rapid and robust separation of Saccharomyces cerevisiae and MS2 bacteriophage using 
acoustic focusing in a microfluidic device.  A piezoelectric transducer (PZT) generates acoustic standing 
waves in the microchannel.  These standing waves induce acoustic radiation force fields that direct 
microparticles towards the nodes (i.e., pressure minima) or the anti-nodes (i.e., pressure maxima) of the 
standing waves depending on the relative compressidensity between the particle and the suspending 
liquid.[1]  For particles larger than 2 μm, the transverse velocities generated by these force fields enable 
continuous, high throughput separation.   
 
Extensive work in the last decade [2-4] has demonstrated acoustic focusing for manipulating 
microparticles or biological samples in microfluidic devices.  This prior work has primarily focused on 
experimental realization of acoustic focusing without modeling or with limited one-dimensional modeling 
estimates.  We recently developed a finite element modeling tool to predict the two-dimensional acoustic 
radiation force field perpendicular to the flow direction in microfluidic devices.[1]  Here we compare 
results from this model with experimental parametric studies including variations of the PZT driving 
frequencies and voltages as well as various particle sizes and compressidensities.  These experimental 
parametric studies also provide insight into the development of an adjustable ‘virtual’ pore-size filter as 
well as optimal operating conditions for various microparticle sizes.   
 
Figure 1 shows a typical experimental acoustic focusing result for microparticles (diameter = 2.0 μm) in a 
500 μm wide by 200 μm deep microchannel.  In this case, the PZT driving frequency and voltage are, 
respectively, 1.459 MHz and 6.6 V.  The microparticles tightly focus (full width half maximum (FWHM) 
~30 μm) less than 30 s after the initiation of the acoustic field.   
 
We simulated the same geometry and operating conditions for comparison.  The surface plot in Figure 2 
illustrates the two-dimensional pressure field orthogonal to the flow direction (x-direction) from the 
simulation.  The superimposed vector plot shows the acoustic radiation force in this plane.  The dark 
regions and the light regions respectively represent the nodes and anti-nodes of the acoustic pressure field.  
The corresponding force field predicts acoustic focusing at the center of the microchannel, which is 
confirmed by the experimental results shown in Figure 1.  
 
We demonstrated the separation of Saccharomyces cerevisiae (typical cell size of 4-6 μm depending on 
the cell growth stage, measured using a Coulter counter) and MS2 bacteriophage (typical diameter 
~30 nm [5]) using acoustic focusing (Figure 3).  A mixture of S. cerevisiae and MS2 labeled with 
Ribogreen was prepared and injected into one inlet of the microchip (i.e., half of the microchannel was 
filled with the sample).  We varied driving voltages from 1.96 to 4.76 V, while fixing the driving 
frequency at 1.459 MHz and flow rate at 20 μl/min.  The acoustic radiation force did not affect the MS2 
viruses, and their concentration profile remained unchanged.  Increased driving voltages enhanced the 
acoustic focusing of the yeast cells thereby achieving good separation.  We are able to achieve yields of 
> 80% and sample purities of > 90% in this continuous-flow sample preparation device. 
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Figure 1.  A representative acoustic focusing of 
micro particles (d = 2.0 μm).  The driving 
frequency and voltage were 1.459 MHz and 
6.60 V, respectively.  Flow rate was 20 μl/min, 
and a 4x objective (N.A. = 0.1) was used.    
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 Figure 3.  Separations of a mixture of yeast cells 

and MS2 viruses.  Concentration profiles 
(normalized intensity) across the microchannel 
width direction (y) are shown for the driving 
voltages from 1.96 to 4.76 volts.  The driving 
frequency and flow rate were 1.459 MHz and 
20 μl/min, respectively.  Samples were initially 
introduced only at the right hand side of the 
microchannel. 
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Figure 2. Two-dimensional (cross-section of the 
microchannel) numerical estimate of the 
acoustic pressure field and the acoustic 
radiation force field.  The dark regions and the 
light regions respectively represent nodes (low 
acoustic pressure) and anti-nodes (high acoustic 
pressure) in the acoustic pressure field.  The 
driving frequency was set to 1.481 MHz.  The 
acoustic radiation force field (vector plot) 
predicts a strong acoustic focusing at the nodes 
(the center of the microchannel).  
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