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Abstract 

 Multidimensional hydrodynamic properties of high-adiabat direct-drive plastic-

shell implosions on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 

495 (1997)] are investigated using the multidimensional hydrodynamic code, DRACO. 

Multimode simulations including the effects of nonuniform illumination and target 

roughness indicate that shell stability during the acceleration phase plays a critical role in 

determining target performance. For thick shells that remain integral during the 

acceleration phase, target yields are significantly reduced by the combination of the long-

wavelength (A < 10) modes due to surface roughness and beam imbalance and the 

intermediate modes (20 ≤ A ≤ 50) due to single-beam nonuniformities. The neutron-

production rate for these thick shells truncates relative to one-dimensional (1-D) 

predictions. The yield degradation in the thin shells is mainly due to shell breakup at 

short wavelengths (λ ~ ∆, where ∆ is the in-flight shell thickness). The neutron-rate 

curves for the thinner shells have significantly lower amplitudes and a fall-off that is less 

steep than 1-D rates.  DRACO simulation results are consistent with experimental 

observations. 
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I. Introduction 

 In direct-drive inertial confinement fusion (ICF),1 nominally identical beams of a 

laser are incident on a nearly spherically symmetric target. The target’s outer surface 

ablates, driving the shell inward like a rocket. The shell first accelerates and then, after 

the laser drive is turned off, coasts before decelerating toward peak compression; 

disassembly then follows. The goal is to implode the target, resulting in sufficiently high 

temperatures and densities to propagate a self-sustaining burn wave through the target, 

giving rise to energetic neutrons with a total energy output greater than the laser energy. 

Ignition target designs require layers of cryogenic deuterium–tritium (DT) ice2 and 

relatively high laser energies such as those that will be available on the National Ignition 

Facility (NIF).3 To provide an understanding of target dynamics, a large number of 

implosions on the 60-beam OMEGA laser4 have been devoted to warm capsules,5–8 

which include plastic (CH) shells filled with deuterium (D2) gas. While a number of 

papers have been written on the experimental results from CH-shell implosions on 

OMEGA,5–8 the wavelength range of nonuniformities that influence the fusion yield has 

been an outstanding question.  

 In this paper, a detailed analysis of high-adiabat CH-shell implosions using one- 

and two-dimensional simulations and analytical modeling is performed. This work 

identifies, by using the hydrodynamic code DRACO,9 the nonuniformity seeds that 

influence target performance. Mechanisms that influence yields are also identified. In 

addition, comparisons to experimental results are presented.  

 Imperfect illumination and target roughness seed the nonuniformity growth in 

direct-drive implosions. The incident laser irradiation on the target includes 

nonuniformities that result from energy and power imbalances among the beams and 

from nonuniformities within each beam. The former results in long-wavelength (A < 10, 

where A = 2πR/λ is the Legendre mode number, R is the target radius, and λ is the 

nonuniformity wavelength) perturbations that lead to an overall deformation of the shell. 
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The latter are manifest in the intermediate-wavelength (10 < A < 50) and short-

wavelength (A > 50) nonuniformities that can lead to shell breakup during the 

acceleration phase as well as a disruption in final fuel assembly.  

 Nonuniformities grow due to the Rayleigh–Taylor (RT) instability10 during the 

acceleration phase of the implosion. The RT growth rates are smaller than classical 

values due to the ablative effects.10–13 Nevertheless, the RT growth factors of the short-

wavelength modes in the thin shells are large enough to compromise shell integrity 

during the acceleration phase. Shell breakup results in degradation of the shell 

compressibility, which leads to a reduction in the final core temperature and density and, 

consequently, a reduction in the neutron-production rates.  

 Nonuniformity growth during the coasting and deceleration phases of the 

implosions is seeded by feedthrough to the inner surface of the shell. Fuel–pusher 

interface distortions grow significantly during the coasting phase because of convergent 

effects (Bell–Plesset growth).15,16 Further, truncation of the neutron-production rate 

occurs due to the flow of fuel into the colder bubbles at the D2–CH interface during shell 

deceleration. Truncation is also caused by the increased heat conduction out of the core 

due to the larger surface area caused by shell distortions.  

 This paper is organized as follows: One-dimensional and multidimensional 

hydrodynamic modeling are described in Sec. II. Overall shell dynamics is discussed in 

Sec. III. In Sec. IV the four phases of the implosion (shock transit, acceleration, coasting, 

and deceleration) are analyzed in the context of single-mode growth. In Sec. V 

multidimensional simulations of beam-to-beam imbalances and single-beam 

nonuniformity are described, and the combined effects of all nonuniformity sources are 

discussed. Conclusions are presented in Section VI.  
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II. Radiation-Hydrodynamics Modeling 

 The one-dimensional (1-D) target dynamics discussed in this paper is modeled 

using the code LILAC,17 which has been described extensively in the literature and is not 

discussed any further.  

 Multidimensional behavior (2-D) of plastic targets is modeled using the code 

DRACO.9 DRACO is a one-, two-, and three-dimensional arbitrary Lagrangian 

Eulerian18 (ALE) code based on a structured mesh. The implosions described in this 

paper are simulated in one and two dimensions. Shocks are treated using Wilkins’ 

scheme.19 Several artificial grid-smoothing algorithms are available to control numerical 

grid distortions (bowties and herringbone distortions). These are based on Refs. 18–20; 

only Ref. 20 is used in this work.  

 In a purely Lagrangian mode, interfaces between materials are maintained at cell 

edges; however, a significant growth of perturbations results in a severely distorted grid. 

As a result, the grid must be “rezoned” for the simulation to proceed. The new grid can 

be constructed using several prescriptions. While some grid movement options are 

heuristically derived, others are based on Winslow-regridding–type21 schemes. DRACO 

allows for cells with mixed materials resulting from this grid rezoning. Rezoning is 

possible through a first-order (donor-cell) or a direction-split second-order scheme.22 

Material interfaces are reconstructed before every rezoning step using a scheme based on 

Young’s,24 which has been extended to allow for distorted Lagrangian cells. In this 

scheme, the interface between materials in a cell is represented by a straight line; the 

slope of this line is obtained through the gradient of the fractional volumes occupied by 

the material in the neighboring cells. 

 The pressure in each mixed-material cell is obtained by adding the partial 

pressures of the constituent cell materials. A single temperature for the materials in the 

cell is obtained using the prescription described in Ref. 23. While this interface tracking 
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scheme cannot be used to model turbulent regimes,24 it has been used to model the 

highly nonlinear growth of buried layers that burn through to the corona.9  

 Processes, such as heat conduction, radiation transport, etc., are treated using an 

operator splitting procedure. DRACO includes the deposition of laser energy through ray 

tracing and inverse bremsstrahlung. Both normal-incidence laser energy deposition and 

the ray-trace approach are used in this work. Since normal incidence does not include 

refractive energy losses, it can significantly overestimate the energy coupled to the target. 

For normal incidence simulations, the laser pulse shape is iteratively adjusted in 1-D 

simulations to provide the same overall dynamics of the implosion, including shock-

breakout times, the final convergence of the shell, ablation velocities, density scale 

lengths, etc., as obtained with a full ray trace. This modified pulse shape is used in two-

dimensional (2-D) simulations involving modes ≥20. Spherically symmetric 2-D 

simulations with this modified pulse shape compare very well with 1-D simulations using 

a full ray trace. For simulations that include only long-wavelength modes (A ≤ 10), we 

use a refractive ray trace. This ray trace uses a quasi-1-D scheme, where rays are not 

allowed to cross angular sector boundaries. This scheme accounts for refractive losses 

reasonably accurately only when the distortions are of relatively long wavelengths. In this 

technique, an angular spectrum describing the distribution of energy with angle of 

incidence is launched from a chosen surface each time step. This distribution takes into 

account both the single-beam ray distribution and beam overlap. In the limit of a 

spherically symmetric problem, this approach yields the same results as a full ray trace. 

 Several equation-of-state options (ideal gas, SESAME,25 Thomas–Fermi26 and 

QEOS) are available; the analytic Thomas–Fermi formulation is used for the simulations 

described in this work. Heat conduction and multigroup diffusive radiation transport are 

included. Tabular opacities assuming local thermal equilibrium are used for materials in 

unmixed cells. An ion-number weighted opacity is used in mixed cells for radiation 

transport. Radiation transport is solved in parallel across several processors.  
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The simulations use the “group-parallel” approach where each energy group is solved on 

one processor and the resulting radiation energy density is broadcast to all other 

processors. Four radiation groups, reduced from very fine opacity tables,28 are included 

in all the calculations in this work. The choice of the four energy groups is chosen to 

closely match the 1-D dynamics corresponding to 48 energy groups. The parallel 

scientific library, PetSc,29 is used to solve the diffusion equation via a preconditioned 

conjugate-gradient scheme. Message Passing Interface (MPI)30 is used to communicate 

among processors.  

 Particle production from nuclear reactions is calculated using the scheme 

described in Ref. 31. Alpha-particle transport and depletion of fuel material for modeling 

ignition are included in DRACO but are not necessary for simulating OMEGA target 

implosions.  

 DRACO has been tested extensively against analytic problems (shock-tube 

problems, blast-wave problems, etc.), against other codes (LILAC,17 ORCHID32), and 

against the ICF postprocessor described in Ref. 33 for single-mode growth. Good 

agreement is obtained with the known solutions for all the problems considered.9  

 

III. Shell Dynamics 

 This work focuses on direct-drive implosions with plastic (CH) shells filled with 

D2 gas. Two cases are considered (Fig. 1): (a) a 20-µm-thick CH shell with 15 atm of D2 

with a 1-D predicted convergence ratio, CR ~13 (CR is defined as the ratio of the initial 

radius to the compressed radius of the fuel–shell interface at the peak of the neutron 

production); (b) a 27-µm-thick CH shell with 15 atm of D2 (CR ~ 12). A 1-ns square 

pulse with ~23 kJ of energy is used to irradiate these targets with full beam smoothing 

[two-dimensional smoothing by spectral dispersion34 (2-D SSD) with polarization 

smoothing (PS)].35 Phase plates used on the beams36–38 in these implosions have a 

super-Gaussian order � 2.26 with a spot size (defined as the diameter that is 5% of peak 
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intensity) = 1000 µm. Case (a) has been chosen to illustrate implosion dynamics (Fig. 2). 

The laser pulse and shell acceleration history are shown in Fig. 2(a). The magnitude of 

the gradient of the natural logarithm of the pressure, ln ,P r∂ ∂  is shown in Fig. 2(b). 

The dark lines correspond to shock trajectories. The dashed line is the trajectory of the 

fuel−shell interface. Since the rise time of the laser is relatively fast (~200 ps), a strong 

shock is driven into the target, setting the shell material on a high adiabat, α ~ 5, defined 

as the ratio of the pressure at a given density to the cold Fermi pressure at that density. 

The rarefaction wave launched at the breakout of the shock (at ~0.4 ns) from the shell 

reaches the ablation surface, launching a compression wave into the target. At this time 

the shell starts to accelerate inward as indicated by the negative acceleration in Fig. 2(a). 

The compression wave travels down the decreasing density gradient and breaks out of the 

shell as a shock (at ~0.8 ns). The shocks meet in the gas (at ~1 ns) before reaching the 

center. The four main phases of the implosion are shown in Fig. 2(a). The acceleration 

phase occurs after shock transit and continues until shortly after the laser pulse turns off 

(at ~1.4 ns), at which time the shell starts traveling with a constant velocity (coasting 

phase). Deceleration of the shell begins when the shock reflects from the center and 

returns to the shell (at ~1.75 ns). This impulsive deceleration is followed by a period of 

continuous deceleration due to pressure buildup in the gas [Fig. 2(a)]. 

 Shock breakout is later in the thicker 27-µm implosion (at ~0.5 ns compared to 

~0.4 ns). The more-massive 27-µm-thick shell moves more slowly during the coasting 

phase than the 20-µm-thick CH shell. It therefore coasts for a longer time (~650 ps 

compared to ~350 ps). The shell convergence ratio for the coasting phase, defined as the 

ratio of the shell radius at the beginning and end of the coasting phase, is 3.0 for the 

thicker shell compared to 2.2 for the thinner shell. 
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IV. Single-Mode Simulations 

 In this section, we describe the evolution of nonuniformities through single-mode 

simulations. The seeding of nonuniformities is described in “Shock Transit.” The growth 

during the three phases—acceleration, coasting, and deceleration—is described in 

subsequent subsections. 

 

A. Shock transit 

 As mentioned in Sec. III, a strong shock is launched into the shell at the beginning 

of the pulse. Since there is no significant acceleration of the ablation front during the 

shock propagation through the shell, the shell nonuniformities are not susceptible to the 

Rayleigh–Taylor instability during this period. The perturbations, however, grow during 

this phase due to nonuniform laser illumination (power imbalance, beam mistiming, and 

single-beam nonuniformities or laser imprint). The initial outer-surface roughness, in 

general, can be amplified as well by the Richtmyer–Meshkov instability at the ablation 

front; such a growth, however, is totally stabilized by ablation.39 As a result, the mode 

spectrum due to the initial outer-surface roughness does not significantly change during 

shock transit.  

 First, the evolution of the long-wavelength modes seeded by the power imbalance 

among the 60 OMEGA beams is described. This imbalance is due to beam mispointing, 

different beam shapes, beam mistiming, and energy imbalance among the beams. Beam 

mistiming results in a temporal shift of each beam and energy imbalance is modeled as an 

overall height shift of each beam. The tilt that might be introduced to each beam pulse 

shape is not included in these calculations. The resultant laser illumination amplitudes 

due to these sources are shown in Fig. 3 for the dominant modes. The perturbation 

amplitude for a given mode is obtained by overlapping and decomposing the 60-beam 

energies on a sphere into spherical harmonics. The amplitude of the corresponding 

Legendre mode is obtained by adding all the m-mode amplitudes in quadrature. The 
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phase of the mode is chosen to be that of the m = 0 spherical harmonic. The large 

perturbation amplitudes of the Legendre modes correspond to the beginning of the laser 

pulse and are mainly due to beam mistiming (~12-ps rms). Once the peak intensity is 

reached, the nonuniformity reaches its asymptotic value corresponding to the energy 

imbalance in the beams (beam energies of the 60 OMEGA beams from a typical shot are 

used to apply energy imbalance), beam mispointing (~24-µm rms),40 and differences in 

beam shapes (~11-µm rms in super-Gaussian radius and ~0.6% rms in super-Gaussian 

exponent). These values are typical of OMEGA. The target is assumed to be at the target-

chamber center. (Typically on OMEGA, plastic shells are within 5 µm of target chamber 

center at shot time.) Mode numbers 2 and 4 have the largest amplitudes as indicated by 

Fig. 3. Mode number 10 is due to the 60-beam OMEGA geometry. 

 A model that describes the seeding of the ablation surface due to the long-

wavelength nonuniformities is described in Appendix A. This sharp-boundary model 

relates the modal amplitudes at the fuel–shell interface to the modulation in drive 

pressure, that is in turn related to the modulations in laser intensity using the “cloudy-

day” model.41 Here, the results of this model are compared with the full 2-D simulation 

involving modes up to 10. The modal amplitudes of the D2–CH interface at the onset of 

the acceleration phase are shown in Fig. 4 for the 20-µm-thick implosion. These are 

obtained by decomposing the interface perturbations from the 2-D simulation into 

Legendre modes (solid circles). The amplitudes obtained from the model (crosses) are 

also shown in Fig. 4. The results of the simulation are well reproduced by the simple 

model.  

 Next, the evolution of target nonuniformities caused by single-beam modulations 

(laser imprint) is described. Since laser imprint stays in the linear regime during shock 

transit, the mode spectrum is calculated by carrying out a series of single-mode, 2-D 

simulations up to the beginning of the acceleration phase. Imprint simulations are 

performed by imposing a 1% single-mode modulation in the laser illumination. 1-THz,  
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2-D SSD34 is applied to the perturbation amplitudes. SSD is modeled 

nondeterministically. Each mode is characterized by a coherence time given by 

( ) 1
max sin ,c ct nν π −⎡ ⎤= ∆⎣ ⎦A A  where max 02 Rπ δ=A  is the mode number 

corresponding to half the speckle size δ (δ = 2.35 µm for the OMEGA system), R0 is the 

initial outer shell radius, ∆ν is the SSD bandwidth, and nc is the number of color cycles 

on the laser system. The phase of the mode is chosen randomly every coherence time (the 

“flipping” approximation). This scheme mimics the average response of the target to the 

laser modulations. Averaged over time T, the single-beam rms nonuniformity, for a 

constant-intensity laser pulse, decreases as .ct T  For each mode in the simulation, the 

sequence of phases corresponds to a discrete two-state random walk. The number of the 

statistically independent phase sequences is limited by a finite maximum angular spread 

∆θ of the light propagating through the laser. The averaged mode amplitude cannot be 

reduced by SSD to levels below the asymptotic limit. This limit is inversely proportional 

to the square root of the number of statistically independent speckle patterns 

( ) ( )( )stat max max4 4 ,x yN S Sλ λ λ=  where 02 Rλ π= A  is the nonuniformity wavelength, 
( ) ( )

max
x y x yS F θ= ∆  is the maximum spatial shift in the x(y) direction, F = 180 cm is the 

focal length, and ∆θ x = 50 µrad and ∆θ y = 100 µrad for the OMEGA laser system. The 

asymptotic limits are modeled in the flipping approximation by selecting only Nstat 

independent choices for the sign of the nonuniformity amplitude. The average over a 

large number of runs will then correspond to the expected response of the target to the 

single mode. The calculated ablation-front amplitude at the beginning of the acceleration 

phase η% is a decaying function of the mode number A.42 This is due to both the shorter 

decoupling time and the stronger dynamic overpressure stabilization of the higher-A 

modes. When the effect of SSD is included, the imprint efficiency scales linearly with the 

mode wavelength. For the plastic shells driven by a 1-ns square pulse with 1-THz, 2-D 

SSD, the numerical calculations give the following ablation-front amplitude per 1% laser 

nonuniformity: 
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 ( )5
% 06 10 6.7 2 ,Rη π−× +� A  (1) 

 

where the initial shell radius R0 and η% are in microns. To calculate the mode spectrum 

at the ablation front due to the laser imprint, amplitude η% is multiplied by σrms of the 

laser nonuniformity of a particular mode.  

 Calculation of the laser σrms(A) includes the effects of the distributed phase plates 

(DPP’s) used on the beams.36–38 Laser beams are phase converted by being passed 

through the DPP’s on the OMEGA laser. The DPP’s improve the focused single-beam 

uniformity by removing the large-scale beam structure that has a higher imprint 

efficiency [see Eq. (1)], leaving intensity profiles with a well-controlled envelope 

modulated by fine-scale speckle with a lower imprint efficiency. An analytical model that 

describes this fine speckle43 is used to model the static single-beam nonuniformity in  

2-D simulations in which the A-mode nonuniformity is given as 
 

 ( )
2

2 1
rms 2 max max maxmax

16 cos 1 .σ
π

−
⎡ ⎤

⎛ ⎞ ⎛ ⎞⎢ ⎥= − −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

A A A AA
A A AA

 (2) 

 

This mode spectrum was confirmed experimentally in Ref. 44. The illumination 

nonuniformity given by Eq. (2) is shown in Fig. 5 as a function of mode number. Note 

that the laser nonuniformity amplitudes initially increase as a function of mode number 

(up to A ~ 600), opposite to the decay in the imprint efficiency with the wave number  

[Eq. (1)].  

 Polarization smoothing reduces the amplitude by a factor of 2. 35 Further 

reduction in modal amplitudes is obtained with beam overlap. This reduction factor is 
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obtained by comparing the result of overlapping 60 OMEGA beams on a sphere with the 

single-beam DPP amplitudes. A reduction factor of 12  reproduces the resultant 

overlapped amplitude pattern on a sphere. Overall amplitudes in the DRACO simulation 

are correspondingly reduced. The resulting imprint spectrum (dashed line) at the ablation 

front is plotted in Fig. 6. The ablation-surface amplitude due to imprint from one 

multimode DRACO simulation up to mode number 200 (solid line) is shown in Fig. 6 for 

comparison. The multimode simulation shows variations in the imprint spectrum due to 

the nondeterministic scheme used to model SSD. Good agreement, on average, between 

two calculations confirms the linear behavior of imprint prior to shell acceleration.  

 We compare the seeding due to all three nonuniformity sources in Figs. 6 and 7. 

The contribution of the ablation-surface nonuniformity from power imbalance and 

surface roughness45 is shown in Fig. 7. The comparison of this spectrum with Fig. 6 

shows that the main contribution to the low-A modes comes from beam imbalances. 

Surface roughness has a smaller contribution at low A. Laser imprint (Fig. 6) dominates 

the intermediate (10 < A < 50)- and high-A-mode seeding (comparison not shown). 

 

B. Acceleration phase 

 The two main sources of perturbation growth during the acceleration phase are 

(1) the RT instability caused by the opposite directions of the pressure and density 

gradients at the ablation front and (2) the secular growth due to the asymmetries in the 

laser drive. The latter growth is important only for low-A modes where the wavelength is 

much longer than the distance between the laser deposition region and the ablation front 

(conduction zone). Shorter-wavelength drive nonuniformities are smoothed out by the 

thermal conduction in the conduction zone (the cloudy-day effect). In addition, the RT 

growth rate increases with mode number; therefore, secular growth becomes negligible at 

the shorter wavelengths.  
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 The relative importance of the secular growth versus the RT growth for different 

long-wavelength modes is illustrated in Appendix B using a simple model. The model 

indicates that the final amplitudes at the end of the acceleration phase due to growth 

alone are significantly smaller than when RT growth is also included for long-wavelength 

nonuniformities. This suggests that power balance is extremely important during the 

period of shock transit when the seeds for RT growth are established. During the 

acceleration phase, beam imbalances are less important because the resulting growth is 

dominated by RT growth. This is confirmed by the results of the simulations shown in 

Fig. 8. In simulation 1 (solid line), beam imbalance is turned off at the start of 

acceleration, whereas in simulation 2 (dotted line), it is retained throughout the laser 

pulse. The ablation-surface amplitudes vary by less than 20%, confirming that beam 

balance is important primarily during shock transit phase only. Since beam mistiming 

dominates among the various sources of beam imbalances during the shock transit phase, 

this suggests that beam mistiming provides the largest seed for long wavelength 

nonuniformities on target. 

 Next, evolution of the intermediate (10 < A < 50)- and short-wavelength modes 

(A > 50) is considered. Single-beam nonuniformity (laser imprint) provides the main seed 

for these modes. The initial spectrum of imprint perturbations at the ablation surface is 

peaked at the low-A modes (Fig. 6). The RT growth rate, however, increases with the 

mode number, shifting the spectral maximum during acceleration toward shorter 

wavelengths. Mass ablation significantly reduces RT growth rate compared to the 

classical limit.11–13 As shown in Ref. 46, a rather complicated expression for the growth 

rate can be fit with much simpler formulae:  
 

 1 1 ,    1,akg kV Frγ α β= − >>  (3) 
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 2 2 ,    1,
1 a

m

kg
kV Fr

kL
γ α β= − <<

+
 (4) 

 

where ( )2
0aFr V gL=  is the Froude number, L0 is the characteristic thickness of the 

ablation front, Lm is the minimum density-gradient scale length, and Va is the ablation 

velocity defined as the mass ablation rate divided by the shell density. The coefficients 

α1,2 and β1,2 are functions of the Froude number and the effective power index for 

thermal conduction ν. The dispersion formulae described in Eqs. (3) and (4) have been 

verified experimentally in Ref. 47 for CH. For the 20-µm-thick plastic shell considered in 

this paper, the time-averaged acceleration, ablation velocity, ablation-front thickness, and 

power index, respectively, are g = 320 µm/ns2, Va = 3.2 µm/ns, L0 = 0.18 µm,  

Lm = 0.72 µm, and ν = 1; therefore, the Froude number is small, Fr = 0.18, and Eq. (4) 

can be used to calculated the RT growth rate. The fitting procedure described in Ref. 45 

gives the following coefficients: α2 = 0.94 and β2 = 1.50. Growth rates from single-mode 

simulations (solid circles in Fig. 9) compare very well with this analytic formula (dotted 

line in Fig. 9). Each simulation point in Fig. 9 is a single-mode simulation with a small 

amplitude perturbation to the laser nonuniformity, such that the mode growth remains in 

the linear regime during the acceleration. Equation (4) also indicates that the cutoff 

(modes beyond the cutoff are totally stabilized by ablation) occurs at very high A modes, 

Ac = 1220, and the growth rate does not decrease significantly even for mode numbers as 

high as A ~ 600 for these plastic ablators. Modes above A ~ 600, however, have a much 

smaller initial amplitude and experience nonlinear saturation. Their contribution to the 

total nonuniformity budget is therefore insignificant.  

 Radiation plays a stabilizing role during the acceleration phase. Absorption of the 

emission from the corona by the shell raises the shell adiabat near the ablation front, 

leading to adiabat shaping by radiation in the shell. This increases the ablation velocity 
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(from ~2.2 µm/ns to ~3.2 µm/ns) and the density-gradient scale length (from  

Lm = 0.1 µm to 0.7 µm). Since the density-gradient-scale-length is much shorter when the 

radiation transport is turned off, the Froude number increases, Fr = 0.7 (compare to  

Fr = 0.18 with radiation). Fitting the growth rate gives the following result: 

( )NoRad 0.92 1 1.59 .m akg kL kVγ = + −  The cutoff mode number in this case increases 

from Ac = 1200 to Ac = 4000, and the growth rate of mode A = 200 increases from  

γ = 7.8 ns–1 to 10.1 ns–1. The growth rates for the cases with and without radiation 

transport are summarized in Fig. 9. 

 Ablation surface amplitudes at the end of the acceleration phase from single-mode 

simulations using the realistic imprint amplitudes due to the use of phase plates are 

shown in Fig. 10. SSD and polarization smoothing are applied to smooth the 

nonuniformity over time. Since beam smoothing is modeled nondeterministically, the 

average of several simulations is used for the ablation surface amplitude. Each simulation 

point in Fig. 10 is the ablation-surface amplitude obtained from the average of five 

simulations with the error bar representing the standard deviation of these five 

simulations. It can be seen that modes up to at least 400 contribute to the ablation-surface 

nonuniformity. A full 2-D simulation would require, therefore, at least 400 modes to 

realistically model the shell stability during the acceleration phase.  

 The more-massive 27-µm-thick plastic shell accelerates less (g = 240 µm/ns2) and 

consequently has lower RT-growth rates. The nonuniformity seeds at the end of the 

acceleration phase from feedthrough are, therefore, also smaller at the D2–CH interface.  

 

C. Coasting phase 

 Shortly after the laser drive is turned off, the shell stops accelerating and starts to 

coast with a constant spatially averaged velocity. The coasting phase lasts until the main 

shock reflects from the center and begins to interact with the incoming shell. Even though 

the shell perturbations are not subject to the RT instability while the shell coasts inward, 
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the perturbations are amplified by Bell–Plesset growth. This growth is due to 

convergence and scales approximately as η ~ (ρr2)–1. Since the shell coasts inward, the 

shell radius decreases and the perturbation amplitude grows. Furthermore, both the front 

and back surfaces of the shell and the D2–CH interface expand (in the frame of reference 

moving with the shell) with the local sound speed, leading to a decrease in the density 

that further amplifies the perturbations. In general, the equation governing the 

perturbation evolution in the absence of acceleration has a weak mode-number 

dependence.33 Simulations, however, show a strong A-dependence of the Bell–Plesset 

growth, especially for long- and intermediate-wavelength modes (see Fig. 11). This 

dependence is due to the differences in long- and short-wavelength growth prior to the 

coasting phase. Since the low-A RT growth rate scales as a square root of the mode 

number A (ablative effects are insignificant), the longer-wavelength perturbations have 

lower RT growth rates during the shell acceleration. Therefore, at the end of the pulse, 

the velocity perturbation at the D2–CH interface is proportional to the square root of the 

mode number. To illustrate how mode dependence appears in the convergence growth, a 

simple model for the perturbation evolution during the coasting phase is:15 
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ρ η

ρ

⎡ ⎤
⎢ ⎥ =⎢ ⎥
⎢ ⎥⎣ ⎦

 (5) 

 

Integrating Eq. (5) twice with the initial conditions ( ) 00tη η= =  and 

( ) 0 0 00d dt t R gη η η′= = � A  gives the perturbation growth factor 
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where Cc is the shell convergence ratio during the coasting phase, R0 is the shell radius at 

the end of the acceleration phase, ρ0 is the density at the end of the acceleration phase, 

and Vimp is the implosion velocity. Equation (6) shows that the longer-wavelength modes 

experience smaller growth factors, in agreement with the results of simulations (see 

Fig. 11). The behavior of shorter wavelengths (A > 50), however, is different from 

Eq. (6). The perturbations at the D2–CH interface for such modes decouple from the 

unstable ablation front during shell acceleration when int r∆ A  becomes greater than 

unity, where ∆int is the distance between the ablation front and the interface. After 

decoupling, the interface perturbations start to oscillate with increasing amplitude due to 

the convergence effects. The growth factor for such modes is defined as the ratio of the 

interface amplitude at the end of shell coasting to the amplitude maximum during the 

acceleration phase. Then, 0 0rgη η′ ≠ A  and A-dependence of the solution of Eq. (5) 

becomes much weaker than .A  This is confirmed in Fig. 11, that shows a clear 

saturation of the growth factors after A ~ 30 for the 27-µm-thick implosion. The lines in 

Fig. 11 are a A  fit to growth factors for A <30. For the 20-µm-thick implosion, this 

saturation is less apparent. The 27-µm shell moves slower during the acceleration phase; 

hence, it coasts for a longer time (Cc = 2.2 for 20-µm shell and Cc = 3.0 for 27-µm shell). 

This leads to larger coasting-phase growth factors in thicker shells. It is important to note 

that the larger D2–CH growth factors during coasting partially compensate for the smaller 

nonuniformity seeds at the start of the coasting phase for the thicker, 27-µm implosion. 

At shell stagnation, therefore, the interface distortions would exhibit very little sensitivity 

to shell thickness for these two implosions. However, as will be shown in Sec. V, a 

significant difference in shell stability arising from shorter wavelength growth during the 

acceleration phase results in very different compressions for these implosions. 
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D. Deceleration phase 

 The coasting phase is followed by shell deceleration when the main shock 

reflected from the center begins to propagate outward inside the shell. The shell is 

defined as the high-density portion of the CH material (according to a standard definition, 

the shell is bounded by the max eρ  points on both sides from the position of the 

maximum density ρmax, also Fig. 12). The fuel, together with the inner lower-density, 

high-temperature CH, forms the hot spot. As the shell converges and temperature inside 

the hot spot increases, the heat front advances outward and ablates the colder portion of 

the shell. Therefore, the mass of the higher-temperature hot spot increases during the 

deceleration phase. This is similar to the hot-spot formation in cryogenic ignition 

designs.48 The main difference between cryogenic implosions and the gas-filled plastic 

implosions is that the hot spot in a cryogenic target consists only of the fuel, while the 

plastic implosions have two materials—fuel and CH. Since there is a mismatch in the 

average ion charge Z of the two materials, the density and thermal conductivity are 

discontinuous across the material interface. The density jump is easily obtained from the 

pressure continuity condition across the interface in the absence of radiative effects. The 

total pressure of the ionized gas is p = ρT/A, where T is the temperature, ( )1 ,iA m Z= +  

and mi is the average ion mass. Since the heat flux is continuous across the interface, the 

temperature must be continuous as well; therefore, the jump in density becomes 
 

 CH CH DD

DD DD CH

1 .
1

m Z

m Z

ρ
ρ

+=
+

 (7) 

 

Substituting mCH = 6.5 mp, mDD = 2mp, ZCH = 3.5 and ZDD = 1 into Eq. (7) gives 

CH DD 1.44,ρ ρ =  which leads to the Atwood number AT = 0.18. Here, mp is the proton 

mass. Such a density jump across the material interface creates conditions for the RT 
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growth. There are two RT unstable regions during the deceleration phase: (1) the 

classically unstable CH–D2 interface with AT = 0.18 and (2) the rear surface of the shell. 

Density profiles at peak neutron production are shown in Fig. 12 to illustrate this point. 

The simulation without radiative effects (solid) shows two distinct regions of instability: 

the fuel–shell interface with an Atwood number of 0.18 and a less-steep density gradient 

leading up to the peak density. While the first region is unstable for all mode numbers, 

the growth rate at the second region is significantly reduced by the density-gradient scale 

length and mass ablation. With radiative effects included in the calculation (dotted), 

however, the effective Atwood number at the interface significantly increases to  

~0.5 from the relatively small value of 0.18. This effect is due to the ablation of the 

colder shell material. As the shell material ablates and is heated by the thermal 

conduction from the core, the bremsstrahlung radiation increases. The radiation losses 

lead to additional cooling and compression of the blowoff CH. The simulation with 

radiation transport in Fig. 12 (dotted line), at peak neutron production, has a larger AT 

compared to the simulation without radiation (solid line). As a consequence of this 

increased Atwood number, there is an increase in the RT instability growth rate for long 

and intermediate wavelengths. The RT instability creates a lateral flow of the fuel along 

the interface that moves the fuel from the hotter spike region into the colder bubbles. This 

leads to an effective cooling of the fuel and degradation in the neutron production rate. 

Such a mechanism of the neutron-yield truncation is dominant for the thicker shell, which 

is stable enough during the acceleration phase to maintain its integrity. 

 As mentioned earlier, the main shock reflected from the target center starts to 

propagate across the shell at the beginning of the deceleration phase. The material behind 

the shock stagnates, transferring the shell’s kinetic energy into the internal energy of the 

hot spot. The larger momentum flux of the shell material across the shock results in 

higher hot-spot stagnation pressure. To estimate the dependence of the final hot-spot 

pressure Pf on the shell’s parameters, we use the continuity conditions across the shock 
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propagating inside the shell, which moves with implosion velocity Vimp and has density 

ρsh. In the shock-front frame of reference, the mass-flow continuity gives 
 

 2 sh 1,cU Uρ ρ=  (8) 

 

where U1 and U2 are the fluid velocities ahead and behind the shock and ρc is the 

compressed density behind the shock. Since the material behind the shock stagnates in 

the laboratory frame of reference, U2 = Us and U1 = Vimp + Us, where  
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is the shock velocity in the strong-shock limit and γ = 5/3 is the ratio of specific heats. 

Combining Eqs. (8) and (9) and using ρc � 4ρsh gives 
 

 2 kin
sh imp 2

hs sh
~ ~ .f

E
P V

R
ρ

∆
 (10) 

 

At shell stagnation, the kinetic energy of the shell 2
kin sh imp 2E M V=  is transferred into 

the internal energy of the hot spot 3
hs2 3 .fP R  Substituting this latter expression for the 

kinetic energy into Eq. (10), one sees that the stagnation radius is proportional to the shell 

thickness Rhs ~ ∆sh; therefore, the final pressure of the compressed fuel is larger for a 

“compact” shell with higher density and smaller shell thickness for a given shell kinetic 

energy. In other words, the kinetic energy of the converging shell heats the hot spot more 

efficiently in shells with larger compressibility (smaller entropy). Comparing 20- and  
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27-µm shells, we conclude that the stagnation radius of the thicker shell is larger; thus the 

final pressure and the neutron-production rate are expected to be smaller. On the other 

hand, if one compares the shell that remains integral during the acceleration phase with a 

shell whose stability is severely compromised by RT growth, the integral shell has a 

lower entropy and smaller shell thickness. It, therefore, stagnates at a smaller radius 

reaching a higher hot-spot pressure and temperature. This leads to a larger neutron-

production rate in the integral shell in comparison with the significantly distorted shell.  

 The larger shell thickness in the implosion with compromised shell integrity also 

implies that the rate at which neutron production decreases should be less steep during 

shell disassembly. Between the time of peak neutron production and peak compression, 

the neutron rate decreases due to the falling temperature in the gas. The subsequent 

decrease in the neutron-production rate occurs due to shell disassembly. If the shell is 

thicker, disassembly occurs later in the implosion as follows: The time between the 

interaction of the reflected shock (which is very similar for both integral and severely 

distorted shells) and when the shock breaks out of the shell is given by sh .s st U= ∆  

From Eqs. (9) and (10), 2
kin hs sh sh .U E R ρ∆�  Since Ekin is very similar between the 

integral shell and severely distorted shell implosion (only a small portion of the total 

energy goes into lateral flow in the distorted shell implosion) and mass ( )2
hs sh shR ρ∝ ∆  is 

conserved, the shock velocity is very similar in both cases; therefore, ts ∝ ∆sh and is 

longer for the thicker shell, and disassembly is delayed. Consequently, neutron 

production falls less steeply in the implosion where shell stability is compromised than in 

the implosion with an integral shell.  

 

V. Multimode Simulations 

A. Effects of beam-to-beam imbalances 

 This section describes multimode simulations. As mentioned in Sec. IV(A), 

imbalances among the beams result in long-wavelength modes on target. Even modes 
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between 2 and 10 are used to simulate the effect of low-order modes using the amplitudes 

in Fig. 3. The power in odd modes is added in quadrature to the even-mode amplitudes. 

Figure 13 shows the fuel–shell interface amplitudes versus time for the dominant modes 

in the simulation for the 20-µm-thick shell implosion. The initially unperturbed interface 

acquires a perturbation shortly after shock breakout around 0.4 ns. When the compression 

wave returns to the interface, it causes another jump in the perturbation around 0.8 ns. 

Significant growth is simulated after this time due to the feedthrough of the perturbation 

from the ablation surface and the convergent Richtmyer–Meshkov instability. Modes 6 

and greater start oscillating shortly after the end of the acceleration phase as they 

decouple from the ablation surface. The reflected shock from the center returns to the 

interface around 1.75 ns, when A = 4 changes phase. Rayleigh–Taylor growth occurs 

shortly after that as the shell continuously decelerates toward stagnation.  

 The yield is only marginally affected by low-order modes with 2-D simulation 

resulting in ~95% of the 1-D yield for the 20-µm-thick shell and ~94% of 1-D for the  

27-µm-thick shell. Figure 14 shows the density contour at peak neutron production for 

the 20-µm-thick implosion. The D2–CH interface is marginally distorted. The areal 

density variations are ~23% at peak neutron production (for both shell thicknesses). To 

account for other sources of nonuniformity that are not included in the calculations, the 

initial beam imbalance is multiplied by a factor of 2. This results in a yield relative to 1-D 

of ~90% for both thicknesses. 

 The marginal effect of low-order modes is consistent with the beam-balancing 

experiment described in Ref. 36. In that work, on-target beam balance was changed in a 

controlled manner; the estimated decrease in the amplitude of these modes was between 

30%–50%. While a decrease in areal-density variations was observed, only a marginal 

difference in absolute neutron yields was observed.  
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B. Effects of single-beam nonuniformity 

 Single-beam nonuniformity seed intermediate- and short-wavelength modes on 

target. As mentioned earlier, modes up to at least 400 are required to realistically model 

shell stability. A full 2-D simulation including the effects of power imbalance would then 

require modes between 2 and 400. Resolving mode 400 in such a simulation requires a 

large number of computational zones—far beyond the scope of this work. We illustrate 

the effect of laser imprint on shell stability by performing simulations with a smaller set 

of modes. The simulations include beam-smoothing techniques described in Sec. IV(B). 

Figure 15(a) shows a plot of density contours at the end of the acceleration phase from a 

simulation that includes even modes up to A = 200 for the 20-µm-thick CH shell. The 

shortest wavelength in this simulation is resolved using 14 cells, resulting in a 200 × 700 

zone simulation. Since odd modes are not included in the simulation, their power is added 

in quadrature to the amplitudes of the even modes. The shell indicated by the high-

density regions is considerably distorted with portions of the shell at less than solid 

densities. The peak-to-valley variation in the center-of-mass radius is calculated to be 

6.6 µm at the end of the acceleration phase, significantly greater than the 1-D shell 

thickness of ~5 µm. It is expected that the shell distortion will only increase when even-

shorter wavelengths are included in the calculation. Therefore, short wavelengths play an 

important role in increasing the adiabat of the shell by introducing additional degrees of 

freedom for the fluid flow. This will influence the compressibility of the shell and, 

therefore, neutron yields. In comparison, the 27-µm-thick implosion [Fig. 15(b)] has an 

integral shell at the end of the acceleration phase with a peak-to-valley amplitude of 

3.4 µm in the center-of-mass radius compared to a shell thickness of ~6.8 µm. The effect 

of the still-shorter wavelengths not included in the calculation (A > 200) can be estimated 

using a RT postprocessor33 to the 1-D simulation. This postprocessor indicates that the 

thicker, 27-µm-thick shell remains integral during the acceleration phase while the 

stability of the 20-µm-thick shell is severely compromised.  
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 Due to the large number of computational cells in these simulations, it is 

extremely challenging to reliably simulate these implosions through peak compression. 

Instead, the effect of the various nonuniformity sources are assessed as follows: 

 Simulations that include only a few modes represent shell stability reasonably 

well. The goal of these simulations is to identify the mechanisms that influence neutron 

yields. More detailed comparisons with experimental observables will be performed in 

the future.  

 

VI. Combined Effects of All Sources of Nonuniformity 

 Simulations that include a few modes are useful to shed light on which modes 

influence target performance. The mode ranges are divided into three regions: long 

wavelengths (A ≤ 10), intermediate wavelengths (10 ≤ A ≤ 50), and shorter wavelengths 

that include all the higher mode numbers. In Sec. V(A), it has been pointed out that low-

order modes (A ≤ 10) alone have a marginal influence on target performance. 2-mode 

simulations corresponding to mode numbers 4 and 20 that combine the effect of long and 

intermediate wavelengths are performed. These simulations and those described later are 

performed on a 45° wedge. The initial amplitude for each mode is chosen from the 

amplitudes added in quadrature of a range of mode numbers (from the DPP and PS 

spectrum for A = 20 using modes between 15 and 40 as the mode range and from the 

initial power balance and surface-roughness data for modes 2 < A < 8 for mode A = 4). 

The neutron-production rate is shown in Fig. 16(a) for the 20-µm-thick implosion and 

Fig. 16(b) for the 27-µm-thick implosions. The rate from the two mode simulations 

(dotted line) deviates from the 1-D simulation, and the burn truncates relative to 1-D. 

This is the case for both thicknesses. The two-mode simulation illustrates the 

mechanisms for yield reduction through burn truncation. The RT and RM growth at the 

fuel–shell interface results in the flow of fuel into the colder bubbles, decreasing the 

yield.  This is illustrated in Fig. 17, where the fluid velocity vectors (arrows) in the frame 
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moving radially in with the fluid are overlaid on the contour plot of ion temperature at 

peak neutron production. This result is shown from a single-mode simulation of mode 

number 20, where this mode has the same initial amplitude as the previous two-mode 

simulation. Due to heat conduction, the temperature contours are more spherically 

symmetric than the material interface (solid line). As the vectors indicate, fuel flows into 

the colder bubbles. This truncates the neutron-production rate. The second truncation 

mechanism is due to the distortion of the high-density shell. The increased surface area 

enhances heat conduction out of the core, cooling the fuel and decreasing the yield. These 

truncation mechanisms cannot be included in 1-D mix models that have been used 

previously to model these implosions.6,8,49 The single intermediate-mode simulation has 

a yield relative to 1-D of 78% (for both thicknesses). The addition of long wavelengths 

(A = 4) reduces this value to 55% for the 20-µm-thick shell and 61% for the 27-µm-thick 

shell. Thus, the combination of the low and intermediate modes has a greater effect on 

yield than each range of modes alone.  

 To investigate the role of the shorter wavelengths on yield, three-mode simulation 

including mode numbers 4, 20, and 200 are performed. In this simulation, modes 4 and 

20 have the same amplitude as the simulation discussed earlier. The amplitude for mode 

A = 200 is chosen by adding in quadrature the power between modes 100 and 300. 

Contours of mass density for the two shell thicknesses are shown at peak neutron 

production in Fig. 18. The significant shell distortion corresponds to the intermediate 

mode, A = 20. Even though the growth rate at the D2–CH interface is highly nonlinear for 

the short wavelength (A = 200), the bubble amplitude is, at most, 1 µm. This amplitude 

can be physically explained as follows: since a hydrodynamic code such as DRACO 

cannot follow materials into the turbulent regime, we consider the amplitude of the short 

wavelength as a “mix thickness.” The simulated thickness is consistent with expectations 

from turbulent mixing. The turbulent mixing layer grows self-similarly with a mixing 

thickness h, given by Ref. 50 
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 2,Th A gtα=  (11) 

 

where α is a dimensionless constant.  

 As described in Sec. IV(D), bremsstrahlung cooling increases CH density in the 

hot spot. Consequently, the Atwood number varies continuously during the deceleration 

phase, reaching a maximum value of 0.5. The increased density, however, does not 

significantly alter the short wavelength perturbation growth rate due to the stabilizing 

effects of the density-gradient scale length and thermal conduction. Taking AT = 0.18 for 

the D2–CH interface gives α = 0.05 (Ref. 50). This leads to h = 0.9 µm. This compares 

favorably with the amplitude of A = 200 inferred from simulation. In previous work, 

homogenous mixing of D2 and CH6–8,49 has been inferred from experimental 

observables such as secondary neutron ratios,6,8 argon spectral lines,7 D3He yields in 

3He-filled CD shells,6,8 etc. Primary neutron yields have not been directly used to 

determine the presence of turbulence. Larger mixing widths (~20 µm) have been inferred 

based on spherically symmetric 1-D mix models. Since 1-D mix models need to account 

for the increased volume due to long wavelength distortions, it is very likely that they 

overestimate the mixing length. The relatively small turbulent mixing layer (compared to 

the overall deformation of the interface due to intermediate mode numbers) suggests that 

the experimentally inferred turbulence plays a small role in determining primary neutron 

yields, but likely influences the other observables mentioned above. 

 The simulations including A = 200 also indicate an interesting trend in neutron 

production when compared to the simulations including only low and intermediate modes 

(Fig. 16). For both shell thicknesses, the peak in the neutron-production rate deviates 

earlier from 1-D simulations. For the 20-µm-thick shell, however, neutron production 

does not decrease as steeply as the previous two-mode simulation. For the 27-µm-thick 
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shell, the neutron-production history is very similar in width to the two-mode simulation. 

This difference in trends can be explained as follows: The shell is integral for the 27-µm-

thick shell and the density and temperature distribution compare favorably with 1-D [this 

is shown in Fig. 19(b)]. The solid black line is the 1-D result, whereas the other two lines 

correspond to radial lineouts from the simulations (dashed at 36° and dotted at 0°). For 

the 20-µm-thick shell, the profiles from the 2-D simulation are significantly different 

from 1-D [Fig. 19(a)]. The peak densities are much lower, and the shell has a wider 

extent due to the increased adiabat from shell breakup during acceleration. This profile 

results in delayed stagnation as the shock takes much longer to reach the back of the shell 

[see Sec. IV(D)]. This delayed shell disassembly results in a persistence of neutron 

production compared to the simulation including only low and intermediate modes. 

Figures 19(c) and 19(d) show the corresponding radial temperature lineouts from the 

simulation. The lower temperature in the 27-µm implosion [Fig. 19(d)] is due to the shell 

distortion and increased heat flow from the core. The 20-µm implosion [Fig. 19(c)], in 

addition, shows lower temperature due to the decreased compression. The yields relative 

to 1-D are 21% for the 20-µm-thick CH shell compared to 47% for the 27-µm-thick CH 

shell. Experimentally, the yields relative to 1-D are ~40% and ~45% for the 20-µm and 

27-µm thicknesses, respectively. Since mode A = 200 has a larger effect on the 20-µm 

implosion, the smaller yield relative to 1-D in the simulation for the 20-µm implosion 

points to an overestimate of the initial amplitude of A = 200 in the simulation.  

 Similar trends in neutron-production rates are observed in experiments. Figure 20 

shows the neutron-production rates from experiment (solid line), the 1-D simulation 

(dotted line), for the 20-µm-thick implosion [Fig. 18(a)] and the 27-µm-thick implosion 

[Fig. 18(b)]. Since absolute timing in these experiments was unknown, the 1-D rates are 

overlaid on the experimental rates by aligning the rise times of the two neutron rate 

curves. For the thinner shell, the experimental burnwidth is closer to 1-D, whereas for the 

thicker, more-stable shell, the burnwidth is truncated compared to 1-D. This trend 
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persists: a still thicker shell (33 µm) shows increased burn truncation, and even thinner 

shells (15-µm) indicate a widening of the neutron-production history. The 2-D simulation 

of the 20-µm implosion shows a slower fall of the neutron-production rate compared to 

the experimentally observed rate. This is likely due to the larger value for the initial 

amplitude of the A = 200 mode in the simulation compared to that in experiment.  

 In summary, the combination of intermediate and low modes significantly 

influences predicted neutron yields. This is manifest as burn truncation in the neutron-

production rates. The short wavelengths significantly affect shell stability for the thinner 

shells and influence stagnation. This widens the burnwidth and also influences yields. For 

the thicker shells, the burnwidth does not change significantly with the addition of short-

wavelength modes. In both cases, the neutron rates deviate earlier from 1-D with the 

addition of short wavelengths in simulation.  

 

VII. Conclusions 

 One-dimensional dynamics of high-adiabat plastic-shell implosions of two 

different thicknesses irradiated by a smooth laser were discussed. Seeding and evolution 

of nonuniformities was discussed for the different phases of the implosion. During the 

acceleration phase, modes up to at least ~400 should contribute to shell stability. 

Multimode simulations using the code DRACO indicate that the shell stability in the 

implosion of a 20-µm-thick plastic shell is significantly compromised due to the 

Rayleigh–Taylor instability during the acceleration phase, whereas the 27-µm-thick shell 

is only marginally distorted. Long-wavelength multimode simulations indicate that 

imbalances between the laser beams have a small effect on target yields. Intermediate 

modes appear to influence yields significantly. Short-wavelength modes result in 

qualitatively different behavior of the neutron production rate between the two shell 

thicknesses: a slower fall-off compared to 1-D for the thinner shell and marginally 

influencing burnwidth for the thicker shell. Future work will include detailed 
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comparisons of charged-particle spectra with experimental observations, an additional 

analysis to relate small-scale mix thicknesses to observations of homogenous mixing in 

experiments, and the comparison of x-ray images of the compressed core with 

experimental observations.  

 

Acknowledgment 

 This work was supported by the U.S. Department of Energy Office of Inertial 

Confinement Fusion under Cooperative Agreement No. DE-FC52-92SF19460, the 

University of Rochester, and the New York State Energy Research and Development 

Authority. The support of DOE does not constitute an endorsement by DOE of the views 

expressed in this article. This work has been supported in part by LLE (subcontract 

PO412163G) with the University of Wisconsin for the implementation of the PetSc 

Libraries in DRACO.  Supported in part by DOE at UC, LLNL under W-7405-Eng-48. 

 

APPENDIX A:  Seeding of the Long-Wavelength Modes Due to Drive Asymmetry 

 The nonuniformities in laser intensity results in asymmetries in drive pressure ∆P. 

To relate the ablation pressure and laser-intensity nonuniformities ∆I, we adopt the 

“cloudy-day” model.37 Using the scaling P ~ I2/3 yields the following relation:  
 

 2 2 ,
3 3

ckDP I
e I

P I
−∆ ∆ ≡ ��  (A-1) 

 

where Dc is the size of the conduction zone (the distance between the ablation front and 

the region of maximum laser energy deposition) and k is the wave number. For the set of 

experiments described in this paper, the conduction zone grows linearly in time Dc = Vct 

with Vc � 68 µm/ns. Since the laser intensity is spatially modulated, the shocks driven by 
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the peaks in the laser illumination travel faster than the shocks launched at the intensity 

minima; therefore, the shock and ablation fronts get distorted. This distortion growth can 

be estimated for long-wavelength modes using the following simple model: The shock 

velocity, in the strong-shock limit, is proportional to the square root of the drive  

pressure P,  
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where ρ0 is the initial (undriven) shell density and γ  is the ratio of specific heats (γ = 5/3 

for the monoatomic ideal gas and is used here). Drive pressure modulations distort the 

shock front according to 
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where cs is the sound speed of the shock-compressed shell, ∆Ps is the pressure 

modulation at the shock, and ηs is the shock-front amplitude modulation. We 

approximate ∆P in the latter equation with the modulation at the ablation front  

[Eq. (A-1)]. This approximation is justified only for the long-wavelength modes when the 

lateral fluid motion can be neglected. Ablation front distortions are caused by the 

perturbations in the post-shock velocity ps 0 ,sU Uρ ρ= −  where Ups is calculated in the 

shock frame of reference. Such perturbations are due to (1) modulations in the shock 

velocity, ( )0 ;sUρ ρ− ∆  (2) modulations ∆ρ in the shock-compressed density, 

( ) ( )0 ;sUρ ρ ρ ρ∆  and (3) modulations in the position of the shock front. It can be 

shown that the density modulation right behind the shock is small for strong shocks 
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( 2~ ,sM P Pρ ρ −∆ ∆  where Ms is the shock Mach number) and can be neglected. The 

resulting modulation in the post-shock velocity takes the form 
 

 ( )ps 0
31 .
4s sU U Uρ ρ∆ − ∆ = ∆�  (A-4) 

 

Since ablative stabilization and lateral flow can be neglected for the long-wavelength 

modes, ps.ad dt Uη = ∆  Integrating the latter equation gives the ablation-front 

modulation ηa: 
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It is also important to determine the modulation in the CH–gas interface ηint at the 

beginning of the acceleration phase. The modulation at the interface is seeded by the 

perturbed shock. As soon as the shock breaks out of the shell, the rear surface starts to 

expand with the velocity 3 cs (Ref. 51) with respect to the shock-compressed material. 

Therefore, the amplitude of the CH–gas interface takes the value ηint = 3 csδ t , where 

s st Uδ η=  is the shock transit time across the modulation amplitude. Using the strong 

shock limit, one obtains int 3 5 4.sη η  Taking into account the relation between ηs and 

ηa yields int 5 .aη η=  As shown in Ref. 52, the gas–CH interface is unstable during the 

rarefaction-wave (RW) propagation through the shell. Since such a growth is linear in 

time and proportional to the modulation wave number, there is very little change in the 

amplitude of the fuel–pusher interface between the shock breakout and the beginning of 

the acceleration phase. To determine the mode amplitudes at the beginning of the 

acceleration phase, we integrate Eq. (A-5) using the laser nonuniformity profiles shown 
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in Fig. 3. The spectrum thus obtained is plotted in Fig. 4 and compared against the results 

of the full 2-D power-balance simulation. Observe that the simple model reproduces the 

results of simulations very well. To calculate the initial conditions for the RT growth, in 

addition to the initial amplitude, we must calculate the perturbed front velocity .aη′  This 

velocity has two components. The first is given by Eqs. (A-4) and (A-3), and the second 

is due to the rippled RW breakout at the ablation front. Indeed, when the first shock 

reaches the rear surface, the RW is launched toward the ablation front. The RW travels 

with the local sound speed cs; therefore, if the shock amplitude is ηs, then the rarefaction 

amplitude becomes ( )rw 5 4.s s s sc Uη η η= =  The phase of the modulation in the 

rarefaction head is opposite to the phases of the rear-surface and ablation-front 

perturbations. Upon reaching the ablation front, the RW establishes the pressure gradient, 

accelerating the front. Since the peaks of the RW break out at the ablation front prior to 

the valleys, the ablation-front ripple gains an additional velocity perturbation δv = gδ t , 

where g is the acceleration and ( )rw 5 3 .s a st c cδ η η= =  Combining the two 

contributions, the initial ripple velocity takes the form 
 

 ( ) ( ) ( )0 0 0
5 ,

35
a s

a
s

d c g
t I t t

dt c

η η= +�  (A-6) 

 

where t0 is time at the beginning of acceleration phase. Equations (A-5) and (A-6) show 

that the ablation-front amplitude changes slope at t = t0. Substituting ( )2
shsg c γ= ∆  into 

Eq. (A-6) and also approximating ( ) ( )0 sh shsh
~ 4 ,a st I c Uη ∆�  we can rewrite  

Eq. (A-6) as 
 

 ( ) ( )0 0 sh
~ .

5 5
s s

a
c c

t I t Iη′ +� �  (A-7) 
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The second term in the right-hand side of Eq. (A-7) is proportional to the laser 

nonuniformity averaged over the shock transit time, 
sh

.I�  Taking into account that 

beam mistiming significantly increases I�  at the beginning of the pulse (during the pulse 

rise), 
sh

I�  becomes much larger than ( )0I t�  (in most cases by a factor of 5). This 

conclusion is valid for a large variety of target designs, including the ignition design, 

since the laser reaches its peak intensity prior to the acceleration phase. One must keep in 

mind, however, that Eq. (A-6) assumes sharp interfaces of the CH–gas boundary and the 

ablation front. In reality the radiation preheat relaxes the density at the CH–gas interface 

prior to the first shock breakout. In addition, the ablation front has a finite thickness. 

These effects cause deviations of the initial condition from simple estimates [Eqs. (A-5) 

and (A-7)]. Comparison with the results of 2-D simulations shows that finite interface 

thickness effects do not significantly modify the perturbation amplitudes (Fig. 4).  

 

APPENDIX B:  Growth of Long-Wavelength Modes During the Acceleration Phase 

 The equation describing the perturbation growth for the long-wavelength modes 

(neglecting ablation) during the acceleration phase can be written as33 
 

 2
sh

1 2 ,
3 c

d d P I r
r g g

dt r dt I r

δρ η η
ρ ρ

⎛ ⎞⎛ ⎞ ∆− = = ∆⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

A
A A A  (B-1) 

 

where ∆P is the drive pressure nonuniformity, r is the shell radius, g is the shell 

acceleration, ρ is the shell density, ∆sh is the shell thickness, rc is the position of the 

average laser-energy deposition surface, and η is the ablation-front modulation 

amplitude. The factor ( )cr r A  is due to the cloudy-day effect. Equation (B-1) is subject to 

the initial conditions (A-5) and (A-6). The shell thickness is ∆sh = 5 µm for the 20-µm 
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shell and ∆sh = 6.8 µm for the 27-µm shell. During this phase of the implosion, the shell 

density remains approximately constant, so we can cancel ρ in Eq. (B-1). For simplicity 

constant shell acceleration is assumed, 2
0 2.r r gt= −  To compare the relative 

importance of the RT growth versus the secular growth during the shell acceleration, Agη 

is compared with the right-hand side of Eq. (B-1). The lower limit of this term is  
 

 ( ) ( ) 0
0 shsh shsh

min ,
5

sc
g g t g I g I

U
η η ∆= = ∆� �A A � A A  (B-2) 

 

where ∆sh is the in-flight shell thickness (which is approximately one-fourth of the initial 

thickness ∆0) and 
sh

I�  is the intensity modulation averaged over the shock propagation 

time. Comparing the latter expression with the right-hand side of Eq. (B-1), we observe 

that P gρ η∆ <<  during the acceleration phase. The latter inequality is satisfied for very 

long wavelengths (A < 10) because ( )0sh
I I t>>� �  due to beam mistiming early in the 

pulse. Shorter wavelengths (A > 10) experience a large attenuation due to thermal 

smoothing in the conduction zone. Therefore, the right-hand side of Eq. (B-1) is also 

small for such mode. Thus, we can conclude that the secular growth during the 

acceleration phase is much smaller than the RT amplification of the initial amplitude and 

velocity of the ablation-front modulation. This growth can be estimated using the WKB 

solution of the homogeneous part of Eq. (B-1) with the following initial conditions: 
 

 ( )sh sh0 sh 0 0,    .
5
sc

I I t Iη η ⎡ ⎤′= ∆ = +⎣ ⎦
� � �  (B-3) 

 

Using results of Ref. 33, the solution takes the form 
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 ( )
5 4 0

0 0cosh sinh ,
2a r

r
C

g
η η η

⎡ ⎤
′= Ψ + Ψ⎢ ⎥

+⎢ ⎥⎣ ⎦A
 (B-4) 

 

where ( ) 12 2 arcsin 1 rC−Ψ = + −A  and Cr is the convergence ratio during the 

acceleration phase. During the acceleration phase, the convergence ratio of the 20-µm 

shell and the 27-µm shell is 0 1.7rC r r= �  and Cr � 1.4, respectively, where  

r0 = 430 µm is the ablation-front radius at the beginning of the shell acceleration. The 

dominant role of the RT growth over the secular growth is confirmed by the results of 

DRACO simulation. Figure 8 shows a plot of the perturbation amplitude with full power 

imbalance (dashed–dotted line) and with the power imbalance turned off (solid line) 

during the acceleration phase.  
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Figure Captions 

 

FIG. 1.  (a) Plastic-shell targets studied in this work. Two thicknesses—20 µm and 

27 µm—with D2 fills are considered. (b) The pulse shape (1-ns square) used to irradiate 

these targets sets the shell on a relatively high adiabat (~5). 

 

FIG. 2.  (a) Acceleration and laser pulse shape history (1-ns square) for the 20-µm CH 

shell irradiated with a 1-ns square pulse at 23 kJ of energy. (b) Contour plot of the 

magnitude of the gradient of the natural log of pressure for the target in (a). The darker 

contours correspond to shock trajectories. The dashed line is the trajectory of the  

fuel–shell interface. Also shown is the duration of the four phases of the implosion 

(shock-transit, acceleration, coasting, and deceleration). 

 

FIG. 3.  Modal amplitudes of the dominant modes due to beam imbalances as a function 

of time. The early-time large amplitudes correspond to beam mistiming. The values at the 

peak of the pulse (0.2–1.1 ns) are due to energy imbalance between beams, beam 

mispointing, and differences in spot shapes. 

 

FIG. 4.  Single-mode amplitudes of the fuel–shell interface at the beginning of 

acceleration from a 2-D simulation for the 20-µm-thick CH implosion (circles). The 

values obtained from the model described in Appendix A are also shown (crosses). The 

“cloudy-day” model relates the amplitudes at the fuel–shell interface to modulation in 

laser drive. Good agreement between the simulations and model indicate that the seeding 

of the interface is well understood.  

 

FIG. 5.  Nonuniformity spectrum due to phase-plate speckle. This nonuniformity peaks 

around A ~ 600. 



 42

 

FIG. 6.  Imprint spectrum from single-mode simulations (dotted line) and multimode 

simulation (solid line). The good agreement confirms linear behavior of imprint. Note 

that imprint efficiency decreases with increasing mode number. This is opposite in 

behavior to the laser nonuniformity (Fig. 5). 

 

FIG. 7.  Long-wavelength perturbations at the ablation surface due to beam imbalances 

(solid line) and surface roughness (dotted line) at the start of acceleration. Beam 

imbalances provide the larger contribution to long-wavelength nonuniformity seeds. 

 

FIG. 8.  Amplitudes of the D2–CH interface versus time for mode numbers 2 and 4 for 

beam imbalances throughout the pulse (dotted) and beam imbalances imposed on target 

only until the start of acceleration (solid). The small effect of beam imbalances during the 

acceleration phase indicates that long-wavelength modes are seeded primarily during 

shock transit. 

 

FIG. 9.  Good agreement is obtained with simulated single-mode growth rates (solid 

circles) and the Betti formula for plastic (dotted line). Also shown is the Betti formula for 

growth rates when radiation transport is not included in the simulation (solid line). 

Reabsorption of radiation from the corona plays an important role in stabilizing the 

growth of perturbations at the ablation surface.  

 

FIG. 10.  Single-mode amplitudes at the end of the acceleration phase. The solid circles 

are averages of five simulations each with a different choice of random number seed for 

the nondeterministic SSD model. The error bars represent the standard deviation of the 

amplitude across the five simulations. The relatively large values of A = 400 indicate that 
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such short wavelengths will contribute significantly to the ablation-surface 

nonuniformity. 

 

FIG. 11.  Single-mode growth factors for the coasting phase for the 20-µm-thick 

(triangles) and 27-µm-thick (squares) CH implosions. The lines are ~ -fitA  to the 

growth factors for A < 30. Growth factors clearly saturate for A > 30 for the 27-µm-thick 

CH shell. 

 

FIG. 12.  Density profiles at peak neutron production from a 1-D simulation with (dotted) 

and without (solid) radiation transport. Radiation plays an important role during 

deceleration by raising the effective Atwood number for long and intermediate 

wavelengths. 

 

FIG. 13.  Modal amplitudes versus time at the fuel–shell interface for the low-order 

multimode simulation (due to beam imbalances) of a 20-µm-thick CH shell. The interface 

becomes perturbed shortly after shock breakout around 0.4 ns. A second jump in the 

amplitude is modeled at ~0.8 ns when the second shock breaks out of the shell. Shorter 

wavelengths such as modes 6 and 10 decouple during the coasting phase as is indicated 

by their changing phase. Longer wavelengths (modes 2 and 4) change phase when the 

shock returns to the interface at ~1.75 ns. 

 

FIG. 14.  Density contours at peak neutron production from a multimode simulation 

including only low-A modes (A < 10) for the 20-µm-thick CH implosion. An areal-density 

variation of 23% is calculated at this time in the implosion. The solid line corresponds to 

the D2–CH interface. 
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FIG. 15.  Density contours at the end of the acceleration phase for (a) a 20-µm-thick CH 

shell and (b) a 27-µm-thick CH shell from a multimode simulation of laser imprint. The 

solid lines correspond to the D2–CH interface. Note that the shell (indicated by the 

higher-density contours) is significantly more distorted for the 20-µm implosion than the 

27-µm implosion. 

 

FIG. 16.  Neutron-production rates from the simulation including only low- and 

intermediate-mode numbers (dashed–dotted line) and the simulation including short 

wavelengths (dotted line) compared to 1-D (solid line) for (a) the 20-µm-thick CH shell 

and (b) the 27-µm-thick CH shell. Note that the addition of mode 200 in the simulation 

including short wavelengths results in a less-steep fall of the neutron production rate for 

the 20-µm implosion and retains burn truncation for the 27-µm case. 

 

FIG. 17.  Fluid velocity vectors in a frame moving radially in with the fluid overlaid on a 

contour plot of ion temperature at peak neutron production for the 20-µm-thick CH shell. 

The simulation, from a single-mode perturbation, illustrates one mechanism for burn 

truncation. As the velocity vectors indicate, fuel flows into the colder bubbles due to RT 

growth resulting in burn truncation.  

 

FIG. 18.  Density contours for simulations including short wavelengths at peak neutron 

production for (a) the 20-µm-thick CH shell and (b) the 27-µm-thick CH shell. The solid 

line is the fuel–shell interface. The short wavelengths (A ~ 200) have an amplitude of 

~1 µm, consistent with estimates of mixing thicknesses from turbulence observations.50 

 

FIG. 19.  Radial lineouts of density from the simulation including short wavelengths for 

(a) the 20-µm-thick CH shell and (b) the 27-µm-thick CH shell at two different polar 

angles [0° (dotted) and 36° (dashed–dotted)], compared to the 1-D simulation (solid line). 
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Note that the thinner shell has significantly lower densities compared to 1-D. The shell is 

considerably thicker for the 20-µm implosion. Radial lineouts of temperature are shown 

for (c) the 20-µm implosion and (d) the 27-µm implosion. All lineouts are at peak 

neutron production in 1-D. The temperatures in the core are lower than 1-D due to 

enhanced heat conduction out of the distorted core (both thicknesses) and the overall 

lower compression in the 20-µm-thick implosion. 

 

FIG. 20.  Comparison of calculated (1-D) neutron rates (dotted) with experiment (solid 

line) for (a) the 20-µm-thick implosion (shot number 30628) and (b) the 27-µm-thick 

implosion (shot number 22088). Burn truncation is evident for the 27-µm-thick 

implosion. Neutron production rate persists and is almost as wide as 1-D for the 20-µm-

thick implosion. 
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